JP2005528801A - 不揮発性半導体メモリの密集アレイ構造 - Google Patents

不揮発性半導体メモリの密集アレイ構造 Download PDF

Info

Publication number
JP2005528801A
JP2005528801A JP2004510033A JP2004510033A JP2005528801A JP 2005528801 A JP2005528801 A JP 2005528801A JP 2004510033 A JP2004510033 A JP 2004510033A JP 2004510033 A JP2004510033 A JP 2004510033A JP 2005528801 A JP2005528801 A JP 2005528801A
Authority
JP
Japan
Prior art keywords
semiconductor memory
array
word line
memory devices
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004510033A
Other languages
English (en)
Inventor
ミハエル、イェー.ファン、ドーレン
ロベルトゥス、テー.エフ.ファン、シャイク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2005528801A publication Critical patent/JP2005528801A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0416Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and no select transistor, e.g. UV EPROM

Abstract

この発明は高い面積密度を有する不揮発性半導体メモリ素子(14,16)について記載する。この高密度は一般に用いられるバーチャルグランドスキームとメモリ素子(14,16)の2次元アレイとの組み合わせにより得られる。絶縁された交点(22)において、行と列に論理的にメモリ素子(14,16)を接続するワード線(18,20)が互いに交差する。さらに、この発明はそのようなメモリアレイを製造することができるプロセスについて記載する。

