JP2005523386A - Ac電界を用いてナノメータスケール成分を選択的に位置合わせする方法 - Google Patents
Ac電界を用いてナノメータスケール成分を選択的に位置合わせする方法 Download PDFInfo
- Publication number
- JP2005523386A JP2005523386A JP2003586397A JP2003586397A JP2005523386A JP 2005523386 A JP2005523386 A JP 2005523386A JP 2003586397 A JP2003586397 A JP 2003586397A JP 2003586397 A JP2003586397 A JP 2003586397A JP 2005523386 A JP2005523386 A JP 2005523386A
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- electric field
- nanometer scale
- substrate
- providing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000005684 electric field Effects 0.000 title claims abstract description 48
- 238000012360 testing method Methods 0.000 claims abstract description 10
- 239000002105 nanoparticle Substances 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 23
- 239000013545 self-assembled monolayer Substances 0.000 claims description 21
- 239000002094 self assembled monolayer Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 12
- 239000010410 layer Substances 0.000 claims description 10
- 239000011810 insulating material Substances 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000002073 nanorod Substances 0.000 claims description 2
- 239000002071 nanotube Substances 0.000 claims description 2
- 239000002070 nanowire Substances 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 238000000059 patterning Methods 0.000 claims 2
- 238000001459 lithography Methods 0.000 claims 1
- 239000010931 gold Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 238000005442 molecular electronic Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 241000894007 species Species 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000609 electron-beam lithography Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 125000003396 thiol group Chemical class [H]S* 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000252506 Characiformes Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011370 conductive nanoparticle Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000010070 molecular adhesion Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C5/00—Separating dispersed particles from liquids by electrostatic effect
- B03C5/02—Separators
- B03C5/022—Non-uniform field separators
- B03C5/026—Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/18—Electrophoretic coating characterised by the process using modulated, pulsed, or reversing current
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/605—Products containing multiple oriented crystallites, e.g. columnar crystallites
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
本発明の更なる目的は、AC電界を用いてナノメータスケール成分を選択的に位置合わせ及び位置決めする方法であって、テスト電極をブリッジする場合にナノメータスケール成分のより正確な操作を行う方法を提供することにある。
一層正確な操作を行う。従って、この電界により、望まれる場所へのナノメータスケール成分の引き付けを行うことができる。
ンの中で30分間洗浄され、その後、エタノールの中で20分間浸されて、酸化Auが除去される。ナノ粒子の組織化はプローブステーション上で行われる。市販の水中AUコロイドの一滴(〜5μL)が基板上に投与され、1MHzから10MHzの範囲のACバイアス24(0. 5〜2. 5V、ピークツーピーク値)が、関数発生器を用いて電極12,14に印加される。ACバイアス振幅、周波数、及び閉じ込め時間は、ナノメータスケール成分の性質と濃度及びナノメータスケール成分が含まれている誘電環境によって変化することは明らかである。この特定例における閉じ込め時間は一般的に5秒〜30秒の間である。理論的には、直流(DC)電界を用いて間隙内にナノ粒子を閉じ込めることができるが、そのようなDC電界は、DC電界の使用がAC電界と比べて的中率が大変低くなるので、ここで選択される電界ではない。AC電界の影響下で、ナノ粒子22は、間隙20内で得られる最大電界勾配の方向にそれを引張る誘電泳動力を受ける。この技術を用いて、一般的に40nm〜100nmのサイズ範囲のナノ粒子22又は複数のナノ粒子が、ほとんど100%の収率で間隙20内に閉じ込められる。ナノ粒子を閉じ込めた後、アセンブリ10は、高純度脱イオン水(18MΩcm)の入ったビーカ内に1分間置かれ、その後脱水される。アセンブリ10を洗う目的は、過剰な溶液とナノメータスケール成分を除去するためである。
の印加により、この特定実施態様においては金属ナノ粒子22’によって例示されているナノメータスケール成分によって、ブリッジされる。図1,2について説明された実施態様と同様に、この方法は、電子ナノメータスケール成分の直接測定のために一般的に要求される著しく狭い間隙(1〜2nm)を製造する必要性を緩和する。このプロセスは、説明されたように、ナノ粒子を介して直列に接続された二つの別の分子アレイを生じる。
、より詳しくは電極40’、の方向にそれを引っ張る誘電泳動力を受ける。この技術を用いて、ナノ粒子36’又は複数のナノ粒子がプローブ38’上に形成される。
Claims (10)
- ナノメータスケール成分を選択的に位置合わせ及び位置決めする方法であって、少なくとも一つの電極に交流(AC)電界を供給して、ナノメータスケール成分を含む環境内に電界を生成するステップを備える方法。
- ナノメータスケール成分を含む前記環境には、ナノロッド、ナノワイヤ、ナノチューブ、ナノ粒子、及び生体分子の内の少なくとも一つをその中に含んだ環境が含まれる請求項1に記載の方法。
- 少なくとも一つの電極に交流(AC)電界を供給するステップは、基板を提供するステップと、前記基板の上に、前記基板の表面、即ち単一電極を形成するステップとを備える請求項2に記載の方法。
- 前記基板の上に、前記基板の表面、即ち単一電極を形成するステップは、
基板を提供するステップと、
リソグラフィーを用いて、前記基板の上に、前記基板の表面、即ち少なくとも一つの電極をパターン化するステップと
を備える請求項3に記載の方法。 - 少なくとも一つの電極に交流(AC)電界を供給するステップは、基板を提供するステップと、前記基板の上に、前記基板の最上表面、即ちその間に形成された間隙を有する二つ以上の電極を形成するステップとを備える請求項2に記載の方法。
- 交流(AC)電界を供給するステップは、前記二つ以上の電極の間に交流(AC)電界を供給し、そのことによって、前記二つ以上の電極の間に形成された間隙の中にナノメータスケール成分を閉じ込めるステップを備える請求項5に記載の方法。
- 前記二つ以上の電極の少なくとも一つの最上表面に、テストナノメータスケール成分の自己組織化単一層(SAM)を形成するステップを更に備える請求項6に記載の方法。
- ナノメータスケール成分を選択的に位置合わせ及び位置決めする方法であって、
基板材料を提供するステップと、
前記基板材料の最上表面に、その間に形成された間隙を有する二つ以上の電極をパターン化するステップと、
前記二つ以上の電極と接触する環境であって、その中にナノメータスケール成分を含んだ環境を提供するステップと、
前記二つ以上の電極の間に交流(AC)電界を供給し、そのことによって、前記二つ以上の電極の間に形成された間隙の中にナノメータスケール成分を閉じ込めるステップと
を備える方法。 - ナノメータスケール成分を選択的に位置合わせ及び位置決めする方法であって、
半導体材料を提供するステップと、
前記半導体材料の最上表面に絶縁層を形成するステップと、
前記絶縁材料の最上表面に、その間に形成された間隙を有する二つ以上の電極をパターン化するステップと、
前記二つ以上の電極の少なくとも一つの最上表面に、テスト分子の自己組織化単一層(SAM)を形成するステップと、
前記二つ以上の電極と接触する環境であって、その中にナノメータスケール成分を含んだ環境を提供するステップと、
前記二つ以上の電極の間に交流(AC)電界を供給して電界を生成し、そのことによって、前記二つ以上の電極の間に形成された間隙の中に、テストナノメータスケール成分と一致する少なくとも一つのナノメータスケール成分を閉じ込めるステップと
を備える方法。 - 半導体材料を提供するステップは、珪素(Si)、砒化ガリウム(GaAs)、ゲルマニウム(Ge)、炭化珪素(SiC)、及び砒化インジウム(InAs)の内の一つで形成された半導体材料を提供するステップを備える請求項9に記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/123,740 US6879143B2 (en) | 2002-04-16 | 2002-04-16 | Method of selectively aligning and positioning nanometer-scale components using AC fields |
PCT/US2003/010368 WO2003089690A1 (en) | 2002-04-16 | 2003-04-02 | Selectively aligning nanometer-scale components using ac fields |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005523386A true JP2005523386A (ja) | 2005-08-04 |
Family
ID=28790803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003586397A Pending JP2005523386A (ja) | 2002-04-16 | 2003-04-02 | Ac電界を用いてナノメータスケール成分を選択的に位置合わせする方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US6879143B2 (ja) |
EP (1) | EP1495163B1 (ja) |
JP (1) | JP2005523386A (ja) |
KR (1) | KR100871582B1 (ja) |
CN (1) | CN100381616C (ja) |
AT (1) | ATE411414T1 (ja) |
AU (1) | AU2003221802A1 (ja) |
DE (1) | DE60324126D1 (ja) |
WO (1) | WO2003089690A1 (ja) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7662265B2 (en) * | 2000-10-20 | 2010-02-16 | Massachusetts Institute Of Technology | Electrophoretic assembly of electrochemical devices |
US7252749B2 (en) * | 2001-11-30 | 2007-08-07 | The University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
US7455757B2 (en) * | 2001-11-30 | 2008-11-25 | The University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
WO2003076332A1 (fr) * | 2002-03-08 | 2003-09-18 | Communications Research Laboratory, Independent Administrative Institution | Dispositif et procede pour la realisation d'un nanofil conducteur |
US7381316B1 (en) * | 2002-04-30 | 2008-06-03 | Northwestern University | Methods and related systems for carbon nanotube deposition |
CA2385802C (en) * | 2002-05-09 | 2008-09-02 | Institut National De La Recherche Scientifique | Method and apparatus for producing single-wall carbon nanotubes |
US7082683B2 (en) * | 2003-04-24 | 2006-08-01 | Korea Institute Of Machinery & Materials | Method for attaching rod-shaped nano structure to probe holder |
US7785922B2 (en) | 2004-04-30 | 2010-08-31 | Nanosys, Inc. | Methods for oriented growth of nanowires on patterned substrates |
US20070014148A1 (en) * | 2004-05-10 | 2007-01-18 | The University Of North Carolina At Chapel Hill | Methods and systems for attaching a magnetic nanowire to an object and apparatuses formed therefrom |
JP2008506547A (ja) * | 2004-06-21 | 2008-03-06 | スリーエム イノベイティブ プロパティズ カンパニー | 半導体ナノ粒子のパターン形成および配列 |
CN1311231C (zh) * | 2004-07-19 | 2007-04-18 | 中国科学院物理研究所 | 一种安装和操纵单个线形纳米材料的装置 |
EP1809569A4 (en) * | 2004-11-12 | 2009-12-02 | Seoul Nat Univ Ind Foundation | METHOD FOR ORIENTING OR MOUNTING A NANOSTRUCTURE ONTO A SOLID SURFACE |
KR100736361B1 (ko) | 2004-11-12 | 2007-07-06 | 재단법인서울대학교산학협력재단 | 미끄러운 분자막을 이용하여 고체표면에 나노구조를 위치 및 정렬시키는 방법, 및 그 응용 |
WO2007011076A1 (en) * | 2005-07-15 | 2007-01-25 | Korea Institute Of Machinery And Materials | Attaching method of nano materials using langmuir-blodgett |
US20070246364A1 (en) * | 2005-08-26 | 2007-10-25 | Amlani Islamshah S | Selectively placing catalytic nanoparticles of selected size for nanotube and nanowire growth |
US7951422B2 (en) * | 2005-12-29 | 2011-05-31 | Nanosys, Inc. | Methods for oriented growth of nanowires on patterned substrates |
US7741197B1 (en) | 2005-12-29 | 2010-06-22 | Nanosys, Inc. | Systems and methods for harvesting and reducing contamination in nanowires |
US8264137B2 (en) * | 2006-01-03 | 2012-09-11 | Samsung Electronics Co., Ltd. | Curing binder material for carbon nanotube electron emission cathodes |
CN101042977B (zh) * | 2006-03-22 | 2011-12-21 | 清华大学 | 碳纳米管场发射电子源及其制造方法以及一场发射阵列 |
CN100573783C (zh) * | 2006-04-05 | 2009-12-23 | 清华大学 | 碳纳米管场发射电子源的制造方法 |
US7294560B1 (en) | 2006-11-28 | 2007-11-13 | Motorola, Inc. | Method of assembling one-dimensional nanostructures |
US20080149970A1 (en) * | 2006-12-21 | 2008-06-26 | Thomas Shawn G | Multi-gated carbon nanotube field effect transistor |
GB0708381D0 (en) | 2007-04-30 | 2007-06-06 | Nokia Corp | Method for forming a semiconductor structure |
GB0818403D0 (en) * | 2008-10-08 | 2008-11-12 | Univ Leuven Kath | Aqueous electrophoretic deposition |
EP2334845A2 (en) * | 2008-10-06 | 2011-06-22 | Katholieke Universiteit Leuven K.U. Leuven R&D | Functional layers of biomolecules and living cells, and a novel system to produce such |
JP4932066B2 (ja) * | 2009-12-02 | 2012-05-16 | 独立行政法人科学技術振興機構 | 流路デバイス及びそれを含むサンプル処理装置 |
CN101924028B (zh) * | 2010-09-02 | 2012-02-29 | 上海交通大学 | 基于介电泳技术的碳化硅纳米线定向有序排布方法 |
CN102431964B (zh) * | 2011-12-15 | 2014-08-13 | 北京石油化工学院 | 可控生成量子点或量子线的方法 |
EP2889900B1 (en) * | 2013-12-19 | 2019-11-06 | IMEC vzw | Method for aligning micro-electronic components using an alignment liquid and electrostatic alignment as well as corresponding assembly of aligned micro-electronic components |
US9525147B2 (en) | 2014-09-25 | 2016-12-20 | International Business Machines Corporation | Fringing field assisted dielectrophoresis assembly of carbon nanotubes |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6652808B1 (en) | 1991-11-07 | 2003-11-25 | Nanotronics, Inc. | Methods for the electronic assembly and fabrication of devices |
TW457736B (en) | 1998-09-17 | 2001-10-01 | Ibm | Self assembled nano-devices using DNA |
US20030087277A1 (en) * | 1998-12-23 | 2003-05-08 | Wolfgang Fritzsche | Means and methods for detection of binding of members of specific binding pairs |
WO2001001475A1 (en) * | 1999-06-30 | 2001-01-04 | The Penn State Research Foundation | Electrofluidic assembly of devices and components for micro- and nano-scale integration |
AU2001294876A1 (en) | 2000-09-29 | 2002-04-08 | President And Fellows Of Harvard College | Direct growth of nanotubes, and their use in nanotweezers |
CN1128247C (zh) * | 2001-04-26 | 2003-11-19 | 东南大学 | 选择性化学镀制备纳米间隙电极的方法 |
US7455757B2 (en) * | 2001-11-30 | 2008-11-25 | The University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
EP1511862A4 (en) * | 2002-05-14 | 2006-01-18 | Nanosphere Inc | ELECTRICAL DETECTION OF DNA HYBRIDIZATION AND SPECIFIC BINDING EVENTS |
-
2002
- 2002-04-16 US US10/123,740 patent/US6879143B2/en not_active Expired - Fee Related
-
2003
- 2003-04-02 KR KR1020047016424A patent/KR100871582B1/ko not_active IP Right Cessation
- 2003-04-02 WO PCT/US2003/010368 patent/WO2003089690A1/en active Application Filing
- 2003-04-02 JP JP2003586397A patent/JP2005523386A/ja active Pending
- 2003-04-02 AT AT03718201T patent/ATE411414T1/de not_active IP Right Cessation
- 2003-04-02 CN CNB038086689A patent/CN100381616C/zh not_active Expired - Fee Related
- 2003-04-02 EP EP03718201A patent/EP1495163B1/en not_active Expired - Lifetime
- 2003-04-02 AU AU2003221802A patent/AU2003221802A1/en not_active Abandoned
- 2003-04-02 DE DE60324126T patent/DE60324126D1/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20030194940A1 (en) | 2003-10-16 |
