TWI241362B - Method of making oxide film by anodizing magnesium material - Google Patents

Method of making oxide film by anodizing magnesium material Download PDF

Info

Publication number
TWI241362B
TWI241362B TW092120828A TW92120828A TWI241362B TW I241362 B TWI241362 B TW I241362B TW 092120828 A TW092120828 A TW 092120828A TW 92120828 A TW92120828 A TW 92120828A TW I241362 B TWI241362 B TW I241362B
Authority
TW
Taiwan
Prior art keywords
electrolyte
oxide film
item
grams
oxide
Prior art date
Application number
TW092120828A
Other languages
Chinese (zh)
Other versions
TW200404919A (en
Inventor
Yasuo Naganuma
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of TW200404919A publication Critical patent/TW200404919A/en
Application granted granted Critical
Publication of TWI241362B publication Critical patent/TWI241362B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

An oxide film is formed on an object made of a magnesium material. For the film formation, the object is immersed into an electrolyte that contains insoluble particles and alkali metal hydroxide. In the electrolyte, the object is anodized to be coated with an oxide film. In the presence of the insoluble particles dispersed in the electrolyte, the oxide film takes in nearby particles as it is growing on the object during the anodizing process.

Description

1241362 玫、發明說明: I:發明戶斤屬之技術領域】 發明領域 本發明係關於一種在一經選擇而由鎂(為純金屬)或鎂 5 合金製得之物件或標的組件上製造一抗腐蝕性氧化物薄膜 的方法。該標的組件典型地可為筆記型電腦的外罩。本發 明亦關於一種經由此方法製造之外罩。 I[先前技I 發明背景 10 最近,由鎂或鎂合金製得的外罩已廣泛使用來提供電 或電子用具(諸如筆記型電腦),以達成減少重量及厚度。此 趨向在尺寸等於或小於B5-尺寸之所謂的行動筆記型電腦 之領域特別明顯。在伴隨的圖形中,第5圖顯示出由鎂質材 料(即純金屬鎂或鎂合金)製得之可攜帶式裝置的外罩實 15 例。特別是,所闡明的組件為一 LCD(液晶顯示器)遮蓋物而 使用於筆記型電腦的外罩。如在技藝中所熟知,鎂質材料 為優良的熱導體。因此,當使用來製造筆記型電腦外罩時, 鎂質材料的貢獻不僅為達成減少重量及厚度,而且可防止 電子裝置過熱。 20 鎂質材料當其曝露至空氣時容易氧化。因此,對實際 使用來說,鎂質製外罩需要接受表面處理以事先達成抗腐 #性。 熟知可提供抗腐蝕性的方法之一為化學轉換。在化學 轉換處理中,會將鎂質材料浸入一化學槽中以在該材料上 1241362 形成一塗層。但是,此方法依賴在鎂質材料表面上發生之 自發性化學反應。因此,控制薄膜厚度的自由度明顯受限 制。該熟知方法的另一個缺點為所製造的薄膜之厚度趨向 於薄。因此,其難以將在鎂質材料表面上之抗腐蝕性改良 5 至想要的程度。 10 陽極化為另一種熟知的方法,其可產生一比上述描述 的化學轉換還厚之塗層薄膜。較厚且更密集的薄膜對提高 抗腐钮性來說較佳。但是,因為由陽極化所形成之氧化層 不允許電力通過,厚膜之製造會伴隨著施加高糕和長= 製造時間。此會不適宜地提高製造成本。 15 JP-A_8(1996)-167543 及 jp _A_ll(i999)-l〇〇695 揭示一 種可在較短的時間内製得厚塗 者之jp文件教導在所使用的電 進行關於鋁表面的陽極氧化處 件則教導在所使用的電解質中 鈦表面的陽極氧化處理。 層薄膜之方法。特別是,前 解質中包含一介電質粒子來 理。另一方面,後者之JP文 包含一金屬粒子來進行關於 於此應注意的是上述的Jp δ u 又件僅建蠛在鋁或鈦材料表 面上的%極氧化層之製造方 者,而不在鎂質材料表面。再 者,在该些JP文件之方法(其 丹 含進入t冑〜—轉介電質或金屬粒子内 建議。)中亚不包含任何可相等應用至鎂質材料的 【發明内容】 發明概要 本發明 已在上述描述的情 況下提出建議。因此,本發 20 1241362 明之目才示為提供-種在鎮質材料上製造高抗腐餘性的陽極 氧化物薄膜或層之方法,藉此可在短時間内且以低製造成 本來形成想要的氧化薄膜。 根據本發明的第_觀點,已提供—種氧化物薄膜的製 5造方法。忒方法包括:將一物件浸入一電解質中,該物件 由鑛或錢合金製得;及在該電解質中利用陽極化在該物件 上形成一氧化物薄膜。該電解質包含不溶的粒子及鹼金屬 氫氧化物。當該薄膜成在上物件成長時,該氧化物薄膜會 納入該不溶粒子。 10 根據上述的方法,可在想要的物件上以比傳統可能還 短的時間形成適當厚度之氧化物薄膜,因為在該物件上成 長的氧化物薄膜可納入包含在該電解質中的不溶粒子。隨 著所製造的氧化薄膜,該鎂質材料物件享有較大的抗腐蝕 性。同樣地,製造成本可由於縮短的薄膜形成時間而減低。 15再者,含鹼金屬氫氧化物的電解質可促成加速欲製造的氧 化物薄膜(此優良的效應會在晚後欲說明的實例中說明)。仍 然進一步的是,該鹼金屬氫氧化物可有效地防止納入該氧 化物薄膜中的不溶粒子離析(局部沉澱)。結果,可在該鎮質 物件中形成一均勻緻密的氧化物薄膜。 20 較佳的是,該些不溶的粒子可由氧化4S、氫氧化銘、 二氧化矽、氧化鈦及陶瓷氧化物的至少一種製得。該些粒 子的平均直徑範圍為5奈米〜10微米,更佳的範圍為5奈米 〜500奈米。 在此專利說明書中,“不溶的粒子,,指為不溶解在電解 1241362 貝中的极子。當該些粒子的平均直徑大於ίο微米時,在該 鎮貝物件上較不可能發生適合的(或甚至不適當的)粒子沉 沒又。在此例子中,該些粒子沉澱物(若有的話)可使該氧化物 薄膜的表面過度粗糙。因此,在某些地方,該鎂質物件之 5表面難以由該氧化物薄膜適當地保護,因此變成易受腐蝕 影響。根據較佳的具體實施例,將該些不溶的粒子製成足 夠小’以保註可在鎂質物件上適合地沉澱及可減低該氧化 物薄膜的表面粗糙度。 幸父佳的是,該陽極化可藉由施加具有電流密度在2安培 1〇 /平方公寸〜5安培/平方公寸範圍的交流電而進行。當電流密 度】於2文培/平方公寸時,該些不溶的粒子根本難以沉殿 或έ雄析(若有的話)。同樣地,小的電流密度較不可能發生 火筅放電。因此,所產生的氧化物薄膜在厚度及密度上趨 向於過小’此對在短時間週期内製造高抗腐蝕性氧化物薄 15 '^冬 膜不利。另一方面,當電流密度大於5安培/平方公寸時, 所產生的氧化物薄膜趨向於具有過度粗糙的表面。因此, S減低4溥膜之抗腐|虫性,而且薄膜的製造成本會由於高 電流密度而增加。 2〇 較佳的是,進行該陽極化的交流電頻率在40赫茲〜80 〇赫茲的範圍。當頻率低於40赫茲時,該些在電解質中不溶 的粒子趨向於會在該鎂質物件中離析。另一方面,當頻率 為高於80赫茲時,該氧化物薄膜的形成速率易於明顯地減 低。 較佳的是,將該用來進行陽極化的電解質溫度保持在 1241362 15°c〜60°C的範圍。溫度低於丨51時, 減少;當溫度高於60t時,合使”::开:成逮率會明顯 粗糙。 3使。亥乳化物薄膜的表面過度 較佳的是,在該電解曾Φ ς ^中之驗金屬氫氧化物濃度範圍 5為25克/立方公寸〜75克 ’ + 0士 ^ L 丁田艰度小於25克/立方公 寸r该些不溶的粒子趨向於會在該沉殿物中離析,且: 膜形成迷铃減低。技度切75克/立方財時,辱 望會有超過當濃产位於γ古 、…、去期 時之進方公寸〜75克/立方公寸範圍 10 較:的是’該電解質可包含一可溶的石夕酸鹽 -之水〉谷液。此物質之水溶液為—種合適用來造成^ 極化所需之火花放電的電解質。 仃 R的疋’在該電解質中該可 為1〇〇克/立方公寸〜⑽/… κ辰度乾圍 15含氧酸么寸,同時在該電解質中的 放電前需要通過過長的時間。另一=開=生任何火花 (即250克/立方公寸及⑼ 彳面’浪度大於最大值 2〇 克方公寸)時並不實際,因為過 里的夕酉欠鹽或含氧酸鹽並無法獲得其它優點。 較佳的是,本發明之方法可進一牛勺人 薄膜上形成-塗佈層的…乂匕3一在該氧化物 播姑粗月人厘斤 ,5亥塗佈層可由有機材料、盔 提二=化物溶膠的至少-種而製得。該塗佈射 杈供保4及裝飾目的。因 问樣地’錄佈層可提供堵塞在該 1241362 氧化薄膜中的孔洞。 根據本發明的第二觀點,已提供一種外罩,其包含: 一由鎂質材料製得的外罩主體;及一在該主體上形成之氧 化物薄膜。該氧化物薄膜可包含由氧化銘、氫氧化铭、二 5 氧化矽、氧化鈦及陶瓷氧化物的至少一種所製得之粒子。 當該薄膜藉由陽極化在該主體上造成成長時,這些粒子會 納入該氧化物薄膜中。 本發明的其它特徵及優點將從提供在下列的詳細說明 且參考至伴隨的圖形而變明顯。 10 圖式簡單說明 第1圖為根據本發明之氧化物薄膜製造方法的程序流 程圖; 第2圖圖式地顯示出一種可使用來執行本發明之方法 的氧化處理設備; 15 第3圖為在不同的電解條件下所產生之氧化薄膜的表 面粗糙度及厚度之圖形; 第4圖為使用不同的電解質所產生之氧化薄膜的厚度 之圖形;及 第5圖為一由鎂質材料製得之可攜帶式電子裝置用的 20 外罩。 L實施方式3 較佳具體實施例之詳細說明 本發明的較佳具體實施例將在下列參考至伴隨的圖形 而描述。 10 1241362 第1圖為一流程圖,其根據本發明的較佳具體實施例闡 明一種陽極氧化物薄膜的製造方法。如將從下列說明而明 暸,本發明之方法可在一由鎂質材料製得之物件上形成一 高抗腐蝕性的陽極氧化物薄膜。在此專利說明書中,“鎂質 材料”指為純金屬或鎂合金。如在流程圖中所顯示,該方法 包括去除油污步驟S11、第一沖洗步驟812、陽極氧化步驟 S13、第二沖洗步驟S14、吹氮步驟si5、塗佈步驟Sl6及烘 烤步驟S17。 鎮合金的實例有Mg-Al合金、Mg-Al_Zn合金、 10 Mg-Al-Mn合金、Mg_Zn-Zr合金、Mg·(稀土元素)合金、 Mg-Zn-(稀土元素)合金等等。更特別的是,它們例如可為 AZ91D合金、AZ31合金、AZ61合金、AM60合金及AM120 合金。這些鎂質材料可製造出如顯示在第5圖之物件或組 件。然後,將所獲得的物件塗佈上_陽極氧化物薄膜。 15 參照第1W之流簡’該陽極氧化物薄膜之製造方法可 以下列方法進行。 在第一步驟su中,讓—鎂質材料物件接受去除油污處 理’其中將該物件浸入丙_槽中然後放進一鹼性處理溶 液。對該祕處理溶液來說,例如可使用碳酸納、氫氧化 納或氫氧化卸。可藉由對欲處理的物件塗佈—表面活性劑 而進行去除油污。此表面活性_實例有十二烧基苯續酸 納。 洗 20 口41362 在第〆及第二步驟S11、S12(共同指為“預備製程,,)後可為/ I虫到步驟& k清潔步驟。該預備製程為可選擇的,例如 當欲處料物件足夠乾料财需要進行。 在第三步驟S13中’讓該欲處理的物件表面接受陽極氧 5化反應。此製程使用-適當的電解質,即一種或多種用來 形成想要的氧化薄膜之試劑的水溶液。根據本發明,該€ 解質車父仏地包含-些不溶的粒子及驗金屬氯氧化物。該薄 膳形成試劑的實例有可溶的矽酸鹽類(諸如矽酸鈉或偏矽 # 酸納)或含氧Μ類(諸如俩三鈉或細_。該可溶的石夕 10酸鹽在《電解質中之濃度範圍為1〇〇〜25〇克/立方公寸。該 含氧酸鹽在該電解質中的濃度範圍為75〜15〇克/立方公 寸。該些不溶於電解質的粒子可例如由氧化紹、 氫氧化鋁、 二氧化石夕、氧化鈦或陶i氧化物製得。該些不溶的粒子之 平均直徑範圍為5奈米〜職米,較佳為不大於5〇〇奈米。該 I5鹼金屬氫氧化物的實例有氫氧化鈉及氫氧化卸。該驗金屬 氫氧化物在該電解質中的濃度範圍為25〜75克/立方公寸。 現在參考至第2圖’其闡明—陽極氧化處理設備。如所 · 顯示’該設備包括-提供有二個(或更多個)電源供應器終端 扣之電源1。將該電源供應器終端之—連接至電極2,同時將 其匕電源供應|§末端連接至由不銹鋼或碳製得之電極3。將 =對的電極2及3浸入電解質4(其已製備成符合上述提到的 需求)中。在此狀態下,在電極2與3之間施加交流電壓,其 電流密度位於2〜5安培/平方公寸的範圍。小於2安培/平方= · 寸的電流密度趨向於防止發生適合的火花放電。此外,^ 12 1241362 10 15 20 著此小電流密度,不溶的粒子根本難以沉澱在物件電極2 上,或會在電極2上不均勻地沉澱或離析。另一方面,當電 流岔度大於5安培/平方公寸時,所產生的氧化物薄膜表面 會變成無法接受地粗糙。將電解質4的溫度調整至例如 15〜60 C的。當溫度低於饥時,氧化物薄膜的形成速 率會過低。當溫度大於的^:時,所產生的氧化物薄膜表面 會k成然法接受地粗糙。施加的電壓頻率範圍例如為扣〜肋 ^兹。當鮮小詞赫糾,該秘雜子趨向於在物件 私木上離析$頻率大於8〇赫兹時,氧化物薄膜的开)成速 ^會明顯變慢。對將該些不溶的粒子均句分散在電解質中 來說,所_的陽極氧化處理設備包括磁㈣ϋ5及旋轉器 $在操作上(如圖所顯示),將旋轉器6放到電解質钟,其 可藉由攪拌器5經由磁力而驅動旋轉。 、 /、 =陽極氧化處理來說,其會在欲處理的物件表面上發 火花放電’藉此想要的氧化薄膜逐漸成長。在其生長期 間’該氧化物薄膜會從電解質甲納入該些不溶的粒子。由 :此’該薄膜的形成速率會比當無包含此不溶的粒子時還 \再者’在電解質中於驗金屬氫氧化物存在下,該薄膜 :,。成速率可更大’且可防止該些不溶的粒子不均句地沉 ,本^明的車乂佳具體實施例中,可在叫〇分鐘内形成 厗度20-40微米的陽極氧化物薄膜。 在第四步職神,將該、_極化的物件電極以流水沖 冼,以移除在電極上殘餘的電解質。 在第五步驟S15中,丨、,& a , — ^ 乂虱氣逆者該物件電極噴出,用以 13 1241362 吹掉或蒸發在電極上的水。上之2料驟s财,將—流體㈣劑料在該物件電極 、、責H 膜上方,此可例如利用旋轉塗佈法、浸 項主佈法、到刀塗佈法或輥塗法來達成 5 一 商業上可購得之有機或無機㈣,或塗佈試劑可為 方法硬化的金屬氧化物溶 膠 藉由溶膠凝膠 在弟七步驟S17中,硬化該已塗佈的塗佈試劑。為此目1241362 Description of the invention: I: Technical field of the inventors] Field of the invention The present invention relates to a method for manufacturing a corrosion-resistant article or a target component made of magnesium (a pure metal) or a magnesium 5 alloy. Method of thin oxide film. The target component may typically be the cover of a notebook computer. The invention also relates to a method for manufacturing a cover by this method. [PRIOR ART I BACKGROUND OF THE INVENTION 10] Recently, housings made of magnesium or magnesium alloys have been widely used to provide electric or electronic appliances such as notebook computers to achieve weight and thickness reduction. This trend is particularly noticeable in the field of so-called mobile notebook computers with a size equal to or smaller than B5-size. In the accompanying figure, Figure 5 shows 15 cases of the outer cover of a portable device made of magnesium material (ie, pure metal magnesium or magnesium alloy). In particular, the illustrated component is an LCD (liquid crystal display) cover for a cover of a notebook computer. As is well known in the art, magnesium materials are excellent thermal conductors. Therefore, when used to make a notebook computer cover, magnesium materials not only contribute to reducing weight and thickness, but also preventing electronic devices from overheating. 20 Magnesium materials are susceptible to oxidation when exposed to air. Therefore, for practical use, the outer cover made of magnesium needs to be subjected to a surface treatment in order to achieve anti-corrosion properties in advance. One of the methods known to provide corrosion resistance is chemical conversion. In the chemical conversion process, a magnesium material is immersed in a chemical tank to form a coating on the material 1241362. However, this method relies on spontaneous chemical reactions that occur on the surface of magnesia materials. Therefore, the degree of freedom in controlling the thickness of the film is significantly restricted. Another disadvantage of this known method is that the thickness of the produced film tends to be thin. Therefore, it is difficult to improve the corrosion resistance on the surface of the magnesia material 5 to a desired degree. 10 Anodization is another well-known method that produces a coating film thicker than the chemical conversion described above. Thicker and denser films are better for improving corrosion resistance. However, because the oxide layer formed by anodization does not allow electricity to pass through, the manufacture of thick films is accompanied by the application of high cakes and long = manufacturing time. This would unduly increase manufacturing costs. 15 JP-A_8 (1996) -167543 and jp_A_ll (i999)-100695 reveal a jp file that can produce thick coatings in a short period of time teaches the anodizing of aluminum surfaces with the electricity used The components teach anodizing of the titanium surface in the electrolyte used. Method of forming a thin film. In particular, the proteolysis contains a dielectric plasmid. On the other hand, the latter JP text contains a metal particle for the purpose of this. It should be noted that the above-mentioned Jp δ u is only a manufacturer of the% polar oxide layer on the surface of aluminum or titanium materials. Magnesium material surface. Furthermore, in the methods of these JP documents (its suggestion is to enter t 胄 ~ —dielectric or metal particles.) Central Asia does not include any [applicable contents] that can be equally applied to magnesium materials. SUMMARY OF THE INVENTION The invention has been suggested in the circumstances described above. Therefore, the purpose of this invention 20 1241362 is shown to provide a method for manufacturing an anodic oxide film or layer with high corrosion resistance on a ballast material, thereby forming an ideal in a short time and at a low manufacturing cost. The desired oxide film. According to a seventh aspect of the present invention, a method for manufacturing an oxide thin film has been provided. The method includes: immersing an object in an electrolyte, the object being made of ore or gold alloy; and forming an oxide film on the object by anodizing in the electrolyte. This electrolyte contains insoluble particles and an alkali metal hydroxide. As the film grows on top of it, the oxide film incorporates the insoluble particles. 10 According to the method described above, an oxide film of an appropriate thickness can be formed on a desired object in a shorter time than conventionally possible, because an oxide film grown on the object can incorporate insoluble particles contained in the electrolyte. With the manufactured oxidized film, the magnesium material object enjoys a great resistance to corrosion. Similarly, manufacturing costs can be reduced due to the shortened film formation time. 15 Furthermore, an electrolyte containing an alkali metal hydroxide can accelerate the oxide film to be manufactured (this excellent effect will be explained in an example to be explained later). Still further, the alkali metal hydroxide is effective in preventing the insoluble particles (local precipitation) incorporated in the oxide film. As a result, a uniform and dense oxide film can be formed in the ballast. 20 Preferably, the insoluble particles can be made from at least one of 4S oxide, hydroxide hydroxide, silicon dioxide, titanium oxide, and ceramic oxide. The average diameter of these particles ranges from 5 nm to 10 microns, and a more preferred range is from 5 nm to 500 nm. In this patent specification, "insoluble particles" refers to the poles that are insoluble in the electrolytic 1241362 shells. When the average diameter of these particles is larger than Ø microns, it is less likely that suitable particles will occur on the town shell ( Or even inappropriate) sinking of particles. In this example, the particle precipitates, if any, can make the surface of the oxide film excessively rough. Therefore, in some places, 5 of the magnesium objects The surface is difficult to be properly protected by the oxide film, and thus becomes susceptible to corrosion. According to a preferred embodiment, the insoluble particles are made small enough to ensure proper precipitation on magnesium objects and The surface roughness of the oxide film can be reduced. Fortunately, the anodization can be performed by applying an alternating current having a current density in the range of 2 amperes 10 / square meter to 5 amperes / square meter. When Current Density] At 2 liters per square inch, these insoluble particles are difficult to sink or analyze (if any). Similarly, a small current density is less likely to cause a fire discharge. Therefore, The resulting oxide film tends to be too small in thickness and density. This is not good for manufacturing a thin 15 '^ winter film with high corrosion resistance in a short period of time. On the other hand, when the current density is greater than 5 amps per square inch As a result, the resulting oxide thin film tends to have an excessively rough surface. Therefore, S reduces the corrosion resistance and insect resistance of the 4 溥 film, and the manufacturing cost of the thin film increases due to the high current density. The frequency of the alternating current for this anodization is in the range of 40 Hz to 80 Hz. When the frequency is lower than 40 Hz, the particles insoluble in the electrolyte tend to segregate in the magnesium object. On the other hand, when the frequency When it is higher than 80 Hz, the formation rate of the oxide film is liable to be significantly reduced. Preferably, the temperature of the electrolyte used for anodization is maintained in the range of 1241362 15 ° c to 60 ° C. The temperature is lower than丨 51, decrease; when the temperature is higher than 60t, the combination of ":: on: success rate" will be significantly rough. 3 make. It is preferable that the surface of the emulsion film is excessively high. The metal hydroxide concentration range 5 in the electrolysis process is 25 g / cm³ ~ 75 g '+ 0 ± ^ L. Dingtian difficulty is less than 25. Grams / cubic inch. The insoluble particles tend to segregate in the sink, and: the film formation of the labyrinth is reduced. When cutting 75 grams per cubic meter of skill, there will be more humiliation than when the concentrated production is located in the γ ancient, ..., when the expiry date is ~ 75 grams per cubic inch, the range is 10: Comparison: 'The electrolyte can contain A soluble oxalate-water> Valley fluid. The aqueous solution of this substance is an electrolyte suitable for causing spark discharge required for polarization.仃 R 疋 'in this electrolyte can be 100 grams / cubic inch ~ ⑽ / ... κ Chendu dry around 15 oxyacids, and it takes too long to discharge in the electrolyte . Another = open = any spark (that is, 250 grams per cubic inch and the wave length of the surface is greater than the maximum value of 20 grams square inches) is not practical, because the salt is too salty or oxyacid Salt does not gain other advantages. Preferably, the method of the present invention can be used to form a coating layer on a cow's spoon film ... The dagger 3 can be thickened in the oxide, and the coating layer can be lifted by organic materials and helmets. Two = at least one species of compound sol. The coated shoot is used for security and decorative purposes. As a result, the 'recording layer' can provide holes clogged in the 1241362 oxide film. According to a second aspect of the present invention, there has been provided a cover including: a cover main body made of a magnesium material; and an oxide film formed on the main body. The oxide thin film may include particles made of at least one of oxide oxide, hydroxide hydroxide, silicon dioxide, titanium oxide, and ceramic oxide. When the film is grown on the body by anodization, the particles are incorporated into the oxide film. Other features and advantages of the present invention will become apparent from the detailed description provided below and with reference to the accompanying drawings. 10 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart of a process for manufacturing an oxide thin film according to the present invention. FIG. 2 schematically shows an oxidation treatment equipment which can be used to perform the method of the present invention. 15 FIG. 3 is Graphs of the surface roughness and thickness of the oxide film produced under different electrolytic conditions; Figure 4 is a graph of the thickness of the oxide film produced using different electrolytes; and Figure 5 is a graph made of magnesium material 20 covers for portable electronics. L Embodiment 3 Detailed Description of Preferred Embodiments Preferred embodiments of the present invention will be described below with reference to accompanying drawings. 10 1241362 FIG. 1 is a flowchart illustrating a method for manufacturing an anodic oxide film according to a preferred embodiment of the present invention. As will be apparent from the following description, the method of the present invention can form an anodic oxide film having a high corrosion resistance on an article made of a magnesium material. In this patent specification, "magnesium material" means a pure metal or a magnesium alloy. As shown in the flowchart, the method includes a degreasing step S11, a first washing step 812, an anodizing step S13, a second washing step S14, a nitrogen blowing step si5, a coating step S16, and a baking step S17. Examples of the ballast alloy are Mg-Al alloy, Mg-Al_Zn alloy, 10 Mg-Al-Mn alloy, Mg_Zn-Zr alloy, Mg · (rare earth element) alloy, Mg-Zn- (rare earth element) alloy, and the like. More specifically, they can be, for example, AZ91D alloy, AZ31 alloy, AZ61 alloy, AM60 alloy, and AM120 alloy. These magnesium materials can be used to make objects or components as shown in Figure 5. Then, the obtained article was coated with an anodic oxide film. 15 With reference to the flow chart of 1W ', the method for manufacturing the anodic oxide film can be performed in the following manner. In the first step su, the magnesium material object is subjected to degreasing treatment, wherein the object is immersed in a propylene tank and then put into an alkaline treatment solution. For this solution, for example, sodium carbonate, sodium hydroxide or hydroxide can be used. Degreasing can be performed by applying a surfactant to the object to be treated. An example of this surface activity is sodium dodecylbenzoate. Wash 20 mouths 41362 After the first and second steps S11, S12 (commonly referred to as "preparation process,") can be / I to step & k cleaning step. This preparation process is optional, such as when you want to The material needs to be dry enough. In the third step S13, the surface of the object to be treated is subjected to an anodic oxidation reaction. This process uses a suitable electrolyte, that is, one or more kinds of oxides used to form the desired oxide film. An aqueous solution of the reagent. According to the present invention, the decomposed carpenter contains some insoluble particles and metal chlorides. Examples of the thin meal forming reagent are soluble silicates such as sodium silicate Or silicon meta # sodium acid) or oxygen M type (such as two trisodium or fine _. The concentration of the soluble Shixi 10 acid salt in the electrolyte is 100 ~ 25 g / cubic meter. The concentration of the oxo acid salt in the electrolyte ranges from 75 to 150 g / cm³. The electrolyte-insoluble particles can be made of, for example, oxide, aluminum hydroxide, stone dioxide, titanium oxide, or ceramic. Made of oxide. The average diameter of these insoluble particles is 5 nanometers ~ 1 meter, preferably not more than 500 nanometers. Examples of the I5 alkali metal hydroxide are sodium hydroxide and hydroxide. The concentration of the test metal hydroxide in the electrolyte ranges from 25 to 75. Grams / cubic inch. Now refer to Figure 2 for its explanation-anodizing equipment. As shown · This equipment includes-power supply 1 provided with two (or more) power supply terminal buckles. The terminal of this power supply is connected to the electrode 2 while the end of its power supply is connected to the electrode 3 made of stainless steel or carbon. The electrodes 2 and 3 of the pair are immersed in the electrolyte 4 (which has been prepared to meet The requirements mentioned above). In this state, an AC voltage is applied between electrodes 2 and 3, and its current density is in the range of 2 to 5 amps per square inch. Current density less than 2 amps per square = · inch It tends to prevent a suitable spark discharge from occurring. In addition, ^ 12 1241362 10 15 20 With this small current density, insoluble particles are difficult to precipitate on the object electrode 2 at all, or they may precipitate or segregate unevenly on the electrode 2. Another In terms of current divergence, At 5 amps per square inch, the surface of the resulting oxide film becomes unacceptably rough. The temperature of the electrolyte 4 is adjusted to, for example, 15 to 60 C. When the temperature is lower than hunger, the oxide film formation rate It will be too low. When the temperature is higher than ^ :, the surface of the resulting oxide film will be rough and acceptably rough. The frequency range of the applied voltage is, for example, buckle ~ rib ^. When the small word He correction, the secret The heterodyne tends to be isolated on the private wood of the object. When the frequency is greater than 80 Hz, the opening speed of the oxide film will be significantly slower. For the insoluble particles to be dispersed in the electrolyte, all _ The anodic oxidation treatment equipment includes a magnetic rotor 5 and a rotator (as shown in the figure). The rotator 6 is placed on the electrolyte clock, which can be rotated by the stirrer 5 through magnetic force. , /, = For the anodizing treatment, it will cause a spark discharge on the surface of the object to be treated, thereby gradually growing the desired oxide film. During its growth period, the oxide film will incorporate these insoluble particles from the electrolyte A. From: ‘The film is formed at a faster rate than when no such insoluble particles are included. Furthermore, the film is in the presence of a metal hydroxide in the electrolyte:,. The formation rate can be larger 'and can prevent these insoluble particles from sinking unevenly. In the specific embodiment of the present invention, an anodic oxide film with a degree of 20-40 microns can be formed within 0 minutes. . In the fourth step, the god of spirits rinses the polarized object electrode with running water to remove the residual electrolyte on the electrode. In the fifth step S15, the electrode of the object is ejected from the object gas for blowing off or evaporating water on the electrode. The second step is to deposit the fluid eluent on the object electrode and the film. This can be achieved by, for example, spin coating method, dipping main cloth method, knife coating method or roller coating method. Reach 5 A commercially available organic or inorganic rhenium, or a coating reagent may be a method-hardened metal oxide sol. The coated coating reagent is hardened by a sol-gel in step S17. For this purpose

的’將該已塗佈該塗佈試劑的物件電極保持在室溫下約十 分鐘,然後在約靴的烘箱中加熱3〇_6〇分鐘。如此獲得 之塗佈層可保護該陽極氧化物薄膜不受物理損傷,同時亦 可使該物件電極有光澤。當無需此塗佈層時,可 驟S16及S17。The electrode of the object to which the coating reagent has been applied is kept at room temperature for about ten minutes, and then heated in an oven for about 30 to 60 minutes. The coating layer thus obtained can protect the anodic oxide film from physical damage, and at the same time, can make the object electrode shiny. When this coating is not required, steps S16 and S17 can be performed.

根據如上述提到之本發明的陽極氧化物薄膜製造方 法,该在鎮質材料上的氧化物薄膜可納入分散在電解 15而^其附近的不溶粒子。因此,可在比當使用由無包含此 ^谷粒子所製得之電解質時還短的時間週期内獲得想要的 厚度之氧化物薄膜。獲得想要的薄膜厚度所花費之時間仍 然可有利地藉由將鹼金屬氫氧化物加入該電解質而縮短。 再者,加入鹼金屬氫氧化物可促進該些不溶的粒子均勻地 2〇 ’儿焱,因此可防止該些沉澱的粒子離析。根據本發明,其 V在標的物件上產生_均勻緻密的氧化物薄膜。 現在,將在下列描述數個實例及一比較樣品。 &lt;電解質製備&gt; 14 1241362 製備一包含1 〇〇克/立方公寸(每升克)的鋁酸鈉(可從關 東化學(Kanto Kagaku)購得)、25克/立方公寸的氫氧化鈉(可 從瓦扣純化學工業(Wako Pure Chemical Industries)購得)及 10%的氫氧化紹(可從瓦扣純化學工業購得)之電解質。 5 &lt;氧化薄膜形成程序&gt; 讓鎮合金AZ31板(可從東洋標記(Toyo Mark)構得;尺 寸為70毫米χ20毫米xl .5毫米)接受去除油污(第i圖的su) 及第一沖洗(S12)。然後,如第2圖所顯示的方法,將該板子 與相關的由不録鋼SUS-304製得之板子一起浸入所製備的 10 電解質中。對該AZ31板及SUS-304板施加交流電壓(電流密 度· 4安培/平方公寸)10分鐘。此時,操作該磁授拌器,以 400rpm(每分鐘的轉數)的速率攪拌該電解質,將該電解質 的溫度保持在30°C。之後,將AZ31板從該電解質中取出, 以流水沖洗(第二沖洗S14)。然後,吹氮氣乾燥該aZ31板 15 (S15)。結果,該AZ31板會塗佈上一包含氫氧化銘的氧化物 薄膜。所產生的薄膜厚度為30微米。 實例2 &lt;電解質製備&gt; 製備一包含200克/立方公寸之偏矽酸鈉(可從瓦扣純化 20學工業購得)、50克/立方公寸之氫氧化鈉(可從瓦扣純化學 工業購得)及10%的氧化鋁(可從古内化學(Furuuchi Chemical)購得)之電解質。 &lt;氧化薄膜形成程序&gt; 將一鎮合金AZ31板(可攸東洋標記賭得,尺寸為7〇毫米 15 1241362 χ20毫米χ1·5耄米)接受去除油污(su在第i圖)及第一沖洗 (S12)。然後,如第2圖所顯示之方法,將該板子與相關的由 不銹鋼SUS-304製得之板子一起浸入所製備的電解質中。對 該AZ31板及SUS-304板施加交流電壓(電流密度:4安培/平 5方公寸)10分鐘。此時,操作該磁攪拌器,以400rpm的速率 攪拌該電解質,將該電解質的溫度保持在3(rc。之後,將 該AZ31板從電解質中取出,以流水沖洗(第二沖洗S14)。然 後,吹氮氣乾燥該AZ31板(S15)。再者,將該AZ31板浸入 一無機塗佈試劑,或無熱玻璃(可從大橋化學工業(〇hashi 10 Chemical Industries)購得;商品名稱GS-600-1 型式BC),並 以3公尺/秒之速率將其從該塗佈試劑中取出。然後,在保 持於室溫下30分鐘後,在120°C的烘箱中乾燥該AZ31板60 分鐘。因此,可在AZ31板上之氧化物薄膜上方形成一塗佈 層。該氧化物薄膜的厚度為30微米且包含氧化鋁。 15 實例3-6及比較的樣品 &lt;電解質製備&gt; 對實例3-6來說,製備一包含200克/立方公寸的偏矽酸 鈉(可從瓦扣純化學工業購得)、50克/立方公寸的氫氧化鈉 (可從瓦扣純化學工業購得)及5%的氧化鋁(可從古内化學 20 購得)之電解質。另一方面,對比較的樣品來說,製備一包 含200克/立方公寸的偏矽酸鈉(可從瓦扣純化學工業購得) 之電解質。 &lt;氧化薄膜形成程序&gt; 對每個實例及比較樣品來說’讓一鎮合金AZ3 1板(可從 16 1241362 東洋標記購得;尺寸為70毫米χ20毫米χΐ·5毫米)接受去除油 污(第1圖中的sii)及第一沖洗(S12)。然後,如第2圖所顯示 之方法,將該板子與相關的由不銹鋼SUS-304所製得之板子 一起浸入已製備可用於實例3-6或比較的樣品之電解質 5中。將該些電解質的溫度保持在3〇t:。利用磁攪拌界,以 400rpm的速率攪拌該電解質。依實例或比較的樣品而定, 使用下列電流密度及處理時間(即電壓施加時間)來形成氧 化物薄膜。特別是,對實例3來說,電流密度為2安培/平方 公寸及處理時間為15分鐘。實例4之電流密度為2安培/平方 10公寸及處理時間為30分鐘。實例5之電流密度為4安培/平方 公寸及處理時間為7.5分鐘。實例6之電流密度為8安培/平方 公寸及處理時間為3.8分鐘。對比較的樣品來說,電流密度 為2安培/平方公寸及處理時間為15分鐘。在進行施加電壓 丰又才曰疋的日守間後,將該AZ31板伙该電解質中取出,然後 15以流水沖洗(S14)。利用吹氮氣乾燥該經沖洗的板子(S15)。 〈所製造的氧化薄膜之評估&gt; 第3圖為一由實例3_6所製造之氧化物薄膜的相對厚度 及相對表面粗糙度圖形。特別是,在圖形中,樣品及實例 3-6的各別氧化物薄膜厚度(參見黑色點)表示為樣品的薄膜 2〇厚度之相對值。(因此,樣品的相對薄膜厚度為丨)。另一方 面’每個實例的表面粗糙度則由蔭色長條表示。表面粗糙 度亦為一相對值,其可藉由與由鎂質材料製得之未加工的 參考板比較而獲得。在圖形中,參考板具有一單位表面粗 才造度(即1)而由最右邊的長條描出。 17 1241362 如從圖形中看見,實例3(其使用包含氧化姉子及氣 年^化_電解質)的氧化物薄膜厚度比比較的樣品(其使用 =包含敦化峰子或氫氧化鈉的電解質)厚約五倍。如上述 提及,貫例3及比較的樣品二者之電壓施加時間皆為⑽ 名里此思明著貫例3之氧化物薄膜形成速率比比較的樣品快 j五倍。再者,圖形顯示出較大的電流密度反應出較快的 薄膜形成速率(參見實例3、5及6),域獲得的氧化物薄膜 有較大的表面粗縫度。特別是,實例6的表面粗糙度大於無 塗佈的參考板(其為無法接受的)五倍。如從實例3及4看見, 車又長的溥膜形成時間(電壓施加時間)會增加氧化物薄膜的 表面粗糙度。 實例7及8 &lt;電解質製備&gt; 對實例7來說,製備一包含2〇〇克/立方公寸的偏矽酸鈉 15 (可從瓦扣純化學工業購得)及5%的氧化鋁(可從古内化學 購得)之電解質。對實例8來說,製備一包含2〇〇克/立方公寸 的偏矽酸鈉(可從瓦扣純化學工業購得)、5〇克/立方公寸的 氫氧化鈉(可從瓦扣純化學工業購得)及5%的氧化鋁(可從 古内化學購得)之電解質。 20 &lt;氧化薄膜形成程序&gt; 對每個實例7及8來說,讓一鎂合金AZ31板(可從東洋標 記購得;尺寸為70毫米x2〇毫米χΐ.5毫米)接受去除油污(第1 圖之S11)及第一沖洗(S12)。然後,如第2圖所顯示的方法, 將該板子與相關的由不銹鋼SUS-304製得之板一起浸入該 1241362 已製備的電解質中。對該AZ31板及SUS-304板施加交流電 壓(電流密度:2安培/平方公寸)15分鐘。此時,操作磁授掉 器,以40〇rpm的速率攪拌該電解質,將該電解質的溫度保 持在30°C。之後,將AZ31板從電解質中取出,且以流水沖 5洗(第二沖洗S14)。然後,將該AZ31板以氮氣吹乾(S15)。 &lt;所產生的氧化薄膜之評估&gt; 第4圖為一圖形,其顯示出實例7及實例8的氧化物薄膜 厚度’其表示出與實例7之厚度比較(因此實例7的相對厚度 為1)。如從圖形中看見,將氫氧化鈉加人至電解f(實例〗 · 1°可使得薄膜厚度比在相同電壓施加時間下無進行加入的 (實例7)還大3.67倍。 本發明因此已經說明,可明瞭的是相同的事件可在許 多方面變化。此些變化不視為離開本發明之精神及範圍, 如將由熟知此技藝之人士明瞭,此些改質全部意欲包含在 15下列申請專利範圍的範圍中。 【圖簡日月】 第1圖為根據本發明之氧化物薄膜製造方法的程序&amp; · 程圖; Μ 第2圖圖式地顯示出—種可使用來執行本發明之方法 2〇 的氧化處理設備; 彳 第3圖為在不同的電解條件下所產生之氧化薄膜的表 面粗糙度及厚度之圖形; 第4圖為使用不同的電解質所產生之氧化薄膜的厚&amp; . 之圖形;及 19 1241362 第5圖為一由鎂質材料製得之可攜帶式電子裝置用的 外罩。 【圖式之主要元件代表符號表】 1…電源 4...電解質 2···電極 5…磁攪拌器 3··.電極 6...旋轉器 20According to the method for manufacturing an anodic oxide film of the present invention as mentioned above, the oxide film on the ballast material can incorporate insoluble particles dispersed in the vicinity of the electrolyte. Therefore, an oxide film of a desired thickness can be obtained in a shorter period of time than when an electrolyte prepared from particles containing no such particles is used. The time it takes to obtain the desired film thickness can still be advantageously shortened by adding an alkali metal hydroxide to the electrolyte. Furthermore, the addition of an alkali metal hydroxide can promote the uniform dissolution of these insoluble particles, and thus can prevent the precipitated particles from segregating. According to the present invention, it produces a uniform and dense oxide film on the object. Several examples and a comparative sample will now be described below. &lt; Electrolyte preparation &gt; 14 1241362 Prepare a sodium aluminate (commercially available from Kanto Kagaku) containing 100 g / cubic inch (per gram), 25 g / cubic inch of hydroxide An electrolyte of sodium (available from Wako Pure Chemical Industries) and 10% hydroxide (available from Wako Pure Chemical Industries). 5 &lt; Procedure for forming oxide film &gt; Let the town alloy AZ31 plate (constructed from Toyo Mark; size 70 mm x 20 mm x 1.5 mm) accept degreasing (su in figure i) and first Rinse (S12). Then, as shown in Fig. 2, the board was immersed in the prepared 10 electrolyte together with the related board made of stainless steel SUS-304. An AC voltage (current density · 4 amps / square inch) was applied to the AZ31 board and the SUS-304 board for 10 minutes. At this time, the magnetic stirrer was operated, the electrolyte was stirred at a rate of 400 rpm (revolutions per minute), and the temperature of the electrolyte was maintained at 30 ° C. After that, the AZ31 plate was taken out of the electrolyte and rinsed with running water (second rinse S14). Then, the aZ31 plate 15 was dried by blowing nitrogen (S15). As a result, the AZ31 board is coated with an oxide film containing a hydroxide hydroxide. The resulting film was 30 microns thick. Example 2 &lt; Preparation of Electrolyte &gt; Preparation of a sodium metasilicate containing 200 g / cm3 (available from Waco Purification 20 Gakko), 50 g / cm3 of sodium hydroxide (available from Waco Pure Chemical Industry) and 10% alumina (available from Furuchi Chemical) electrolytes. &lt; Procedure for forming oxide film &gt; A town of AZ31 alloy plate (available from Toyo Mark, size 70mm 15 1241362 χ20mm χ1 · 5mm) was degreased (su in figure i) and first Rinse (S12). Then, as shown in Fig. 2, the board was immersed in the prepared electrolyte together with the related board made of stainless steel SUS-304. AC voltage (current density: 4 amps / square meter 5 square inches) was applied to the AZ31 board and the SUS-304 board for 10 minutes. At this time, the magnetic stirrer was operated, the electrolyte was stirred at a rate of 400 rpm, and the temperature of the electrolyte was maintained at 3 (rc.) After that, the AZ31 plate was taken out of the electrolyte and rinsed with running water (second rinse S14). , Blowing nitrogen to dry the AZ31 board (S15). Furthermore, the AZ31 board is immersed in an inorganic coating reagent, or heat-free glass (available from Ohashi 10 Chemical Industries; trade name GS-600 -1 type BC) and remove it from the coating reagent at a rate of 3 meters / second. Then, after keeping at room temperature for 30 minutes, the AZ31 board was dried in an oven at 120 ° C for 60 minutes Therefore, a coating layer can be formed over the oxide film on the AZ31 plate. The thickness of the oxide film is 30 microns and contains alumina. 15 Examples 3-6 and Comparative Samples &lt; Electrolyte Preparation &gt; For Examples For 3-6, prepare a sodium metasilicate containing 200 g / cm3 (available from Waco Pure Chemical Industries), 50 g / cm3 sodium hydroxide (available from Waco Pure Chemical Industries) Commercially available) and 5% alumina (available from Gunai Chemical 20) On the other hand, for the comparative sample, an electrolyte containing 200 g / cm³ of sodium metasilicate (commercially available from Waco Pure Chemical Industries) was prepared. &Lt; Oxidation film formation procedure &gt; For each For an example and comparative sample, 'Let a town of alloy AZ3 1 plate (available from 16 1241362 Toyo Mark; size 70mm x 20mm x ΐ 5mm) accept degreasing (sii in Figure 1) and the first Rinse (S12). Then, as shown in Figure 2, the board is immersed with the relevant board made of stainless steel SUS-304 into the electrolyte 5 which has been prepared for use in Examples 3-6 or comparative samples. Keep the temperature of these electrolytes at 30t: Use a magnetic stirring boundary to stir the electrolyte at a rate of 400 rpm. Depending on the example or the comparative sample, use the following current density and processing time (ie, voltage application time) to An oxide film was formed. In particular, for Example 3, the current density was 2 amps / square inch and the processing time was 15 minutes. Example 4 had a current density of 2 amps / square inch and the processing time was 30 minutes. Current of Example 5 The degree is 4 amps / square inch and the processing time is 7.5 minutes. The current density of Example 6 is 8 amperes / square inch and the processing time is 3.8 minutes. For the comparative sample, the current density is 2 amperes / square inch. And the treatment time is 15 minutes. After the application of the voltage and voltage, the AZ31 board is taken out of the electrolyte, and then rinsed with running water (S14). The rinsed board is dried by blowing nitrogen. (S15). <Evaluation of manufactured oxide film> Figure 3 is a graph of the relative thickness and relative surface roughness of the oxide film manufactured in Example 3-6. In particular, in the graph, the thicknesses of the respective oxide films of the samples and Examples 3-6 (see the black dots) are shown as the relative values of the thickness of the thin films of the samples. (Thus, the relative film thickness of the sample is 丨). On the other hand, the surface roughness of each example is indicated by shaded bars. The surface roughness is also a relative value, which can be obtained by comparison with a raw reference plate made of a magnesium material. In the figure, the reference plate has a unit surface roughness (ie, 1) and is depicted by the rightmost bar. 17 1241362 As can be seen from the figure, the thickness of the oxide film of Example 3 (which uses an oxidation sister and a gas_electrolyte) is thicker than that of the comparative sample (which uses an electrolyte containing Dunhua peaks or sodium hydroxide) Five times. As mentioned above, the voltage application time of both the Example 3 and the comparative sample is five times faster than that of the comparative sample. Furthermore, the graph shows that a larger current density reflects a faster film formation rate (see Examples 3, 5, and 6), and the oxide film obtained by the domain has a larger surface roughness. In particular, the surface roughness of Example 6 was five times greater than the uncoated reference plate, which was unacceptable. As seen from Examples 3 and 4, the long film formation time (voltage application time) of the vehicle increases the surface roughness of the oxide film. Examples 7 and 8 &lt; Electrolyte preparation &gt; For Example 7, a sodium metasilicate 15 (commercially available from Waco Pure Chemical Industries) containing 200 g / cm³ and 5% alumina was prepared. Electrolyte (available from Gunai Chemical). For Example 8, a sodium metasilicate (commercially available from Waco Pure Chemical Industries) containing 200 g / cm3 and sodium hydroxide (available from Waco) was prepared. Pure Chemical Industry) and 5% alumina (available from Gunai Chemical) electrolytes. 20 &lt; Procedure for forming oxide film &gt; For each of Examples 7 and 8, a magnesium alloy AZ31 plate (commercially available from Toyo Mark; dimensions 70 mm x 20 mm x 5 mm) was subjected to degreasing (section 1 (S11) and the first rinse (S12). Then, as shown in Fig. 2, the plate was immersed in the prepared electrolyte of 1241362 together with the related plate made of stainless steel SUS-304. An AC voltage (current density: 2 amps / square inch) was applied to the AZ31 board and the SUS-304 board for 15 minutes. At this time, the magnetic feeder was operated, the electrolyte was stirred at a rate of 40 rpm, and the temperature of the electrolyte was maintained at 30 ° C. After that, the AZ31 plate was removed from the electrolyte and washed with running water for 5 seconds (second rinse S14). Then, the AZ31 plate was blow-dried with nitrogen (S15). &lt; Evaluation of the produced oxide film &gt; Figure 4 is a graph showing the thickness of the oxide films of Examples 7 and 8 'which shows the comparison with the thickness of Example 7 (the relative thickness of Example 7 is therefore 1 ). As can be seen from the figure, adding sodium hydroxide to the electrolytic f (Example) · 1 ° can make the film thickness 3.67 times larger than that which was not added under the same voltage application time (Example 7). The invention has thus been explained It is clear that the same event can be changed in many ways. These changes are not considered to depart from the spirit and scope of the present invention. As will be clear to those skilled in the art, these modifications are all intended to be included in the scope of the following 15 patent applications [Schematic diagram of the sun and the moon] Figure 1 is a program &amp; process diagram of the method for manufacturing an oxide thin film according to the present invention; Figure 2 schematically shows a method that can be used to perform the present invention 20 oxidation equipment; 彳 Figure 3 is a graph of the surface roughness and thickness of the oxide film produced under different electrolytic conditions; Figure 4 is the thickness &amp; of the oxide film produced using different electrolytes. Figures; and 19 1241362 Figure 5 is an outer cover for a portable electronic device made of magnesium material. [Key components of the figure represent the symbol table] 1 ... power source 4 ... electrolyte 2 ... electricity 3 ... 5 ... magnetic stirrer. Rotator electrode 6 ... 20

Claims (1)

1241362 4 ^ 1 94,,-· 拾、申請專利範圍·· 第92120828號專利巾請”請專利範圍修正本 ^ 修正曰期:94年4月 L 一種氧化物_的製造方法,該方法包括·· ;物件π入電解質中,該物件由鎂或鎂合金製 得;及 牡琢電解質中藉由陽極化在該物件上形成一氧化 物薄膜; 10 15 20 ’、中心解質包含不溶的粒子及驗金屬氫氧化物。 2·如^專利範圍第1項之方法’其中該不溶的粒子由氧 鋁氫氧化紹、二氧化砂、氧化鈦及陶:是氧化物的至 少一種製得。 3·如申5月專利範圍第1之方法,其中該不溶的粒子之平 均直徑範圍為5奈米〜1〇微米。 •如申μ專利範圍第1項之方法,其中該不溶的粒子之平 均直徑範圍為5奈米〜500奈米。 5·如申請專利範圍第丨項之方法,其中該陽極化藉由施加 ”有”拔度在2安培/平方公寸〜5安培/平方公寸的範 圍之交流電而進行。 申。月專利feu第丨項之方法,其中該交流電之頻率 圍為40赫茲〜80赫茲。 、巳 7.如申請專利範圍第1項之方法,其中將來進行陽極 化的電解質之溫度範圍保持在15。〇6代。 申明專利乾圍第1項之方法,其中該鹼金屬氫氧化物 1 1241362 在電解質中的濃度範圍為25克/立方公寸〜75克/立方公 寸。 9.如申請專利範圍第1項之方法,其中該電解質包含一可 溶的矽酸鹽或含氧酸鹽之水溶液。 5 10·如申請專利範圍第9項之方法,其中該可溶的矽酸鹽在 電解質中之濃度範圍為100克/立方公寸〜250克/立方公 寸。 11.如申請專利範圍第9項之方法,其中該含氧酸鹽在電解 質中之濃度範圍為75克/立方公寸〜150克/立方公寸。 10 12.如申請專利範圍第1項之方法,更包含一在該氧化物薄 膜上形成一塗佈層的步驟,該塗佈層由有機材料、無機 材料及金屬氧化物溶膠的至少一種製得。 13. —種外罩,其包含: 一由鎂質材料製得之外罩主體;及 15 一在該主體上形成之氧化物薄膜; 其中該氧化物薄膜係藉由使用一含有不溶的粒子 及鹼金屬氫氧化物之電解質來陽極化而形成,該不溶的 粒子係由下列之至少一者製得··氧化鋁、氫氧化鋁、二 氧化碎、氧化鈦及陶瓷氧化物。1241362 4 ^ 1 94 ,,-· Pick up, apply for patent scope ·· Patent No. 92120828 Please ask for revision of the patent scope ^ Revision date: April 1994 L A method for manufacturing oxides, the method includes · ·; The object π is inserted into the electrolyte, the object is made of magnesium or a magnesium alloy; and an oxide film is formed on the object by anodizing in the electrolyte; 10 15 20 ', the center solution contains insoluble particles and Examine the metal hydroxide. 2. The method according to item 1 of the patent scope, wherein the insoluble particles are prepared from oxyaluminum hydroxide, sand dioxide, titanium oxide, and ceramic: at least one of oxides. 3. For example, the method of claiming the first patent range in May, wherein the average diameter of the insoluble particles ranges from 5 nanometers to 10 microns. 5 nanometers to 500 nanometers. 5. The method according to item 丨 of the patent application range, in which the anodization is performed by applying the “yes” pullout in the range of 2 amps / square inch to 5 amps / square inch. With alternating current. The method according to item Feu, wherein the frequency of the alternating current ranges from 40 Hz to 80 Hz. 巳 7. The method according to item 1 of the patent application range, wherein the temperature range of the electrolyte to be anodized in the future is maintained at 15. 6. The method of claiming patent claim No. 1 wherein the concentration of the alkali metal hydroxide 1 1241362 in the electrolyte ranges from 25 grams / cubic inch to 75 grams / cubic inch. The method according to item 1, wherein the electrolyte comprises a soluble silicate or an oxo acid-containing aqueous solution. 5 10. The method according to item 9 of the patent application scope, wherein the concentration of the soluble silicate in the electrolyte The range is from 100 grams / cubic inch to 250 grams / cubic inch. 11. The method according to item 9 of the patent application, wherein the concentration of the oxo acid salt in the electrolyte ranges from 75 grams / cubic inch to 150 grams 10. The method according to item 1 of the scope of patent application, further comprising a step of forming a coating layer on the oxide film, the coating layer being composed of organic materials, inorganic materials, and metal oxide sols. Made of at least one. 13. An outer cover comprising: an outer cover body made of a magnesium material; and 15 an oxide film formed on the main body; wherein the oxide film is formed by using an insoluble particle and an alkali metal The hydroxide electrolyte is formed by anodizing. The insoluble particles are made of at least one of the following: alumina, aluminum hydroxide, titanium dioxide, titanium oxide, and ceramic oxide.
TW092120828A 2002-08-30 2003-07-30 Method of making oxide film by anodizing magnesium material TWI241362B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253692A JP2004091852A (en) 2002-08-30 2002-08-30 Method for forming highly corrosion resistant anodically oxidized film to magnesium material and cabinet made of magnesium material formed thereby