Description

この発明は、例えば、フローティングゲート・メモリ等の不揮発性半導体メモリとこれの動作方法の分野に関する。さらに、特に、この発明は、そのようなメモリ素子の密集アレイ構造、そのような密集アレイ構造を備えた不揮発性半導体メモリ、そして、そのような密集アレイ構造の製造方法に関する。
不揮発性半導体メモリ(NVM)は、例えば、携帯電話、受信機そしてデジタルカメラ等の民生用並びに軍需用電子機器に幅広く用いられている。これら電子機器市場ではより低電圧、より低電力消費、そして、より小チップサイズの機器を求め続けている。
フラッシュメモリは列と行の格子を有し、この各交点に一つのMOSFETを有し、制御ゲート(CG)とチャネル領域との間に一つ(又は複数の)フローティングゲート(FG)を有した一つのMOSFETを格子の各交点に備え、FGとCGとにポリシリコンが用いられた場合は、通常、“インターポリ誘電体(IPD)”と呼ばれる薄い誘電体層により(各)フローティングゲートと制御ゲートとが分離される。加工技術の改良によりフローティングゲートの大きさがサブミクロンのスケールまで小さくなってきている。これらの素子は基本的にはフローティングゲート・トランジスタの特殊なタイプであり、フローティングゲートにエレクトロン(又はホール)が注入され、酸化物バリアを通過する。フローティングゲートに蓄積された電荷が素子閾値電圧を変える。このようにしてデータが記憶される。CGがFGを制御する。フラッシュメモリのセルは一度に1バイトではなくブロックで消去できる。
シリコン基板上に形成されたEEPROMセルとその構造はUS−4763299により知られている。ここに記載された構造は他の従来の構造より高密度のEEPROMアレイを提供する。縦ビット線軸に平行に一セットのビット線が配されている。ビット線軸から45度の方向のあるチャネル軸に沿ってEEPROMセルのチャネルが配されている。アレイのワード線がジグザクパターンを形成し、ワード線は水平セグメントとチャネル軸に沿って配されるセグメントとを有している。
US−5787035とUS−5982671とは四つのメモリセルが一つのドレイン領域と一つのソース領域とを共有しているメモリセルアレイに関する。これらメモリセルはフローティングゲート(FG)/制御ゲート(CG)スタックを有している。CG行の制御ゲートが電気的に相互接続され、これら相互接続がワード線を形成している。ワード線が物理的にジグザクパターンを形成している。四つのメモリセルが一つのドレイン領域又は一つのソース領域を共有しているので、コンタクトホールにより占められる領域を低減することによりアレイのサイズが小さくなる。
上述の従来のセル構造はジグザクパターンのワード線を用い、そのためセルが大きくなるという欠点がある。これはそのような素子の製造において用いられるリソグラフィ処理によるもので、ジグザクパターンを描くより直線を描くほうが簡単である。さらには大きなアレイではジグザクパターンが生産上の損失を生むこともあり、これは短絡や断線の危険があるからである。最後に、ポリシリコンゲートがトランジスタ端部近くに折れ曲がった場合、特に、活性チャネル領域とゲートマスクとが配置ミスとなった場合には、トランジスタのマッチングが最適状態には及ばないものとなってしまう。
この発明の目的は、従来のメモリセルより面積密度が高いメモリセルとこれに関わるアレイ構造と、そのようなメモリセルを製造する方法を提供することである。
上記の目的は、この発明による装置と方法により達成される。
この発明は複数の行と複数の列に論理的に編成された複数の半導体メモリ装置のアレイを提供する。この発明によれば、一つの行上の複数の半導体メモリ装置が第一のワード線により接続され、そして、一つの列上の複数の半導体メモリ装置が第二のワード線により接続され、前記第一及び第二のワード線が互いに交差している。前記第一及び第二のワード線は絶縁されて交差している。ワード線が交差しているので、従来のメモリセルより知られる面積密度よりメモリセルの面積密度が高くなる。もし同じデザインルールが用いられると従来のメモリセルよりセルサイズが小さくなる。
前記複数の半導体メモリ装置はバーチャルグランドスキームにより接続されてもよく、これによりセルサイズが非常に小さくなる。
前記複数の半導体メモリ装置はトランジスタ長が同じか又は異なる複数のトランジスタでもよい。
前記アレイ中の前記複数の半導体メモリ装置は複数のスタック・フローティングゲート・メモリでもよく、電荷がフローティングゲート又は電荷捕捉装置に蓄積され、電荷は電荷捕捉媒体又は層に蓄積される。電荷捕捉装置は1ビットを記憶するタイプ又は2ビットを記憶するタイプでもよい。
この発明は、さらに、上述の複数の半導体メモリ装置のアレイを含む不揮発性メモリを提供する。
この発明は、さらに、表面を有する半導体基板内又は上に複数の行と複数の列に論理的に編成された複数の半導体メモリ装置のアレイを形成する方法を提供する。この方法は第一のワード線を設け、そして、第二のワード線を設ける工程を備え、前記第一及び第二のワード線が互いに交差する。前記第一のワード線を設ける工程と前記第二のワード線を設ける工程では導線層を堆積してもよい。
この方法は、さらに、前記第一のワード線及び前記第二のワード線間に絶縁を施す工程を備えてもよい。この工程では前記基板表面から離れた方向に絶縁体を設けてもよい。それは、さらに、側方絶縁体を設けてもよい。
この方法は、さらに、前記複数の半導体メモリ装置を製造する工程を備えてもよい。前記複数の半導体メモリ装置を製造する工程ではトランジスタ長が同じか又は異なる複数のトランジスタを設けてもよい。
前記複数の半導体メモリ装置を製造する工程は複数のスタック・フローティングゲート・
トランジスタを製造する複数の工程を備えてもよい。それは、代わりに、複数の電荷捕捉装置を製造する複数の工程を備えてもよい。
この発明のこれら並びに他の特徴は、例を挙げてこの発明の原理を示した添付図面を参照して以下の詳細な説明により明らかとなる。この記載は例を挙げたに過ぎず、この発明の範囲を限定するものではない。以下に引用される参照図面は添付図面を示す。
この発明が特定の実施形態に関し図面を参照して説明されるが、この発明はそれら実施形態に限定されるものではなく特許請求の範囲のみに限定される。記載された図面は概略的であり限定的なものではない。以下においては、一般に用いられるシリコン半導体の処理が引用されるが、この発明はこれに限定されるものではなく、その範囲内において、他の半導体系、例えば、ゲルマニウム、シリコン/ゲルマニウム、ガリウム砒素などを基にしたものも含む。シリコン処理に従来用いられる材料が引用されるが、他の半導体系において等価の材料が当業者に知られていることは当業者なら分かることである。
この記載において、文言「水平」、「垂直」、「斜め」は座標系を示し、説明を簡単にするためだけのものである。その必要はないが、装置の実際の物理的方向を示してもよい。さらに、文言「列」、「行」は互いにリンクする複数組のアレイ要素を示す。このリンクはデカルトアレイの行と列の形態を取ることができるが、この発明はこれに限定されるものではない。この分野の同業者であれば理解できるところであるが、列と行は簡単に置き換えることができ、この開示においてはこれらの文言は置き換え可能であることが示唆されている。デカルトではないアレイもまた構成でき、これもこの発明の範囲に含まれる。従って、文言「行」、「列」は広く解釈されなければならない。これを広く解釈するために、特許請求の範囲は論理的に編成された行と列に言及している。これにより、複数組のメモリ素子が位相幾何学的に直線上に直交するように互いにリンクすることを意味するが、物理的又は位相幾何学的配置がそのようになる必要はない。例えば、行は円で列はこれら円の半径でもでもよく、円と半径はこの発明においては「論理的に編成された」行と列である。さらに、様々な線、例えば、ビット線又はワード線という特定の名称は説明を容易にするため用いられる総称的な名称で、特定の機能を意味し、特にこの用語を選択したことが如何なる態様においてもこの発明を限定するものではない。これらの文言はすべて開示された特定の構造をより良く理解しやすくすることのみに用いられ、決してこの発明を限定するものではない。
