JP2006009339A - Construction method for building continuous composite girder bridge - Google Patents

Construction method for building continuous composite girder bridge Download PDF

Info

Publication number
JP2006009339A
JP2006009339A JP2004186136A JP2004186136A JP2006009339A JP 2006009339 A JP2006009339 A JP 2006009339A JP 2004186136 A JP2004186136 A JP 2004186136A JP 2004186136 A JP2004186136 A JP 2004186136A JP 2006009339 A JP2006009339 A JP 2006009339A
Authority
JP
Japan
Prior art keywords
concrete
floor slab
slab
steel girder
girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004186136A
Other languages
Japanese (ja)
Inventor
Ko Watanabe
滉 渡辺
Tatsunori Yoneda
達則 米田
Yoshihiro Tachibana
吉宏 橘
Koji Kitagawa
幸二 北川
Ryohei Shimizu
良平 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawada Industries Inc
Original Assignee
Kawada Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawada Industries Inc filed Critical Kawada Industries Inc
Priority to JP2004186136A priority Critical patent/JP2006009339A/en
Publication of JP2006009339A publication Critical patent/JP2006009339A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that cracking cannot be prevented due to the absence of the effective action of the application of a compressive force, because such a high compressive force as to deform not only concrete but also a steel girder is required and the concrete is shrunk by drying and shrinkage even after the compressive force is applied, in a conventional construction method wherein the forced compressive force is applied to the concrete integrally connected to the steel girder, in an early time after the construction of a concrete floor slab, so as to cancel out a tensile force occurring on an intermediate supporting point section, in the building of a continuous composite girder bridge. <P>SOLUTION: The concrete floor slab 9 is constructed in an unconnected state on the steel girder 4 which is laid across the intermediate supporting section 3; after that, building work is performed in other sections; and after the concrete floor slab is sufficiently dried and shrunk, the forced compressive force is applied to the concrete floor slab. Thus, the compressive force is applied to the concrete floor slab alone; the amount of shrinkage caused by the drying and shrinkage, occurring after the application of the compressive force, is reduced; and the compressive force is effectively applied so that the cracking can be prevented in an appropriate manner. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、橋軸方向の引張力が作用する中間支点部上のコンクリート床版に、予め効率的に強制圧縮力が加えられるように改良することで、コンクリート床版にひび割れが発生することを防止できるようにした連続合成桁の架設工法に関するものである。   The present invention is to improve the concrete floor slab on the intermediate fulcrum where the tensile force in the direction of the bridge axis is applied in advance so that a forced compressive force is efficiently applied in advance, so that cracks occur in the concrete slab. The present invention relates to a construction method of a continuous composite girder that can be prevented.

コンクリート床版と鋼桁とを一体化した連続合成桁橋としては、コンクリート床版に予め強制圧縮力を与えない形式の連続合成桁橋と、コンクリート床版に予め強制圧縮力を与える形式の連続合成桁橋とが知られている。   The continuous composite girder bridge that integrates the concrete slab and the steel girder includes the continuous composite girder bridge that does not give the concrete floor slab the compulsory compressive force in advance and the continuous composite girder bridge that gives the compulsory compressive force to the concrete slab in advance. Synthetic girder bridges are known.

前者の、コンクリート床版に予め強制圧縮力を与えない形式の連続合成桁橋は、コンクリート床版のひび割れが発生することを許容しながらも、そのひび割れ幅を制限値以下に制御するものであって、コンクリート床版にひび割れが発生する区間での荷重を支える桁作用は鋼桁および鉄筋のみに期待するものである。   The former type of continuous composite girder bridge that does not prestress concrete floor slab in advance is to control the crack width to below the limit while allowing the concrete floor slab to crack. Therefore, the girder action that supports the load in the section where cracks occur in the concrete slab is expected only for steel girders and reinforcing bars.

また、後者の、コンクリート床版に予め強制圧縮力を与える形式の連続合成桁橋は、例えば、図12に示すように、中間支点部Bのコンクリート床版Aにひび割れが発生することを防止するために、施工時にコンクリート床版Aに強制的に圧縮力を与えるものであるが、この圧縮力を与える形式にも、図は省略したが、コンクリート床版の施工後の初期段階に支点部をジャッキによりダウンさせてコンクリート床版に圧縮力が発生するように桁を曲げ変形させる方式と、図12のように、支点部Bのコンクリート床版A内部に橋軸方向に沿って挿通したPC鋼材Dに緊張力を与えて、この緊張力を両端の定着部からコンクリート床版Aに圧縮力Pとして伝えるようにした方式とが知られている。   Moreover, the latter continuous composite girder bridge of the type in which a forced compressive force is applied to the concrete slab in advance prevents, for example, cracks from occurring in the concrete slab A of the intermediate fulcrum B as shown in FIG. Therefore, the compressive force is forcibly applied to the concrete slab A at the time of construction, but the figure is also omitted in the form of applying this compressive force, but the fulcrum part is provided at the initial stage after the concrete slab construction. PC steel that is inserted along the bridge axis direction into the concrete floor slab A of the fulcrum B as shown in FIG. It is known that a tension force is applied to D and this tension force is transmitted as a compression force P from the fixing portions at both ends to the concrete floor slab A.

一方、上記の方式のうち、コンクリート床版Aに挿通したPC鋼材Dを緊張してコンクリート床版Aに圧縮力を発生させる合成桁については、鋼桁とコンクリートとの接触面に硬化時間の長い遅延硬化性樹脂を介在させることで、コンクリートが打設された直後から所定の時間が経過するまでの間は、鋼桁がコンクリートを拘束しないようにして、コンクリートに強制圧縮力が与えられることによる変形などに対し、鋼桁によるコンクリートの変形拘束の影響をできるだけ小さくして、強制圧縮力が有効に与えられるようにした合成桁が知られている。
特開2002−4475号公報 特開2003−278385号公報
On the other hand, among the above methods, for the composite girders that tension the PC steel D inserted through the concrete floor slab A to generate a compressive force on the concrete floor slab A, the contact surface between the steel girder and the concrete has a long curing time. By interfering with the delayed-curing resin, the steel girder does not restrain the concrete until a predetermined time elapses after the concrete is placed, and the concrete is forced to compress. Synthetic girders are known in which the influence of concrete deformation restraint by steel girders is made as small as possible for deformation and the like so that forced compression force is effectively applied.
Japanese Patent Laid-Open No. 2002-4475 JP 2003-278385 A

一般的に、連続合成桁橋では、舗装や高欄などの橋面荷重や、コンクリート床版の乾燥収縮やクリープ現象、あるいは通行車輌等によって、コンクリート床版に引張力が発生する区間があり、引張りに弱いコンクリートに引張強度以上の引張力が作用すると、コンクリート床版にはひび割れが発生する。   Generally, in continuous composite girder bridges, there are sections where tensile force is generated in concrete slabs due to bridge surface loads such as pavements and railings, drying shrinkage and creep phenomenon of concrete slabs, or passing vehicles. If a tensile force higher than the tensile strength is applied to concrete that is weak to the strength, the concrete slab will crack.