Publications (2)

Publication Number Publication Date
TW200404919A TW200404919A (en) 2004-04-01
TWI241362B true TWI241362B (en) 2005-10-11

Family

ID=31972804

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092120828A TWI241362B (en) 2002-08-30 2003-07-30 Method of making oxide film by anodizing magnesium material

Country Status (5)

Country Link
US (1) US20040040854A1 (en)
JP (1) JP2004091852A (en)
KR (1) KR20040019886A (en)
CN (1) CN1487124A (en)
TW (1) TWI241362B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082218A1 (en) * 2005-02-04 2006-08-10 Siemens Aktiengesellschaft Surface comprising a microstructure that reduces wettability and method for the production thereof
JP4125765B2 (en) * 2006-09-28 2008-07-30 日本パーカライジング株式会社 Method of coating ceramic film of metal, electrolytic solution used therefor, ceramic film and metal material
KR100962418B1 (en) * 2009-08-25 2010-06-14 주식회사 위스코하이텍 Plasma electrolysing oxcidation solution for mg alloys goods
US10214827B2 (en) 2010-05-19 2019-02-26 Sanford Process Corporation Microcrystalline anodic coatings and related methods therefor
US8609254B2 (en) 2010-05-19 2013-12-17 Sanford Process Corporation Microcrystalline anodic coatings and related methods therefor
US8512872B2 (en) * 2010-05-19 2013-08-20 Dupalectpa-CHN, LLC Sealed anodic coatings
KR101200526B1 (en) * 2010-06-09 2012-11-13 주식회사 엔유씨전자 Method for surface treating available the metallic effect
CN101892507B (en) * 2010-07-29 2012-02-22 南昌航空大学 Method for improving growth speed of titanium alloy microarc oxide film
CN103945965B (en) * 2011-11-29 2016-05-18 昭和电工株式会社 The manufacture method of tungsten fine powder
KR101333408B1 (en) * 2012-01-31 2013-11-28 영남대학교 산학협력단 Manufacturing Method of Conductive Magnesium Oxide Thin Layer
US20130221816A1 (en) * 2012-02-24 2013-08-29 Htc Corporation Casing of electronic device and method of manufacturing the same
WO2016068838A1 (en) * 2014-10-27 2016-05-06 Hewlett-Packard Development Company, L.P. Magnesium alloy substrate
CN106637183A (en) * 2016-11-10 2017-05-10 西安工业大学 Preparing method for composite coating integrating photocatalysis and protection performance of magnesium alloy surface

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319974B2 (en) * 1972-10-04 1978-06-23
US5147515A (en) * 1989-09-04 1992-09-15 Dipsol Chemicals Co., Ltd. Method for forming ceramic films by anode-spark discharge
US5275713A (en) * 1990-07-31 1994-01-04 Rudolf Hradcovsky Method of coating aluminum with alkali metal molybdenate-alkali metal silicate or alkali metal tungstenate-alkali metal silicate and electroyltic solutions therefor
US6335099B1 (en) * 1998-02-23 2002-01-01 Mitsui Mining And Smelting Co., Ltd. Corrosion resistant, magnesium-based product exhibiting luster of base metal and method for producing the same

Also Published As

Publication number Publication date
CN1487124A (en) 2004-04-07
KR20040019886A (en) 2004-03-06
US20040040854A1 (en) 2004-03-04
JP2004091852A (en) 2004-03-25
TW200404919A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
TWI241362B (en) Method of making oxide film by anodizing magnesium material
Mazhar et al. The role of chloride ions and pH in the corrosion and pitting of Al–Si alloys
JPH10510881A (en) Cleaning of aluminum products
KR101476235B1 (en) Method for surface treatment of magnesium material using plasma electrolytic oxidation, anodic films formed on magnesium thereby and solution for surface treatment of magnesium material used for plasma electrolytic oxidation
JPH0747826B2 (en) How to plate on titanium
CN108385150A (en) A kind of laminated film and preparation method thereof
Fernández-López et al. Corrosion and tribocorrosion protection of novel PEO coatings on a secondary cast Al-Si alloy: Influence of polishing and sol-gel sealing
JP2006348368A (en) Method for surface treating aluminum and aluminum alloy
JPH04263100A (en) Method for electrolyzing to separate metal film from titanium base metal supporting body
JP2008190033A (en) Peeling liquid for anodized film and peeling method of anodized film
TW200939327A (en) Chemical treatment to reduce machining-induced sub-surface damage in semiconductor processing components comprising silicon carbide
WO2002028838A2 (en) Magnesium anodisation system and methods
JP2004538375A (en) Magnesium anodizing system and method
JP2000144491A (en) ANODIC OXIDATION TREATING METHOD FOR Si ALUMINUM ALLOY
JP4918342B2 (en) Copper foil roughening treatment method
JPH08176852A (en) Surface roughening liquid etchant for pretreatment to plate titanium and titanium alloy with platinum and surface roughening etching method for platinum plating pretreatment
JP3941649B2 (en) Aluminum substrate and surface treatment method thereof
JPH10265974A (en) Liquid etchant for pretreating titanium or titanium alloy to be plated and pretreatment of titanium or titanium alloy to be plated
CN114086181B (en) Etching solution and method for preparing aluminum alloy workpiece
JP2000054153A (en) Formation of electrode in electronic parts
WO2003009321A1 (en) Aluminum foil for electrolytic capacitor
JPH01184296A (en) Method for forming anodic oxidation film to aluminum or aluminum alloy
Guo et al. Effect of current density on mechanism of micro-arc oxidization and property of ceramic coating formed on magnesium alloys
Mutlu et al. Enhanced corrosion resistance and surface characterization of anodized 7075 Al
JP2004277866A (en) Sealing treatment method for aluminum or aluminum alloy

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees