JP4127933B2 - Construction method of prestressed concrete floor slab with closed section box girder. - Google Patents

Construction method of prestressed concrete floor slab with closed section box girder. Download PDF

Info

Publication number
JP4127933B2
JP4127933B2 JP20877599A JP20877599A JP4127933B2 JP 4127933 B2 JP4127933 B2 JP 4127933B2 JP 20877599 A JP20877599 A JP 20877599A JP 20877599 A JP20877599 A JP 20877599A JP 4127933 B2 JP4127933 B2 JP 4127933B2
Authority
JP
Japan
Prior art keywords
box girder
floor slab
section box
concrete
stud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20877599A
Other languages
Japanese (ja)
Other versions
JP2001032216A (en
Inventor
昭浩 播金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP20877599A priority Critical patent/JP4127933B2/en
Publication of JP2001032216A publication Critical patent/JP2001032216A/en
Application granted granted Critical
Publication of JP4127933B2 publication Critical patent/JP4127933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法に関する。
【0002】
【従来の技術】
閉断面箱桁のプレストレストコンクリート床版の施工は、予め工場で製造したプレストレストコンクリート床版を現場に搬送して閉断面箱桁に設置し固定する方法がとられる。したがって、閉断面箱桁の現場打ちプレストレストコンクリート床版の施工例は無い。これは、現場打ちの場合は、図6に示すように、閉断面箱桁11上に従来構造の床版12のための型枠を設置し、コンクリートを打設し、コンクリート硬化後、PC鋼線13を緊張してプレストレスを導入することになるので、プレストレスの導入がポストテンションとなり、以下の問題を生じるからである。
【0003】
【発明が解決しようとする課題】
閉断面箱桁に現場打ちプレストレストコンクリート床版を施工すると、つぎの問題が生じる。
(i)プレストレス導入時に箱桁の拘束が大きく、導入プレストレスの損失が発生する。
ii プレストレス導入時に箱桁本体に常時外力が作用するため、箱桁の補強が必要となる。
(iii) プレストレス導入時の箱桁の変形が少ないため、PCプレストレスの緊張により、床版コンクリートに割れが発生する虞がある。
本発明の目的は、プレストレス導入時に箱桁の拘束が大きくなくかつ箱桁の補強も必要でなく、プレストレス導入時に床版コンクリートに割れが発生する虞がない、閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成する本発明はつぎの通りである。
(1) 閉断面箱桁上にスタッド部には箱抜き用型枠を設置しスタッド部以外には硬質ウレタンの板材またはすべり性のよい樹脂を少なくとも表面に貼付した樹脂製または金属製の硬質部材からなる滑り用部材を設置し、
前記滑り用部材の外側側面に型枠端部を合わせて前記閉断面箱桁から横方向に外側に張り出し、コンクリート打設時には床版コンクリートの下面と側面の形状を出し、打設コンクリート硬化後には撤去される型枠(以下、「打設コンクリート硬化後には撤去される型枠」、または、「従来構造の型枠」、「床版型枠」ともいう)を設置し、
床版コンクリートを打設し、
コンクリート硬化後前記型枠を撤去し、
滑り用部材部位での滑りにより床版ンクリートと箱桁との間の相対変位を許容しつつPC鋼線を緊張し、
箱抜き部にモルタルを充填する、
工程からなる、閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法。
(2) 閉断面箱桁上に、スタッド付き鋼板を該鋼板または閉断面箱桁に形成したPC鋼線緊張方向に拡大された拡大孔に高力ボルトを挿通して仮締めし、
前記スタッド付き鋼板の外側側面に型枠端部を合わせて前記閉断面箱桁から横方向に外側に張り出し、コンクリート打設時には床版コンクリートの下面と側面の形状を出し、打設コンクリート硬化後には撤去される型枠(以下、「打設コンクリート硬化後には撤去される型枠」、または、「従来型枠」、「床版型枠」ともいう)を設置し、
床版コンクリートを打設し、
コンクリート硬化後前記型枠を撤去し、
拡大孔内での高力ボルトの移動によりスタッド付鋼板と箱桁との間の相対変位を許容しつつ橋軸直角方向にPC鋼線を緊張し、
スタッド付き鋼板の高力ボルトを本締めする、
工程からなる、閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法。