この発明の半導体メモリ装置のアレイ10の第一の実施形態の概略構造が図1に示されている。これは、アレイ10の行と列とに編成された活性領域12とトランジスタ14,16とを有する基板を備える。行方向トランジスタ14と列方向トランジスタ16とが活性領域12内に設けられている。「行方向トランジスタ」14はソースからドレインへの方向がアレイの行方向にあるトランジスタを意味する。「列方向トランジスタ」はソースからドレインへの方向がアレイの列方向にあるトランジスタを意味する。図1の例では、行方向、列方向トランジスタ14、16は、例えば、スタックゲート・フローティングゲート・トランジスタである。列方向トランジスタ16の各行のいくつかそして好ましくはすべてのトランジスタ16のゲートは第一のワード線18で接続され、行方向トランジスタ14の各列のいくつかそして好ましくはすべてのトランジスタ14のゲートは第二のワード線20で接続されている。第一、第二のワード線18,20は交点22で互いに交差している。これらは互いに独立そして絶縁されている。明瞭にするために、ワード線18,20下部のフローティングゲートが図1では示されていない。
アレイ10(FGを含む)の単位セル24が概略的に図2に示されている。明瞭にするために、(斜めの)ビット線23が図2では示されていない。図2において点線で示された部分の断面図が図3に概略的に描かれている。
AA‘断面図は第一のワード線18に沿った二つの列方向トランジスタ16の垂直断面を示し、各列方向トランジスタ16は、通常、インターゲート誘電体又はインターポリ誘電体(IPD)と呼ばれる誘電体30より互いに絶縁されているフローティングゲート26と制御ゲート28とを備える。フローティングゲート26と制御ゲート28とは、例えば、半導体材料、又は、例えばシリコン金属、この場合、ゲートはポリシリコンから形成できるが、如何なる適切な材料から形成されてもよく、誘電体30は、例えば、酸化物・窒化物・酸化物(ONO)層等のインターポリ誘電体(IPD)でもよい。列方向トランジスタ16のフローティングゲート26と活性チャネル領域12との間にトンネル酸化物(TOx)32が存在している。通常、フィールド酸化物(FOx)と呼ばれる絶縁フィールド34により、第一のワード線18の方向に、次の列方向トランジスタ16のチャネル12が互いに絶縁されている。これらのフィールド領域は、例えば、local oxidation of sillicon(LOCOS)又はshallow trench insulation(STI)等の様々な方法で埋め込むことができる。一つの行上の列方向トランジスタ16の制御ゲート28が第一のワード線18により互いに接続されている。第一のワード線18上部には、例えば、酸化物のキャップ層35が設けられている。AA‘断面図は、さらに、二つの列方向トランジスタの垂直断面の間に、交点22の垂直断面を示しており、ここで第一のワード線18と第二のワード線20とが互いに交差している。第一のワード線18上部のキャップ層35によりワード線18、20が互いに絶縁されている。
BB‘断面図はある行方向トランジスタ14と二つのコンタクト36との垂直断面を示している。行方向トランジスタ14はフローティングゲート26と制御ゲート28と、そして、フローティングゲート26と制御ゲート28との間にインターゲート誘電体30とを備える。フローティングゲート26と制御ゲート28とはポリシリコンから形成でき、所謂、インターゲート誘電体30は、例えば、ONOスタックから形成できる。行方向トランジスタ14のフローティングゲート26と活性チャネル領域12との間にトンネル酸化物32が存在している。コンタクト36の下部において、活性チャネル領域12内にソース領域40とドレイン領域42とが存在している。
CC‘断面図は第二のワード線20に沿った二つの行方向トランジスタ14の垂直断面を示している。各行方向トランジスタは、インターゲート誘電体30により互いに絶縁されたフローティングゲート26と制御ゲート38とを備える。フローティングゲート26と制御ゲート38とはポリシリコンから形成でき、インターゲート誘電体30は、例えば、ONOスタックから形成できる。行方向トランジスタ14のフローティングゲート26と活性チャネル領域12との間にトンネル酸化物32が存在している。local oxidation of sillicon(LOCOS)又はshallow trench insulation(STI)等、絶縁フィールド34により、第二のワード線20の方向に、次の行方向トランジスタ14のチャネル領域12が互いに絶縁されている。一つの列上の行方向トランジスタ14の制御ゲート38が第二のワード線20により互いに接続されている。CC‘断面図は、さらに、二つの行方向トランジスタ14の垂直断面の間に、交点22の垂直断面を示しており、ここで第一のワード線18と第二のワード線20とが互いに交差している。第一のワード線18上部のキャップ層35により、そして、第二のワード線20両側の絶縁体44により、ワード線18、20が互いに絶縁されている。
DD‘断面図はある列方向トランジスタ16と二つのコンタクト36との垂直断面を示している。列方向トランジスタ16はフローティングゲート26と制御ゲート28と、そして、フローティングゲート26と制御ゲート28との間にインターゲート誘電体30とを備える。フローティングゲート26と制御ゲート28とはポリシリコンから形成でき、インターゲート誘電体30は、例えば、ONOスタックから形成できる。列方向トランジスタ16のフローティングゲート26と活性チャネル領域12との間にトンネル酸化物32が存在している。コンタクト36の下部において、活性チャネル領域12内にソース領域40とドレイン領域42とが存在している。制御ゲ−ト28上部にキャップ層35が存在し、制御ゲ−ト28両側に絶縁体44が存在し、絶縁体44は基板表面に対して立設されている。
図3の断面図は構造を示唆するのみで、正確な断面は実際に用いられる処理フローによることに注意されたい。
この発明のメモリアレイとワード線がジグザクパターンの従来技術とを0.18μmCMOS埋め込みフラッシュプロセスについて比較した。従来の装置は1.12μm(A=1.12μm/2ビット=0.63μm/ビット)のコンタクト間ピッチを有している。この発明の単位セルは0.88μmのコンタクト間ピッチを有しており、これにより、セルの大きさが0.39μm/ビットとなる。これらの値はデザインルールによるものである。(同じ0.18μmCMOSプロセスを用いて)バーチャルグランドスキーム(virtual ground scheme)において通常の1トランジスタフラッシュセルが作られるとすると、セルの大きさは0.46μmとなる。
図4乃至11を参照して、この発明のアレイ10の製造プロセスの第一の例を工程毎に説明する。これらの図面に示された断面は図2の点線で示された位置の断面に対応する。
図4はプロセスの開始状態を示す。ここでは基板から開始される。この発明の実施形態では、文言「基板」は、使用可能な、即ち、その上に装置、回路又はエピタキシャル層が形成できる如何なる下部材料又は複数の下部材料を含んでもよい。その他の実施形態では、この「基板」は、例えば、ドープされたシリコン、ガリウム砒素(GaAs)、ガリウム砒素燐(GaAsP)、ゲルマニウム(Ge)又はシリコンゲルマニウム(SiGe)基板等の半導体基板を含んでもよい。この「基板」は、半導体基板部分に加えて、例えば、SiO又はSi層等の絶縁層を含んでもよい。従って、文言「基板」はsilicon−on−glass、silicon−on−sapphire基板をも含む。文言「基板」は、従って、対象となる層又は部分の下地となる層のための要素を一般的に規定することに用いられる。さらに「基板」はその上に層が形成される如何なる他のベース、例えば、ガラス又は金属層でもよい。活性領域12は基板内のウェルでもよい。以下において、処理は主にシリコン処理について記載されるが、しかし、この発明は他の半導体材料系を基にして実施することができること、そして、以下に記載される誘電及び導電材料と等価な適切な材料を当業者なら選択できることを当業者であれば理解できるものである。
基板内において、後続のメモリセルを互いに分離するために、(従来の方法により)熱成長LOCOS領域又はSTI領域等の絶縁領域34が基板内に設けられる。二つのSTI又はLOCOS分離領域34の間の残存基板が活性領域12を形成する。
STI領域はLOCOS領域より小さく形成できるのでSTI領域はLOCOS領域より好ましく、これによりセルサイズが小さくなり、そのためセル密度が高まる。従って、以下の記載ではSTI領域のみがさらに考慮されるが、しかし、この発明は以下に記載される処理工程がLOCOS領域を用いて実行されることも含む。
絶縁領域34を有する基板の上部に、二酸化シリコンを備える酸化物層等のトンネル誘電体層32が形成され、これは、600から1000°Cの範囲の温度の酸素蒸気雰囲気内で6から15nmの間の厚みに熱成長され、又は、堆積される。トンネル誘電体層32を成長させる場合は、図4に示されるように、それは絶縁領域34上部ではなく半導体基板材料上部のみに存在することになる。トンネル誘電体層32を堆積させる場合は、(図には示されていないが)、それは半導体基板材料と絶縁領域34との両者の上部に存在することになる。
トンネル誘電体層32と絶縁領域34との上部にはFGポリシリコン層26が堆積され、これが後でメモリ素子のFGを形成する。FGポリシリコン層26の堆積は好ましくはCVD処理により行われ、50から300nmの間の厚みに形成される。FGポリシリコン層26のドーピングは、堆積の最中に、アルシン又はホスフィンをシラン雰囲気中に加えることにより、又は、例えば、砒素又は燐イオンをイントリンシックなポリシリコン層に添加するイオン注入により達成される。
行及び列方向の近隣フローティングゲートを分離するために、図5に示される位置46においてFGポリシリコン層26(トンネル誘電体層32がそこに有ればこれの上部のストップ、そうでなければ絶縁領域34上部のストップ)内に領域がエッチングにより設けられる。これらの領域は正方形でもよいが、しかし、それらは八角形等の他の形状、又は、一般的には多角形又は円形、長円形又は楕円形状でもよい。それらの同じ位置において、トンネル誘電体層32がもし存在すれば、それは絶縁領域34に対して選択的にエッチングすることにより除去することができる。図6は、このエッチング工程後のこれに続くインターゲート又はインターポリ(IPD)誘電体層30の形成における断面を示す。このインターゲート誘電体層30はシリコン酸化物等の誘電体材料を備え、そして、LPCVD又はPECVD処理等の適切な方法により約10から30nmの間の厚みに堆積されてもよい。インターゲート誘電体層30はさらに酸化物・窒化物・酸化物(ONO)スタック等の他の絶縁材料を備えてもよく、そして、従来技術により形成又は成長されてもよい。ONOスタックは好ましくは二酸化シリコン、窒化シリコン、二酸化シリコンの連続層を備える。
インターゲート誘電体層30の堆積の後、列方向トランジスタ16の制御ゲート28のためのポリシリコンが堆積されそしてパターンニングされる。これは、第一のCGポリシリコン層がインターゲート誘電体層30上部全体に堆積されることを意味する。第一のCGポリシリコン層28の堆積は、例えば、LPCVD処理により行ってもよく、約50から300nmの間の厚みとする。第一のCGポリシリコン層28のドーピングは、堆積の最中に、アルシン又はホスフィン等の適切なドーパントをシラン雰囲気中に加えることにより、又は、例えば、砒素又は燐イオン等のドーパントをイントリンシックなポリシリコン層に添加するイオン注入処理により達成される。堆積の後、第一のCGポリシリコン層28がエッチングされて第一のワード線18を形成する。好ましくは、第一のCGポリシリコン層28のパターンニングの前に、酸化物層等の絶縁キャップ層35が第一のCGポリシリコン層28上部に成長又は堆積される。その後、絶縁キャップ層35と第一のCGポリシリコン層28の両者がパターンニングされて第一のワード線18を形成する。ポリシリコンのエッチングはインターゲート誘電体30の上部層上で停止する必要がある。第一のワード線18を形成する第一のCGポリシリコン層28は、ここで、キャップ層35で終端し、このキャップ層35が、基板表面から離れる方向において交差する制御ゲート間の絶縁体として機能し、そして、このプロセスの後工程でハードエッチングマスクとして用いられる。ここで、第一のワード線18がフローティングゲート26上部に横たわり、これらが列方向トランジスタ16の制御ゲート28を形成する。これら工程後のアレイ10の単位セル24の断面図が図7に概略的に示されている。
第一のワード線18の熱横壁酸化により第一のワード線18に沿った絶縁体44から二つの制御ゲートグループ間に側方絶縁体が形成できる。これが図8に示されている。この熱酸化はFG26の横壁には影響せず、これは、それら横壁がインターゲート誘電体30により保護されているからである。
別の方法として、例えば窒化物層の絶縁層を構造全体上に堆積し、そして、この絶縁層を異方性エッチングすることにより絶縁体44を作ることができる。もし、インターゲート誘電体30の上部層とキャップ層35(例えば例として窒化物)とは異なる材料で絶縁体44が作られる場合は、これら二層30,35をアタックしないスペ−サ・エッチングを用いることができる。さもなければ、失われた誘電体を補填する誘電体材料をさらに堆積する必要がでてくる。この方法を用いた場合、スペ−サ(図8には示されていない)がさらにFG26の横壁上に存在することになる。これはセル動作を妨げるものではないが、しかし、行及び列方向トランジスタの結合係数が異なることになり、これは、FGの横壁におけるCGとFGとの間の容量結合がこれら二つのクラスのトランジスタで異なるからである。プロセスのこの段階で第二のCGポリシリコン層38を堆積し、パターンニングすることができる。これは、図8に示される構造上部全体に第二のCGポリシリコン層38が堆積することを意味する。第二のCGポリシリコン層38の堆積はLPCVDで行うことができ、約50から400nmの間の厚みとする。第二のCGポリシリコン層38のドーピングは、堆積の最中に、アルシン又はホスフィン等の適切なドーパントをシラン雰囲気中に加えることにより、又は、例えば、砒素又は燐イオン等のドーパントをイントリンシックなポリシリコン層又はアモルファス層に添加するイオン注入処理により達成される。堆積の後、第二のCGポリシリコン層38がエッチングによりパターンニングされて第二のワード線20を形成する。厳密には必要ではないが、第一のCGポリシリコン層28と同様に第二のCGポリシリコン層38が同じキャップ層48を有してもよい。第二のCGポリシリコン層38のポリシリコンのエッチングは、インターゲート誘電体30上、第一のワード線18のキャップ層35上、そして、CG絶縁体44上で停止する必要がある。ここで、第二のワード線20がフローティングゲート26上部に横たわり、これらが行方向トランジスタ14の制御ゲート38を形成する。この結果が図9に示されている。
第二のCGポリシリコン層38とこれに関わるキャップ層48とをパターンニングするために用いられるフォトレジストをはぎ取った後、両ワード線18,20とワード線18に沿う側方絶縁体44(スペーサ又は熱酸化物)上のキャップ層35をハードマスクとして用いてインターゲート誘電体30とFGポリシリコン層26とをエッチングすることができる。トンネル誘電体層32をもこの段階でエッチングすることができ、又は、それは後の段階でエッチングすることができる。もし、第二のワード線20が適切なキャップ層48を有していない場合は、インターゲート誘電体30とFGポリシリコン層26と(さらに恐らくトンネル誘電体層32)のエッチングの前にフォトレジストを除去すべきではないことに注意されたい。FG/IPDエッチング後の結果が図10に示されている。行方向及び列方向トランジスタの結合係数が異なり、これは、列方向トランジスタ16の制御ゲートに沿った絶縁体44によりFG26の大きさが変わるからである。
最後に、この分野の当業者に一般的に知られている方法により最終処理を行い、例えば、ゲートスタック14,16に対してスペーサを成長させ、(1)高濃度ド−プドレイン(HDD)と(2)シリサイドCGにより自己整合ソース/ドレイン埋め込み物40,42(ここで、CG/FGスタックがソース/ドレイン埋め込み物からチャネル領域を保護するマスクとして機能する)を形成し、恐らくトンネル誘電体層32を除去でき(事前に除去しない場合)、そしてコンタクト36を形成する。シリサイド化の場合には、両ワード線18,20のキャップ層35,48が除去されるべきである。両ワード線18,20の交点22においては第一のCG層28/18(低い方)はシリサイド化されない。この結果が図11に示されている。
図11に示されるように、行方向及び列方向トランジスタ14,16は長さが異なり、これは、列方向トランジスタ16の制御ゲート28/18に沿う絶縁物44が、FG26を形成するときのFG層のエッチングの間にハードマスクを構成ためである。これは、FG26を確定する前に(即ち、図9と図10に示されたものの間で)絶縁物44を除去することにより防ぐことができる。これにより、図12に示される好ましい実施形態が得られる。ここでは、行方向トランジスタ14及び列方向トランジスタ16の両者は同じトランジスタ長となる。もし、インターゲート誘電体30の上部層とキャップ層35(例えば、ここに与えられた例では窒化物)とは異なる材料で絶縁体44が作られた場合はマスク無しのエッチングで絶縁体44が除去できるので、この実施形態のためのさらなるプロセスが簡単になる。この段階でスペーサを除去してもプロセスの後のシリサイド化を妨げることはなく、これは、通常用いられるHDDオフセットスペーサがブリッジを防ぐからである。
この発明のメモリ構造に等価な電子的構造が図13aに示されている。この装置の電子的機能を変えずに行方向及び列方向ワード線18,20が直交ではなく平行に描かれている。その結果、図13aの概略アレイ内のトランジスタの実際の位置はその物理的位置に対応していない。図13aはバーチャルグランドスキームにおけるメモリセルの相互接続を示している。バーチャルグランドスキームにおいては、例えば従来のNOR構造のように、ビット線(メモリセルのドレイン)と共通接地線(ソース)との間ではなく、二つの隣り合うビット線間にすべてのメモリセルが接続されている。金属ビット線とコンタクトの代わりにドーパントが拡散されたビット線を用いて、屡々、バーチャルグランドスキームが非常に小さいセルを作るのに用いられる。
セルは、例えば、チャネルに対して、Channel Hot Electron Injection (CHEI)により書き込み、そして、Fowler−Nordheim (FN)tunnelingにより消去できる。この動作のための適切な電圧条件が読み出し条件として図13bにも示されている。
例えば、以下の条件が適用できる(これらは例であり、他の組み合わせも可能である)。
CHEIによる書き込み:
選択ワード線: Vwl、write 6Vと12Vの間
非選択ワード線:0V
選択ビット線までのビット線:0V
選択ビット線: Vbl、write 3Vと8Vの間
選択ビット線からのビット線:3Vと8Vの間
(即ち、選択ビット線としては同電圧)
FNによる消去:
すべてのワード線: Vwl、erase −8Vと−20Vの間
すべてのビット線: 0V
読み出し:
選択ワード線: Vwl、read 0.5Vと2Vの間
非選択ワード線:0V
選択ビット線までのビット線:0V
選択ビット線: Vbl、read 0.25Vと3Vの間
選択ビット線からのビット線:0.25Vと3Vの間
(即ち、選択ビット線としては同電圧)
CHEIによる書き込みのためにメモリセルが選択されるとすると、約8Vの電圧がそのトランジスタメモリ素子の制御ゲートに与えられる。ドレインが約5Vにバイアスされなければならず、一方、ソースは低電圧(例えば、0V)に保たれる。これら状態がトランジスタメモリ素子のドレイン側に高エネルギエレクトロン(“ホット” エレクトロン)を生み出す。これらのホットエレクトロンはフローティングゲートの方へ引き寄せられ、そして、トランジスタメモリ素子の閾値電圧を高くする。
メモリセルを消去するには、約−14Vの電圧が各トランジスタメモリ素子の制御ゲートに与えられる。各ソース及び各ドレインが低電圧(例えば、0V)に保たれる。Fowler−Nordheim tunnelingによりトンネル誘電体を介してエレクトロンがフローティングゲートから基板界面へ引き抜かれる。消去工程後、トランジスタメモリ素子の閾値電圧が降下する。記載したようにメモリセルがすべて一度に消去される。必要で有れば、セルはワード線毎に消去してもよい。この場合、約−14Vの電圧が選択されたワード線に与えられ、一方、他のワード線は0Vに保たれる。
メモリセルを読み出すには、消去されたメモリセルのトランジスタメモリ素子の最大許容閾値電圧より高く、しかし、書き込まれたメモリセルのトランジスタメモリ素子の最低許容閾値電圧より低い所定電圧がトランジスタメモリ素子の制御ゲートに与えられる。この電圧は約2Vとしてもよい。メモリセルのソ−スは低電圧(例えば、0V)に保たれ、一方、小電圧(約0.5V)がメモリセルのドレインに与えられる。後者はメモリセルに電流が流れたか確認するのに必要な電圧である。メモリセルが導通すると、これは消去されており、そして、書き込みされていない(メモリセルは、従って、第一の論理状態、例えば、“1”となる)。逆に、メモリセルが導通しないと、これは書き込みされている(メモリセルは、従って、第二の論理状態、例えば、“0”となる)。従って、各メモリセルが書き込みされているか判定する(従って、メモリセルの論理状態を確認する)ために各メモリセルが読み出される。