先に述べた連続合成桁のうち、コンクリート床版に予め強制圧縮力を与えない形式の連続合成桁橋では、ひび割れの発生したコンクリート床版が、荷重を支える桁作用に対して有効に寄与しないため、鋼桁および鉄筋は全荷重を分担して耐えるだけの桁高が必要となるとともに、コンクリート床版の引張変形を小さくして、ひび割れ幅が耐久性に影響を及ぼさない制限値に制御するために、大きな桁剛性を有する寸法が必要となり、使用する鋼材料の量が多くなるので経済的効果が薄いという問題がある。   Among the continuous composite girders mentioned above, in the case of continuous composite girder bridges that do not prestress the concrete slab in advance, cracked concrete slabs do not contribute effectively to the girder action that supports the load. Therefore, steel girders and rebars must have a girder height that can withstand all loads and reduce the tensile deformation of the concrete floor slab, and control the crack width to a limit value that does not affect durability. Therefore, there is a problem that a dimension having a large girder rigidity is required, and the amount of steel material to be used increases, so that the economic effect is thin.

これに対して、図12に示したように、コンクリート床版に予め強制圧縮力を与える形式の連続合成桁橋では、現場での工事期間の冗長を避けるために、コンクリート床版Aの施工後の初期段階で強制圧縮力を与えるのが一般的である。しかし、コンクリート床版Aの施工後すぐに強制圧縮力を与えると、強制圧縮力を与えられた後にクリープ現象による収縮や乾燥収縮が大きく進行するので、予め与える強制圧縮力は、完成時に作用させるべき圧縮力に、このクリープ現象や乾燥収縮で相殺される分を加えた大きな量の力が必要になるという問題がある。   On the other hand, as shown in FIG. 12, in the case of a continuous composite girder bridge in which a forced compressive force is preliminarily applied to the concrete floor slab, after the concrete floor slab A is constructed in order to avoid redundancy in the construction period on site. In general, a forced compressive force is applied at the initial stage. However, if a forced compression force is applied immediately after the construction of the concrete floor slab A, shrinkage due to creep phenomenon and drying shrinkage greatly proceed after the forced compression force is applied. There is a problem that a large amount of force obtained by adding an amount offset by the creep phenomenon and drying shrinkage to the power compression force is required.

また、コンクリート床版Aのクリープ現象や乾燥収縮が進行する段階では、コンクリート床版Aは下側に合成した鋼桁Cからの変形に対する拘束力も受けているため、自由に収縮できないコンクリート床版Aには引張力が発生することになる。   In addition, at the stage where the creep phenomenon and drying shrinkage of the concrete floor slab A proceed, the concrete floor slab A is also subjected to a restraining force against deformation from the steel girder C synthesized on the lower side. In this case, a tensile force is generated.

支点部をジャッキによりダウンさせてコンクリート床版に圧縮力が発生するように鋼桁を曲げ変形させる方式では、大規模な橋梁の支点部をジャッキにより下降させる際の作業の安全性に問題があり、また、支点部に与える強制鉛直変位量からコンクリート床版の水平橋軸方向に発生する圧縮力を判断するための管理精度が低いという問題がある。   In the method of bending and deforming the steel girder so that the compressive force is generated on the concrete slab by lowering the fulcrum part with a jack, there is a problem in work safety when lowering the fulcrum part of a large bridge with a jack In addition, there is a problem that the management accuracy for determining the compressive force generated in the horizontal bridge axis direction of the concrete slab from the forced vertical displacement amount applied to the fulcrum is low.

さらに、コンクリート床版Aに挿通したPC鋼材Dを緊張してコンクリート床版Aに圧縮力を発生させるプレストレス方式では、図12のように、コンクリート床版Aは下側にある鋼桁Cと合成して一体化しているために、コンクリート床版Aのみを圧縮変形させて圧縮力を与えればよいのに、鋼桁Cまで変形させる不要なほど大きい圧縮力を与えなければならず、材料や工事に要する費用の面で経済的でないという問題を有し、また、必要なPC鋼材が床版内に配置できないほどの量になる場合もある。   Furthermore, in the pre-stress system in which the PC steel D inserted through the concrete floor slab A is tensioned to generate a compressive force on the concrete floor slab A, the concrete floor slab A has a steel girder C on the lower side as shown in FIG. Because it is synthesized and integrated, only the concrete floor slab A needs to be compressed and deformed to give a compressive force, but an unnecessarily large compressive force that deforms the steel girder C must be applied, There is a problem that it is not economical in terms of the cost required for the construction, and there are cases where the necessary PC steel is so large that it cannot be placed in the floor slab.

一方、上記のコンクリート床版にプレストレスによる圧縮力を与える合成桁については、前記特開2002−4475号のように、鋼桁とコンクリートとの接触面に硬化時間の長い遅延硬化性樹脂を設け、コンクリートが打設された直後から所定の時間が経過するまでの間は、鋼桁がコンクリートを拘束しないようにして、コンクリートに強制圧縮力が有効に与えられるようにした構造が知られている。   On the other hand, with respect to the composite girders that give prestress compressive force to the concrete slab, a delayed curable resin having a long curing time is provided on the contact surface between the steel girders and the concrete, as described in JP-A-2002-4475. A structure is known in which the steel girder does not restrain the concrete immediately after the concrete is placed and until a predetermined time elapses, so that a forced compressive force is effectively applied to the concrete. .

しかし、現時点では、この合成桁構造について、鋼桁とコンクリートとの間に遅延硬化性樹脂を用いることでプレストレスを有効に導入できるという利点を有することは知られていても、この構造を連続合成桁橋の架設工法全体の工程の中で、他の工程とどのように組み合わせて使用すれば、この合成桁構造のもつ有効性をいかに架設工法の中へ適切に活用することができるか、ということについては未だ解明がなされていない。   However, at present, even though it is known that this composite girder structure has the advantage that prestress can be effectively introduced by using a delayed-curing resin between the steel girder and concrete, this structure is continuous. How can we effectively use the effectiveness of this composite girder structure in the construction method if it is used in combination with other processes in the overall construction method of the composite girder bridge? This has yet to be elucidated.

本発明は、上記のような、従来における連続合成桁橋のコンクリート床版に強制圧縮力を与える方式の各種の問題点を解消する手段として、コンクリート床版を鋼桁と非結合の状態で接合する合成桁構造の利点を、連続合成桁橋の架設工法という全体の工程の中へ合理的に活用することにより、コンクリート床版へ有効な強制圧縮力を与えることができ、PC鋼材や桁の鋼材の使用量も経済的で、かつ、工期も効率的な現場工事手順とすることができるような連続合成桁橋の架設工法を提供するものである。   The present invention joins a concrete slab in a non-bonded state with a steel girder as a means for solving various problems of the conventional method of applying a compressive force to the concrete slab of a continuous composite girder bridge as described above. By effectively utilizing the advantages of the composite girder structure in the overall process of the construction method of continuous composite girder bridges, effective compressive force can be applied to the concrete floor slab. The construction method of the continuous composite girder bridge is provided so that the amount of steel used is economical and the construction period can be an efficient on-site construction procedure.