EP1495163B1 (en) | 2008-10-15 |
US6879143B2 (en) | 2005-04-12 |
EP1495163A1 (en) | 2005-01-12 |
ATE411414T1 (de) | 2008-10-15 |
KR20040111513A (ko) | 2004-12-31 |
KR100871582B1 (ko) | 2008-12-02 |
CN1646734A (zh) | 2005-07-27 |
DE60324126D1 (de) | 2008-11-27 |
CN100381616C (zh) | 2008-04-16 |
AU2003221802A1 (en) | 2003-11-03 |
WO2003089690A1 (en) | 2003-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6879143B2 (en) | Method of selectively aligning and positioning nanometer-scale components using AC fields | |
Amlani et al. | An approach to transport measurements of electronic molecules | |
US9388047B2 (en) | Directed assembly of carbon nanotubes and nanoparticles using nanotemplates | |
JP4213668B2 (ja) | 分子エレクトロニクスと分子エレクトロニクスに基づいたバイオセンサーデバイスのための半導体装置及びその製造方法 | |
Bezryadin et al. | Electrostatic trapping of single conducting nanoparticles between nanoelectrodes | |
JP5674466B2 (ja) | ナノチューブデバイスおよび製造方法 | |
US20080135826A1 (en) | Controlled nanowire in permanent integrated nano-templates and method of fabricating sensor and transducer structures | |
JP2002361600A (ja) | 微粒子のアレイをアセンブルする方法 | |
US7504014B2 (en) | High density interconnections with nanowiring | |
Adam et al. | Recent advances in techniques for fabrication and characterization of nanogap biosensors: A review | |
Fritzsche et al. | Making electrical contact to single molecules | |
KR100549227B1 (ko) | 유기분자 소자의 제작 방법 | |
Khondaker | Fabrication of nanoscale device using individual colloidal gold nanoparticles | |
KR100905405B1 (ko) | 나노와이어의 물성측정장치 및 물성측정방법 | |
Maalaoui et al. | Towards miniaturized pH sensor based on carbon nanotubes assembled by DEP on titanium electrodes? | |
Maruccio et al. | Nano‐scaled biomolecular field‐effect transistors: prototypes and evaluations | |
Guo et al. | Molecular-scale electronics: concept, fabrication and applications | |
Amlani et al. | Hybrid assembly technique using alternating current field for molecular electronic measurements | |
JP2020510993A (ja) | 化学機械的平坦化なしで製作されたナノ要素プリンティング用のダマシンテンプレート | |
Strobel | Nanoscale contacts to organic molecules based on layered semiconductor substrates | |
Dong et al. | Design, fabrication and measurement of CNT based ISFET for NANO devices | |
Rana | Investigation of genetically-engineered β-sheet polypeptides for nanoelectronics | |
Hayat | Theoretical and Experimental Studies of Dielectrophoresis on sub 20 nm Spaced Gold Electrodes | |
Uran et al. | On-chip-integrated nanowire device platform with controllable nanogap for manipulation, capturing, and electrical characterization of nanoparticles | |
Palazon | Surface functionalization of heterogeneous gold/silica substrates for the selective anchoring of biomolecules and colloids onto LSPR biosensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20090128 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20090204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090428 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090526 |