【0005】
上記(1)の閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法では、スタッド部には箱抜き用型枠を設置してコンクリートを打つので、PC緊張時に床版コンクリートがスタッドに対して相対移動しても、スタッド部はコンクリートと干渉せず、また、閉断面箱桁上に滑り用部材(たとえば、硬質ウレタン)を設置した上に床版型枠を設置するので、PC緊張時に床版コンクリートが閉断面箱桁に対して相対移動しても、滑り用部材部位で滑ることができる。その結果、PC緊張時に、床版コンクリートと閉断面箱桁とは、互いに拘束し合わず、プレストレス導入時における、床版コンクリートと箱桁の互いの拘束は大きくなく、したがって、箱桁の補強も必要でなく、プレストレス導入時に床版コンクリートに割れが発生する虞もない。
上記(2)の閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法では、閉断面箱桁上に、スタッド付き鋼板を該鋼板に形成した拡大孔に高力ボルトを挿通して仮締めするので、PC緊張時に床版コンクリートとスタッド付き鋼板が一体になって閉断面箱桁に対して相対移動しても、高力ボルトが拡大孔内を移動できるため、スタッド付き鋼板の下面が閉断面箱桁に対して滑ることができる。その結果、PC緊張時に、床版コンクリートと閉断面箱桁とは、互いに拘束し合わず、プレストレス導入時における、床版コンクリートと箱桁の互いの拘束は大きくなく、したがって、箱桁の補強も必要でなく、プレストレス導入時に床版コンクリートに割れが発生する虞もない。
【0006】
【発明の実施の形態】
図1、図2は本発明の第1実施例の閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法を示しており、図3〜図5は本発明の第2実施例の閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法を示している。
【0007】
まず、本発明の第1実施例を、図1、図2を参照して説明する。
図1、図2に示すように、本発明の第1実施例の閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法は、閉断面箱桁11上にスタッド部14には箱抜き用型枠15を設置しスタッド部14以外には滑り用部材16を設置する工程と、ついで滑り用部材16上に従来構造の型枠17を設置する工程と、ついで床版コンクリート18を打設する工程と、コンクリート硬化後従来構造の型枠17を撤去する工程と、ついでPC鋼線13を緊張する工程と、ついで箱抜き部19にモルタルを充填する工程と、からなる。滑り用部材16は、たとえば、硬質ウレタンからなる。滑り用部材16は、硬質ウレタン16の代わりに、すべり性のよい樹脂を少なくとも表面に貼付した樹脂製または金属製の硬質部材であってもよい。以下の説明では、滑り用部材16が硬質ウレタンの板材である場合を例にとる。
【0008】
スタッド部14にはスタッドジベルが閉断面箱桁11に固定され、その周囲が箱抜き用型枠15で箱抜きされる。滑り用部材16である硬質ウレタン16は箱抜き部19には設置されない。スタッド部14および硬質ウレタン16は、閉断面箱桁11の断面の左右両側部上面に設けられる。
【0009】
型枠17を設置後、鉄筋を配筋する時にPC鋼線の鞘を設置した後、コンクリートを打設する。PC鋼線13を緊張する工程では、PC鋼線13を鞘に通しているので、PC鋼線13はコンクリートとは独立である。PC鋼線13は、現場で緊張され、コンクリート硬化後のポストテンションとなる。PC鋼線13緊張時には床版12にPC鋼線13緊張方向に圧縮力がかかるが(この時PC鋼線13には引張り力がかかる)、床版12と硬質ウレタン16または硬質ウレタン16と閉断面箱桁11との間にすべりが生じて、床版12は閉断面箱桁11とほとんど拘束しあうことなく縮み、また箱抜き部19にモルタルを充填する前であるので、スタッドジベルと拘束しあうことなく縮むことができる。
【0010】
床版12と閉断面箱桁との間の空間には、床版コンクリートの型枠17と同時施行される埋め殺し型枠23が設置される。埋め殺し型枠23は、通常、発泡スチロールや硬質ウレタンからなり、型枠下部と箱桁上面との間に空間が生じないように施行される。埋め殺し型枠23は、完成後も撤去されず残される。
【0011】
本発明の第1実施例の作用を説明する。
スタッド部14には箱抜き用型枠15を設置して箱抜き部19とし、箱抜き部19以外の部位にコンクリートを打つので、PC緊張時に床版12がスタッド部14に対して相対移動しても、スタッド部14は床版コンクリートと干渉しない。また、閉断面箱桁上に滑り用部材16である硬質ウレタンの板材を設置した上に床版型枠17を設置するので、PC緊張時に床版12が閉断面箱桁11に対して相対移動しても、硬質ウレタン16部位で滑ることができる。その結果、PC緊張時に、床版12と閉断面箱桁11とは、互いにほとんど拘束し合わない。プレストレス導入時における、床版12と箱桁11の互いの拘束は大きくないため、箱桁11の補強も必要でなく、プレストレス導入時に床版コンクリート18に割れが発生する虞もない。PC鋼線13の緊張によって床版12を縮ませた後に、硬質ウレタン16を撤去し、箱抜き部19及び硬質ウレタン部16にモルタルを充填する。
【0012】
つぎに、本発明の第2実施例を、図3〜図5を参照して説明する。
