JP2006005271A - Tool and method for heat treatment of semiconductor wafer - Google Patents

Tool and method for heat treatment of semiconductor wafer Download PDF

Info

Publication number
JP2006005271A
JP2006005271A JP2004182135A JP2004182135A JP2006005271A JP 2006005271 A JP2006005271 A JP 2006005271A JP 2004182135 A JP2004182135 A JP 2004182135A JP 2004182135 A JP2004182135 A JP 2004182135A JP 2006005271 A JP2006005271 A JP 2006005271A
Authority
JP
Japan
Prior art keywords
heat treatment
wafer
support
jig
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004182135A
Other languages
Japanese (ja)
Other versions
JP4826070B2 (en
Inventor
Takeshi Kobayashi
小林武史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2004182135A priority Critical patent/JP4826070B2/en
Priority to PCT/JP2005/010486 priority patent/WO2005124848A1/en
Publication of JP2006005271A publication Critical patent/JP2006005271A/en
Application granted granted Critical
Publication of JP4826070B2 publication Critical patent/JP4826070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • H01L21/67306Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements characterized by a material, a roughness, a coating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • H01L21/67309Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements characterized by the substrate support

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment tool capable of surely preventing not only the generation of slip but also the generation of scratches on the periphery of a rear face and a chamfer at the time of executing heat treatment for a silicon wafer or the like. <P>SOLUTION: The heat treatment tool to be used for heat treatment by horizontally supporting a wafer-like object to be heat-treated has a supporting part for supporting the rear side of the object to be heat-treated, and the supporting surface of the supporting part is formed like a projected curve. For instance, an annular susceptor 41 having a supporting part for supporting the object to be heat-treated along the peripheral edge of the rear face is used, and the semiconductor wafer W is supported so that a boundary part between the chamfer and the rear face of the semiconductor wafer W is brought into contact with the supporting surface 46 formed like the projected curve to execute heat treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ウエーハ状の被処理体、特にシリコンウエーハを熱処理する際に好適な熱処理用治具及びそれを用いた半導体ウエーハの熱処理方法に関する。   The present invention relates to a heat treatment jig suitable for heat treating a wafer-like object, particularly a silicon wafer, and a heat treatment method for a semiconductor wafer using the same.

シリコン単結晶等の半導体インゴットから切り出したウエーハを用いてデバイスを作製する場合、ウエーハの加工プロセスから素子の形成プロセスまで多数の工程が介在する。それらの工程の一つに熱処理工程がある。この熱処理工程は、ウエーハの表層における無欠陥層の形成、ゲッタリング、結晶化、酸化膜形成、不純物拡散等を目的として行われる非常に重要なプロセスである。   When a device is manufactured using a wafer cut from a semiconductor ingot such as a silicon single crystal, a number of steps are involved from a wafer processing process to an element formation process. One of these processes is a heat treatment process. This heat treatment step is a very important process performed for the purpose of forming a defect-free layer on the surface layer of the wafer, gettering, crystallization, oxide film formation, impurity diffusion, and the like.

このようなウエーハの熱処理工程、例えば、酸化や不純物拡散に用いられる拡散炉(酸化・拡散装置)としては、ウエーハの大口径化に伴い、図4に示すような多数のウエーハWを所定の間隔をあけて水平に支持した状態で熱処理を行う縦型の熱処理炉20が主に用いられている。熱処理炉20内のウエーハWは、反応室22の周囲に設けられたヒータ24によって加熱することができる。熱処理中は、反応室22にはガス導入管26を介してガスが導入され、上方から下方に向かって流れてガス排気管28から外部に排出される。なお、使用するガスは熱処理の目的によって異なるが、主としてH、N、O、Ar等が用いられる。不純物拡散の場合には、これらのガスを不純物化合物ガスのキャリアガスとしても使用する。 As a diffusion furnace (oxidation / diffusion apparatus) used for such a wafer heat treatment step, for example, for oxidation or impurity diffusion, a large number of wafers W as shown in FIG. A vertical heat treatment furnace 20 that performs heat treatment in a state where it is horizontally supported with a gap is used. The wafer W in the heat treatment furnace 20 can be heated by a heater 24 provided around the reaction chamber 22. During the heat treatment, gas is introduced into the reaction chamber 22 through the gas introduction pipe 26, flows from the upper side to the lower side, and is discharged from the gas exhaust pipe 28 to the outside. The gas used varies depending on the purpose of the heat treatment, but mainly H 2 , N 2 , O 2 , Ar, etc. are used. In the case of impurity diffusion, these gases are also used as a carrier gas for the impurity compound gas.

このような縦型熱処理炉20を用いてウエーハWを熱処理する際には、ウエーハを支持するための熱処理用治具として、多数のウエーハWを水平にセットする熱処理用縦型ボート10(以下、熱処理用ボート、縦型ボート、或いは単にボートという場合がある。)が用いられる。図5(A)は一般的な熱処理用ボート10の概略を示している。4本の棒状(円柱状)の支柱14の両端部に一対の板材(天板16a、底板16b)が連結されている。図6(A)に示されるように、各支柱14には多数のスリット(溝)11が形成され、各スリット11間の半円形の凸部がウエーハWの支持部12として作用する。   When the wafer W is heat-treated using such a vertical heat treatment furnace 20, a heat treatment vertical boat 10 (hereinafter referred to as a heat treatment jig 10) for setting a number of wafers W horizontally as a heat treatment jig for supporting the wafer. A heat treatment boat, a vertical boat, or simply a boat). FIG. 5A shows an outline of a general heat treatment boat 10. A pair of plate members (top plate 16a and bottom plate 16b) are connected to both end portions of four rod-like (columnar) columns 14. As shown in FIG. 6 (A), a large number of slits (grooves) 11 are formed in each support column 14, and a semicircular convex portion between the slits 11 acts as a support portion 12 for the wafer W.

このように支柱14に多数の溝11(支持部12)を形成した熱処理用ボート10は、一般的にショートフィンガータイプと呼ばれている。熱処理する際には、図5(B)に示されるように、各支柱14の同じ高さに形成されている支持部12によりウエーハWの裏面(下面)周辺部が4ヶ所で水平に支持されることになる。
なお、ボートの支持部については、例えば図6(B)に示したように角状の支柱15に長方形の支持部13を形成したものもある。
The heat treatment boat 10 in which a large number of grooves 11 (support portions 12) are formed in the support 14 as described above is generally called a short finger type. When the heat treatment is performed, as shown in FIG. 5B, the periphery of the back surface (lower surface) of the wafer W is horizontally supported at four places by the support portions 12 formed at the same height of the respective columns 14. Will be.
As for the support portion of the boat, for example, as shown in FIG. 6B, there is a case where a rectangular support portion 13 is formed on a square column 15.

上記のようにウエーハWの裏面周辺部を支持した場合、ウエーハWの自重が支持部に集中するため、これにより生ずる応力が常に作用している。そして、この応力が臨界剪断応力を超えると、ウエーハ内に転位が発生する。この転位は応力の作用により巨視的な大きさにまで広がり、スリップとなる。スリップの発生はウエーハの品質を大きく低下させるため、これを防ぐことが重要である。   When the peripheral portion of the back surface of the wafer W is supported as described above, the weight of the wafer W is concentrated on the support portion, so that the stress generated thereby is always acting. When this stress exceeds the critical shear stress, dislocation occurs in the wafer. This dislocation spreads to a macroscopic size due to the action of stress and becomes a slip. The occurrence of slip greatly reduces the quality of the wafer, so it is important to prevent this.

しかし、一般に高温雰囲気下では、ウエーハにスリップが著しく発生し易くなる。特に、半導体デバイスの高集積化に伴いウエーハ一枚当たりのデバイス収率を上げるために、ウエーハの大直径化が進んでいる。その結果、ウエーハの自重が大きくなり、それに伴いウエーハに作用する応力が増大する傾向にあり、ウエーハ中にスリップがより発生し易くなってきている。直径200mm以上、特に300mmの大直径のシリコンウエーハは、熱処理時にウエーハが撓んでボートの支持部の先端の角が裏面にあたって応力が集中し、スリップが生じ易いという問題がある。   However, generally, a slip is remarkably generated on the wafer under a high temperature atmosphere. In particular, as semiconductor devices are highly integrated, the diameter of wafers is increasing in order to increase the device yield per wafer. As a result, the weight of the wafer increases, and accordingly, the stress acting on the wafer tends to increase, and slip is more likely to occur in the wafer. A silicon wafer having a diameter of 200 mm or more, particularly 300 mm, has a problem that the wafer is bent during heat treatment and stress is concentrated on the rear corner of the boat support portion, and slip is likely to occur.

スリップの発生を防ぐため様々な熱処理用治具が提案されており、例えば縦型ボートの支持部の支持面をウエーハの撓みに対応するように傾斜させたものが提案されている(特許文献1参照)。このように支持面を所定の角度で傾斜させたものでは、ウエーハは面取り部で支持され、熱処理中にウエーハが撓んだときには、ウエーハの裏面が支持面と面接触した状態で支持されるため、応力集中が緩和されてスリップの発生が抑制されるとしている。   Various heat treatment jigs have been proposed in order to prevent the occurrence of slip, and for example, one in which the support surface of the support portion of the vertical boat is inclined so as to correspond to the bending of the wafer is proposed (Patent Document 1). reference). In such a case where the support surface is inclined at a predetermined angle, the wafer is supported by the chamfered portion, and when the wafer is bent during the heat treatment, the wafer is supported in a state where the back surface of the wafer is in surface contact with the support surface. The stress concentration is alleviated and the occurrence of slip is suppressed.

また、図7(A)(B)に示したような環状又は円弧状のサセプタ31も提案されている(特許文献2参照)。このような環状(円弧状)のサセプタ31をボートの支持部に載置してサセプタ31を介すことで、ウエーハWを裏面周縁部に沿って数mmから数十mmの幅で全周または一部を支持することができる。従って、ウエーハWは、より広い面積で支持されて応力が分散されるため、スリップの発生を抑制することができる。なお、図7に示したサセプタ31では開口部(切り欠き部)32が設けられており、ウエーハWを移載する時に移載機が通過できるようになっている。
さらに、スリップの発生をより効果的に防止するため、ウエーハの撓みに対応するように支持面を傾斜させたサセプタも提案されている(特許文献1参照)。
An annular or arcuate susceptor 31 as shown in FIGS. 7A and 7B has also been proposed (see Patent Document 2). By placing such an annular (arc-shaped) susceptor 31 on the support portion of the boat and passing through the susceptor 31, the wafer W can be rotated around the entire circumference with a width of several millimeters to several tens of millimeters along the peripheral edge of the back surface. Some can be supported. Therefore, since the wafer W is supported over a wider area and the stress is dispersed, the occurrence of slip can be suppressed. The susceptor 31 shown in FIG. 7 is provided with an opening (notch) 32 so that the transfer machine can pass when the wafer W is transferred.
Furthermore, in order to prevent the occurrence of slip more effectively, a susceptor having a support surface inclined so as to correspond to the bending of the wafer has been proposed (see Patent Document 1).

上記のようにウエーハの撓みに対応するように支持面を傾斜させたボートやサセプタでは、熱処理中、ウエーハが撓んでも広い面積でウエーハと接し、応力が分散されるため、スリップの発生を抑制する効果が得られる。ところが、支持面を傾斜させたサセプタを用いてウエーハの熱処理を行った場合でも、ウエーハの裏面や面取り部にキズが多数発生することがあった。しかも、ウエーハにより撓み方が異なるため、裏面の内側にキズが発生したり、面取り部にキズが発生したり、キズの発生位置を特定することができなかった。   In boats and susceptors with support surfaces inclined so as to respond to wafer deflection as described above, even if the wafer bends during heat treatment, it contacts the wafer over a large area and stress is dispersed, so slip generation is suppressed. Effect is obtained. However, even when the wafer is heat-treated using a susceptor having a support surface inclined, many scratches may occur on the back surface or chamfered portion of the wafer. Moreover, since the way of bending differs depending on the wafer, scratches are generated on the inner side of the back surface, scratches are generated on the chamfered portion, and the scratch generation position cannot be specified.

特に最近では、半導体デバイスの高集積化に伴い、スリップのほか、ウエーハの裏面に発生するキズも重要視されている。これは、ピンチャック方式のステッパーを用いる場合、ピンチャックのピンの上にウエーハの裏面キズが乗ったときに、デフォーカス(焦点不良)が起こることが懸念されているためである。従って、スリップだけでなく、裏面キズの発生も抑えることが重要となっており、熱処理時の裏面キズの発生は、裏面の周辺部といえどもその後のデバイス工程で問題となることがあった。さらに、ウエーハの面取り部にキズを付けてしまうと、その後のデバイス工程でのウエーハ割れの原因となると言われている。   Particularly recently, with the high integration of semiconductor devices, not only slip but also scratches generated on the back surface of the wafer are regarded as important. This is because, when a pin chuck type stepper is used, there is a concern that defocusing (focal failure) may occur when a wafer back surface scratch is placed on the pin chuck pin. Therefore, it is important to suppress not only the slip but also the back surface scratches, and the back surface scratches during the heat treatment sometimes become a problem in the subsequent device process even in the periphery of the back surface. Furthermore, it is said that if the chamfered portion of the wafer is scratched, it will cause a wafer crack in the subsequent device process.