この発明の第二の実施形態によれば、フローティングゲート装置の代わりに電荷捕捉装置又は拘束装置が用いられる。このクラスの装置の場合、フローティングゲート上ではなく、電荷捕捉層(例えば、ONOスタック)内に情報が電荷として蓄積される。ONOスタックが用いられる場合は、ONOスタック内の窒化物層が電荷捕捉層として機能する。酸化物層等の二つの電荷捕捉層間に挟まれた窒化物層の代わりに、酸化物に包含された小さなSiドット(所謂、ナノ結晶)を用いることもできる。
簡便なプロセス(絶縁体44にFGポリシリコン、スペーサを使わず、列及び行方向トランジスタの特性が異なるという欠点なく、IPDも使わず、面積的にも小さい)ということ以外に、この方法の利点は一つのセルに2ビットを記憶することができることであり、これは、書き込み中にソース/ドレイン電流の極性によってソース又はドレインに電荷が蓄積されるからである。“1セル内2ビット”動作の場合には二方向に電流が強制(書き込み)され又はセンス(読み出され)されるという事実を除いて、書き込み、消去、そして読み出し状態はFG装置のそれらに匹敵する。“1セル内2ビット”動作の場合には等価セルサイズは半分になり、即ち、上記の0.18μmプロセスの例では等価セルサイズは約0.2μmとなる。
図14,15はそれぞれ単位セルといくつかの断面を示しており、断面は図14では点線で示されている。図14では明瞭化のために斜めのビット線が示されていない。
AA‘断面図は第一のワード線18の垂直断面を示している。電荷捕捉特性を有する誘電体層又はスタック層32により第一のワード線18が基板より分離されている。ワード線18が活性領域(電荷捕捉誘電体層又は誘電体層32のスタックによりワード線18から分離されている)と交差する位置で、それらがCG28を形成している。ある部位(交点22)で、第二のワード線20が第一のワード線18と交差している。キャップ層35と横壁絶縁体44(熱酸化スペーサ)により両ワード線が互いに絶縁されている。
BB‘断面図は行方向電荷捕捉装置50と二つのコンタクト36との垂直断面を示している。電荷捕捉装置50は電荷捕捉特性を有する誘電体層又はスタック層32と制御ゲート32とを備えている。コンタクト36が設けられている。コンタクト36の下部において、活性チャネル領域12内にソース領域40とドレイン領域42とが存在している。制御電極38上部にキャップ層48が存在している。
CC‘断面図は第二のワード線20の垂直断面を示している。ワード線20が活性領域(電荷捕捉誘電体層又は誘電体層32のスタックによりワード線20から分離されている)と交差する位置で、それらがCG38を形成している。交点22において、第二のワード線20が第一のワード線18に重なっている。第一のワード線18上部のキャップ層35と第一のワード線18に沿う側方絶縁体44により第一、第二のワード線18、20が互いに分離されている。
DD‘断面図は列方向電荷捕捉装置52と二つのコンタクト36との垂直断面を示している。列方向電荷捕捉装置52は制御ゲート28と、この制御ゲート28と活性チャネル領域12との間に誘電体層又は複数誘電体層32の組み合わせとを備えている。コンタクト36が設けられている。コンタクト36の下部において、活性チャネル領域12内にソース領域40とドレイン領域42とが存在している。制御電極28上部にキャップ層35が存在し、基板表面に対して立設している制御電極28の両側に絶縁体44が存在している。
図15の断面図は構造を示唆するのみで、正確な断面は実際に用いられる処理フローによることに注意されたい。
図16に概略的に示されているように、電荷捕捉層内での電荷注入位置はCHEI書き込み中のソース・ドレイン電流の方向に依存し、これが一つのセルに2ビットを記憶可能にし(一つをソースに、他の一つをドレインに)、従って、記憶密度が2倍になる。図16下部に概略的に描かれているように、読み出し中に、トランジスタが飽和すると二つの状態が区別され、ピンチオフ領域の上の電荷はソース・ドレイン電流に影響を与えないが、一方、反転層の上の電荷はソース・ドレイン電流を減少させる。そのような2ビットを記憶できるセルに対する書き込み、読み出し、消去はWO99/07000に記載されている。
バーチャルグランドスキーム(共通ソース線が無いことを示唆する)を用いることにより、そして、二方向(行方向及び列方向)でトランジスタを用いることにより、アレイ10の密度が従来の1トランジスタNVMセルよりかなり高くなる。
各図において、描写の目的として様々な層のサイズが強調されている。さらに、各図のサイズは実際とは異なり、様々な層のサイズは互いに正しくは保たれていない。
望ましいアレイサイズに応じて図1に描かれたアレイ部分がすべての方向にいくらでも拡張することができることは理解されるところである。
この発明は好ましい実施形態について示され記載されたが、この発明の範囲並びに精神から外れることなる態様、詳細において様々な変形、変更が可能であることは当業者であれば理できるところである。
活性領域、絶縁領域、行方向と列方向とに重なるワード線そして斜めのビット線を示す、この発明の第一の実施形態のメモリアレイの一部を示す上面図である。 明瞭化のためビット線が除外され、この実施形態のメモリセルはスタックFGトランジスタ素子である、図1のアレイの一つの単位セルの第一の実施形態をより詳細に示す拡大図である。 図2の線AA‘、BB‘、CC‘そしてDD‘における図2の単位セルの第一の実施形態を示す四つの断面図である。 フィールド酸化物形成、トンネル酸化物成長、そして、ブランケットFGポリシリコン堆積後の未完成単位セルを示す四つの断面図である。 図2の同様の単位セルを示し、FGポリシリコン層内に正方形にエッチングするために用いられるマスクを示す図である。 図5のマスクを用いてFGポリシリコン層内が正方形にエッチングされ、そして、FGポリシリコン層から分離された部分上にIPD層が形成された後の未完成単位セルを示す四つの断面図である。 キャップ層を上部に有する第一の制御ゲートポリシリコン層を堆積並びにパターニングし、従って第一のワード線が形成された後の未完成単位セルを示す四つの断面図である。 第一のワード線に沿って絶縁スペーサ又は層が形成された後の未完成単位セルを示す四つの断面図である。 キャップ層を上部に有する第二のCGゲートポリシリコン層を堆積並びにパターニングし、従って第二のワード線が形成され、これが第一のワード線と電気的相互コンタクト無しに交差した後の未完成単位セルを示す四つの断面図である。 IPD層とFGポリシリコン層とがエッチングされた後の未完成単位セルを示す四つの断面図である。 第二のポリシリコンCG上のキャップ層を除いて図3と同じである、埋め込み自己整合ソース、ドレイン並びにコンタクトが形成された後の未完成単位セルを示す四つの断面図である。 トランジスタ長さがすべてのトランジスタで同じである、単位セルの第三の実施形態を示す四つの断面図である。 図1に示されたメモリアレイの一部の等価電子回路を示すシンボル回路図である。 図13aの回路図によるメモリアレイの読み出し、書き込みそして消去 状態を示す図である。 ビット線が除外され、メモリ素子が電荷捕捉装置である、図1のアレイの一つの単位セルの第二の実施形態をより詳細に示した拡大図である。 図14の線AA‘、BB‘、CC‘そしてDD‘における図14の単位セルの第二の実施形態を示す四つの断面図である。 図14並びに図15で用いられる電荷捕捉装置の書き込み、読み出しを示す図である。

Claims (16)

  1. 複数の行と複数の列に論理的に編成された複数の半導体メモリ装置のアレイであって、一つの行上の複数の半導体メモリ装置が第一のワード線により接続され、そして、一つの列上の複数の半導体メモリ装置が第二のワード線により接続され、前記第一及び第二のワード線が互いに交差していることを特徴とするアレイ。
  2. 前記第一及び第二のワード線は絶縁されて交差していることを特徴とする請求項1に記載のアレイ。
  3. 前記複数の半導体メモリ装置はバーチャルグランドスキームにより接続されていることを特徴とする請求項1に記載のアレイ。
  4. 前記複数の半導体メモリ装置はトランジスタ長が同じである複数のトランジスタであることを特徴とする請求項1に記載のアレイ。
  5. 前記複数の半導体メモリ装置は複数のスタック・フローティングゲート・メモリであることを特徴とする請求項1に記載のアレイ。
  6. 前記複数の半導体メモリ装置は複数の電荷捕捉装置であることを特徴とする請求項1に記載のアレイ。
  7. 少なくとも一つの半導体メモリ装置は2ビットを記憶するのに用いられることを特徴とする請求項6に記載のアレイ。
  8. 請求項1に記載の複数の半導体メモリ装置のアレイを含むことを特徴とする不揮発性メモリ。
  9. 表面を有する半導体基板内又は上に複数の行と複数の列に論理的に編成された複数の半導体メモリ装置のアレイを形成する方法であって、第一のワード線を設け、そして、第二のワード線を設ける工程を備え、前記第一及び第二のワード線が互いに交差することを特徴とする方法。
  10. 前記第一のワード線及び前記第二のワード線間に絶縁を施す工程をさらに備えたことを特徴とする請求項9に記載の方法。
  11. 前記絶縁を施す工程は前記基板表面から離れた方向に絶縁体を設けることを特徴とする請求項10に記載の方法。
  12. 前記絶縁を施す工程は側方絶縁体を設けることを特徴とする請求項10に記載の方法。
  13. 前記複数の半導体メモリ装置を製造する工程をさらに備えたことを特徴とする請求項9に記載の方法。
  14. 前記複数の半導体メモリ装置を製造する工程はトランジスタ長が同じである複数のトランジスタを設けることを特徴とする請求項13に記載の方法。
  15. 前記複数の半導体メモリ装置を製造する工程は複数のスタック・フローティングゲート・トランジスタを製造する複数の工程を備えたことを特徴とする請求項13に記載の方法。
  16. 前記複数の半導体メモリ素子を製造する工程は複数の電荷捕捉装置を製造する複数の工程を備えたことを特徴とする請求項13に記載の方法。
JP2004510033A 2002-05-31 2003-05-19 不揮発性半導体メモリの密集アレイ構造 Withdrawn JP2005528801A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02077155 2002-05-31
PCT/IB2003/002143 WO2003103051A1 (en) 2002-05-31 2003-05-19 Dense array structure for non-volatile semiconductor memories

Publications (1)

Publication Number Publication Date
JP2005528801A true JP2005528801A (ja) 2005-09-22

Family

ID=29595028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004510033A Withdrawn JP2005528801A (ja) 2002-05-31 2003-05-19 不揮発性半導体メモリの密集アレイ構造

Country Status (8)

Country Link
US (1) US20060145192A1 (ja)
EP (1) EP1514308A1 (ja)
JP (1) JP2005528801A (ja)
KR (1) KR20040111716A (ja)
CN (1) CN100423271C (ja)
AU (1) AU2003230158A1 (ja)
TW (1) TWI299163B (ja)
WO (1) WO2003103051A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004026811A1 (de) * 2004-06-02 2005-08-11 Infineon Technologies Ag Halbleiterspeicher-Bauelement mit Charge-Trapping-Speicherzellen und Herstellungsverfahren
US8125018B2 (en) * 2005-01-12 2012-02-28 Spansion Llc Memory device having trapezoidal bitlines and method of fabricating same
KR100594326B1 (ko) * 2005-03-22 2006-06-30 삼성전자주식회사 2-비트 동작을 위한 비휘발성 메모리 소자 및 그 제조 방법
KR100650903B1 (ko) * 2005-09-21 2006-11-27 동부일렉트로닉스 주식회사 비휘발성 기억 장치 및 그 제조방법
TW200812074A (en) * 2006-07-04 2008-03-01 Nxp Bv Non-volatile memory and-array
US8018070B2 (en) * 2007-04-20 2011-09-13 Qimonda Ag Semiconductor device, method for manufacturing semiconductor devices and mask systems used in the manufacturing of semiconductor devices
US20090251972A1 (en) * 2008-04-03 2009-10-08 Yue-Song He Nonvolatile memory arrays with charge trapping dielectric and with non-dielectric nanodots
US8384147B2 (en) * 2011-04-29 2013-02-26 Silicon Storage Technology, Inc. High endurance non-volatile memory cell and array
KR101325188B1 (ko) 2012-04-09 2013-11-20 이화여자대학교 산학협력단 자기 저항 메모리
US9252150B1 (en) 2014-07-29 2016-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. High endurance non-volatile memory cell
KR102432268B1 (ko) * 2015-04-14 2022-08-12 삼성전자주식회사 반도체 소자 및 그 제조 방법.
KR20220085622A (ko) * 2020-12-15 2022-06-22 삼성전자주식회사 반도체 메모리 소자

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770874A (en) * 1994-11-14 1998-06-23 Nippon Steel Corporation High density semiconductor memory device
US5877054A (en) * 1995-06-29 1999-03-02 Sharp Kabushiki Kaisha Method of making nonvolatile semiconductor memory
JPH0982921A (ja) * 1995-09-11 1997-03-28 Rohm Co Ltd 半導体記憶装置、その製造方法および半導体記憶装置の仮想グランドアレイ接続方法
US6348711B1 (en) * 1998-05-20 2002-02-19 Saifun Semiconductors Ltd. NROM cell with self-aligned programming and erasure areas
JP2000228509A (ja) * 1999-02-05 2000-08-15 Fujitsu Ltd 半導体装置

Also Published As

Publication number Publication date
CN1656614A (zh) 2005-08-17
EP1514308A1 (en) 2005-03-16
KR20040111716A (ko) 2004-12-31
TWI299163B (en) 2008-07-21
CN100423271C (zh) 2008-10-01
WO2003103051A1 (en) 2003-12-11
TW200401293A (en) 2004-01-16
AU2003230158A1 (en) 2003-12-19
US20060145192A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
US7015098B2 (en) Methods and structure for an improved floating gate memory cell
US6531734B1 (en) Self-aligned split-gate flash memory cell having an integrated source-side erase structure and its contactless flash memory arrays
US20060043457A1 (en) Nonvolatile semiconductor memory device having a recessed gate and a charge trapping layer and methods of forming the same, and methods of operating the same
US20020042180A1 (en) Nonvolatile memory structures and fabrication methods
US8138524B2 (en) Self-aligned method of forming a semiconductor memory array of floating memory cells with source side erase, and a memory array made thereby
US7151021B2 (en) Bi-directional read/program non-volatile floating gate memory cell and array thereof, and method of formation
US6372564B1 (en) Method of manufacturing V-shaped flash memory
US20040245568A1 (en) Non-volatile floating gate memory cell with floating gates formed in cavities, and array thereof, and method of formation
US6525369B1 (en) Self-aligned split-gate flash memory cell and its contactless flash memory arrays
US7563676B2 (en) NOR-type flash memory cell array and method for manufacturing the same
JP2005528801A (ja) 不揮発性半導体メモリの密集アレイ構造
JPH0864700A (ja) 不揮発性半導体記憶装置及びその製造方法
US6528843B1 (en) Self-aligned split-gate flash memory cell having a single-side tip-shaped floating-gate structure and its contactless flash memory arrays
US6844586B2 (en) Fabrication of gate dielectric in nonvolatile memories having select, floating and control gates
US9231113B2 (en) Flash memory with P-type floating gate
US20020055228A1 (en) Sidewall process to improve the flash memory cell performance
US20060044876A1 (en) Programming and manufacturing method for split gate memory cell
KR100485486B1 (ko) 플래시 메모리 셀의 구조 및 그 제조 방법
KR20060043534A (ko) 트렌치 내에 독립적인 제어 가능한 제어 게이트를 갖는 매립형 비트 라인 불휘발성 부동 게이트 메모리 셀, 및 그 어레이, 및 형성 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080612

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091006