本発明は、そのための具体的手段として、橋軸方向の引張力が作用する中間支点部上のコンクリート床版に、強制圧縮力を与えてひび割れを生じさせないようにする連続合成桁の架設工法において、まず前記中間支点部上に鋼桁を架設して、この中間支点部の鋼桁上にコンクリート床版を鋼桁と非結合の状態で施工し、前記コンクリート床版に強制圧縮力を与える前の工程として、前記コンクリート床版を設けた区間以外の他の区間の鋼桁の架設、床版型枠の配置などの施工を進めることにより、前記コンクリート床版の乾燥収縮を進行させ、かつ、クリープ現象による変形が小さくなる材齢まで進める期間を確保し、しかる後に前記コンクリート床版に強制圧縮力を与えることを特徴とする。   The present invention provides a concrete composite girder construction method in which a concrete compressive force is applied to a concrete floor slab on an intermediate fulcrum where a tensile force acts in the direction of the bridge axis as a concrete means for that purpose so as not to cause cracks. First, a steel girder is erected on the intermediate fulcrum part, and a concrete floor slab is constructed on the steel girder at the intermediate fulcrum part in a non-bonded state with the steel girder before applying a compressive force to the concrete slab. As the step, by proceeding with construction of steel girders in other sections other than the section provided with the concrete floor slab, placement of floor slab formwork, etc., the drying shrinkage of the concrete floor slab is advanced, and It is characterized in that a period for advancing to an age at which deformation due to a creep phenomenon is reduced is ensured, and then a forced compression force is applied to the concrete slab.

引張力が発生する区間のコンクリート床版を、完成時の位置にて施工する場合には、その区間のコンクリート床版を現場工事手順の初期段階で施工し、強制圧縮力を与えるまでに、その他の区間の鋼桁の架設と床版型枠などを施工して、コンクリート床版の乾燥収縮の大半を進行させ、かつ、クリープ現象による変形が小さくなる材齢まで進める期間を確保することが好ましい。   When the concrete floor slab of the section where tensile force is generated is to be constructed at the position at the time of completion, the concrete floor slab of that section is constructed at the initial stage of the on-site construction procedure, and before applying the compulsory compression force, etc. It is preferable to secure a period of advancement to the age of the steel, in which the steel girder erection and floor slab form of the section are constructed, the drying shrinkage of the concrete floor slab is advanced, and the deformation due to the creep phenomenon is reduced .

引張力が発生する区間のコンクリート床版を、工場などの完成時の位置以外の場所で分割して製作する場合には、完成時の位置にて強制圧縮力を与えるまでに、コンクリート床版の乾燥収縮の大半を進行させ、かつ、クリープ現象による変形が小さくなる材齢まで進める期間を確保することが好ましい。   When a concrete floor slab in a section where tensile force is generated is divided and manufactured at a location other than the completed position such as a factory, the concrete floor slab must be It is preferable to ensure a period in which most of the drying shrinkage proceeds and the age is advanced to a material age at which deformation due to the creep phenomenon is reduced.

コンクリート床版に強制圧縮力を与える前の、完成時の位置にてコンクリート床版の乾燥収縮の大半が進行する期間は、コンクリート床版と鋼桁との結合用ずれ止めの拘束力及び/又はコンクリート床版と鋼桁との付着力が抑えられるようにしておくことが好ましい。   Before the forced compression force is applied to the concrete slab, during the period when the drying shrinkage of the concrete slab is mostly advanced at the completion position, the restraining force of the detent for connecting the concrete slab and the steel girder and / or It is preferable that the adhesion between the concrete slab and the steel girder is suppressed.

また、コンクリート床版に強制圧縮力を与える時には、コンクリート床版と鋼桁との結合用ずれ止めの拘束力及び/又はコンクリート床版と鋼桁との付着力が抑えられようにしておくことが好ましい。   In addition, when a forced compressive force is applied to the concrete slab, the restraining force of the locking for connecting the concrete slab and the steel girder and / or the adhesion force between the concrete slab and the steel girder should be suppressed. preferable.

鋼桁上に、コンクリート床版を非結合の状態で施工する手段としては、鋼桁とコンクリート床版との間に遅延硬化性樹脂を介在させることが好ましいが、鋼桁とコンクリート床版との間にゴムなどの軟質板を介在させて、鋼桁とコンクリート床版との間が縁切りされているようにしてもよい。   As a means for constructing the concrete slab in a non-bonded state on the steel girder, it is preferable to interpose a delayed curable resin between the steel girder and the concrete slab. A soft plate such as rubber may be interposed between the steel girder and the concrete floor slab.

なお、支間が長く、横からの力に対して抵抗性を高める必要がある場合には、中間支点部付近に鋼桁を架設する際に、鋼桁の下側にコンクリート版あるいは鋼とコンクリートとの合成版からなる下床版を設ける構造としてもよい。   If the span is long and it is necessary to increase the resistance to the force from the side, when installing a steel girder near the intermediate fulcrum, a concrete plate or steel and concrete are placed under the steel girder. It is good also as a structure which provides the lower floor plate which consists of a synthetic | combination version.

この連続合成桁橋の架設工法では、まず、引張力が作用する中間支点部の鋼桁上にコンクリート床版を鋼桁と非結合の状態、つまり、コンクリート床版と鋼桁とを縁切りした状態で施工するので、コンクリート床版に、強制圧縮力を与える前の段階で、鋼桁からの拘束力を受けることなく、乾燥収縮の大半を進行させることができる。   In this continuous composite girder bridge construction method, first, the concrete slab is not connected to the steel girder on the steel girder at the intermediate fulcrum where the tensile force acts, that is, the concrete slab and the steel girder are cut off. Therefore, most of the drying shrinkage can be advanced without receiving the restraining force from the steel girders in the stage before the forced compressive force is applied to the concrete slab.

その結果、後の工程としてコンクリート床版に強制圧縮力を与える時には、前記の大半の乾燥収縮が既に進行し、かつ、クリープ現象による変形が小さくなる材齢まで進んだ後の残りの乾燥収縮やクリープ現象による少ない引張力分や、舗装や高欄などの橋面荷重及び通行車輌により発生する引張力分などを、打ち消すだけの強制圧縮力をコンクリート床版に与えればよく、完成時までに相殺されてしまう割合の少ない、効率的な強制圧縮力を与えることができる。そのため、強制圧縮力を与える際に必要とするPC鋼材の量を少なくして、工事費を大幅に節減することができる。   As a result, when a compressive force is applied to the concrete slab as a later step, most of the above-mentioned drying shrinkage has already progressed, and the remaining drying shrinkage after progressing to a material age at which deformation due to creep phenomenon becomes small The concrete floor slab need only be given a compulsory compressive force to cancel out the small tensile force due to the creep phenomenon, the bridge surface load such as pavement and railings and the tensile force generated by the passing vehicle. It is possible to give an efficient forced compression force with a small ratio. Therefore, it is possible to reduce the amount of PC steel necessary for applying the forced compression force, and to greatly reduce the construction cost.

中間支点部の鋼桁上に施工されるコンクリート床版の態様としては、完成時の位置で現場施工により製造されるものと、工場などの完成時の位置以外の場所で分割製作されて現場へ持ち込まれるものとがあるが、いずれの場合も現場工事手順の初期の段階で施工されて、強制圧縮力を与えられるまで、乾燥収縮の大半を進行させ、かつ、クリープ現象による変形が小さくなる材齢まで進めるので、それまでの間は他の区間の鋼桁の架設などの施工工事を、全く無駄な期間を生ずることなく効率的に進行させることができる。   The concrete floor slabs to be constructed on the steel girders at the intermediate fulcrum are divided into those manufactured by on-site construction at the completed position and those manufactured separately at locations other than the completed position, such as factories. In some cases, the material is applied at the initial stage of the on-site construction procedure, and most of the drying shrinkage is progressed until forced compression force is applied. Since it progresses to an age, construction work, such as erection of the steel girder of another area, can be efficiently advanced until that time, without generating a useless period.

本発明の実施の一態様として、支間が長く、風などの横方向からの力に対して抵抗性を高くするため、中間支点部付近の鋼桁の下側にコンクリート版あるいは鋼とコンクリートの合成版からなる下床版を設けた場合には、この付近の構造をコンクリート床版と、鋼桁と、下床版などによる箱断面として、橋軸直角方向荷重に対しての桁の剛性を高めると共に、鋼桁が桁作用により分担する荷重を減らすことができる。また、このような構造によれば、従来の施工方法ではコンクリート床版へ強制圧縮力を効率的に与えられなかったが、本発明の施工方法では、前記コンクリート床版のみに強制圧縮力を効率的に与えることができる。   As one embodiment of the present invention, a concrete plate or a composite of steel and concrete is provided below the steel beam near the intermediate fulcrum in order to increase the resistance to the force from the lateral direction such as the wind. When a lower floor slab made of a plate is provided, the structure around this is made into a box cross section with a concrete floor slab, steel girders, lower floor slabs, etc., to increase the rigidity of the girder against the load perpendicular to the bridge axis At the same time, the load shared by the steel girders by the girder action can be reduced. Further, according to such a structure, the conventional compressing method cannot efficiently apply the forced compressive force to the concrete slab. However, in the inventive method, the forced compressing force is efficiently applied only to the concrete slab. Can be given.

本発明では、上記のように、工事の初期の段階で、引張力が作用する中間支点部の鋼桁上にコンクリート床版を鋼桁と非結合の状態で施工し、コンクリート床版に、強制圧縮力を与える前の段階で、鋼桁からの拘束力を受けることのない条件下で乾燥収縮の大半を進行させ、かつ、クリープ現象による変形が小さくなる材料齢まで進めるので、後の強制圧縮力を与える工程では、強制圧縮力を無駄なく有効に与えることができ、その結果、コンクリート床版にひび割れを発生させず、コンクリート床版の劣化を抑えた、高い耐久性のある構造とすることができる。   In the present invention, as described above, in the initial stage of construction, the concrete floor slab is constructed on the steel slab of the intermediate fulcrum where the tensile force is applied in a state of being uncoupled from the steel girder. Before the compression force is applied, most of the drying shrinkage proceeds under conditions that do not receive the restraining force from the steel girder, and the material age is reduced so that the deformation due to creep phenomenon is reduced. In the process of applying force, the forced compressive force can be effectively applied without waste. As a result, the concrete floor slab is not cracked, and the deterioration of the concrete floor slab is suppressed. Can do.

本発明の架設工法を実施するに際しては、引張力が作用する中間支点部上に鋼桁を架設して、この鋼桁上にコンクリート床版を鋼桁と非結合の状態で打設した後、次の工程として、このコンクリート床版に強制圧縮力を与えるのではなく、このコンクリート床版を設けた区間以外の他の区間の鋼桁の架設、床版型枠の配置などの施工を進めることによって、既に打設したコンクリート床版の乾燥収縮を進行させ、かつ、クリープ現象による変形が小さくなる材齢まで進める期間を確保し、しかる後に前記コンクリート床版に強制圧縮力を与えるという工程が好ましい。   In carrying out the erection method of the present invention, a steel girder is erected on the intermediate fulcrum where the tensile force acts, and after placing the concrete floor slab on the steel girder in a state uncoupled from the steel girder, As the next step, instead of applying a compulsory compressive force to this concrete slab, proceed with construction such as erection of steel girders in other sections other than the section where this concrete slab is installed, and placement of floor slab formwork. By the process, the drying shrinkage of the already placed concrete floor slab is advanced, and a period of time to advance to a material age at which deformation due to the creep phenomenon becomes small is ensured, and thereafter, a forced compressive force is applied to the concrete floor slab. .

本発明に係る合成桁橋の架設工法を、図面に示す実施例により説明すると、図1は、施工初期における工事の一形態を示す側面図、図2は、図1の形態を含めた施工初期からコンクリート床版に強制圧縮力が与えられるまでの工事手順を示した工程図である。図1に示すように、この架設工法は、まず、橋脚1上の中間支点部3上に鋼桁4を架設して、この鋼桁4上にコンクリート床版9を施工し、このコンクリート床版9に強制圧縮力を与える前の工程で、鋼桁4の両端から両岸の橋台2,2に向けて支間部鋼桁13の架設が行われる。   The construction method of the composite girder bridge according to the present invention will be described with reference to the examples shown in the drawings. FIG. 1 is a side view showing one form of construction in the initial stage of construction, and FIG. 2 is the initial stage of construction including the form of FIG. It is process drawing which showed the construction procedure until a forced compressive force is given to a concrete floor slab. As shown in FIG. 1, in this construction method, first, a steel girder 4 is constructed on an intermediate fulcrum part 3 on a pier 1 and a concrete floor slab 9 is constructed on the steel girder 4, and this concrete floor slab is constructed. In the step before applying the compulsory compressive force to 9, the span steel girder 13 is installed from both ends of the steel girder 4 toward the abutments 2 and 2 on both banks.

詳細には、図2のうち、図2aに示すように、両岸の橋台2の間に設けられた橋脚1の中間支点部3上に、後の工程で打設されるコンクリート床版に強制圧縮力を作用させる区間に相当する長さの中間支点部鋼桁4を架設する。     Specifically, in FIG. 2, as shown in FIG. 2a, the concrete slab is forced on the intermediate fulcrum portion 3 of the pier 1 provided between the abutments 2 on both banks in a later step. An intermediate fulcrum steel beam 4 having a length corresponding to the section in which the compressive force is applied is installed.

中間支点部3上に、前記鋼桁4が架設されると、次の工程としては、図2bのように、中間支点部3付近の足場5の設置、床版型枠6の設置、PC鋼材7の配置など、この鋼桁4上にコンクリート床版が打設されるのに必要な工事を施工する。   When the steel girder 4 is installed on the intermediate fulcrum part 3, as the next step, as shown in FIG. 2b, the installation of the scaffold 5 near the intermediate fulcrum part 3, the installation of the floor slab formwork 6, the PC steel material The construction necessary for placing the concrete slab on the steel girder 4 such as the arrangement of 7 is performed.

なお、支間が長く、横からの力に対しての抵抗性を高めるために、上記足場5の設置、床版型枠6の設置、PC鋼材7の配置などの工事の進行と並行して、図4及び図5に示すように、中間支点部3の鋼桁4の下側に鋼とコンクリートとの合成版からなる下床版8を設ける構造とする場合もある。   In addition, in order to increase the resistance to the force from the side with a long span, in parallel with the progress of construction such as the installation of the scaffold 5, the installation of the floor slab form 6, the arrangement of the PC steel material 7, As shown in FIGS. 4 and 5, there may be a structure in which a lower floor slab 8 made of a composite plate of steel and concrete is provided below the steel beam 4 of the intermediate fulcrum 3.

次いで、図2bに示すように、床版型枠6の設置、PC鋼材7の配置などの工事が終了した後、この鋼桁4上にコンクリート床版9が打設される。このコンクリート床版9の打設に際しては、鋼桁4上にコンクリート床版9を鋼桁4と非結合の状態、つまり、コンクリート床版9と鋼桁4とが縁切りされているような状態に施工する。   Next, as shown in FIG. 2 b, after completion of construction such as installation of the floor slab form 6 and arrangement of the PC steel material 7, a concrete floor slab 9 is placed on the steel girder 4. In placing the concrete floor slab 9, the concrete floor slab 9 is not coupled to the steel girder 4 on the steel girder 4, that is, the concrete floor slab 9 and the steel girder 4 are in a state of being cut off. Install.

コンクリート床版9を鋼桁4と非結合の状態に施工するための手段としては、例えば、図6に示すように、コンクリート床版9が打設される前の鋼桁4の上面及びずれ止め10の周囲に、特許第3429222号に開示されているような、未硬化時はゲル状態なので、コンクリートが乾燥によって収縮する際に、鋼桁4からの拘束力を受けることなく自由に変形することができ、長い時間を経て硬化した後は圧縮強度がコンクリートの圧縮強度以上に変化するという性質をもった遅延硬化性樹脂11が用いられる。   As a means for constructing the concrete floor slab 9 in a non-bonded state with the steel girder 4, for example, as shown in FIG. 10 is in a gel state when uncured, as disclosed in Japanese Patent No. 3429222, so that when the concrete shrinks due to drying, it can be freely deformed without receiving the restraining force from the steel girder 4. A delayed curable resin 11 having a property that the compressive strength changes beyond the compressive strength of concrete after being cured after a long time is used.

鋼桁4の上面に突出するずれ止め10の周囲に遅延硬化性樹脂11を塗布する作業が煩雑となる場合には、図7に示すように、鋼桁4とコンクリート床版9との間の平面的な付着面に遅延硬化樹脂11か、もしくはゴムシート(図示せず)を敷設して、鋼桁4とコンクリート床版9との間に付着力が生じないようにしておくと共に、鋼桁4の上面にコンクリート床版9を打設する時には、それぞれのずれ止め10の周囲に、ずれ止め10と接触しない空間を有するような縦孔12を設けておき、コンクリート床版9にクリープ現象や乾燥収縮が生じたり、後の工程でコンクリート床版9にプレストレスが与えられても、鋼桁4やずれ止め10がコンクリート床版9の変形に拘束力を与えないように構成する。   When the operation of applying the delayed curable resin 11 around the stopper 10 protruding on the upper surface of the steel girder 4 becomes complicated, as shown in FIG. A delay hardening resin 11 or a rubber sheet (not shown) is laid on the flat adhesion surface so that no adhesive force is generated between the steel girder 4 and the concrete floor slab 9, and the steel girder. When the concrete floor slab 9 is placed on the upper surface of 4, a vertical hole 12 is provided around each of the stoppers 10 so as to have a space that does not contact the stoppers 10. Even if drying shrinkage occurs or prestress is applied to the concrete floor slab 9 in a later process, the steel girder 4 and the stopper 10 are configured not to give a restraining force to the deformation of the concrete floor slab 9.

上記のコンクリート床版9の施工については、コンクリート床版9が完成時の位置にて打設施工される現場打ち方式による場合と、コンクリート床版9が、工場などの完成時の位置以外の場所で分割して製造されるプレキャスト方式による場合とが考えられる。なお、プレキャスト方式の場合には、工場で製造される際に、後に配置される場所の形状に適合するような、ずれ止め挿入用の縦孔12を予め開設しておく。   Regarding the construction of the concrete floor slab 9, the concrete floor slab 9 is placed on the spot when the construction is completed and the concrete floor slab 9 is located at a place other than the completion position such as a factory. It is conceivable that it is based on a precast method that is manufactured by dividing the product with the above method. In the case of the precast method, when manufacturing at the factory, a vertical hole 12 for inserting a stopper is prepared in advance so as to match the shape of a place to be disposed later.

前記図2bに示すように、鋼桁4上にコンクリート床版9が施工されると、従来の架設工法のように、引き続いてコンクリート床版9にプレストレスを導入するのではなく、図2cに示すように、鋼桁4の両端から両岸の橋台2に向けて、支間部鋼桁13が順次接続されるように鋼桁の張り出し架設を進行する。   As shown in FIG. 2b, when the concrete floor slab 9 is constructed on the steel girder 4, the prestress is not continuously introduced into the concrete floor slab 9 as in the conventional construction method. As shown, the steel girder overhang is advanced so that the span steel girder 13 is sequentially connected from both ends of the steel girder 4 toward the abutment 2 on both banks.

そして、前記支間部鋼桁13の架設に次いで、図2dのように、支間部鋼桁13の足場14の設置、床版型枠15の設置などの工事を施工すると共に、引き続き図2eのように、支間部鋼桁13上に床版鉄筋16を配置するなど、既にコンクリート床版9を設けた区間以外の他の区間の架設に必要な工事を一通り進行させる。   Then, following the construction of the interstitial steel girder 13, as shown in FIG. 2 d, construction such as installation of the scaffold 14 of the interstitial steel girder 13 and installation of the floor slab formwork 15 is performed, and subsequently, as shown in FIG. In addition, the construction necessary for the construction of other sections other than the section where the concrete floor slab 9 has already been provided, such as placing the floor slab reinforcement 16 on the interstitial steel girder 13, is advanced.

上記支間部鋼桁13の架設、足場14の設置、床版型枠15の設置、床版鉄筋16の配置などの工事を施工している間、前記コンクリート床版9は、鋼桁4及びずれ止め10との間に介在した遅延硬化性樹脂11や縦孔12の空間などにより、鋼桁4との付着力や拘束力を受けない実質的な縁切り状態となっている。そのため、コンクリート床版9は、その間に乾燥収縮の大半が進行し、かつ、クリープ現象による変形が小さくなる材齢まで進むことになる。   While the construction of the interstitial steel girder 13, installation of scaffolding 14, installation of floor slab formwork 15, placement of floor slab reinforcement 16, etc., the concrete floor slab 9 has a steel girder 4 and a slippage. Due to the space of the delay curable resin 11 and the vertical hole 12 interposed between the stopper 10 and the like, a substantially edge-cut state that does not receive the adhesive force or the binding force with the steel beam 4 is obtained. Therefore, the concrete floor slab 9 advances to a material age during which most of the shrinkage during drying progresses and deformation due to the creep phenomenon becomes small.

コンクリート床版9の施工については、前に述べたように、現場打ち方式による場合と、プレキャスト方式による場合とがあり、図1は現場打ち方式による場合を示しているが、図示しないプレキャスト方式による場合も、当該プレキャスト床版は鋼桁4上に架設されてから所定の期間、つまり、支間部鋼桁13の架設の工事が終了するまでは、鋼桁4との付着力や拘束力を受けない縁切り状態のもとで放置され、その間乾燥収縮が十分に進み、かつ、クリープ現象による変形が小さくなる材齢まで進行させる。   As described above, the concrete floor slab 9 can be constructed in either the on-site method or the precast method. FIG. 1 shows the on-site method, but the precast method is not shown. In this case, the precast floor slab is subjected to adhesion and binding force with the steel girder 4 for a predetermined period after it is erected on the steel girder 4, that is, until the construction work of the span steel girder 13 is completed. It is allowed to stand under a state where there is no edge cutting, and during that time, the drying shrinkage is sufficiently advanced, and the material is allowed to progress to a material age at which the deformation due to the creep phenomenon becomes small.

支間部鋼桁13の架設工事全般が完了した後は、図2fに示すように、中間支点部鋼桁4の上のコンクリート床版9に配置したPC鋼材7によりコンクリート床版9に強制圧縮力を与える。その時、図7のように、コンクリート床版9におけるずれ止め10の周囲に縦孔12を設けた施工例の場合には、強制圧縮力を与えた後、縦孔12内にモルタルの詰め物を充填して床版と鋼桁とを一体化する。   After the installation work of the interstitial steel girder 13 has been completed, as shown in FIG. 2f, a forced compressive force is applied to the concrete slab 9 by the PC steel material 7 arranged on the concrete slab 9 above the intermediate fulcrum steel girder 4. give. At that time, as shown in FIG. 7, in the case of the construction example in which the vertical hole 12 is provided around the stopper 10 in the concrete slab 9, a mortar filling is filled in the vertical hole 12 after applying a forced compression force. Then, the floor slab and the steel girder are integrated.

前述のように、鋼桁上に施工したコンクリート床版にプレストレスを与える場合、従来の施工手順では、図11のように、コンクリート床版Aは鋼桁Cと結合されているので、コンクリート床版Aに両端から圧縮力を加えると、圧縮力はコンクリート床版Aにだけ伝えることはできず、鋼桁Cを圧縮変形する力まで分担しなければならないことになる。   As described above, when prestress is applied to the concrete floor slab constructed on the steel girder, in the conventional construction procedure, the concrete floor slab A is coupled with the steel girder C as shown in FIG. When compressive force is applied to the plate A from both ends, the compressive force cannot be transmitted only to the concrete floor slab A, and the force to compress and deform the steel girder C must be shared.

また、圧縮力が加えられた後にもコンクリートは乾燥収縮によって収縮変形を生ずるので、最終的にコンクリートが強制的に圧縮変形されている量は、プレストレスで与えた強制圧縮変形量から乾燥収縮によりコンクリート自身が収縮した量を除いた分となる。つまり、最終的にコンクリートに作用する強制圧縮力は、プレストレス導入後に発生した乾燥収縮分だけ少なくなり、プレストレスを有効に導入できないことになる。   Also, even after the compressive force is applied, concrete undergoes shrinkage deformation due to drying shrinkage, so the amount of concrete that is finally forcibly deformed by compression shrinks from the amount of forced compression deformation given by prestress due to dry shrinkage. This is the amount excluding the amount of shrinkage of the concrete itself. That is, the forced compressive force that finally acts on the concrete is reduced by the amount of drying shrinkage that occurs after the introduction of prestress, and prestress cannot be effectively introduced.

一方、本発明では、コンクリート床版9が鋼桁4と非結合の状態で施工されているため、強制圧縮力が与えられる前の段階では、鋼桁4からの拘束力を受けることのない条件下で、クリープ現象や乾燥収縮による変形の大半を進行させることができる。また、後の強制圧縮力を与える工程では、コンクリート床版9と鋼桁4とは非結合の状態、つまり縁切りされているので、図8のように、強制圧縮力をコンクリート床版9だけに導入でき、従来のようにコンクリート床版Aだけでなく鋼桁Cをも変形するような無駄な力を必要とせずに、強制圧縮力をコンクリート床版9だけに有効に導入することができる。   On the other hand, in the present invention, since the concrete floor slab 9 is constructed in a non-bonded state with the steel girder 4, a condition that does not receive the restraining force from the steel girder 4 in a stage before the forced compression force is applied. Below, most of the deformation due to creep phenomenon and drying shrinkage can proceed. Further, in the subsequent step of applying the forced compression force, the concrete floor slab 9 and the steel girder 4 are in a non-bonded state, that is, edged, so that the forced compression force is applied only to the concrete floor slab 9 as shown in FIG. The forced compression force can be effectively introduced only to the concrete floor slab 9 without requiring a useless force that deforms not only the concrete floor slab A but also the steel girder C as in the prior art.

図2fのように、コンクリート床版9にプレストレスが導入された後は、図3gに示すように、支間部鋼桁13にコンクリート床版19施工する。なお、この支間部鋼桁13上にコンクリート床版19が施工される工事開始から約8ケ月頃までは、中間支点部3上の鋼桁4とコンクリート床版9とは未だ結合しない状態、つまり非合成の状態で推移する。   After prestress is introduced into the concrete floor slab 9 as shown in FIG. 2f, the concrete floor slab 19 is applied to the interstitial steel girder 13 as shown in FIG. 3g. It should be noted that the steel girder 4 on the intermediate fulcrum part 3 and the concrete slab 9 are not yet connected from the start of construction where the concrete slab 19 is constructed on the interstitial steel girder 13 until about eight months. Transition in a non-synthetic state.

次いで、図3hに示すように、コンクリート床版19に舗装、高欄等の橋面施工を行う。この時期は工事開始から約9ケ月程になるが、その時には、中間支点部3上の鋼桁4とコンクリート床版9とが合成し、最後に図3iのように架設工事を全て完了することになる。   Next, as shown in FIG. 3h, the concrete floor slab 19 is subjected to bridge construction such as pavement and railing. This time is about 9 months from the start of construction. At that time, the steel girder 4 on the intermediate fulcrum 3 and the concrete slab 9 are combined, and finally the construction work is completed as shown in Fig. 3i. become.

図9は、プレストレスが導入される部分のコンクリート自身の乾燥収縮について、従来の施工方法によりプレストレスを導入した後のコンクリートの収縮量と、本発明の施工方法によりプレストレスを導入した後のコンクリートの収縮量とを比較した図であるが、従来の施工方法のように、プレストレスをコンクリート床版の施工後1ケ月以内の初期に導入した場合は、プレストレスの導入後においてもコンクリート自身が時間の経過とともに乾燥収縮する量がきわめて大きく、プレストレスが有効に機能していないことになる。   FIG. 9 shows the amount of shrinkage of concrete after introducing prestress by the conventional construction method and the amount of shrinkage of concrete after the introduction of prestress by the construction method of the present invention for the drying shrinkage of the concrete itself in the part where prestress is introduced. It is a figure comparing the amount of shrinkage of the concrete, but when prestress is introduced within the first month after the construction of the concrete slab, as in the conventional construction method, the concrete itself even after the prestress is introduced However, the amount of drying shrinkage with time is extremely large, and prestress is not functioning effectively.

これに対して、本発明の施工方法のように、コンクリートを鋼桁と非結合の状態を維持しながら、プレストレスをコンクリート床版の施工後約5ケ月経過後に導入した場合は、プレストレスが導入される前にコンクリートの収縮はあらかた進行しているため、この時点でプレストレスを導入すれば後にコンクリート自身が収縮する量はきわめて少なくて済み、少量のプレストレス鋼材によってプレストレスを有効に発揮させることができる。   On the other hand, when the prestress is introduced after about 5 months from the construction of the concrete floor slab while maintaining the concrete unbonded state with the steel girder as in the construction method of the present invention, Since the concrete shrinkage has already progressed before it is introduced, if prestressing is introduced at this point, the amount of concrete shrinking afterwards will be extremely small, and a small amount of prestressed steel will effectively exert the prestress. Can be made.

また、図10は、プレストレスが導入される部分のコンクリートのクリープによる圧縮力の減少量について、従来の施工方法によりプレストレスを導入した後の圧縮力の減少量と、本発明の施工方法によりプレストレスを導入した後の圧縮力の減少量とを比較した図であるが、従来の施工方法のように、プレストレスをコンクリート床版の施工後1ケ月以内の初期に導入した場合は、プレストレスの導入後においてもコンクリート自身が時間の経過とともに収縮する量が大きく、プレストレスが有効に機能していない。   Further, FIG. 10 shows the amount of decrease in compressive force due to creep of concrete in the portion where prestress is introduced, and the amount of decrease in compressive force after introducing prestress by the conventional construction method, and the construction method of the present invention. It is a figure comparing the amount of decrease in compressive force after introducing pre-stress, but when pre-stress is introduced within one month after the construction of the concrete slab as in the conventional construction method, Even after the introduction of stress, the amount of shrinkage of concrete itself over time is large, and prestress does not function effectively.

一方、本発明の施工方法では、プレストレスが導入される前にコンクリートのの材齢が進み、クリープ現象による変形も小さいため、この時点でプレストレスを導入すれば後にコンクリート自身がクリープによって収縮する量はきわめて少なくて済み、少量のプレストレス鋼材によってプレストレスを有効に発揮させることができる。   On the other hand, in the construction method of the present invention, the age of the concrete advances before the prestress is introduced, and the deformation due to the creep phenomenon is small, so if prestress is introduced at this point, the concrete itself will shrink due to the creep later. The amount is very small, and a small amount of prestressed steel can effectively exert prestress.

本発明の連続合成桁橋の架設工法は、引張力が発生する中間支点部の鋼桁上に、コンクリート床版を鋼桁と縁切りされるように施工した後、他の区間の架設工事を進めて、前記コンクリート床版にクリープ現象や乾燥収縮を生じさせる時間をおいてからプレストレスを導入するので、従来の架設工法に比較して工期的にも問題がなく、かつ、プレストレスを有効に導入できて、ひび割れの発生を的確に防止することのできる実用性のある工法を提供できる。   The construction method of the continuous composite girder bridge according to the present invention is that the concrete floor slab is cut so as to be edged with the steel girder on the steel girder of the intermediate fulcrum where tensile force is generated, and then the construction work of other sections is advanced. In addition, since prestress is introduced after a time for causing creep phenomenon and drying shrinkage in the concrete slab, there is no problem in terms of construction period compared to the conventional construction method, and prestress is effectively used. It is possible to provide a practical method that can be introduced and can accurately prevent the occurrence of cracks.

本発明に係る架設工法の初期の一工程を示す側面図。The side view which shows one process of the initial stage of the construction method concerning this invention. 本架設工法の工期開始からプレストレス導入までの手順を示す説明図。Explanatory drawing which shows the procedure from the construction start of this erection method to prestress introduction. 同じくプレストレス導入から架設完了までの手順を示す説明図。Explanatory drawing which similarly shows the procedure from prestress introduction to construction completion. 中間支点部の鋼桁の下側に下床版を設けた形状を示す断面図。Sectional drawing which shows the shape which provided the lower floor slab in the lower side of the steel girder of the intermediate fulcrum part. 中間支点部の鋼桁の下側に下床版を設けた形状を示す斜視図。The perspective view which shows the shape which provided the lower floor slab on the steel girder of the intermediate fulcrum part. 鋼桁とコンクリート床版との間を遅延硬化性樹脂を介して非合成としたコンクリート床版の断面図。Sectional drawing of the concrete floor slab which made non-synthesizing between the steel girder and the concrete floor slab through delayed hardening resin. 鋼桁とコンクリート床版との間を他の手段により非合成としたコンクリート床版の断面図。Sectional drawing of the concrete slab which made the non-synthesis | combination between the steel girder and the concrete slab by other means. 本発明の工法によりコンクリート床版にプレストレスを導入した状態を示すコンクリート床版の断面図。Sectional drawing of the concrete floor slab which shows the state which introduce | transduced the prestress to the concrete floor slab by the construction method of this invention. プレストレスの導入後におけるコンクリートの収縮量について、従来の施工方法と本発明の施工方法とを比較したグラフ図。The graph which compared the conventional construction method and the construction method of this invention about the shrinkage amount of the concrete after introduction | transduction of a prestress. プレストレスの導入後におけるコンクリートのクリープによる圧縮力の減少量について、従来の施工方法と本発明の施工方法とを比較したグラフ図。The graph which compared the conventional construction method and the construction method of this invention about the reduction | decrease amount of the compressive force by the creep of concrete after the introduction of prestress. 従来工法により、コンクリート床版にプレストレスを導入した状態を示すコンクリート床版の断面図。Sectional drawing of the concrete slab which shows the state which introduce | transduced the prestress to the concrete slab by the conventional construction method. 従来工法により、中間支点部上のコンクリートに生ずる引張力を打ち消すために強制圧縮力を与えた状態を示すコンクリート床版の断面図。Sectional drawing of the concrete slab which shows the state which gave the forced compression force in order to cancel the tensile force which arises in the concrete on an intermediate fulcrum part by the conventional construction method.

符号の説明Explanation of symbols

1:橋脚、
2:橋台、
3:中間支点部、
4:鋼桁、
5:足場、
6:床版型枠、
7:PC鋼材、
8:下床版、
9:コンクリート床版、
10:ずれ止め、
11:遅延硬化性樹脂、
12:縦孔、
13:支間部鋼桁、
14:足場、
15:床版型枠、
16:床版鉄筋

1: Pier
2: Abutment,
3: Intermediate fulcrum part,
4: Steel girders,
5: Scaffolding,
6: Floor slab formwork,
7: PC steel
8: Lower floor version
9: Concrete slab,
10: Slip prevention,
11: Delay curable resin,
12: Vertical hole,
13: Interstitial steel girder,
14: Scaffolding
15: Floor slab formwork,
16: Floor slab reinforcement

Claims (8)

橋軸方向の引張力が作用する中間支点部上のコンクリート床版に、強制圧縮力を与えてひび割れを生じさせないようにする連続合成桁の架設工法において、まず前記中間支点部上に鋼桁を架設して、この中間支点部の鋼桁上にコンクリート床版を鋼桁と非結合の状態で施工し、前記コンクリート床版に強制圧縮力を与える前の工程として、前記コンクリート床版を設けた区間以外の他の区間の鋼桁の架設、床版型枠の配置などの施工を進めることにより、前記コンクリート床版の乾燥収縮を進行させ、かつ、クリープ現象による変形が小さくなる材齢まで進める期間を確保し、しかる後に前記コンクリート床版に強制圧縮力を与えることを特徴とする連続合成桁橋の架設工法。   In the construction method of a continuous composite girder in which a forced compression force is applied to the concrete slab on the intermediate fulcrum where the tensile force in the bridge axis direction acts to prevent cracking, a steel girder is first placed on the intermediate fulcrum. The concrete slab was installed on the steel girder of the intermediate fulcrum in a state where the concrete slab was not coupled to the steel girder, and the concrete slab was provided as a step before applying a compressive force to the concrete slab. By proceeding with the construction of steel girders in other sections other than the section, placement of floor slab formwork, etc., the shrinkage of the concrete floor slab is progressed, and the age is reduced until the deformation due to the creep phenomenon is reduced. A construction method for a continuous composite girder bridge, characterized in that a period is secured, and then a compressive force is applied to the concrete slab. 引張力が発生する区間のコンクリート床版を、完成時の位置にて施工する場合には、その区間のコンクリート床版を現場工事手順の初期段階で施工し、強制圧縮力を与えるまでに、その他の区間の鋼桁の架設と床版型枠などを施工して、コンクリートの乾燥収縮の大半を進行させ、かつ、クリープ現象による変形が小さくなる材齢まで進める期間を確保する請求項1の連続合成桁橋の架設工法。   When the concrete floor slab of the section where tensile force is generated is to be constructed at the position at the time of completion, the concrete floor slab of that section is constructed at the initial stage of the on-site construction procedure, and before applying the compulsory compression force, etc. The continuation of claim 1 in which construction of steel girders and floor slab formwork, etc. in this section is carried out so that most of the drying shrinkage of the concrete progresses and a period of advancement to a material age at which deformation due to creep phenomenon is reduced is ensured. Construction method for composite girder bridge. 引張力が発生する区間のコンクリート床版を、工場などの完成時の位置以外の場所で分割して製作する場合には、完成時の位置にて強制圧縮力を与えるまでに、コンクリートの乾燥収縮の大半を進行させ、かつ、クリープ現象による変形が小さくなる材齢まで進める期間を確保する請求項1の連続合成桁橋の架設工法。   When the concrete floor slab in the section where tensile force is generated is divided and manufactured at a location other than the completion position such as a factory, the concrete shrinks before the forced compression force is applied at the completion position. The construction method of the continuous composite girder bridge according to claim 1, wherein a period of time is advanced to a material age in which most of the material is advanced and deformation due to creep is reduced. コンクリート床版に強制圧縮力を与える前の、完成時の位置にてコンクリート床版の乾燥収縮の大半が進行する期間は、コンクリート床版と鋼桁との結合用ずれ止めの拘束力及び/又はコンクリート床版と鋼桁との付着力を抑える請求項1の連続合成桁橋の架設工法。   Before the forced compression force is applied to the concrete slab, during the period when the drying shrinkage of the concrete slab is mostly advanced at the completion position, the restraining force of the detent for connecting the concrete slab and the steel girder and / or The construction method of the continuous composite girder bridge according to claim 1, wherein adhesion between the concrete slab and the steel girder is suppressed. コンクリート床版に強制圧縮力を与える時に、コンクリート床版と鋼桁との結合用ずれ止めの拘束力及び/又はコンクリート床版と鋼桁との付着力を抑える請求項1の連続合成桁橋の架設工法。   The continuous composite girder bridge according to claim 1, which suppresses the restraining force of the detent for connecting the concrete slab and the steel girder and / or the adhesion force between the concrete slab and the steel girder when applying a compressive force to the concrete slab. Construction method. 鋼桁上に、コンクリート床版を非結合の状態で施工する手段として、鋼桁とコンクリート床版との間に遅延硬化性樹脂を介在させる請求項1又は4の連続合成桁橋の架設工法。   The construction method of the continuous composite girder bridge according to claim 1 or 4, wherein a delay curable resin is interposed between the steel girder and the concrete floor slab as a means for constructing the concrete deck in a non-bonded state on the steel girder. 鋼桁上に、コンクリート床版を非結合の状態で施工する手段として、鋼桁とコンクリート床版との間にゴムなどの軟質板を介在させる請求項1又は5の連続合成桁橋の架設工法。   6. The construction method of a continuous composite girder bridge according to claim 1 or 5, wherein a soft plate such as rubber is interposed between the steel girder and the concrete floor slab as a means for constructing the concrete slab in a non-bonded state on the steel girder. . 中間支点部付近に鋼桁を架設する際に、鋼桁の下側に下床版を設ける請求項1の連続合成桁橋の架設工法。
The construction method for a continuous composite girder bridge according to claim 1, wherein a lower floor slab is provided below the steel girder when the steel girder is erected near the intermediate fulcrum.
JP2004186136A 2004-06-24 2004-06-24 Construction method for building continuous composite girder bridge Pending JP2006009339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186136A JP2006009339A (en) 2004-06-24 2004-06-24 Construction method for building continuous composite girder bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186136A JP2006009339A (en) 2004-06-24 2004-06-24 Construction method for building continuous composite girder bridge

Publications (1)

Publication Number Publication Date
JP2006009339A true JP2006009339A (en) 2006-01-12

Family

ID=35776873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186136A Pending JP2006009339A (en) 2004-06-24 2004-06-24 Construction method for building continuous composite girder bridge

Country Status (1)

Country Link
JP (1) JP2006009339A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254975A (en) * 2006-03-20 2007-10-04 Dps Bridge Works Co Ltd Composite girder of steel and concrete, and method of manufacturing the composite girder
JP2013057215A (en) * 2011-09-09 2013-03-28 Ps Mitsubishi Construction Co Ltd Construction method for wall balustrade of projection constructed pc bridge
CN104762878A (en) * 2015-04-16 2015-07-08 福州大学 Construction method of simply supported girder bridge continuous slab-deck structure with prestress and structure of construction method
CN113174830A (en) * 2021-04-30 2021-07-27 中铁大桥勘测设计院集团有限公司 Method for adjusting internal force of concrete slab of cable-stayed bridge with steel truss combined beam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254975A (en) * 2006-03-20 2007-10-04 Dps Bridge Works Co Ltd Composite girder of steel and concrete, and method of manufacturing the composite girder
JP2013057215A (en) * 2011-09-09 2013-03-28 Ps Mitsubishi Construction Co Ltd Construction method for wall balustrade of projection constructed pc bridge
CN104762878A (en) * 2015-04-16 2015-07-08 福州大学 Construction method of simply supported girder bridge continuous slab-deck structure with prestress and structure of construction method
CN113174830A (en) * 2021-04-30 2021-07-27 中铁大桥勘测设计院集团有限公司 Method for adjusting internal force of concrete slab of cable-stayed bridge with steel truss combined beam

Similar Documents

Publication Publication Date Title
JP5373979B2 (en) Construction Method of Steel Composite Girder Bridge {ConstructionMethod SteelCompositeGirderBridge}
JP5937898B2 (en) Construction method of box girder bridge
KR101222620B1 (en) Prestressed concrete girder and it&#39;s manufacture and construction method which used pretensioning steel plate
JP2008266910A (en) Projection structure of anchorage or deviator of tendon, and construction method therefor
JP5444203B2 (en) Bridge closure construction method
JP4127933B2 (en) Construction method of prestressed concrete floor slab with closed section box girder.
KR100635137B1 (en) Bridge slab construction method and lattice bar deck-shaped precast concrete plate applied therein
KR101835179B1 (en) Concrete deck for girder bridge using prestressed force and band stirrups
JP2006009339A (en) Construction method for building continuous composite girder bridge
JP6308502B2 (en) Construction method of pre-tension slab in overhang construction
JP3877995B2 (en) How to build a string string bridge
JPH0782709A (en) Reinforcing method for concrete structure, employing hollow pc steel bar
CN110747735A (en) Anchoring connection device for precast concrete bridge deck of steel-concrete composite beam
JP4086863B2 (en) Continuous girder structure in double span girder bridge
JP7186670B2 (en) Concrete floor slab repair method
JPH09273163A (en) Earthquake resistant reinforcing method of existing building
CN113789732A (en) Shear-resistant reinforcing method and shear-resistant reinforcing device for hollow plate beam
JP7134133B2 (en) Bridge railing construction method
JP7144341B2 (en) Concrete floor slab joint structure and concrete floor slab joint method
JP4124031B2 (en) How to install seismic isolation devices on existing pillars
KR101223268B1 (en) a bridge repair and reinforcement method
JP3684213B2 (en) Construction method of PC composite structure
KR200291793Y1 (en) Pssc complex girder
JP2528435B2 (en) Prestressing reinforcement structure for structures with girders installed in parallel
CN107558733B (en) The construction method of post-concreted expansion strip lower die frame system dismounting synchronous with periphery support for shuttering

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109