特開平9−251961号公報JP-A-9-251961 特開平6−260438号公報JP-A-6-260438

このような問題点に鑑み、本発明では、シリコンウエーハ等を熱処理する際、スリップだけでなく、裏面周辺部や面取り部のキズの発生も確実に防ぐことができる熱処理用治具及び半導体ウエーハの熱処理方法を提供することを目的とする。   In view of such problems, in the present invention, when heat-treating a silicon wafer or the like, not only slip but also a heat treatment jig and a semiconductor wafer that can reliably prevent generation of scratches in the peripheral portion of the back surface and the chamfered portion. An object is to provide a heat treatment method.

上記目的を達成するため、本発明によれば、ウエーハ状の被処理体を水平に支持して熱処理する際に使用する熱処理用治具であって、前記被処理体の裏面側を支持する支持部を有し、該支持部の支持面が、凸曲面状に形成されていることを特徴とする熱処理用治具が提供される(請求項1)。   In order to achieve the above object, according to the present invention, there is provided a heat treatment jig used when a wafer-like object to be processed is horizontally supported and heat-treated, and supports the back side of the object to be processed. There is provided a jig for heat treatment, characterized in that the support surface of the support portion is formed in a convex curved surface.

このように、支持面が凸曲面状に形成されている熱処理用治具とすれば、例えば、シリコンウエーハを、常に面取り部と裏面との境界部分が凸曲面状の支持面と接するように支持することができ、裏面キズの発生を確実に防ぐことができる。   In this way, if a jig for heat treatment having a support surface formed into a convex curved surface is used, for example, a silicon wafer is supported so that the boundary portion between the chamfered portion and the back surface is always in contact with the support surface having a convex curved surface. It is possible to prevent the occurrence of scratches on the back surface.

この場合、支持面の凸曲面は、治具の内側に向けて下方に傾斜しているものとすることができる(請求項2)。
このように支持面の凸曲面が治具の内側に向けて下方に傾斜していれば、被処理体の面取り部と裏面との境界部分が支持面により接し易くなり、裏面キズの発生をより確実に防ぐことができる。
In this case, the convex curved surface of the support surface may be inclined downward toward the inside of the jig (claim 2).
In this way, if the convex curved surface of the support surface is inclined downward toward the inside of the jig, the boundary portion between the chamfered portion and the back surface of the workpiece becomes easier to contact the support surface, and the occurrence of scratches on the back surface is further increased. It can be surely prevented.

そして、支持面の凸曲面は、曲率半径が0.5〜500mmの範囲内で一定または変化しているものとすることが好ましい(請求項3)。
このような曲率半径の範囲内となる凸曲面であれば、応力集中によるスリップやキズがより発生し難く、また、キズの発生領域をより小さくすることができる。
And it is preferable that the convex curved surface of a support surface shall be constant or changed within the range whose curvature radius is 0.5-500 mm.
If it is a convex curved surface within such a radius of curvature, slips and scratches due to stress concentration are less likely to occur, and the scratch generation area can be further reduced.

前記熱処理用治具は、天板と、底板と、該天板と底板の間に固定された支柱とを有し、該支柱に前記支持部が設けられている熱処理用縦型ボート(請求項4)、あるいは、前記被処理体を裏面周縁部に沿って支持する支持部を有する円弧状または環状のサセプタとすることができる(請求項5)。
これらの形態の熱処理用治具は半導体ウエーハの熱処理に多く使用されており、支持面を本発明のような凸曲面とすれば、スリップに限らず、裏面キズや面取り部のキズの発生も効果的に抑制することができる。
The heat treatment jig includes a top plate, a bottom plate, and a support column fixed between the top plate and the bottom plate, and the support unit is provided on the support column. 4) Alternatively, an arcuate or annular susceptor having a support portion for supporting the object to be processed along the peripheral edge of the back surface can be provided.
These types of heat treatment jigs are often used for heat treatment of semiconductor wafers, and if the support surface is a convex curved surface as in the present invention, not only slip but also scratches on the back surface and chamfered portion are also effective. Can be suppressed.

また、本発明によれば、面取り加工されている半導体ウエーハを熱処理する方法において、前記熱処理用治具を用い、前記半導体ウエーハの面取り部と裏面との境界部分が前記凸曲面状に形成された支持面と接触するようにウエーハを支持して熱処理を行うことを特徴とする半導体ウエーハの熱処理方法が提供される(請求項6)。
本発明に係る熱処理用治具を用いて上記のようにしてウエーハの熱処理を行えば、ウエーハが変形したとしても、常に境界部分が支持面と接した状態で支持されるため、面取り部や裏面の内側深くにキズが発生することはなく、デバイス工程で問題となるような裏面キズや面取り部のキズの発生を防ぐことができる。
According to the present invention, in the method of heat treating a chamfered semiconductor wafer, the boundary portion between the chamfered portion and the back surface of the semiconductor wafer is formed in the convex curved surface using the heat treatment jig. A semiconductor wafer heat treatment method is provided, wherein the wafer is heat-treated while being in contact with the support surface.
If the wafer is heat-treated as described above using the heat treatment jig according to the present invention, even if the wafer is deformed, the boundary portion is always supported in a state in contact with the support surface. Scratches do not occur deep inside the surface, and it is possible to prevent the occurrence of scratches on the back surface and chamfered portions that cause problems in the device process.

この場合、前記熱処理する半導体ウエーハは、シリコンウエーハとすることができる(請求項7)。
半導体ウエーハとして特にシリコンウエーハは大直径化しており自重が大きくなっているので、スリップや裏面キズ等が発生し易く、問題となることが多い。そこで、本発明の熱処理用治具を用いてシリコンウエーハの熱処理を行えば、スリップだけでなく裏面キズや面取り部のキズの発生も確実に抑え、歩留りを向上させることができる。
In this case, the semiconductor wafer to be heat-treated can be a silicon wafer.
As a semiconductor wafer, especially a silicon wafer has a large diameter and its own weight is large. Therefore, slips, scratches on the back surface and the like are likely to occur, which often causes a problem. Therefore, if the silicon wafer is heat-treated using the jig for heat treatment of the present invention, not only slip but also scratches on the back surface and the chamfered portion can be surely suppressed, and the yield can be improved.

本発明に係る熱処理用治具は、凸曲面状の支持面により被処理体を支持するものであり、スリップだけでなく、裏面キズや面取り部のキズの発生を確実に防止することができる。従って、例えば、直径300mmの面取り加工されたシリコンウエーハを熱処理する場合に、本発明による支持面が凸曲面状に形成された環状のサセプタを用いてウエーハの裏面と面取り部との境界部分を支持することで、デバイス工程でデフォーカス等の原因となり得る裏面キズを発生させず、かつ割れの原因となる面取り部のキズの発生を抑制し、結果として歩留りを大きく向上させることができる。   The heat treatment jig according to the present invention supports the object to be processed by a convex curved support surface, and can reliably prevent not only slip but also back surface scratches and chamfered portion scratches. Therefore, for example, when a silicon wafer having a chamfered diameter of 300 mm is heat-treated, the boundary portion between the back surface and the chamfered portion of the wafer is supported using an annular susceptor in which the support surface according to the present invention is formed in a convex curved shape. By doing so, it is possible to suppress the occurrence of scratches on the chamfered portion that can cause defocusing and the like in the device process, and to suppress the occurrence of scratches on the chamfered portion that cause cracks, and as a result, the yield can be greatly improved.