図3〜図5に示すように、本発明の第2実施例の閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法は、閉断面箱桁11上に、スタッド14付き鋼板20を全長に敷きわたした後、該鋼板20または閉断面箱桁11に形成した拡大孔21に高力ボルト22を挿通して仮締めする工程と、ついで鋼板20上に従来構造の型枠17を設置する工程と、ついで床版コンクリート18を打設する工程と、コンクリート硬化後従来構造の型枠17を撤去する工程と、ついでPC鋼線13を緊張する工程と、ついでスタッド付き鋼板20の高力ボルト22を本締めする工程と、からなる。PC緊張時には、鋼板20の下面と閉断面箱桁11の上面との間で滑りを生じさせる。
【0013】
鋼板20にはスタッドジベル14が固定される。床版コンクリート18の打設時、コンクリートはスタッドジベル14のまわりを埋める。スタッド14付き鋼板20は、閉断面箱桁11の断面の左右両側部上面に設けられる。
【0014】
型枠17を設置後、コンクリートを打設する前に、鉄筋を配筋する時にPC鋼線の鞘を設置する。PC鋼線13を緊張する工程では、PC鋼線13を鞘に通しているので、PC鋼線13はコンクリートとは独立である。PC鋼線13は、現場で緊張され、コンクリート硬化後のポストテンションとなる。PC鋼線13緊張時には床版12にPC鋼線13緊張方向に圧縮力がかかるが(この時PC鋼線13には引張り力がかかる)、鋼板20の下面と閉断面箱桁11の上面との間で滑りが生じて、床版12は閉断面箱桁11とほとんど拘束しあうことなく縮むことができる。
【0015】
床版12と閉断面箱桁11との間の空間には、床版コンクリートの型枠17と同時施工される埋め殺し型枠23が設置される。埋め殺し型枠23は、通常、発泡スチロールや硬質ウレタンからなり、型枠下部と箱桁上部との間に空間が生じないように施工される。埋め殺し型枠23は、完成後も撤去されず残される。
【0016】
本発明の第2実施例の作用を説明する。
閉断面箱桁11上に、スタッド14付き鋼板20を該鋼板20または閉断面箱桁11に形成した拡大孔21に高力ボルト22を挿通して仮締めするので、PC緊張時に床版12とスタッド付き鋼板20が一体になって閉断面箱桁11に対して相対移動しても、高力ボルト22が拡大孔21内を移動できるため、スタッド付き鋼板20の下面が閉断面箱桁11に対して滑ることができる。その結果、PC緊張時に、床版12と閉断面箱桁11とは、互いにほとんど拘束し合わない。プレストレス導入時における、床版コンクリート18と箱桁11の互いの拘束は大きくないため、箱桁11の補強も必要でなく、プレストレス導入時に床版コンクリート18に割れが発生する虞もない。PC鋼線13の緊張によって床版12を縮ませた後に、高力ボルト22を本締めする。
【0017】
【発明の効果】
請求項1の閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法によれば、スタッド部に箱抜き用型枠を設置してコンクリートを打つので、PC緊張時に床版コンクリートがスタッドに対して相対移動しても、スタッド部はコンクリートと干渉せず、また、閉断面箱桁上に滑り用部材を設置した上に床版型枠を設置するので、PC緊張時に床版コンクリートが閉断面箱桁に対して相対移動しても、滑り用部材部位で滑ることができる。その結果、PC緊張時に、床版コンクリートと閉断面箱桁とは、互いに拘束し合わない。プレストレス導入時における、床版コンクリートと箱桁の互いの拘束は大きくないため、箱桁の補強も必要でなく、プレストレス導入時に床版コンクリートに割れが発生する虞もない。
請求項2の閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法によれば、閉断面箱桁上に、スタッド付き鋼板を該鋼板に形成した拡大孔に高力ボルトを挿通して仮締めするので、PC緊張時に床版コンクリートとスタッド付き鋼板が一体になって閉断面箱桁に対して相対移動しても、高力ボルトが拡大孔内を移動でき、スタッド付き鋼板の下面が閉断面箱桁に対して滑ることができる。その結果、PC緊張時に、床版コンクリートと閉断面箱桁とは、互いに拘束し合わない。プレストレス導入時における、床版コンクリートと箱桁の互いの拘束は大きくないため、箱桁の補強も必要でなく、プレストレス導入時に床版コンクリートに割れが発生する虞もない。
【図面の簡単な説明】
【図1】 本発明の第1実施例の閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法の実施途中の断面図である。
【図2】 図1の平面図である。
【図3】 本発明の第2実施例の閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法の実施途中の断面図である。
【図4】 図3のa部の拡大断面図である。
【図5】 図4の拡大孔の平面図である。
【図6】 閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法の問題を示す断面図である。
【符号の説明】
11 閉断面箱桁
12 床版
13 PC鋼線
14 スタッド部(スタッドジベル)
15 箱抜き用型枠
16 滑り用部材
17 従来構造の型枠
18 床版コンクリート
19 箱抜き部
20 スタッド14付き鋼板
21 拡大孔
22 高力ボルト
23 埋め殺し型枠
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a construction method of a prestressed concrete floor slab with a closed section box girder.
[0002]
[Prior art]
The construction of the prestressed concrete floor slab of the closed section box girder is carried out by transporting the prestressed concrete floor slab manufactured in the factory in advance to the site, and installing and fixing it on the closed section box girder. Therefore, there is no construction example of on-site prestressed concrete slabs with closed section box girders. In the case of on-site casting, as shown in FIG. 6, a formwork for a floor slab 12 having a conventional structure is placed on a closed cross-section box girder 11, concrete is placed, and after concrete hardening, PC steel This is because prestress is introduced by tensioning the wire 13, so that the introduction of prestress becomes post tension and causes the following problems.
[0003]
[Problems to be solved by the invention]
The following problems occur when a prestressed concrete floor slab is installed on a closed section box girder.
(I) When prestress is introduced, the box girder is largely restrained, and a loss of introduction prestress occurs.
( Ii ) Since external force always acts on the box girder body when prestress is introduced, the box girder needs to be reinforced.
(iii) Since there is little deformation of the box girder when prestress is introduced, there is a possibility that cracks may occur in the floor slab concrete due to the tension of PC prestress.
The object of the present invention is that the box girder is not constrained when pre-stress is introduced and does not require reinforcement of the box girder, and there is no risk of cracking in the floor slab concrete when pre-stress is introduced. The purpose is to provide a method for constructing prestressed concrete slabs.
[0004]
[Means for Solving the Problems]
The present invention for achieving the above object is as follows.
(1) A rigid member made of resin or metal in which a box form is placed on the stud on the closed cross-section box girder and a hard urethane plate or a slippery resin is stuck on at least the surface other than the stud A sliding member consisting of
Align the edge of the formwork with the outer side surface of the sliding member and project it laterally outward from the closed cross-section box girder. Install the formwork to be removed (hereinafter referred to as “ formwork removed after setting concrete is hardened”, or “former formwork of conventional structure”, “floor formwork”) ,
Placing floor slab concrete,
And removing the after concrete curing before Symbol type frame,
Nervous the PC steel wire by sliding in sliding member site while allowing relative displacement between the slab concrete and box girder,
Fill the box opening with mortar,
Construction method of on-site prestressed concrete floor slab with closed section box girder consisting of processes.
(2) On the closed section box girder, a steel plate with a stud is temporarily tightened by inserting a high-strength bolt into an enlarged hole expanded in the direction of tension in the PC steel wire formed in the steel plate or the closed section box girder,
Align the edge of the formwork with the outer side surface of the steel plate with studs and project it laterally outward from the closed cross-section box girder. Install the formwork to be removed (hereinafter referred to as “ formwork to be removed after the cast concrete is hardened”, or “conventional formwork”, “floor formwork”) ,
Placing floor slab concrete,
And removing the after concrete curing before Symbol type frame,
Nervous the PC steel wire Hashijiku perpendicular direction while allowing relative displacement between the-out with stud steel plate and box girder by the movement of the high-strength bolts in the expansion hole,
Fully tighten high-strength bolts of steel plates with studs,
Construction method of on-site prestressed concrete floor slab with closed section box girder consisting of processes.
[0005]
In the construction method of on-site prestressed concrete floor slabs for closed section box girders (1) above, the box slabs are placed on the studs and the concrete is cast, so that the floor slab concrete is against the studs during PC tension. Even if it moves relatively, the stud part does not interfere with the concrete, and because the floor slab formwork is installed on the closed cross-section box girder with the sliding member (for example, hard urethane) installed, Even if the plate concrete moves relative to the closed cross-section box girder, it can slide at the sliding member portion. As a result, the floor slab concrete and the closed cross-section box girder are not constrained to each other when the PC is tensioned, and the mutual restraint between the floor slab concrete and the box girder when pre-stress is introduced is not large. There is no need to crack the floor slab concrete when prestress is introduced.
In the construction method of the prestressed concrete floor slab of the closed section box girder of (2) above, a high strength bolt is inserted into the enlarged hole formed in the steel plate on the closed section box girder and temporarily tightened. Therefore, even if the floor slab concrete and the steel plate with studs move together relative to the closed section box girder when the PC is strained, the high strength bolt can move in the enlarged hole, so the bottom surface of the steel plate with studs is closed cross section You can slide against the box girder. As a result, the floor slab concrete and the closed cross-section box girder are not constrained to each other when the PC is tensioned, and the mutual restraint between the floor slab concrete and the box girder when pre-stress is introduced is not large. There is no need to crack the floor slab concrete when prestress is introduced.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a construction method of a prestressed concrete floor slab of a closed section box girder according to a first embodiment of the present invention. FIGS. 3 to 5 show a closed section box according to a second embodiment of the present invention. It shows the construction method of prestressed concrete slabs for on-site girders.
[0007]
First, a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the construction method of the prestressed concrete floor slab of the closed section box girder according to the first embodiment of the present invention is such that the stud section 14 is placed on the stud section 14 on the closed section box girder 11. The step of installing the frame 15 and installing the sliding member 16 other than the stud portion 14, the step of installing the conventional frame 17 on the sliding member 16, and the step of placing the floor slab concrete 18 And a step of removing the conventional formwork 17 after hardening the concrete, a step of tensioning the PC steel wire 13, and a step of filling the box opening portion 19 with mortar. The sliding member 16 is made of, for example, hard urethane. Instead of the hard urethane 16, the sliding member 16 may be a resin-made or metal-made hard member in which a resin having a good sliding property is pasted on at least the surface. In the following description, the case where the sliding member 16 is a hard urethane plate is taken as an example.
[0008]
The stud part 14 is fixed to the closed cross-section box girder 11 at the stud part 14, and the periphery thereof is boxed by a boxing mold 15. The rigid urethane 16 that is the sliding member 16 is not installed in the box opening portion 19. The stud portion 14 and the hard urethane 16 are provided on the upper surfaces of the left and right side portions of the cross section of the closed section box girder 11.
[0009]
After installing the formwork 17, after placing the sheath of the PC steel wire when placing the reinforcing bars, the concrete is placed . In the process of tensioning the PC steel wire 13, the PC steel wire 13 is independent of the concrete because the PC steel wire 13 is passed through the sheath. The PC steel wire 13 is tensioned at the site and becomes post tension after hardening of the concrete. When the PC steel wire 13 is in tension, a compression force is applied to the floor slab 12 in the PC steel wire 13 tension direction (at this time, a tensile force is applied to the PC steel wire 13), but the floor slab 12 and the hard urethane 16 or the hard urethane 16 are closed. A slip occurs between the cross-section box girder 11 and the floor slab 12 shrinks with almost no restraint with the closed cross-section box girder 11 and before the mortar is filled with the mortar. It can be shrunk without worries.
[0010]
In the space between the floor slab 12 and the closed cross-section box girder, a buried form 23 that is simultaneously executed with the floor slab concrete form 17 is installed. The filling mold 23 is usually made of polystyrene foam or hard urethane, and is enforced so that no space is created between the lower part of the mold and the upper surface of the box girder. The burying mold 23 is left without being removed even after completion.
[0011]
The operation of the first embodiment of the present invention will be described.
Since the boxing mold 15 is installed in the stud portion 14 to form a boxing portion 19 and concrete is applied to a portion other than the boxing portion 19, the floor slab 12 moves relative to the stud portion 14 when the PC is strained. However, the stud portion 14 does not interfere with the floor slab concrete. In addition, since the floor slab formwork 17 is installed on the closed cross section box girder after the rigid urethane plate material which is the sliding member 16 is installed, the floor slab 12 moves relative to the closed cross section box girder 11 when the PC is strained. Even so, it is possible to slide at the 16 parts of hard urethane. As a result, the floor slab 12 and the closed cross-section box girder 11 are hardly bound to each other during PC tension. Since the restraint between the floor slab 12 and the box girder 11 at the time of introducing the prestress is not large, there is no need to reinforce the box girder 11, and there is no possibility that the floor slab concrete 18 will be cracked when the prestress is introduced. After the floor slab 12 is contracted by the tension of the PC steel wire 13, the hard urethane 16 is removed, and the box opening portion 19 and the hard urethane portion 16 are filled with mortar.
[0012]
Next, a second embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 3 to FIG. 5, the construction method of the in-situ prestressed concrete floor slab of the closed section box girder of the second embodiment of the present invention is that the steel plate 20 with studs 14 is extended to the full length on the closed section box girder 11. After spreading, a step of inserting a high-strength bolt 22 into the enlarged hole 21 formed in the steel plate 20 or the closed section box girder 11 and temporarily tightening, and a step of installing a conventional formwork 17 on the steel plate 20 Then, the step of placing the floor slab concrete 18, the step of removing the formwork 17 of the conventional structure after the concrete is hardened, the step of tensioning the PC steel wire 13, and the high strength bolt 22 of the steel plate 20 with studs And a final tightening step. When the PC is tensioned, a slip is generated between the lower surface of the steel plate 20 and the upper surface of the closed section box girder 11.
[0013]
A stud gibber 14 is fixed to the steel plate 20. When the floor slab concrete 18 is placed, the concrete fills around the stud gibber 14. The steel plates 20 with studs 14 are provided on the upper surfaces of the left and right side portions of the cross section of the closed section box girder 11.
[0014]
After placing the formwork 17 and before placing concrete, a sheath of PC steel wire is installed when reinforcing bars are placed. In the process of tensioning the PC steel wire 13, since the PC steel wire 13 is passed through the sheath, the PC steel wire 13 is independent of the concrete. The PC steel wire 13 is tensioned at the site and becomes post tension after hardening of the concrete. When the PC steel wire 13 is in tension, a compressive force is applied to the floor slab 12 in the PC steel wire 13 tension direction (at this time, the PC steel wire 13 is subjected to a tensile force), but the lower surface of the steel plate 20 and the upper surface of the closed section box girder 11 The floor slab 12 can be shrunk without substantially restraining the closed section box girder 11.
[0015]
In the space between the floor slab 12 and the closed cross-section box girder 11, a buried mold 23 is installed which is simultaneously constructed with the floor slab concrete mold 17. The burying mold 23 is usually made of foamed polystyrene or rigid urethane, and is constructed so that no space is generated between the lower part of the mold and the upper part of the box girder. The burying mold 23 is left without being removed even after completion.
[0016]
The operation of the second embodiment of the present invention will be described.
Since the high strength bolt 22 is inserted into the steel plate 20 or the enlarged hole 21 formed in the closed section box girder 11 and temporarily tightened on the closed section box girder 11 with the steel plate 20 or the closed section box girder 11, Even if the steel plate with stud 20 is integrated and moved relative to the closed section box girder 11, the high strength bolt 22 can move in the enlarged hole 21, so that the lower surface of the steel plate with stud 20 becomes the closed section box girder 11. You can slide against. As a result, the floor slab 12 and the closed cross-section box girder 11 are hardly bound to each other during PC tension. Since the restraint between the floor slab concrete 18 and the box girder 11 at the time of introducing the prestress is not large, the reinforcement of the box girder 11 is not required, and there is no possibility that the floor slab concrete 18 is cracked at the time of introducing the prestress. After the floor slab 12 is contracted by the tension of the PC steel wire 13, the high strength bolt 22 is finally tightened.
[0017]
【The invention's effect】
According to the construction method of the prestressed concrete floor slab of the closed cross-section box girder of claim 1, the box slab is placed on the stud and the concrete is cast. Even if it moves relatively, the stud part does not interfere with the concrete, and the floor slab form is installed on the closed section box girder and the floor slab form is installed. Even if it moves relative to the girder, it can slide at the sliding member portion. As a result, the floor slab concrete and the closed cross-section box girder are not constrained to each other during PC tension. Since the restraint between the floor slab concrete and the box girder is not large when pre-stress is introduced, there is no need to reinforce the box girder, and there is no possibility of cracking in the floor slab concrete when pre-stress is introduced.
According to the construction method of the prestressed concrete floor slab of the closed section box girder of claim 2, a high strength bolt is inserted into the enlarged hole formed in the steel plate with the stud on the closed section box girder and temporarily tightened. Therefore, even if the floor slab concrete and the steel plate with studs move together relative to the closed section box girder when the PC is strained, the high strength bolt can move in the enlarged hole, and the bottom surface of the steel plate with studs is closed cross section You can slide against the box girder. As a result, the floor slab concrete and the closed cross-section box girder are not constrained to each other during PC tension. Since the restraint between the floor slab concrete and the box girder is not large when pre-stress is introduced, there is no need to reinforce the box girder, and there is no possibility of cracking in the floor slab concrete when pre-stress is introduced.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a cross-sectional view of a first embodiment of the present invention in the middle of a construction method for a spot-cast prestressed concrete floor slab of a closed cross-section box girder.
FIG. 2 is a plan view of FIG.
FIG. 3 is a cross-sectional view of the second embodiment of the present invention in the middle of the construction method for a prestressed concrete floor slab of a closed cross-section box girder.
4 is an enlarged cross-sectional view of a part a in FIG. 3;
FIG. 5 is a plan view of the enlarged hole of FIG. 4;
FIG. 6 is a cross-sectional view showing a problem of a construction method of a spot-cast prestressed concrete floor slab with a closed cross-section box girder.
[Explanation of symbols]
11 Closed section box girder 12 Floor slab 13 PC steel wire 14 Stud part (Stud gibber)
15 Forming box for box 16 Sliding member 17 Formwork of conventional structure 18 Floor slab 19 Boxing part 20 Steel plate with stud 14 Expanded hole 22 High-strength bolt 23 Filling formwork

Claims (2)

閉断面箱桁上にスタッド部には箱抜き用型枠を設置しスタッド部以外には硬質ウレタンの板材またはすべり性のよい樹脂を少なくとも表面に貼付した樹脂製または金属製の硬質部材からなる滑り用部材を設置し、
前記滑り用部材の外側側面に型枠端部を合わせて前記閉断面箱桁から横方向に外側に張り出し、コンクリート打設時には床版コンクリートの下面と側面の形状を出し、打設コンクリート硬化後には撤去される型枠を設置し、
床版コンクリートを打設し、
コンクリート硬化後前記型枠を撤去し、
滑り用部材部位での滑りにより床版ンクリートと箱桁との間の相対変位を許容しつつPC鋼線を緊張し、
箱抜き部にモルタルを充填する、
工程からなる、閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法。
A slip made of a resin or metal hard member with a box made of boxing on the stud on the closed section box girder and a hard urethane plate or non-slip resin affixed to the surface of the stud other than the stud. Install the parts for
Align the edge of the formwork with the outer side surface of the sliding member and project it laterally outward from the closed cross-section box girder. Set up the formwork to be removed ,
Placing floor slab concrete,
And removing the after concrete curing before Symbol type frame,
Nervous the PC steel wire by sliding in sliding member site while allowing relative displacement between the slab concrete and box girder,
Fill the box opening with mortar,
Construction method of on-site prestressed concrete floor slab with closed section box girder consisting of processes.
閉断面箱桁上に、スタッド付き鋼板を該鋼板または閉断面箱桁に形成したPC鋼線緊張方向に拡大された拡大孔に高力ボルトを挿通して仮締めし、
前記スタッド付き鋼板の外側側面に型枠端部を合わせて前記閉断面箱桁から横方向に外側に張り出し、コンクリート打設時には床版コンクリートの下面と側面の形状を出し、打設コンクリート硬化後には撤去される型枠を設置し、
床版コンクリートを打設し、
コンクリート硬化後前記型枠を撤去し、
拡大孔内での高力ボルトの移動によりスタッド付鋼板と箱桁との間の相対変位を許容しつつ橋軸直角方向にPC鋼線を緊張し、
スタッド付き鋼板の高力ボルトを本締めする、
工程からなる、閉断面箱桁の現場打ちプレストレストコンクリート床版の施工法。
On the closed cross-section box girder, a steel plate with a stud is temporarily tightened by inserting a high-strength bolt into an enlarged hole expanded in the direction of tension of the PC steel wire formed on the steel plate or the closed cross-section box girder,
Align the edge of the formwork with the outer side surface of the steel plate with studs and project it laterally outward from the closed cross-section box girder. Set up the formwork to be removed ,
Placing floor slab concrete,
And removing the after concrete curing before Symbol type frame,
Nervous the PC steel wire Hashijiku perpendicular direction while allowing relative displacement between the-out with stud steel plate and box girder by the movement of the high-strength bolts in the expansion hole,
Fully tighten high-strength bolts of steel plates with studs,
Construction method of on-site prestressed concrete floor slab with closed section box girder consisting of processes.
JP20877599A 1999-07-23 1999-07-23 Construction method of prestressed concrete floor slab with closed section box girder. Expired - Fee Related JP4127933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20877599A JP4127933B2 (en) 1999-07-23 1999-07-23 Construction method of prestressed concrete floor slab with closed section box girder.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20877599A JP4127933B2 (en) 1999-07-23 1999-07-23 Construction method of prestressed concrete floor slab with closed section box girder.

Publications (2)

Publication Number Publication Date
JP2001032216A JP2001032216A (en) 2001-02-06
JP4127933B2 true JP4127933B2 (en) 2008-07-30

Family

ID=16561900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20877599A Expired - Fee Related JP4127933B2 (en) 1999-07-23 1999-07-23 Construction method of prestressed concrete floor slab with closed section box girder.

Country Status (1)

Country Link
JP (1) JP4127933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233425A (en) * 2013-04-20 2013-08-07 中铁十六局集团第四工程有限公司 Method for observing support cast-in-place beam preloading by utilizing reflector

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030094767A (en) * 2002-06-07 2003-12-18 심창수 Composite Bridge having Easy Replacing Shear Connection Structure and Constructing Method thereof
KR100519234B1 (en) * 2002-11-22 2005-10-06 한국건설기술연구원 joint structure of precast bridge slab and girder and bridge construction method using the same
KR100601100B1 (en) 2004-12-21 2006-07-19 재단법인 포항산업과학연구원 Personal rapid transit bridge with steel tubes
JP2007032212A (en) * 2005-07-29 2007-02-08 Taisei Corp Ribbed floor slab and on-water structure
JP4845039B2 (en) * 2007-03-07 2011-12-28 三井造船株式会社 RC slab minority main girder bridge
JP4977110B2 (en) * 2008-10-24 2012-07-18 大成建設株式会社 Composite digit structure and composite digit construction method
CN106808564B (en) * 2017-04-07 2023-05-26 中铁十七局集团第三工程有限公司 Three-word buckle type box girder end sealing template and box girder end sealing method
CN108004904B (en) * 2017-12-12 2019-04-12 石伟东 A kind of highway prefabricated T-shaped beam of the road traffic convenient for draining
CN112853985B (en) * 2021-01-13 2022-05-20 中建五局土木工程有限公司 Translation and traction construction method for PC narrow and high track beam on cast-in-place beam
CN115075114B (en) * 2022-07-20 2024-05-24 东南大学 Transverse widening connection structure of longitudinal deformable concrete continuous box girder and construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233425A (en) * 2013-04-20 2013-08-07 中铁十六局集团第四工程有限公司 Method for observing support cast-in-place beam preloading by utilizing reflector
CN103233425B (en) * 2013-04-20 2015-07-22 中铁十六局集团第四工程有限公司 Method for observing support cast-in-place beam preloading by utilizing reflector

Also Published As

Publication number Publication date
JP2001032216A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
KR100696441B1 (en) Precast Prestressed reinforced concrete bottom plate, bridge having the same, and construction method for the bridge
JP4127933B2 (en) Construction method of prestressed concrete floor slab with closed section box girder.
KR101170922B1 (en) The rahmen bridge construction technique for which tendon and the connection support stand was used
KR20010045640A (en) Precast Reinforced Concrete Slab, Composite Continuous Bridge Having Such Slab, and Constructing Method thereof
JP2008266910A (en) Projection structure of anchorage or deviator of tendon, and construction method therefor
KR100570231B1 (en) Structure section extension equipment and an extension method of construction using ps steel materials and a steel plate
KR102059435B1 (en) Precast slab beam and rahmen structure construction method therewith
JP5536988B2 (en) Construction method of steel plate concrete structure
KR100555046B1 (en) A tunnel structure and method for constructing of it
JP7186670B2 (en) Concrete floor slab repair method
JP2528435B2 (en) Prestressing reinforcement structure for structures with girders installed in parallel
JP2003129676A (en) Method of reinforcing concrete frame
KR100694763B1 (en) Construction methods of underground structure adopting concrete-composite crossbeam
JP3713192B2 (en) Foundation structure with anchor bolt and its construction method
KR100403505B1 (en) The Method of Reinforcing A Steel Girder Beam type Bridge and The Structure thereof
JPH11181809A (en) Construction of large scale prestressed concrete culvert
JP2020133260A (en) Concrete slab joint structure and concrete slab joining method
KR101208088B1 (en) rifling beam for prestressing bridge and device for manufacturing thereof
KR20130103970A (en) Concrete deck slab assembly, method for making the same and temporary bridge using the same
KR101278151B1 (en) Prestressed precast segment rahmen-bridge
JP3275017B2 (en) Method of manufacturing caisson using precast member
JP7455931B1 (en) Precast board manufacturing method and precast board
JP7372506B2 (en) Concrete slab and concrete slab connection structure
JPH10184028A (en) Earthquake-resisting reinforcing structure of building
JP2719991B2 (en) Construction method of slope protection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees