JP2005521794A5 - - Google Patents

Download PDF

Info

Publication number
JP2005521794A5
JP2005521794A5 JP2003580609A JP2003580609A JP2005521794A5 JP 2005521794 A5 JP2005521794 A5 JP 2005521794A5 JP 2003580609 A JP2003580609 A JP 2003580609A JP 2003580609 A JP2003580609 A JP 2003580609A JP 2005521794 A5 JP2005521794 A5 JP 2005521794A5
Authority
JP
Japan
Prior art keywords
current
frequency range
pulse
ceramic coating
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003580609A
Other languages
Japanese (ja)
Other versions
JP2005521794A (en
JP4182002B2 (en
Filing date
Publication date
Priority claimed from GB0207193A external-priority patent/GB2386907B/en
Application filed filed Critical
Priority claimed from PCT/GB2002/004305 external-priority patent/WO2003083181A2/en
Publication of JP2005521794A publication Critical patent/JP2005521794A/en
Publication of JP2005521794A5 publication Critical patent/JP2005521794A5/ja
Application granted granted Critical
Publication of JP4182002B2 publication Critical patent/JP4182002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Claims (31)

第1電極が取り付けられ、かつ水性アルカリ電解液で満たされる電解槽であって、他の電極が接続された物品が浸漬された電解槽内において、金属および合金にセラミック被膜を形成するプロセスであって、前記プロセスがプラズマ放電方式でなされるようにパルス電流が前記電極間に供給されるプロセスにおいて、
i)前記電極に予め定められた周波数範囲を有する高周波の二極性電流パルスを供給する工程と、
ii)予め定められた音波周波数範囲の音響振動を前記電解液中に生成させる工程であって、前記音響振動の周波数範囲は前記電流パルスの周波数範囲と重なるような工程とを備えるプロセス。
A process for forming a ceramic film on a metal and an alloy in an electrolytic cell in which a first electrode is attached and is filled with an aqueous alkaline electrolyte, in which an article to which another electrode is connected is immersed. In a process in which a pulse current is supplied between the electrodes so that the process is performed by a plasma discharge method,
i) supplying a high frequency bipolar current pulse having a predetermined frequency range to the electrode;
ii) a process of generating acoustic vibration in a predetermined sound wave frequency range in the electrolyte solution, the process including a step in which the frequency range of the acoustic vibration overlaps the frequency range of the current pulse.
前記被膜はMg、Al、Ti、Nb、Ta、Zr、Hfといった金属もしくはそれらの合金、またはAl−Be、Ti−Al、Ni−Ti、Ni−Al、Ti−Nb、Al−Zn、Al−Al23,Mg−Al23といった化合物もしくは複合物に形成される請求項1に記載のプロセス。 The coating is made of a metal such as Mg, Al, Ti, Nb, Ta, Zr, or Hf or an alloy thereof, or Al—Be, Ti—Al, Ni—Ti, Ni—Al, Ti—Nb, Al—Zn, Al—. Al 2 O 3, the process of claim 1, such as Mg-Al 2 O 3 is formed on the compound or complex. 各電流パルスはそのパルスの全持続時間の10%よりも大きくない時間内に最大値に至る電流の初期急勾配増大部分とそれに続く電流が最初は急速に減少してその後最大値の50%以下まで徐々に減少する部分を含む形状を有している請求項1または2に記載のプロセス。   Each current pulse has an initial steeply increasing portion of the current that reaches its maximum value in a time not greater than 10% of the total duration of the pulse, and the subsequent current first decreases rapidly, and then less than 50% of the maximum value The process according to claim 1 or 2, wherein the process has a shape including a portion that gradually decreases until. 前記音響振動は酸素による前記電解液の空気水力学的な飽和を生じさせる請求項1乃至3のいずれかに記載のプロセス。   