以下、添付の図面に基づいて本発明についてより詳しく説明する。
本発明者は、本発明の完成に先立ち、支持面を傾斜させたボートやサセプタを用いてシリコンウエーハを熱処理した場合に、ウエーハの裏面や面取り部にキズが発生する原因を調査したところ、以下のようなことが判明した。
まず、熱処理中、ウエーハが弾性変形すると、図8(A)に示したように、ウエーハWの裏面8が、ボートの支持部先端あるいは環状サセプタ31aの内側の角部37との接触を繰り返して多数の裏面キズ9が生じることが分かった。
また、ウエーハWの裏面8は支持面36と広い面積で接しているため、図8(B)に示したようにサセプタ31bの支持面36のラフネスが大きい場合にも、熱処理中、支持面36の微小な凹凸によって裏面キズ9が発生し易いことが分かった。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
Prior to the completion of the present invention, the present inventor investigated the cause of scratches on the back surface and chamfered portion of the wafer when a silicon wafer was heat-treated using a boat or susceptor having an inclined support surface. It turns out that.
First, during the heat treatment, when the wafer is elastically deformed, as shown in FIG. 8A, the back surface 8 of the wafer W is repeatedly brought into contact with the tip of the boat support or the corner 37 inside the annular susceptor 31a. It was found that a large number of back surface scratches 9 were generated.
Further, since the back surface 8 of the wafer W is in contact with the support surface 36 over a wide area, even when the support surface 36 of the susceptor 31b has a large roughness as shown in FIG. It was found that the back surface scratch 9 is likely to occur due to the minute unevenness.

しかも、このような支持面36を傾斜させたボート等でウエーハWを支持した場合、熱処理中のウエーハの撓み方や傾斜勾配あるいは面取り形状等によりウエーハの裏面内側深くにキズが生じたり(図8(A))、外側に生じたり(図8(B))、さらには図8(c)に示したように、面取り部7がサセプタ31cにより支持されてキズ9cが生じている場合もあった。   In addition, when the wafer W is supported by a boat or the like having such a support surface 36 inclined, scratches may occur deep inside the back surface of the wafer due to the way the wafer is bent during heat treatment, the inclination gradient, or the chamfered shape (FIG. 8). (A)) may occur on the outside (FIG. 8B), and further, as shown in FIG. 8C, the chamfered portion 7 may be supported by the susceptor 31c to cause a scratch 9c. .

なお、ボートの支持部の先端あるいはサセプタの内側の角部37を大きく面取りして丸めたものとすれば角部37に起因する裏面キズ9の発生を抑えることはできるが、この場合でも、ウエーハの裏面周辺部は、数mm幅で支持面と接することになるため、支持面の面粗さに起因する裏面キズ9の発生を防ぐことができない。
また、支持面の傾斜角度を大きくし、ウエーハが撓んだ場合でも常に面取り部7のみを支持することも考えられるが、前述のように面取り部7にキズが入ると、ウエーハのワレやパーティクルの発生原因となるおそれがある。
It should be noted that if the tip 37 of the boat support or the corner 37 inside the susceptor is greatly chamfered and rounded, the occurrence of back surface scratches 9 due to the corner 37 can be suppressed. Since the back surface peripheral part of this contact | connects a support surface by several mm width, generation | occurrence | production of the back surface crack 9 resulting from the surface roughness of a support surface cannot be prevented.
In addition, it is conceivable to increase the inclination angle of the support surface and always support only the chamfered portion 7 even when the wafer bends. However, if the chamfered portion 7 is scratched as described above, the wafer cracks and particles May cause the occurrence of

そこで、本発明者は、ウエーハを支持する以上、支持部(支持面)との接点において多少のキズが発生する可能性があるのはやむを得ないが、たとえキズが発生したとしても最も問題とならない位置にキズが発生するようにすればよいと考え、調査、検討を行った。そして、ウエーハの面取り部と裏面との境界領域が常に接触するようにコントロールできれば、その後のデバイス工程でも歩留り低下等の悪影響を最小限に抑えることができることが分かった。   Therefore, the present inventor must inevitably cause some scratches at the point of contact with the support portion (support surface) as long as the wafer is supported. We thought that it should be possible to generate scratches at the location, and investigated and examined. It has been found that if the boundary region between the chamfered portion and the back surface of the wafer can be controlled so as to always contact, adverse effects such as a decrease in yield can be minimized even in subsequent device processes.

これらの知見に基づき、本発明者はさらに鋭意研究を重ねた結果、ウエーハを熱処理する際にウエーハを水平に支持する熱処理用治具において、支持部の支持面を、凸曲面状に形成させることで、ウエーハの面取り部と裏面との境界部分を確実に支持することができ、それによりたとえキズが生じても最も問題の少ない位置にキズが入るように制御することができることを見出し、本発明の完成に至った。   Based on these findings, the present inventor has made further studies and, as a result, in the heat treatment jig that horizontally supports the wafer when heat treating the wafer, the support surface of the support portion is formed in a convex curved surface shape. Thus, it has been found that the boundary portion between the chamfered portion and the back surface of the wafer can be reliably supported, so that even if a scratch occurs, it can be controlled so that the scratch is placed at the least problematic position. It was completed.

以下、好適な態様として、シリコンウエーハの熱処理の際に使用する本発明に係る熱処理用縦型ボート及び環状のサセプタについて添付の図面に基づいて具体的に説明する。
図1は、本発明に係る熱処理用縦型ボートの一例を示している。この熱処理用ボート1は、天板2と、底板3と、4本の支柱4とを有し、各支柱4は天板2と底板3の間に固定されている。各支柱4には所定の間隔で支持部5が設けられており、支持部5の支持面6は、ボート1の内側に向けて下方に傾斜しているとともに凸曲面状に形成されている。
Hereinafter, as a preferred embodiment, a vertical boat for heat treatment and an annular susceptor according to the present invention used for heat treatment of a silicon wafer will be specifically described with reference to the accompanying drawings.
FIG. 1 shows an example of a vertical boat for heat treatment according to the present invention. The heat treatment boat 1 includes a top plate 2, a bottom plate 3, and four support columns 4, and each support column 4 is fixed between the top plate 2 and the bottom plate 3. Each column 4 is provided with a support portion 5 at a predetermined interval, and a support surface 6 of the support portion 5 is inclined downward toward the inside of the boat 1 and is formed in a convex curved surface shape.

一方、図2は、本発明に係る環状のサセプタの一例を示しており、(A)は斜視図、(B)は断面図である。このサセプタ41は、上側が支持部となり、前記縦型ボート1と同様、支持面46が、サセプタ41の内側に向けて下方に傾斜しているとともに凸曲面状に形成されている。   On the other hand, FIG. 2 shows an example of an annular susceptor according to the present invention, where (A) is a perspective view and (B) is a cross-sectional view. The susceptor 41 has a support portion on the upper side, and, like the vertical boat 1, the support surface 46 is inclined downward toward the inside of the susceptor 41 and is formed in a convex curved shape.

このような縦型ボート1あるいは環状のサセプタ41では、支持面6,46を下方に傾斜する凸曲面状に形成したものとされているので、熱処理するウエーハWは、熱処理時に撓むなどして変形した場合でも、常に面取り部と裏面との境界部分が支持面6,46と接するように支持されることになる。   In such a vertical boat 1 or the annular susceptor 41, the support surfaces 6 and 46 are formed in a convex curved surface inclined downward, so that the wafer W to be heat-treated is bent during the heat treatment. Even in the case of deformation, the boundary portion between the chamfered portion and the back surface is always supported so as to be in contact with the support surfaces 6 and 46.

例えば環状のサセプタ41を用いる場合、図3に示されるように、ウエーハWの面取り部7と裏面8との境界部分47が凸曲面状に形成された支持面46と接触した状態で支持されることになる。このように面取り部7と裏面8との境界部分47を支持するようにすれば、熱処理中、ウエーハWが弾性変形しても、図8に示したような角部37が無いため、角部37との接触を防ぐことができる。また、支持面46のラフネスが多少粗くても、ウエーハWの面取り部7や裏面8は支持面46と接触することは無い。すなわち、ウエーハは常に面取り部7と裏面8との境界部分47で支持面46と接触することになる。従って、ウエーハWの面取り部7や裏面8にキズが発生するのを確実に防ぐことができる。   For example, when the annular susceptor 41 is used, as shown in FIG. 3, the boundary portion 47 between the chamfered portion 7 and the back surface 8 of the wafer W is supported in a state of being in contact with the support surface 46 formed in a convex curved surface shape. It will be. If the boundary portion 47 between the chamfered portion 7 and the back surface 8 is supported in this way, even if the wafer W is elastically deformed during the heat treatment, there is no corner portion 37 as shown in FIG. Contact with 37 can be prevented. Even if the roughness of the support surface 46 is somewhat rough, the chamfered portion 7 and the back surface 8 of the wafer W do not come into contact with the support surface 46. That is, the wafer always comes into contact with the support surface 46 at the boundary portion 47 between the chamfered portion 7 and the back surface 8. Accordingly, it is possible to reliably prevent the chamfered portion 7 and the back surface 8 of the wafer W from being scratched.

一方、ウエーハWの面取り部7と裏面8との境界部分47、すなわち支持面46との接点には多少のキズが発生することがあるが、キズの発生箇所が狭く、境界部分47にある程度のキズが入っても、その後のデバイス工程でほとんど問題となることはない。なお、場合によっては、境界部分47から1mm以内範囲で多少のキズが入ることも考えられるが、この範囲内であれば問題は少なく、影響を最小限に抑えることができる。   On the other hand, some scratches may occur at the boundary portion 47 between the chamfered portion 7 and the back surface 8 of the wafer W, that is, the contact point with the support surface 46. However, the scratched portion is narrow and the boundary portion 47 has a certain amount of scratches. Even if scratches occur, there is almost no problem in the subsequent device process. In some cases, some scratches may occur within the range of 1 mm from the boundary portion 47. However, within this range, there are few problems and the influence can be minimized.

支持面の凸曲面は、熱処理するウエーハの大きさ(直径)、面取り部の形状等に応じて適宜設定すれば良い。
例えば、シリコンウエーハであれば、ウエーハの面取り部の幅は、面取り形状、仕様等により多少異なるが、ウエーハの直径に係わらず一般的に外周端部から0.3〜0.4mm程度の範囲である。このような面取り部の幅や形状を考慮し、熱処理するウエーハの面取り部と裏面との境界部分を支持するように支持面の凸曲面を形成すれば良い。ただし、凸曲面の曲率半径が0.5mm未満であると、接触面積が小さすぎて応力集中が起き、深いキズやスリップの発生原因となるおそがあるので、0.5mm以上、特に5mm以上とすることが好ましい。
The convex curved surface of the support surface may be appropriately set according to the size (diameter) of the wafer to be heat-treated, the shape of the chamfered portion, and the like.
For example, in the case of silicon wafers, the width of the chamfered portion of the wafer varies somewhat depending on the chamfered shape, specifications, etc., but generally in the range of about 0.3 to 0.4 mm from the outer peripheral end regardless of the diameter of the wafer. is there. In consideration of the width and shape of the chamfered portion, the convex curved surface of the support surface may be formed so as to support the boundary portion between the chamfered portion and the back surface of the wafer to be heat-treated. However, if the radius of curvature of the convex curved surface is less than 0.5 mm, the contact area is too small and stress concentration occurs, which may cause deep scratches and slips, so 0.5 mm or more, especially 5 mm or more. It is preferable to do.

一方、凸曲面の曲率半径が500mmを超えると、比較的なだらかな面となるため応力集中はより緩和されるが、接触面積が大きくなるため、キズの発生領域が大きくなるおそれがある。従って、支持面の曲面形状を規定する曲率半径を0.5〜500mmの間で設定すれば、キズの発生をより効果的に抑制することができると同時にキズの発生領域もより小さくすることができる。
なお、凸曲面の曲率半径は一定のものに限定されず、0.5〜500mmの範囲内で変化しているものとしても良く、例えば、凸曲面の曲率半径がボートの内側に近くなるほど連続的に小さくなるような支持面としても良い。
On the other hand, when the radius of curvature of the convex curved surface exceeds 500 mm, the surface becomes comparatively gentle and the stress concentration is further relaxed. However, the contact area increases, so there is a possibility that the area where scratches are generated becomes large. Therefore, if the curvature radius that defines the curved surface shape of the support surface is set between 0.5 and 500 mm, the generation of scratches can be more effectively suppressed, and at the same time the scratch generation area can be made smaller. it can.
In addition, the curvature radius of a convex curve is not limited to a fixed thing, It is good also as what is changing within the range of 0.5-500 mm, for example, it is so continuous that the curvature radius of a convex curve is near the inner side of a boat. It is good also as a support surface which becomes small.

また、支持面の表面粗さはできるだけ小さくすることが好ましい。支持面の表面粗さが大きいと、ウエーハと支持面との間に点接触が生じ、応力が集中して比較的深いキズを引き起こすおそれがある。本発明の熱処理用治具では、ウエーハの面取り部と裏面との境界部分を支持することができるため、たとえこの境界部分に多少のキズが入ってもあまり問題とはならないが、深いキズの発生はできるだけ避けた方が良い。従って、エッチング、鏡面研磨等により支持面の面粗さを十分小さくすることで、キズの発生をより効果的に防ぐことが好ましい。   Further, it is preferable to make the surface roughness of the support surface as small as possible. If the surface roughness of the support surface is large, point contact may occur between the wafer and the support surface, and stress may concentrate and cause a relatively deep scratch. In the jig for heat treatment of the present invention, since the boundary portion between the chamfered portion and the back surface of the wafer can be supported, even if some scratches enter the boundary portion, it does not matter so much, but deep scratches are generated. Should be avoided as much as possible. Accordingly, it is preferable to prevent the generation of scratches more effectively by sufficiently reducing the surface roughness of the support surface by etching, mirror polishing or the like.

本発明に係る熱処理用治具の材質については、被処理体の材質や熱処理条件等に応じて適宜決めれば良く、シリコンウエーハの熱処理に使用する場合には、表面の材質をSiO、SiCまたはSiとすれば、熱処理中の汚染を効果的に防ぐことができる。例えば、金属不純物をほとんど含有していない硬質の高純度炭化珪素からなる熱処理用ボートとすれば、シリコンウエーハの汚染を防ぎ、1000℃以上、特に1200℃以上の高温で熱処理を行う際にもほとんど変形せず、また、長期間使用できるという利点もある。特に、CVD−SiCコートしたものであれば熱処理中に発生する金属汚染をより低減させることができ、好ましい。 The material of the jig for heat treatment according to the present invention may be appropriately determined according to the material of the object to be processed, the heat treatment conditions, and the like. When used for heat treatment of a silicon wafer, the surface material is SiO 2 , SiC or If Si is used, contamination during heat treatment can be effectively prevented. For example, if a boat for heat treatment made of hard high-purity silicon carbide containing almost no metal impurities is used, contamination of the silicon wafer is prevented, and even when heat treatment is performed at a high temperature of 1000 ° C. or higher, particularly 1200 ° C. or higher. There is also an advantage that it can be used for a long time without being deformed. Particularly, CVD-SiC coating is preferable because it can further reduce metal contamination generated during the heat treatment.

なお、本発明に係る熱処理用治具の支持面の形状は凸曲面状に形成されていれば、必ずしも治具の内側に向けて下方に傾斜している必要はない。例えば、図9(A)に示したように断面がかまぼこ形のサセプタ51や、図9(B)に示したように支持面の凸曲面が全体にわたって大きな曲率半径を有するサセプタ61としても良い。これらのサセプタ51,61はいずれも支持面56,66が凸曲面状に形成されており、ウエーハWの面取り部と裏面との境界部分が支持面56,66と接した状態で支持することができる。   In addition, if the shape of the support surface of the jig for heat treatment according to the present invention is formed in a convex curved surface shape, it does not necessarily have to be inclined downward toward the inside of the jig. For example, a susceptor 51 having a semi-cylindrical cross section as shown in FIG. 9A, or a susceptor 61 having a large curvature radius on the entire support curved surface as shown in FIG. 9B may be used. Both of these susceptors 51 and 61 have support surfaces 56 and 66 formed in a convex curved shape, and can be supported in a state where a boundary portion between the chamfered portion and the back surface of the wafer W is in contact with the support surfaces 56 and 66. it can.

また、支持面以外の形状については特に限定されるものではなく、サセプタであれば、環状のもののほか、ウエーハWをサセプタ上に移載する時に移載機を通過させることができるように開口部(切り欠き部)が形成された円弧状のサセプタとしても良い。
一方、熱処理用ボートであれば、支柱の数は4本に限らず、増減が可能であり、すなわち3本以下、あるいは5本以上としても良い。また、支持部の形状については、支柱に、図2に示したサセプタと同様の環状あるいは円弧状の支持部を形成したものとすることもできる。
Further, the shape other than the support surface is not particularly limited, and if it is a susceptor, in addition to an annular one, an opening is provided so that the transfer machine can pass through when transferring the wafer W onto the susceptor. An arc-shaped susceptor having a (notch) may be used.
On the other hand, in the case of a boat for heat treatment, the number of struts is not limited to four, and can be increased or decreased, that is, three or less, or five or more. As for the shape of the support portion, it is also possible to form an annular or arc-shaped support portion similar to the susceptor shown in FIG.

以下、本発明の実施例及び比較例について説明する。
(実施例1)
図2に示したような支持面が内側に向けて下方に傾斜しているとともに凸曲面状に形成されている環状のサセプタを用意した。このサセプタは、SiC製のものであり、外径305mm、内径290mmであり、支持面の凸曲面は、曲率半径が約150〜10mmの範囲内で内側に向けて曲率半径を小さくしたものとした。
このような環状のサセプタを、ショートフィンガータイプの熱処理用ボートにセットした。そして、面取り加工した直径300mmのシリコンウエーハを、その面取り部と裏面との境界部分がサセプタの支持面と接触するように載置した。
Examples of the present invention and comparative examples will be described below.
Example 1
An annular susceptor having a support surface as shown in FIG. 2 inclined inward and formed in a convex curved surface was prepared. This susceptor is made of SiC and has an outer diameter of 305 mm and an inner diameter of 290 mm, and the convex curved surface of the support surface has a radius of curvature in the range of about 150 to 10 mm and has a smaller radius of curvature toward the inside. .
Such an annular susceptor was set in a short finger type heat treatment boat. Then, the chamfered silicon wafer having a diameter of 300 mm was placed so that the boundary portion between the chamfered portion and the back surface was in contact with the support surface of the susceptor.

このように熱処理用ボートに、凸曲面状の支持面を有する環状サセプタを介してシリコンウエーハを30枚支持し、図4に示すような熱処理炉内に搬入した。そして、炉内で、アルゴン雰囲気中、1200℃、1時間の熱処理を行った。
熱処理後、熱処理炉からボートを搬出し、熱処理後のウエーハの裏面を目視にて検査したところ、いずれのウエーハにもスリップの発生は確認されず、また、裏面キズは多少発生していたが、面取り部と裏面との境界領域内であり、その後のデバイス工程でも問題とならないものであった。
In this way, 30 silicon wafers were supported on the heat treatment boat via the annular susceptor having the convex curved support surface, and carried into a heat treatment furnace as shown in FIG. Then, heat treatment was performed in an oven at 1200 ° C. for 1 hour in an argon atmosphere.
After the heat treatment, the boat was taken out from the heat treatment furnace, and when the back surface of the wafer after the heat treatment was visually inspected, no occurrence of slip was confirmed in any wafer, and there were some scratches on the back surface, It was within the boundary region between the chamfered portion and the back surface, and it was not a problem in the subsequent device process.

(比較例)
図8に示したような支持面が平坦面で傾斜した環状のサセプタを用いて、実施例1と同様の熱処理条件でシリコンウエーハの熱処理を行った。なお、使用したサセプタは、外径310mm、内径260mm、支持面の傾斜角度は2°とした。
熱処理後のウエーハを同様に検査したところ、全てのウエーハで、外周端部から20mmの範囲内で微小な裏面キズが多数発生しており、しかも発生位置がウエーハによってばらついていることが確認された。
(Comparative example)
A silicon wafer was heat-treated under the same heat treatment conditions as in Example 1 using an annular susceptor having a flat support surface as shown in FIG. The susceptor used had an outer diameter of 310 mm, an inner diameter of 260 mm, and a support surface tilt angle of 2 °.
When the wafers after the heat treatment were inspected in the same manner, it was confirmed that all of the wafers had a large number of minute back scratches within a range of 20 mm from the outer peripheral edge, and the occurrence positions varied depending on the wafers. .

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
例えば、本発明に係る熱処理用治具を用いて熱処理する被処理体は、シリコンウエーハに限らず、他の半導体ウエーハ等を熱処理する場合にも適用することができる。
The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
For example, an object to be heat-treated using the heat-treating jig according to the present invention is not limited to a silicon wafer, and can be applied to heat-treating other semiconductor wafers.

本発明に係る熱処理用縦型ボートの一例を示す概略正面図である。It is a schematic front view which shows an example of the vertical boat for heat processing which concerns on this invention. 本発明に係る環状のサセプタの一例を示す概略図である。 (A)斜視図 (B)断面図It is the schematic which shows an example of the cyclic | annular susceptor which concerns on this invention. (A) Perspective view (B) Cross section 支持部を拡大した概略図である。It is the schematic which expanded the support part. 縦型熱処理炉の一例を示す概略図である。It is the schematic which shows an example of a vertical heat processing furnace. 従来の熱処理用縦型ボートの一例を示す概略図である。 (A)正面図 (B)横方向断面図(ウエーハを支持した状態)It is the schematic which shows an example of the conventional vertical boat for heat processing. (A) Front view (B) Transverse cross-sectional view (with wafer supported) 従来の熱処理用ボートにおけるウエーハ支持部を示す概略斜視図である。 (A)半円形の支持部 (B)長方形の支持部It is a schematic perspective view which shows the wafer support part in the conventional boat for heat processing. (A) Semicircular support (B) Rectangular support 開口部を有する従来のサセプタの一例を示す概略図である。 (A)平面図 (B)断面図(ウエーハを支持した状態)It is the schematic which shows an example of the conventional susceptor which has an opening part. (A) Plan view (B) Sectional view (with wafer supported) 支持面を傾斜させたサセプタの支持部を拡大した概略図である。It is the schematic which expanded the support part of the susceptor which inclined the support surface. 本発明に係る環状のサセプタの他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the cyclic | annular susceptor which concerns on this invention.

符号の説明Explanation of symbols

1…熱処理用縦型ボート、 2…天板、 3…底板、 4…支柱、 5…支持部、
6…支持面、 7…面取り部、 8…裏面、 9…裏面キズ、 10…熱処理用ボート、
11…スリット(溝)、 12,13…支持部、 14,15…支柱、
20…熱処理炉、 31…サセプタ、 36,46,56,66…支持面、
37…角部、 41,51,61…環状サセプタ、 47…境界部分(接点)、
W…ウエーハ。
DESCRIPTION OF SYMBOLS 1 ... Vertical boat for heat processing, 2 ... Top plate, 3 ... Bottom plate, 4 ... Support | pillar, 5 ... Support part,
6 ... Support surface, 7 ... Chamfered portion, 8 ... Back surface, 9 ... Back surface scratch, 10 ... Heat treatment boat,
11 ... slit (groove), 12, 13 ... support part, 14, 15 ... strut,
20 ... Heat treatment furnace, 31 ... Susceptor, 36, 46, 56, 66 ... Support surface,
37 ... Corner, 41, 51, 61 ... Annular susceptor, 47 ... Boundary part (contact point),
W ... wah.

Claims (7)

ウエーハ状の被処理体を水平に支持して熱処理する際に使用する熱処理用治具であって、前記被処理体の裏面側を支持する支持部を有し、該支持部の支持面が、凸曲面状に形成されていることを特徴とする熱処理用治具。   A jig for heat treatment that is used when a wafer-like object to be processed is horizontally supported and heat-treated, and has a support part that supports the back side of the object to be processed, and the support surface of the support part is A jig for heat treatment, which is formed in a convex curved surface. 前記支持面の凸曲面は、治具の内側に向けて下方に傾斜しているものであることを特徴とする請求項1に記載の熱処理用治具。   The heat treatment jig according to claim 1, wherein the convex curved surface of the support surface is inclined downward toward the inside of the jig. 前記支持面の凸曲面は、曲率半径が0.5〜500mmの範囲内で一定または変化しているものであることを特徴とする請求項1又は請求項2に記載の熱処理用治具。   The heat treatment jig according to claim 1 or 2, wherein the convex curved surface of the support surface has a curvature radius that is constant or changed within a range of 0.5 to 500 mm. 前記熱処理用治具が、天板と、底板と、該天板と底板の間に固定された支柱とを有し、該支柱に前記支持部が設けられている熱処理用縦型ボートであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の熱処理用治具。   The heat treatment jig is a vertical boat for heat treatment having a top plate, a bottom plate, and a support fixed between the top and the bottom plate, and the support is provided on the support. The jig for heat treatment according to any one of claims 1 to 3, wherein: 前記熱処理用治具が、前記被処理体を裏面周縁部に沿って支持する支持部を有する円弧状または環状のサセプタであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の熱処理用治具。   4. The heat treatment jig according to claim 1, wherein the heat treatment jig is an arc-shaped or annular susceptor having a support portion that supports the object to be processed along a peripheral edge of the back surface. The jig for heat treatment as described. 面取り加工されている半導体ウエーハを熱処理する方法において、前記請求項1ないし請求項5のいずれか1項に記載の熱処理用治具を用い、前記半導体ウエーハの面取り部と裏面との境界部分が前記凸曲面状に形成された支持面と接触するようにウエーハを支持して熱処理を行うことを特徴とする半導体ウエーハの熱処理方法。   In the method of heat-treating a chamfered semiconductor wafer, the boundary portion between the chamfered portion and the back surface of the semiconductor wafer is formed by using the heat treatment jig according to any one of claims 1 to 5. A heat treatment method for a semiconductor wafer, wherein the heat treatment is performed while supporting the wafer so as to be in contact with a support surface formed in a convex curved surface. 前記熱処理する半導体ウエーハが、シリコンウエーハであることを特徴とする請求項6に記載の半導体ウエーハの熱処理方法。   7. The semiconductor wafer heat treatment method according to claim 6, wherein the semiconductor wafer to be heat-treated is a silicon wafer.
JP2004182135A 2004-06-21 2004-06-21 Method for heat treatment of semiconductor wafer Active JP4826070B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004182135A JP4826070B2 (en) 2004-06-21 2004-06-21 Method for heat treatment of semiconductor wafer
PCT/JP2005/010486 WO2005124848A1 (en) 2004-06-21 2005-06-08 Heat treatment jig and semiconductor wafer heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182135A JP4826070B2 (en) 2004-06-21 2004-06-21 Method for heat treatment of semiconductor wafer

Publications (2)

Publication Number Publication Date
JP2006005271A true JP2006005271A (en) 2006-01-05
JP4826070B2 JP4826070B2 (en) 2011-11-30

Family

ID=35510001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182135A Active JP4826070B2 (en) 2004-06-21 2004-06-21 Method for heat treatment of semiconductor wafer

Country Status (2)

Country Link
JP (1) JP4826070B2 (en)
WO (1) WO2005124848A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267113A (en) * 2008-04-25 2009-11-12 Shin Etsu Chem Co Ltd Substrate supporting apparatus and flash irradiating system including the same
JP2009543352A (en) * 2006-06-30 2009-12-03 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Wafer platform
US8042697B2 (en) 2008-06-30 2011-10-25 Memc Electronic Materials, Inc. Low thermal mass semiconductor wafer support
JP2012251214A (en) * 2011-06-03 2012-12-20 Renesas Electronics Corp Method for manufacturing semiconductor device
US8460465B2 (en) 2010-10-20 2013-06-11 Siltronic Ag Support ring for supporting a semiconductor wafer composed of monocrystalline silicon during a thermal treatment, method for the thermal treatment of such a semiconductor wafer, and thermally treated semiconductor wafer composed of monocrystalline silicon
WO2023119877A1 (en) * 2021-12-24 2023-06-29 株式会社ニコン Substrate holder, substrate-housing case, substrate-holding method, and substrate-housing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251961A (en) * 1996-03-15 1997-09-22 Toshiba Corp Heat-treating boat
JPH09260296A (en) * 1996-03-21 1997-10-03 Sumitomo Sitix Corp Wafer retainer
JP2001176811A (en) * 1999-12-16 2001-06-29 Tecnisco Ltd Wafer support device
JP2003059851A (en) * 2001-08-17 2003-02-28 Asahi Glass Co Ltd Wafer support body and boat for heat treatment using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251961A (en) * 1996-03-15 1997-09-22 Toshiba Corp Heat-treating boat
JPH09260296A (en) * 1996-03-21 1997-10-03 Sumitomo Sitix Corp Wafer retainer
JP2001176811A (en) * 1999-12-16 2001-06-29 Tecnisco Ltd Wafer support device
JP2003059851A (en) * 2001-08-17 2003-02-28 Asahi Glass Co Ltd Wafer support body and boat for heat treatment using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543352A (en) * 2006-06-30 2009-12-03 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Wafer platform
JP2009267113A (en) * 2008-04-25 2009-11-12 Shin Etsu Chem Co Ltd Substrate supporting apparatus and flash irradiating system including the same
US8042697B2 (en) 2008-06-30 2011-10-25 Memc Electronic Materials, Inc. Low thermal mass semiconductor wafer support
US8220646B2 (en) 2008-06-30 2012-07-17 Memc Electronic Materials, Inc. Low thermal mass semiconductor wafer plate
US8220647B2 (en) 2008-06-30 2012-07-17 Memc Electronic Materials, Inc. Low thermal mass semiconductor wafer boat
US8460465B2 (en) 2010-10-20 2013-06-11 Siltronic Ag Support ring for supporting a semiconductor wafer composed of monocrystalline silicon during a thermal treatment, method for the thermal treatment of such a semiconductor wafer, and thermally treated semiconductor wafer composed of monocrystalline silicon
KR101312836B1 (en) 2010-10-20 2013-09-27 실트로닉 아게 Support ring for supporting a semiconductor wafer composed of monocrystalline silicon during a thermal treatment, method for the thermal treatment of such a semiconductor wafer, and thermally treated semiconductor wafer composed of monocrystalline silicon
JP2012251214A (en) * 2011-06-03 2012-12-20 Renesas Electronics Corp Method for manufacturing semiconductor device
US8513094B2 (en) 2011-06-03 2013-08-20 Renesas Electronics Corporation Method of manufacturing semiconductor device
WO2023119877A1 (en) * 2021-12-24 2023-06-29 株式会社ニコン Substrate holder, substrate-housing case, substrate-holding method, and substrate-housing method

Also Published As

Publication number Publication date
JP4826070B2 (en) 2011-11-30
WO2005124848A1 (en) 2005-12-29

Similar Documents

Publication Publication Date Title
JP4506125B2 (en) Vertical boat for heat treatment and manufacturing method thereof
US8287649B2 (en) Vertical boat for heat treatment and method for heat treatment of silicon wafer using the same
US20080041798A1 (en) Wafer Platform
JP2003506864A (en) Improved rudder boat supporting wafers
JP2008098589A (en) Method of supporting silicon wafer, jig for heat-treatment and heat-treated wafer
JP4380689B2 (en) Vertical heat treatment boat and semiconductor wafer heat treatment method using the same
WO2005124848A1 (en) Heat treatment jig and semiconductor wafer heat treatment method
JP2008277619A (en) Wafer supporting jig, longitudinal-type heat treatment boat having wafer supporting jig, and method of manufacturing wafer supporting jig
JP2005005379A (en) Method and vertical boat for heat-treating semiconductor wafer
JP2009152283A (en) Support tool for semiconductor substrate and method of manufacturing the same
JP2008021686A (en) Substrate holding tray
JP2001168175A (en) Substrate holding fitting for heat treatment, substrate heat treatment apparatus, and method for thermally treating substrate
JP2005203648A (en) Vertical type boat for heat treating silicon wafer and heat treating method
JP2006128316A (en) Vertical boat for heat treatment and heat treating method
JP4396105B2 (en) Vertical heat treatment boat and semiconductor wafer heat treatment method
JP5010797B2 (en) Vertical boat for heat treatment and manufacturing method thereof
JP2005019748A (en) Thermal treatment jig and thermal treatment method for wafer
JP2005328008A (en) Vertical boat for heat-treating semiconductor wafer, and heat treatment method
JP2007036105A (en) Susceptor for silicon wafer
JP2003257881A (en) Boat for heat treatment and method for heat treating wafer
JP2009076621A (en) Vertical boat for heat treatment
JP4228347B2 (en) Wafer support
JP2007273673A (en) Longitudinal wafer boat
JP2005012058A (en) Heat treatment boat for semiconductor substrate and heat treatment method
JP2002158182A (en) Core tube and apparatus for manufacturing semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4826070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250