4. A process according to any preceding claim, wherein the acoustic vibration causes aerohydrodynamic saturation of the electrolyte with oxygen. 前記電解液に酸素または空気が供給される請求項4に記載のプロセス。   The process according to claim 4, wherein oxygen or air is supplied to the electrolyte. 超分散固体粒子を前記電解液内に導き、前記音響振動によって安定した水性ゾルを生成する工程をさらに備える請求項1乃至5のいずれかに記載のプロセス。   The process according to any one of claims 1 to 5, further comprising the step of introducing ultra-dispersed solid particles into the electrolyte and generating a stable aqueous sol by the acoustic vibration. 前記固体粒子は0.5μmよりも大きくない粒子径を有している請求項6に記載のプロセス。   The process according to claim 6, wherein the solid particles have a particle size not larger than 0.5 μm. 前記固体粒子は金属の酸化物、硼化物、炭化物、窒化物、珪化物、または硫化物の形態の化合物から構成される請求項6または7に記載のプロセス。   The process according to claim 6 or 7, wherein the solid particles are composed of a compound in the form of a metal oxide, boride, carbide, nitride, silicide, or sulfide. 前記プラズマ放電方式はプラズマ電解酸化方式である請求項1乃至8のいずれかに記載のプロセス。   The process according to claim 1, wherein the plasma discharge method is a plasma electrolytic oxidation method. 前記セラミック被膜は2から10μm/分の速度で形成される請求項1乃至のいずれかに記載のプロセス。   The process according to claim 1, wherein the ceramic coating is formed at a rate of 2 to 10 μm / min. 前記物品に印加される電流は3から200A/dm2の電流密度を有する請求項1乃至10のいずれかに記載のプロセス。 Process according to any one of claims 1 to 10 having a current density current from 3 200A / dm 2 applied to the article. 前記物品に印加される電流は10から60A/dm2の電流密度を有する請求項11に記載のプロセス。 The process of claim 11, wherein the current applied to the article has a current density of 10 to 60 A / dm 2 . 前記電流パルスは少なくとも500Hzのパルス継続周波数を有する請求項1乃至12
のいずれかに記載のプロセス。
13. The current pulse has a pulse duration of at least 500 Hz.
The process described in any of the above.
前記パルス継続周波数は1,000から10,000Hzの範囲内にある請求項13に記載のプロセス。   The process of claim 13, wherein the pulse duration is in the range of 1,000 to 10,000 Hz. 金属および合金にセラミック被膜を形成する装置であって、電極を有する電解槽と、パルス電流を前記電極に送る供給源と、少なくとも1つの音響振動発生器を備える装置において、
i)前記供給源は前記電極に予め定められた周波数範囲の高周波の二極性電流パルスを供給するのに適応するようにされ、
ii)前記少なくとも1つの音響振動発生器は前記槽内に含まれる電解液内に音響振動を生成させるのに適応するようにされ、前記音響振動は前記電流パルスの周波数範囲と重なる予め定められた音波周波数範囲を有する
装置。
An apparatus for forming a ceramic coating on metals and alloys comprising an electrolytic cell having electrodes, a source for sending pulsed current to the electrodes, and at least one acoustic vibration generator.
i) the source is adapted to supply a high frequency bipolar current pulse in a predetermined frequency range to the electrode;
ii) the at least one acoustic vibration generator is adapted to generate acoustic vibrations in the electrolyte contained in the vessel, the acoustic vibrations being pre-determined to overlap the frequency range of the current pulses A device having a sonic frequency range.
前記供給源は各電流パルスがそのパルスの全持続時間の10%よりも大きくない時間内に最大値に至る電流の初期急勾配増大部分とそれに続く電流が最初は急速に減少してその後最大値の50%以下まで徐々に減少する部分を含む形状を有するのに適応するようにされている請求項15に記載の装置。   The source has an initial steeply increasing portion of current where each current pulse reaches a maximum value within a time period not greater than 10% of the total duration of the pulse, and the subsequent current initially decreases rapidly and then reaches a maximum value. 16. The apparatus of claim 15, wherein said apparatus is adapted to have a shape that includes a portion that gradually decreases to 50% or less. 前記少なくとも1つの音響発生器は電解液を流動させる少なくとも1つの投入部を有している空気水力学的共鳴器である請求項15または16に記載の装置。   17. An apparatus according to claim 15 or 16, wherein the at least one acoustic generator is an aero-hydraulic resonator having at least one input for flowing an electrolyte. 前記少なくとも1つの空気水力学的共鳴器によって生成される音響振動は、前記空気水力学的共鳴器の前記投入部における前記電解液の流れの圧力を変更させることによって、制御される請求項17に記載の装置。   18. The acoustic vibration generated by the at least one aerohydraulic resonator is controlled by changing the pressure of the electrolyte flow at the input of the aerohydraulic resonator. The device described. 請求項1ないし14のいずれか1つに記載のプロセスによって金属または合金に形成されるセラミック被膜。   15. A ceramic coating formed on a metal or alloy by the process of any one of claims 1-14. 請求項15ないし18のいずれか1つに記載の装置を用いて金属または合金に形成されるセラミック被膜。   A ceramic coating formed on a metal or alloy using the apparatus according to any one of claims 15-18. 前記被膜は全被膜厚みの14%よりも大きくない厚みの多孔性外層を有する請求項19または20に記載のセラミック被膜。   21. A ceramic coating according to claim 19 or 20, wherein the coating has a porous outer layer with a thickness not greater than 14% of the total coating thickness. 前記多孔性外層は全被膜厚みの10%よりも大きくない厚みを備える請求項21に記載のセラミック被膜。 The ceramic coating according to claim 21, wherein the porous outer layer comprises a thickness not greater than 10% of the total coating thickness. 前記多孔性外層は全被膜厚みの8%よりも大きくない厚みを備える請求項22に記載のセラミック被膜。 23. The ceramic coating of claim 22, wherein the porous outer layer comprises a thickness that is not greater than 8% of the total coating thickness. 前記被膜は0.6から2.1μmの低い粗さ(Ra)の表面を有する請求項19ないし23のいずれか1つに記載のセラミック被膜。 24. A ceramic coating according to any one of claims 19 to 23 , wherein the coating has a low roughness (Ra) surface of 0.6 to 2.1 [mu] m. 金属または合金にプラズマ放電プロセスによって形成されるセラミック被膜であって、0.6から2.1μmの低い粗さ(Ra)の表面を有する請求項1ないし14のいずれか一つのセラミック被膜。 15. The ceramic coating according to claim 1 , wherein the ceramic coating is formed on a metal or alloy by a plasma discharge process and has a low roughness (Ra) surface of 0.6 to 2.1 [mu] m. 前記被膜は500から2100HVの微小硬度を有する緻密な微細多結晶性構造を有する請求項19ないし25のいずれか1つに記載のセラミック被膜。 The ceramic coating according to any one of claims 19 to 25 , wherein the coating has a dense fine polycrystalline structure having a microhardness of 500 to 2100 HV. 2から150μmの全厚みを有する請求項19ないし26のいずれか1つに記載のセラミック被膜。 27. A ceramic coating according to any one of claims 19 to 26 having a total thickness of 2 to 150 [mu] m. 第1電極が取り付けられ、かつ水性アルカリ電解液で満たされる電解槽であって、他の電極が接続された物品が浸漬された電解槽内において、金属および合金にセラミック被覆を形成するプロセスであって、前記プロセスをプラズマ放電方式で行えるように電流パルスを前記電極間に供給するプロセスにおいて、前記電極に予め定められた周波数範囲を有する高周波の二極性電流パルスを供給する工程を備え、A process of forming a ceramic coating on metals and alloys in an electrolytic cell to which a first electrode is attached and which is filled with an aqueous alkaline electrolyte, in which the article to which the other electrode is connected is immersed. Supplying a high-frequency bipolar current pulse having a predetermined frequency range to the electrodes in a process of supplying a current pulse between the electrodes so that the process can be performed by a plasma discharge method,
前記電流パルスが、そのパルスの全持続時間の10%以下の時間で最大値に至る電流の初期急勾配増大部分と、それに続く電流が最初は急速に減少してその後最大値の50%以下まで徐々に減少する部分とを含む形状を有するプロセス。  An initial steeply increasing portion of the current where the current pulse reaches a maximum value in less than 10% of the total duration of the pulse, followed by a rapid decrease in current first and then to less than 50% of the maximum value A process having a shape including a gradually decreasing portion.
予め定められた音波周波数範囲の音響振動を前記電解液中に発生させて、前記音響振動の周波数範囲が前記電流パルスの周波数範囲と重なるようにする工程をさらに備える請求項28に記載のプロセス。29. The process of claim 28, further comprising generating acoustic vibrations in a predetermined acoustic frequency range in the electrolyte so that the acoustic vibration frequency range overlaps the current pulse frequency range. 金属および合金にセラミック被膜を形成する装置であって、電極を有する電解槽と、パルス電流を前記電極に送る電源と、少なくとも1つの音響振動発生器とを備える装置において、前記電源は前記電極に予め定められた周波数範囲の高周波の二極性電流パルスを供給でき、前記電源は、各電流パルスがそのパルスの全持続時間の10%以下の時間で最大値に至る電流の初期急勾配増大部分と、それに続く電流が最初は急速に減少してその後最大値の50%以下まで徐々に減少する部分を含む形状を有するようにすることができる装置。An apparatus for forming a ceramic coating on a metal and an alloy, comprising: an electrolytic cell having an electrode; a power source for sending a pulsed current to the electrode; and at least one acoustic vibration generator; A high frequency bipolar current pulse in a predetermined frequency range can be supplied, and the power source includes an initial steep increase portion of the current where each current pulse reaches a maximum value in less than 10% of the total duration of the pulse; , An apparatus that can have a shape that includes a portion where the subsequent current decreases rapidly initially and then gradually decreases to less than 50% of the maximum value. 前記少なくとも1つの音響振動発生器は、前記電解槽内に閉じ込められると電解液内に音響振動を発生でき、前記音響振動は前記電流パルスの周波数範囲と重なる予め定められた音波周波数範囲を有する請求項30に記載の装置。The at least one acoustic vibration generator can generate an acoustic vibration in an electrolyte when confined in the electrolytic cell, and the acoustic vibration has a predetermined acoustic frequency range that overlaps a frequency range of the current pulse. Item 30. The apparatus according to Item 30.
JP2003580609A 2002-03-27 2002-09-23 Process and apparatus for forming ceramic coatings on metals and alloys, and coatings produced by this process Expired - Lifetime JP4182002B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0207193A GB2386907B (en) 2002-03-27 2002-03-27 Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
US10/123,010 US6896785B2 (en) 2002-03-27 2002-04-15 Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
PCT/GB2002/004305 WO2003083181A2 (en) 2002-03-27 2002-09-23 Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007243844A Division JP4722102B2 (en) 2002-03-27 2007-09-20 Process and apparatus for forming ceramic coatings on metals and alloys
JP2008062544A Division JP2008179901A (en) 2002-03-27 2008-03-12 Process and device for forming ceramic coatings on metals and alloys, and coating film produced by this process

Publications (3)

Publication Number Publication Date
JP2005521794A JP2005521794A (en) 2005-07-21
JP2005521794A5 true JP2005521794A5 (en) 2006-01-05
JP4182002B2 JP4182002B2 (en) 2008-11-19

Family

ID=28676486

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003580609A Expired - Lifetime JP4182002B2 (en) 2002-03-27 2002-09-23 Process and apparatus for forming ceramic coatings on metals and alloys, and coatings produced by this process
JP2007243844A Expired - Lifetime JP4722102B2 (en) 2002-03-27 2007-09-20 Process and apparatus for forming ceramic coatings on metals and alloys

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007243844A Expired - Lifetime JP4722102B2 (en) 2002-03-27 2007-09-20 Process and apparatus for forming ceramic coatings on metals and alloys

Country Status (7)

Country Link
EP (1) EP1488024B1 (en)
JP (2) JP4182002B2 (en)
CN (1) CN100503899C (en)
AU (1) AU2002329410A1 (en)
HK (1) HK1059804A1 (en)
NO (1) NO20034936L (en)
WO (1) WO2003083181A2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100503899C (en) * 2002-03-27 2009-06-24 岛屿涂层有限公司 Process for forming ceramic coatings on metals and alloys, and coatings produced by this process
US7196459B2 (en) * 2003-12-05 2007-03-27 International Resistive Co. Of Texas, L.P. Light emitting assembly with heat dissipating support
CN100348780C (en) * 2004-03-16 2007-11-14 天津大学 Method of pulse plating nickel based nano composite plating layer and equipment
GB2422249A (en) * 2005-01-15 2006-07-19 Robert John Morse Power substrate
CN100420775C (en) * 2005-05-23 2008-09-24 狄士春 Microarc oxidation process method for surface of steel and ion
CN100396823C (en) * 2005-09-29 2008-06-25 陕西科技大学 Method and device for preparing coating or film using supersonic, water-heating and electrodeposition technology
CN100469946C (en) * 2005-12-19 2009-03-18 广东工业大学 Preparation method of TiC ceramic coating
JP4125765B2 (en) * 2006-09-28 2008-07-30 日本パーカライジング株式会社 Method of coating ceramic film of metal, electrolytic solution used therefor, ceramic film and metal material
US20080086195A1 (en) * 2006-10-05 2008-04-10 Boston Scientific Scimed, Inc. Polymer-Free Coatings For Medical Devices Formed By Plasma Electrolytic Deposition
EP2112670B1 (en) 2007-02-15 2018-04-18 Kankyou Engineering Co., Ltd. Method for producing conductor fine particles
EP1967615A1 (en) * 2007-03-07 2008-09-10 Siemens Aktiengesellschaft Method for applying a heat insulation coating and turbine components with a heat insulation coating
EA012825B1 (en) * 2007-04-02 2009-12-30 Владимир Никандрович Кокарев Method of forming a protective ceramic coating on the surface of metal products
JP2010533563A (en) 2007-07-19 2010-10-28 ボストン サイエンティフィック リミテッド Endoprosthesis with adsorption inhibiting surface
EP2185103B1 (en) 2007-08-03 2014-02-12 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
GB0720982D0 (en) 2007-10-25 2007-12-05 Plasma Coatings Ltd Method of forming a bioactive coating
US8920491B2 (en) 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
WO2009132176A2 (en) 2008-04-24 2009-10-29 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
CN101333673B (en) * 2008-07-29 2011-11-23 浙江工业大学 Electrolytic solution for preparing nano ceramic coatings by micro-arc oxidation
JP5394021B2 (en) * 2008-08-06 2014-01-22 アイシン精機株式会社 Aluminum alloy piston member and manufacturing method thereof
US8337936B2 (en) 2008-10-06 2012-12-25 Biotronik Vi Patent Ag Implant and method for manufacturing same
AT506583B9 (en) * 2008-10-23 2009-12-15 Happy Plating Gmbh ELECTROCHEMICAL COATING PROCESS
DE102008043970A1 (en) * 2008-11-21 2010-05-27 Biotronik Vi Patent Ag A method for producing a corrosion-inhibiting coating on an implant of a biocorrodible magnesium alloy and implant produced by the method
DE102009012945A1 (en) * 2009-03-12 2010-09-16 Mtu Aero Engines Gmbh Method for producing an abrasive coating and component for a turbomachine
GB2469115B (en) 2009-04-03 2013-08-21 Keronite Internat Ltd Process for the enhanced corrosion protection of valve metals
CN101892507B (en) * 2010-07-29 2012-02-22 南昌航空大学 Method for improving growth speed of titanium alloy microarc oxide film
GB2499560B (en) 2011-02-08 2014-01-22 Cambridge Nanotherm Ltd Insulated metal substrate
KR101349076B1 (en) * 2011-07-20 2014-01-14 현대자동차주식회사 Apparatus and method for forming oxidation layer of manifold block for fuel cell stack
AU2013345062B2 (en) * 2012-11-16 2018-02-08 Merck Sharp & Dohme Corp. Process for making agglomerates using acoustic mixing technology
KR101476235B1 (en) * 2012-12-11 2014-12-24 한국기계연구원 Method for surface treatment of magnesium material using plasma electrolytic oxidation, anodic films formed on magnesium thereby and solution for surface treatment of magnesium material used for plasma electrolytic oxidation
WO2014175653A1 (en) * 2013-04-23 2014-10-30 인제대학교 산학협력단 Method for preparing nanostructure by electrochemical deposition, and nanostructure prepared thereby
KR101572849B1 (en) * 2013-04-23 2015-12-01 인제대학교 산학협력단 Manufacturing method of nano structures by electrochemical deposition, and nano structures made by the same
GB2513575B (en) 2013-04-29 2017-05-31 Keronite Int Ltd Corrosion and erosion-resistant mixed oxide coatings for the protection of chemical and plasma process chamber components
KR101419273B1 (en) * 2013-08-27 2014-07-15 (주)엠에스티테크놀로지 Method for forming transparent layer on metal surface by plasma electrolytic oxidation
CN103567405A (en) * 2013-11-04 2014-02-12 虞雪君 Composite coating material used for crystallizer of metallurgical continuous caster
CN103567404A (en) * 2013-11-04 2014-02-12 虞雪君 Composite coating material used for crystallizer and preparation method
CH708829A1 (en) 2013-11-11 2015-05-15 Panerai Ag Off An aluminum-lithium alloy component comprising a ceramic coating and a method for forming the coating.
CN103695985B (en) * 2013-12-16 2016-02-10 电子科技大学 The method of titania coating is prepared on a kind of nickel metal hydride battery nickel electrode surface
CN104562130B (en) * 2014-08-22 2017-06-16 东莞市武华新材料有限公司 The manufacture method of light metal or the titania based ceramic film of its alloy surface
US9506161B2 (en) * 2014-12-12 2016-11-29 Metal Industries Research & Development Centre Surface treatment of a magnesium alloy
JP2016156036A (en) * 2015-02-23 2016-09-01 株式会社栗本鐵工所 Coating formation method
KR101701268B1 (en) * 2015-04-09 2017-02-13 현대성우메탈 주식회사 Electrolyte solution for PEO on magnesium alloy and PEO method using the same
EP3359711A1 (en) 2015-12-16 2018-08-15 Henkel AG & Co. KGaA Method for deposition of titanium-based protective coatings on aluminum
CN109385654A (en) * 2017-08-11 2019-02-26 昆山汉鼎精密金属有限公司 Automatic differential arc oxidation system and method
KR102205172B1 (en) 2019-06-19 2021-01-20 오엠피주식회사 Apparaus for Forming an Oxidization layer on a Inner surface of Metal Products
KR102205173B1 (en) 2019-06-19 2021-01-20 오엠피주식회사 Process for Forming an Oxidization layer on a Inner surface of Metal Products
CN110257878B (en) * 2019-07-16 2021-06-08 广西大学 Method for preparing micro-arc oxidation film of aluminum-titanium composite plate
CN113943964A (en) * 2020-07-15 2022-01-18 中国科学院上海硅酸盐研究所 Titanium alloy surface thermal control wear-resistant coating and preparation method thereof
CN112708917A (en) * 2020-12-23 2021-04-27 西安工业大学 Preparation method of micro-arc oxidation layer on surface of titanium alloy turbine blade
CN113774459A (en) * 2021-09-29 2021-12-10 上海交通大学 Preparation method of compact high-corrosion-resistance micro-arc oxidation film layer on surface of zirconium alloy
GB2613562A (en) 2021-12-03 2023-06-14 Keronite International Ltd Use of chelating agents in plasma electrolytic oxidation processes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD151330A1 (en) * 1980-06-03 1981-10-14 Peter Kurze METHOD FOR PRODUCING DIFFUSION LAYERS IN METALS
DE4139006C3 (en) * 1991-11-27 2003-07-10 Electro Chem Eng Gmbh Process for producing oxide ceramic layers on barrier layer-forming metals and objects produced in this way from aluminum, magnesium, titanium or their alloys with an oxide ceramic layer
WO1998040541A1 (en) * 1997-03-11 1998-09-17 Almag Al Process and apparatus for coating metals
ATE242345T1 (en) * 1997-12-17 2003-06-15 Isle Coat Ltd METHOD FOR PRODUCING HARD PROTECTIVE COATINGS ON ITEMS MADE OF ALUMINUM ALLOYS
FR2808291B1 (en) * 2000-04-26 2003-05-23 Mofratech ELECTROLYTIC OXIDATION PROCESS FOR OBTAINING A CERAMIC COATING ON THE SURFACE OF A METAL
JP2002121699A (en) * 2000-05-25 2002-04-26 Nippon Techno Kk Electroplating method using combination of vibrating flow and impulsive plating current of plating bath
CN100503899C (en) * 2002-03-27 2009-06-24 岛屿涂层有限公司 Process for forming ceramic coatings on metals and alloys, and coatings produced by this process

Similar Documents

Publication Publication Date Title
JP2005521794A5 (en)
WO2003083181A3 (en) Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
KR100871332B1 (en) Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
Matykina et al. Energy-efficient PEO process of aluminium alloys
EP2077343A1 (en) Ceramic coated metal material and production method thereof
JP2004332081A (en) Plasma resistant member, and its production method
JP2006348320A (en) Ceramic-coated metal material and production method therefor
CN109338323B (en) A kind of raising Al2O3The surface treatment method of ceramics and Nickel-based Alloy Welding performance
TWI241362B (en) Method of making oxide film by anodizing magnesium material
CN108004576A (en) A kind of micro-arc oxidation process
SG186566A1 (en) Process for forming porous metal coating on surfaces
Liu et al. Effect of pulse plating on composition of Sn–Pb coatings deposited in fluoroborate solutions
JP2009235534A (en) Porous body forming method, electrode, and micro-spark coating device
JP2010007103A (en) Method for producing aluminum member
JPS603299A (en) Manufacture of diaphragm for speaker
WO2021215962A1 (en) Method for applying a coating to items made from valve metal and alloy thereof
JP4895477B2 (en) Discharge surface treatment method and discharge surface treatment apparatus.
KR101191957B1 (en) Plasma electrolytic oxidation coating method
CN106947991B (en) A kind of preparation method of aluminum alloy surface wear-and corrosion-resistant anti-thermal shock coating
JP2007197767A (en) Coating apparatus and treatment method using the same
JP2005213555A (en) Electrode for discharge surface treatment and discharge surface treatment method
Komarova et al. Fluence of ultrasonic waves during micro-arc oxidation on structure and properties of calcium phosphate coatings
TW200913845A (en) Cover of aluminium alloy portable electronic device and making the same
JP2007031731A (en) Method for producing valve metal oxide nanostructure
JP2008282888A (en) Vacuum processing apparatus and vacuum processing method