JP2005502968A - 共同的なフィルタリングを含む4方の推薦方法及びシステム - Google Patents
共同的なフィルタリングを含む4方の推薦方法及びシステム Download PDFInfo
- Publication number
- JP2005502968A JP2005502968A JP2003528021A JP2003528021A JP2005502968A JP 2005502968 A JP2005502968 A JP 2005502968A JP 2003528021 A JP2003528021 A JP 2003528021A JP 2003528021 A JP2003528021 A JP 2003528021A JP 2005502968 A JP2005502968 A JP 2005502968A
- Authority
- JP
- Japan
- Prior art keywords
- data
- viewing
- viewer
- group
- viewing data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000004590 computer program Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 abstract description 6
- 230000009471 action Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 230000003993 interaction Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 238000003066 decision tree Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/4661—Deriving a combined profile for a plurality of end-users of the same client, e.g. for family members within a home
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/251—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/252—Processing of multiple end-users' preferences to derive collaborative data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/258—Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
- H04N21/25866—Management of end-user data
- H04N21/25891—Management of end-user data being end-user preferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/442—Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
- H04N21/44213—Monitoring of end-user related data
- H04N21/44222—Analytics of user selections, e.g. selection of programs or purchase activity
- H04N21/44224—Monitoring of user activity on external systems, e.g. Internet browsing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/4662—Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms
- H04N21/4663—Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms involving probabilistic networks, e.g. Bayesian networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/4662—Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms
- H04N21/4665—Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms involving classification methods, e.g. Decision trees
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/4668—Learning process for intelligent management, e.g. learning user preferences for recommending movies for recommending content, e.g. movies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/475—End-user interface for inputting end-user data, e.g. personal identification number [PIN], preference data
- H04N21/4755—End-user interface for inputting end-user data, e.g. personal identification number [PIN], preference data for defining user preferences, e.g. favourite actors or genre
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/475—End-user interface for inputting end-user data, e.g. personal identification number [PIN], preference data
- H04N21/4756—End-user interface for inputting end-user data, e.g. personal identification number [PIN], preference data for rating content, e.g. scoring a recommended movie
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/16—Analogue secrecy systems; Analogue subscription systems
- H04N7/173—Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
- H04N7/17309—Transmission or handling of upstream communications
- H04N7/17318—Direct or substantially direct transmission and handling of requests
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- General Health & Medical Sciences (AREA)
- Social Psychology (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Graphics (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Information Transfer Between Computers (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
第1次の視聴者(14)と他の第2次の視聴者達(15−17)に対応する、フィードバックデータ(D3,D4,D12a−D12c,D15a−D15c)、暗黙のデータ(D7,D8,D17a−D17c,D19a−D19c)、及び/又は、明白なデータ(D11,D21a−D21c)に基づいて、第1次の視聴者(14)への項目の推薦を提供する自動化された共同的なフィルタリング方法を使用するシステムが開示される。自動化された共同的なフィルタリング処理の第1の動作は、第1次の視聴者(14)による項目の第1のグループの視聴を示すデータ(D3,D4,D7,D8,D11)に一致する第2次の視聴者達(15−17)による項目の第2のグループの視聴を示すデータ(D12a−D12c,D15a−D15c,D17a−D17c,D19a−D19c,D21a−D21c)を見つける。自動化された共同的なフィルタリング処理の第2の動作は、第1の動作で達成されたデータ一致と比較されるような項目の1つ又はそれ以上の属性を示すデータ(D13)の関数として、第1次の視聴者(14)により視聴されていない項目の推薦(D14,D16,D18,D20,D22,D23)を発生することである。
Description
【0001】
本発明は、一般的には、多数のメディアコンテンツ選択(例えば、テレビジョン番組、チャットルーム,オンデマンドビデオメディアファイル、オーディオ等)を管理するメディア視聴者を補助する電子番組案内を使用するシステムに関連する。本発明は、特に、視聴者へ選択を提案し提案に基づいて動作する(例えば、視聴者のための番組の記録)”知能”を有するシステムに関連する。
【0002】
従来の電子番組案内は、多くの利用できるチャネルについての、番組の一覧表を表示する。一覧表は、局所的に発生されそして、対話的に示される。一覧表は、一般的にはグリッドの形式で配置される。グリッドの各行は、特定の放送チャネル又は、ケーブルチャネル(例えば、NBC、CBS、ABC、PBS、CNN、ESPN、HBO、MAX等)を示す。グリッドの各列は、特定の時間スロット(例えば、午前12:00から開始する30分の時間スロット)を示す。複数の行と複数の列がスクリーン上に同時に表示されうる。種々の予定された番組又はショーは、行と列内に配置され、それにより、それらが個々に見つけられうるチャネルと時間を示す。グリッドは、垂直にスクロールでき、それにより、視聴者は所定の時間期間内の異なるチャネルを通して走査できる。グリッドは、表示される時間期間を変更するために、水平にもスクロール(パン)され得る。
【0003】
利用できる番組に関するデータは、データレコードの組として、ケーブルシステム又は電話線により受信される。各利用できる番組は、クローズドキャプションとステレオそして、おそらく番組の短い説明が利用できるかどうかに関わらず、そのチャネル、その開始及び終了時間、そのタイトル、俳優の名前のような番組に関する情報を含む単一の対応するデータレコードを有しうる。これらの形式のデータレコードから上述のようなグリッドをフォーマットすることは困難ではない。期間(例えば、2週間)を渡るデータは、典型的には、サーバ(例えば、ケーブルシステムヘッドエンド)で一度フォーマットされ、ケーブルシステムが供給されている家庭に繰り返して且つ連続して放送される。代わりに、データは、電話線、又は、他のネットワークを介して、オンデマンドで又は予め定められた予定で、ダウンロードされうる。
【0004】
電子番組案内システムは、視聴者インターフェース(以後、”視聴者インターフェース装置”)を有する装置上で動作することができる。視聴者インターフェース装置は、セットトップボックス(STB)、汎用コンピュータ、埋め込みシステム、テレビジョン内のコントローラ又は、通信ネットワークのサーバ又はインターネットサーバの形式である。視聴者インターフェース装置は、表示を発生し且つ視聴者からの入力を受信するために、TVに接続されている。新たな列と行へスクロールするときに、視聴者インターフェース装置は、新たな行又は、列を表示するために必要な、番組情報に関する(視聴者インターフェース又は、その他の場所内の)記憶されたデータベースから適切な情報を検索する。例えば、新たな列をスクロールするときに、新たな時間スロット内に入る番組が表示される必要がある。
【0005】
電子番組案内は、無数のテレビジョン及び他のメディア視聴選択の中から選択することの管理を容易にする。電子番組案内インターラクティブ応用は、視聴者嗜好データベースを構築しそして、提案し、選択の仕事を簡単化するために現在又は将来の番組情報をフィルタし、又は、視聴者に代わって選択を行うために嗜好データを使用する。例えば、システムは、視聴者からの特定の要求又は、それが推薦するハイライト選択なしに、番組を記録できる。
【0006】
嗜好データベースを構築するための第1の形式の装置は、暗黙のプロファイラ(profiler)である。視聴者は単に、生の電子番組案内データから通常の方法で選択を行いそして、暗黙のプロファイラは、選択から視聴者の振舞いのモデルを抽出することにより個人嗜好データベースを徐々に構築する。推薦器は、そして、視聴者が将来見ることを好むものについての予測を行うために、そのモデルを使用する。この抽出処理は、同じ項目についての繰り返しての要求を検出することにより明らかな好みのものを識別するような、単純なアルゴリズムに従うことができ、又は、大きな数の入力(自由度)を有する決定−ツリー技術のような、高度な機械学習処理でもよい。そのようなモデルは、一般的にいえば、視聴者の相互作用の動作(即ち、選択を行うための視聴者インターフェース装置との相互作用)内のパターンを捜す。
【0007】
視聴者の視聴のパターンから有益な情報を抽出する暗黙のプロファイラにより実行される1つの技術は、属性−値カウント数のテーブルを発生することである。属性の例は、”1日の時間”でありそして、対応する値は”午前”である。選択がなされると、その選択を特徴化する属性−値のカウント数が増加される。通常は、所定の選択は、多くの属性−値を有する。選択がそれから区別された(随意に、同時に)ショーのサブセットを選択することにより、否定的な選択の組も発生されうる。それらの属性−値カウント数は、減少される(又は、視聴されないショーのカウント数が増加される)。このデータは、候補が視聴者により好まれる確率を予測するために候補を特徴化する特徴カウント数への重みとしてカウント数を使用する、ベイズの予測器の形式の暗黙のプロファイラに送られる。ベイズの予測器の例は、2000年2月4日に出願された、名称”ベイズのTVショー推薦器”の米国特許出願番号09/498,271に開示され、その全体は、ここで全てが述べられているように、参照によりここに組み込まれる。視聴者の振舞いの観測から受動的に暗黙のプロファイルを構築する、規則に基づく暗黙のプロファイラは、1999年1月14日に公開された、名称”知的電子番組案内”の、WO99/01984のPCT出願に記載されている。
【0008】
暗黙のプロファイラの他の例は、視聴パターンを監視することにより視聴者のテレビジョン視聴嗜好を学習するシステムの、MbTVに組み込まれたものである。MbTVは、透明に動作しそして、視聴者の好みのプロファイルを構築する。このプロファイルは、例えば、視聴者が見るのに興味を持っているテレビジョン番組を推薦する、サービスを提供するのに使用される。MbTVは、視聴者の好みの各々について学習し、そして、次に来る番組を推薦するためにそれが学習するものを使用する。MbTVは、視聴者を望ましい次に来る番組へ警告することにより、視聴者がそれらのテレビジョンを見ることを助けそして、記憶装置に加えるとともに、視聴者がいないときに自動的にこれらの番組を記録することができる。
【0009】
MbTVは、嗜好決定エンジンと記憶管理エンジンを有する。これらは、時間シフトテレビジョンを容易にするために使用される。MbTVは、望みの番組を、単純に提案するよりはむしろ、自動的に記録できる。MbTVの記憶管理エンジンは、記憶装置が最適なコンテンツを有することを保証しようとする。この処理は、どの記録された番組が(完全に又は部分的に)見られたか及び、どれが無視されたかを追跡することを含む。視聴者は、消去を避けるために、将来の視聴のために記録された番組を”ロック”できる。視聴者が番組提案又は記録されたコンテンツを扱う方法は、将来の決定を正確にするために、この情報を使用するMbTVの嗜好エンジンへ更なるフィードバックを提供する。
【0010】
MbTVは、各”成分の興味”を示す記録空間の部分を保存する。これらの”興味”は、異なるファミリメンバへ変換され得又は、異なる好みのカテゴリーを示すことが可能である。MbTVは、視聴者の介入を必要としないが、その能力を精密に調整することが望まれる者により、特別注文化が可能である。視聴者は、異なる形式の番組についての、”記憶予算”に影響する。例えば、視聴者は、子供は大多数のテレビジョンを家庭で見るが、25%のみの記録空間が、子供番組により消費されるべきであることを示しうる。
【0011】
嗜好データベースを構築する第2の形式の装置は、明白なプロファイラである。明白なプロファイラは、視聴者が、特徴を等級化することにより、好き又は嫌いを規定することを可能とする。これらは、(例えば、俳優の属性及びジョンウェインの値についての、7はスケール1−7の非常に好きである)属性−値ペアの得点であるか又は、”私はドキュメンタリーが好きであるが、しかし、ギャングが来る夜である木曜日ではない。”のような属性−値ペアの組合わせのような幾つかの他の規則−仕様である。例えば、視聴者は、視聴者インターフェース装置を通して、ドラマとアクション映画は好むが、ある特定の俳優は好まないことを示すことが可能である。これらの基準は、番組の組の中から、視聴者により好まれるものを予測するために、適用される。
【0012】
EP出願(EP0854645A2)は、例えば、状況喜劇、連続ドラマ、古い映画等の、好ましい番組カテゴリのような、一般的な嗜好を入力することを可能とする、明白なプロファイラを有するシステムを開示する。出願は、例えば、1つは10−12才の子供についての、他は、10代の少女についてのそして、他は、飛行機趣味の者等のような、嗜好プロファイルを選択することが可能な嗜好テンプレートも開示する。
【0013】
嗜好データベースを構築する第3の形式の装置は、フィードバックプロファイラである。例えば、現在TiVo(R)は、視聴者が、ショーへ、3つの賛意の合図又は3つの拒否の合図を与えることを可能とする。名称”テレビジョン予定情報を使用するシステム及び方法”のPCT出願、WO97/4924は、フィードバックプロファイラを組み込むシステムの例である。出願は、視聴者が通常のグリッドで表示される電子番組案内を通して操作できそして、種々の番組を選択できるシステムを開示する。各点で、視聴者は、記録及び視聴のために番組を選択し、番組を見るためにメモをスケジューリングし、そして、好みのものを指定するために番組を選択することを含む、任意の種々の記載されたタスクを行う。好みのものとして番組を指定することは、おそらく、”常にこのショーを見る選択を表示する”又はメモを繰り返すことを実行する、:ような固定の規則を実行するためである。好みのものを指定する目的は、出願に明確に記載されている。しかしながら、更に重要なことに、嗜好データベースを生成する目的で、視聴者が好みのものを指定するために番組を選択するときに、視聴者はそれが好みのものである理由を示す選択が提供される。この理由は、一般的な嗜好を定義することにより:他の明白な基準と同じ方法で示される。
【0014】
暗黙のプロファイリングシステムは、視聴者がフィードバックデータ又は明白なデータを提供する必要がないので、視聴者に関してより容易であるという利点を有する。視聴者は単に、システムと対話する。明白なプロファイリングシステムとフィードバックプロファイルシステムは、明白な嗜好情報を提供する利点を有する。明白なプロファイルシステムは、信頼性があるが、しかし、視聴者が、どの基準がよい弁別器で、それにどのような重みを与えるかを決定することができる点へ、自身の嗜好を抽象化する難しさを有するので、完全ではない。フィードバックプロファイリングシステムは、おそらく、最高の品質の情報を提供するがしかし、発生するのが負担であり、そして、さらに、明白なプロファイルシステムで得られる全ての情報を含まない場合があり、そして、暗黙のプロファイルシステムのような多くのショーに関する情報を必要ともしうる。
【0015】
更に、フィードバック形式と暗黙の形式のプロファイリングシステムは、視聴者に”コールドスタート”として知られる項目を経験させる。特に、視聴者の嗜好データベースを構築するこれらの種類のプロファイリングシステムの実効性の程度は、システムと視聴者の間の相互動作の成熟度とともに、増加する。このように、視聴者の嗜好データベースを構築する各形式のプロファイリングシステムの実効性の程度は、システムと視聴者の間の相互作用のはやい段階中に制限される。
【0016】
”コールドスタート”シナリオと取り組む1つの方法は、米国特許番号4,996,642及び米国特許番号5,790,426に開示されているシステムのような自動化された共同的なフィルタリングシステムの使用である。見ていない項目の推薦を要求する視聴者に応じて、これらの従来技術システムは、第2次の視聴者のグループにより視聴された項目の等級と共に、要求する視聴者により視聴された項目の等級に基づいている。しかしながら、これらの従来技術のシステムは、視聴されていない項目と視聴された項目の特定の特徴へ、直接的な考慮を与えない。従って、視聴者に提供される推薦は、視聴されていない項目の特定の特徴の視聴者の意見から異なる。更に、視聴されていない項目は、第2次の視聴者のグループにより視聴された項目の中に含まれていない場合がある。しかしながら、従来技術のシステムは、第2次の視聴者のグループにより視聴されていない項目についての推薦を発生する方法を提供しない。本発明は、これらの問題と取り組む。
【0017】
本発明は、従来技術に関連する欠点を解決する、共同的なフィルタを含む4方のメディア推薦方法及びシステムに関連する。特に、本発明は、システムのどのユーザによっても等級付けされていない項目の共同的フィルタリングの適用を容易にする。本発明の種々の面は、新規であり、自明ではなくそして、種々の利点を提供する。ここでカバーされる本発明の実際の性質は、これに添付の請求項を参照してのみ決定でき、ここに開示された実施例の特徴である特定の特徴は、次のように簡単に記載される。
【0018】
本発明の1つの形式は、第1次の視聴者による項目の推薦を提供する自動化された共同的なフィルタリング法である。最初に、第1次の視聴者による項目の第1のグループの視聴を示すデータに一致する第2次の視聴者達のグループによる項目の第2のグループの視聴を示すデータのサブセットを見つける。第2に、項目の推薦が、項目の1つ又はそれ以上の属性示すデータと共に、一致したデータのサブセットの関数として発生される。
【0019】
本発明の第2の形式は、第1次の視聴者へ項目の推薦を提供する自動化された共同的なフィルタリング法である。システムは、第1次の視聴者による項目の第1のグループの視聴を示すデータに一致する第2次の視聴者達のグループによる項目の第2のグループの視聴を示すデータのサブセットを見つける第1のモジュールを有する。システムは、更に、第1の項目の1つ又はそれ以上の属性示すデータと一致したデータのサブセットの関数として、視聴されていない項目の推薦を発生する第2のモジュールを有する。
【0020】
本発明の第3の形式は、第1次ユーザヘ項目の推薦を提供するコンピュータ読出し媒体内のコンピュータプログラムプロダクトである。コンピュータプログラムプロダクトは、第1次の視聴者による項目の第1のグループの視聴を示すデータに一致する第2次の視聴者達のグループによる項目の第2のグループの視聴を示すデータのサブセットを見つけるコンピュータ読出し可能なコードを有する。コンピュータプログラムプロダクトは、更に、項目の1つ又はそれ以上の属性示すデータと、一致したデータのサブセットの関数として、項目の推薦を発生するコンピュータ読出し可能なコードを有する。
【0021】
本発明の、前述の形式と他の形式、特徴及び利点は、添付の図面と共に読めば、現在好ましい実施例の以下の詳細な説明からさらに明らかとなろう。詳細な説明と図面は、限定するよりは、単に、本発明の説明であり、本発明の範囲は、添付の請求項と均等物により定義される。
【0022】
本発明の自動化された共同的フィルタリングシステムは、図1に示されている。システムは、アプリケーションサーバ11a、データベースサーバ11b、視聴者コンピュータ12a、視聴者コンピュータ12b、視聴者コンピュータ12c、及び視聴者コンピュータ12dの間の通信リンクを提供するのに使用される、ネットワーク10を有する。ネットワーク10は、有線、光ファイバーケーブルのような恒久的な接続又は、電話線又は、無線通信を通してなされる一時的な接続を有する。ネットワーク10は、インターネット、エクストラネット、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)の形式又は、当業者に起こりうるような他の形式である。
【0023】
視聴者コンピュータ12a−12dは、テレビジョン番組を見るために、それぞれ、第2次の視聴者14−17のグループにより使用される、それぞれテレビジョン13a−13dのグループと(一時的に又は恒久的に)通信する。
【0024】
アプリケーションサーバ11aとデータベース11bは、構造化された入力を受け、規定された規則に従って入力を処理し、そして、本発明のプロファイリングルーチン30(図3A)とプログラム推薦ルーチン40(図3B)を実行するために処理結果を出力する形式に構成されうる。視聴者コンピュータ12a−12dは、構造化された入力を受け、規定された規則に従って入力を処理し、そして、本発明の共同的フィルタリングルーチン80(図5)を実行する形式に構成されうる。アプリケーションサーバ11a、アプリケーションサーバ11b、及び視聴者コンピュータ12a−12d内で使用されるコンピュータハードウェアの一実施例が、図2に示されている。コンピュータハードウェアは、1つ又はそれ以上の中央処理ユニット(CPU)21、読出し専用メモリ(ROM)22、ランダムアクセスメモリ(RAM)23、及びコントローラ24a−24d間の電気的通信を行うバス20を有する。
【0025】
各CPU21が、好ましくは、インテルファミリーのマイクロプロセッサの1つ、AMDファミリのマイクロプロセッサの1つ、又は、モトローラファミリのマイクロプロセッサの1つである。ROM22が恒久的に種々の制御プログラムを記憶する。RAM23は、従来のオペレーティングシステムをロードして、そして選択的に制御プログラムをロードするためのメモリである。
【0026】
コントローラ24aが、CPU21とハードディスクドライブ25aの間の相互作用を慣習的に促進する。ハードディスクドライブは、従来のオペレーティングシステムとアプリケーションプログラムを記憶する。コントローラ24bは、CPU21とCD ROMドライブ25bの間に、慣習的に相互作用を促進し、それによってCD ROMディスク26上の任意のプログラムがハードウェアの上にインストールされうる。コントローラ24bは、CPU21とディスケットドライブ25cの間の相互作用を慣習的に促進し、それによって、ディスケット27上の任意のプログラムがハードウェアの上にインストールされうる。コントローラ24dは、CPU21とネットワーク10の間の相互作用を慣習的に促進する。
【0027】
本発明の原理を実行するために、当業者に生じるように、図2で示されたコンピュータハードウェアは、追加のハードウェア構成要素を含むことができる。さらに、当業者に生じるように、アプリケーションサーバー11a、アプリケーションサーバ11bと、視聴者コンピュータ12a−12dは、図2に示されたコンピュータハードウェアの修正版又は、その代わりの実施例を有しうる。
【0028】
プロファイリングルーチン30(図3A)及び番組推薦ルーチン40(図3B)は、視聴者14に対応している視聴データという状況でここに記述され、そして、共同フィルタリングルーチン80(図5)は、視聴者14−17に対応している視聴データという状況でここに記述される。しかしながら、当業者は、大きな数の視聴者(例えば、100−10,000)が活発に本発明の自動化された共同的なフィルターシステムに関係しているシナリオで、ルーチン30とルーチン80の実行を正当に評価するであろう。
【0029】
図3Aに示されたように、ルーチン30は、例えば、フィードバックプロファイリングソフトウェア50(図4A)、暗黙のプロファイリングソフトウェア60(図4B)、及び明白なプロファイリングソフトウェア70(図4C)のような、多くの形式で実装されることができる。視聴コンピュータ12aのコンピュータ読み出し可能な媒体(例えば、ハードディスクドライブ25a、CD ROMディスク26、フレキシブルディスク27、又は、任意の他の形式)が、電気的に、磁気的に、光学的に、又は、化学的に、ソフトウェア50、ソフトウェア60、及び/又は、ソフトウェア70に対応しているコンピュータ読出し可能なコードを含むように、変えられる。代わりに、ソフトウェア50、ソフトウェア60、及び/又は、ソフトウェア70は、部分的に又は完全に、アナログ回路構成、デジタル回路構成又は両方によって、視聴コンピュータ12aの中で実行されることができる。
【0030】
ルーチン30の段階S32中に、視聴コンピュータ12aは、視聴者14に対応する視聴データを受信しそして記憶する。図4Aに示されているように、段階S32中に、ソフトウェア50は、番組Xと得点Yの形式の視聴データD1を受信し、そして、視聴データD1をフィードバック履歴データベースDB1内に記録される視聴データD2へフォーマットする従来のフィードバックユーザインタフェース51を含む。図4Bに示されたように、段階S32中に、ソフトウェア60は、番組Xの形式の視聴データD5を受信しそして、視聴データD5を暗黙の履歴データベースDB3に記憶される視聴データD6へフォーマットする、従来の暗黙のユーザモニタ61を含む。図4Cに示されたように、段階S32中に、ソフトウェア70は、視聴者嗜好の形式の視聴データD9を受信しそして、視聴データD9を視聴データD10へフォーマットする、従来の明白なユーザインタフェース71を含む。
【0031】
ルーチン30の段階S34中に、視聴コンピュータ12aは、視聴者14の視聴プロファイルを更新する。図4Aに示されたように、段階S34中に、ソフトウェア50は、フィードバック履歴データD3に応じたフィードバックプロファイルデータD4を発生し、そして、フィードバックプロファイルデータベースDB2内にフィードバックプロファイルデータD4を記憶する、従来のフィードバックプロファイルモジュール52を含む。図4Bに示されたように、段階S34中に、ソフトウェア60は、暗黙の履歴データD7に応じて暗黙のプロファイルルデータD8を発生しそして、暗黙のプロファイルデータベースDB4内に暗黙のプロファイルデータD8を記憶する、従来の暗黙のプロファイルモジュール62を含む。図4Cに示されたように、段階S34中に、ソフトウェア70は、視聴データD10に応じて明白なプロファイルデータD11を生成しそして、明白なプロファイルデータベースDB5内に明白なプロファイルデータD11を記憶する、従来の明白なプロファイルモジュール72を含む。
【0032】
ソフトウェア50、ソフトウェア60及びソフトウェア70は、段階S34の完了の後にルーチン30を終了させる。
【0033】
図3Bに示されたルーチン40は、例えば、1999年12月17日に出願された名称”決定ツリーを使用してテレビジョン番組を推薦する方法及び装置”の米国出願番号09/466,406及び、2000年2月4日に出願された名称”ベイズのTVショー推薦器”の米国特許出願番号09/498,271のような本発明の原理の下で多くの形式で実行され、各々は、本発明の譲り受け人へ譲渡されそして、その全体は参照によりここに組み込まれる。視聴コンピュータ12aのコンピュータ読み出し可能な媒体(例えば、ハードディスクドライブ25a、CD ROMディスク26、フレキシブルディスク27、あるいは任意の他の形式)は、電気的に、磁気的に、光学的に、あるいは化学的に、ルーチン40を実行するソフトウェアに対応するコンピュータ読み出し可能コードを含むように変えられる。代わりに、ソフトウェアは、部分的にあるいは完全に、アナログ回路構成、デジタル回路構成あるいは両方により、視聴コンピュータ12a内で実行されることができる。
【0034】
ルーチン40の段階S42中に、視聴コンピュータ12は、番組Xに対応している属性データを受信する。ルーチン50の段階S44中に、視聴コンピュータ12aは、視聴者14がコールドスタートのシナリオを経験しているかどうかを決定する。一実施例では、視聴コンピュータ12aが、視聴者14に、固定された数より少ない推薦(例えば、20より少ない推薦)を提供したときに、視聴コンピュータ12aは視聴者14がコールドスタートのシナリオを経験していると決定する。
【0035】
視聴コンピュータ12aが視聴者14が段階S44中にコールドスタートのシナリオを経験していないと決定するときには、視聴コンピュータ12aは、ルーチン40の段階S46a中に、米国特許出願番号09/466,406又は、米国特許出願番号09/498,271に従って、慣習的に番組の推薦を発生しそして、段階S46中に推薦を表示する。
【0036】
視聴コンピュータ12aが、視聴者14が段階S44中にコールドスタートのシナリオを経験していると決定するときには、視聴コンピュータ12aは、段階S48中に表示されるアプリケーションサーバ11aからの番組Xの推薦を受信するか又は、段階S46a中に番組Xの推薦を発生するのに使用されるアプリケーションサーバー11aからの1人又はそれ以上の視聴者15−17に対応する視聴データを受信するかのいずれかの、ルーチン40の段階S46bへ進む。アプリケーションサーバー11aは、ルーチン80(図5)の実行の結果として、番組の推薦あるいは視聴データを提供する。
【0037】
図5に示されたルーチン80は、例えば、フィードバックフィルタリングソフトウェア90、(図6A)、フィードバックフィルタリングソフトウェア100(図6B)、暗黙のフィルタリングソフトウェア110(図6C)、暗黙のフィルタリングソフトウェア120(図6D)、そして明白なフィルタリングソフトウェア130(図6E)のような、多くの形式に実装されることができる。アプリケーションサーバ11aのコンピュータ読み出し可能な媒体(例えば、ハードディスクドライブ25a、CD ROMディスク26、フレキシブルディスク27、あるいは任意の他の形式)は、電気的に、磁気的に、光学的に、あるいは化学的に、ソフトウェア90、ソフトウェア100、ソフトウェア110、ソフトウェア120、及び/又は、ソフトウェア130に対応している、コンピュータ読み出し可能なコードを含むように変えられる。代わりに、ソフトウェア90、ソフトウェア100、ソフトウェア110、ソフトウェア120、及び/又は、ソフトウェア130は、部分的にあるいは完全に、アナログ回路構成、デジタル回路構成あるいは両方によって、アプリケーションサーバ11a内で、実行されることができる。
【0038】
ルーチン80の段階S82中に、アプリケーションサーバー11aは、データベースサーバ11bから、視聴者14(第1次)と視聴者15−17(第2次)に対応する視聴データを検索する。ネットワーク10(図1)を介したデータベースサーバ11b内の視聴者14−17に対応する視聴データの記憶は、固定されているか又は、ランダムなスケジュールの上に起こりうる。好ましくは、データベースサーバー11bが、アプリケーションサーバー11aによってルーチン80の開始に応じて、視聴者14−17に対応している視聴データのいっそう最新のバージョンを記憶する。
【0039】
図6Aに示されたように、段階S82中に、ソフトウェア90の共同的なフィードバックプロファイルモジュール91は、データベースサーバ11bのフィードバックプロファイルデータベースDB6から、それぞれ、視聴者15−17に対応する視聴データD12a−D12cとともに、視聴者14に対応している視聴データD4を検索する。
【0040】
図6Bに示されたように、段階S82中に、ソフトウェア100のフィードバック履歴モジュール101は、データベースサーバ11bのフィードバック履歴データベースDB7から、それぞれ、視聴者15−17に対応する視聴データD15a−D15cとともに、視聴者14に対応する視聴データD3を検索する。
【0041】
図6Cに示されたように、段階S82中に、ソフトウェア110の共同的な暗黙のプロファイルモジュール111は、データベースサーバ11bの暗黙のプロファイルデータベースDB8から、それぞれ、視聴者15−17に対応する視聴データD17a−D17cとともに、視聴者14に対応する視聴データD8を検索する。
【0042】
図6Dに示されたように、段階S82中に、ソフトウェア120の共同的な暗黙の履歴モジュール121は、データベースサーバ11bの暗黙の履歴データベースDB9から、それぞれ、視聴者15−17に対応する視聴データD19a−D19cとともに、視聴者14に対応する視聴データD7を検索する。
【0043】
図6Eに示されたように、段階S82中に、ソフトウェア130の共同的な明白なプロファイルモジュール131は、データベースサーバ11bの暗黙のプロファイルデータベースDB10から、それぞれ、視聴者15−17に対応する視聴データD21a−D21cとともに、視聴者14に対応する視聴データD11を検索する。
【0044】
ルーチン80段階S84中に、アプリケーションサーバ11aは、視聴者14の視聴するデータに一致する視聴者15−17の視聴データのサブセットを見つける。
【0045】
一実施例では、ソフトウェア90のモジュール91は、視聴者14と視聴者15は、一致する視聴データを有するどうかを決定するときに、段階S84の間に次の一連のステップを実行する。
【0046】
最初に、視聴データD4と視聴データD12aの雑音遮断より上の、確率を有する属性−値ペアエントリの各特徴(f)について以下の式[1]が満足されるときに、fb_score(j)は、1だけ増加される。
【0047】
【数1】
({cp_i(f)−cp_j(f)}<クラスC+についてのcp_しきい値)
ここで、iは視聴データD4を示し;jは視聴データD12aを示し;cp_i(f)は視聴データD4からの特徴(f)の条件確率であり;cp_j(f)は視聴データD12aからの特徴(f)の条件確率であり;cp_thresholdは例示の範囲0.0と0.10の間の数である。cp_thresholdの実際の値は、視聴データD4と視聴データD12aの間の実際の一致の数を制御するために経験的に決定される。
【0048】
第2に、fb_score(j)の最終値は、視聴データD4の雑音遮断より上の確率を有する特徴(f)の合計の数で割ることにより、fb_score(j)の最終値へ正規化され、0.0と1.0の間の視聴データD12aのfbn_score(j)を得る。
【0049】
最後に、視聴データD12aのfbn_score(j)が、例えば、0.9のような一致_しきい値(match_threshold)より大きいときに、図6Aに示されたように、視聴データD12aは、共同的なフィードバック推薦モジュール92に供給される。
【0050】
モジュール91が、その後、ステップの同じシリーズの下で、視聴データD4が視聴データD12bと視聴データD12cと一致するどうかを決定する。従って、一致_しきい値は、経験的に決定されて、そして固定され、それによって、視聴データ一致するもののサンプルのサイズが、番組90のそれぞれの実行で変化しうる。代わりに、一致_しきい値は、動的に変化し、それによって、視聴データ一致するもののサンプルのサイズが、番組90の各実行で望ましいサンプルサイズに近付く。
【0051】
第2の実施例では、視聴者14と視聴者15が一致する視聴データを有するかを決定するときに、ソフトウェア100のモジュール101は、段階S84中に、次の一連のステップを実行する。
【0052】
最初に、スコア(B、A)が、次の式[2]から計算される:
【0053】
【数2】
ここで、pos(A)は正のスコアを有するフィードバックデータD3内の番組であり;pos(B)は正のスコアを有する視聴データD15a内の番組であり;n_pos(B)は視聴データD3内の番組の数であり;match((pos(B),pos(A))はpos(A)とpos(B)の両方内に示された番組の数である。
【0054】
第2に、図6Bに示されたように、視聴データD15aは、視聴データD15aのfb_score(B,A)が、例えば、0.9のような一致_しきい値よりも大きいときに、共同的なフィードバック推薦モジュール102に供給される。
【0055】
モジュール101は、その後、同じシリーズのステップの下で、視聴データD3が視聴データD15b及び視聴データD15cと一致するかどうか決定する。従って、一致_しきい値は、経験的に決定されて、そして固定され、それによって、視聴データ一致するもののサンプルのサイズが、番組100の各実行で変化しうる。代わりに、一致_しきい値は、動的に変えられ、それによって、視聴データ一致するもののサンプルのサイズは、番組100の各実行で望ましいサンプルのサイズに近付く。
【0056】
第3の実施例では、視聴者14と視聴者15は一致する視聴データを有するかどうかを決定するときに、ソフトウェア110のモジュール111は、段階S84中に、次の一連のステップを実行する。
【0057】
最初に、視聴データD8と視聴データD17aの雑音遮断より上の、確率を有する属性−値ペアエントリの各特徴(f)について以下の式[1]が満足されるときに、im_score(j)は、1だけ増加される。
【0058】
【数3】
({cp_i(f)−cp_j(f)}<クラスC+についてのcp_しきい値)
ここで、iは視聴データD8を示し;jは視聴データD17aを示し;cp_i(f)は視聴データD8からの特徴(f)の条件確率であり;cp_j(f)は視聴データD17aからの特徴(f)の条件確率であり;cp_thresholdは例示の範囲0.0と0.10の間の数である。cp_thresholdの実際の値は、視聴データD8と視聴データD17aの間の実際の一致の数を制御するために経験的に決定される。
【0059】
第2に、im_score(j)の最終値は、視聴データD8で雑音遮断より上の確率を有する特徴(f)の合計の数で割ることにより、im_score(j)の最終値へ正規化され、0.0と1.0の間の視聴データD17aのimn_score(j)を得る。
【0060】
最後に、視聴データD17aのim_score(j)が、例えば、0.9のような一致_しきい値(match_threshold)より大きいときに、図6cに示されたように、視聴データD17aは、共同的な暗黙の推薦モジュール112に供給される。
【0061】
モジュール111が、その後、ステップの同じシリーズの下で、視聴データD8が視聴データD17bと視聴データD17cと一致するどうかを決定する。従って、一致_しきい値は、経験的に決定されて、そして固定され、それによって、視聴データ一致するもののサンプルのサイズが、番組110のそれぞれの実行で変化しうる。代わりに、一致_しきい値は、動的に変化し、それによって、視聴データ一致するもののサンプルのサイズが、番組110の各実行で望ましいサンプルサイズに近付く。
【0062】
第4の実施例では、視聴者14と視聴者15は一致する視聴データを有するかどうかを決定するときに、ソフトウェア120のモジュール121は、段階S84中に、次の一連の式を実行する。
【0063】
最初に、im_score(B,A)が、次の式[3]から計算される。
【0064】
【数4】
ここで、pos(A)は正のスコアを有する視聴データD7内の番組であり;pos(B)は正のスコアを有する視聴データD19a内の番組であり;n_pos(B)は視聴データD7内の番組の数であり;match((pos(B),pos(A))はpos(A)とpos(B)の両方内に示された番組の数である。
【0065】
第2に、図6Dに示されたように、視聴データD19aは、視聴データD19aのim_score(B,A)が、例えば、0.9のような一致_しきい値よりも大きいときに、共同的な暗黙の推薦モジュール122に供給される。
【0066】
モジュール121は、その後、同じシリーズのステップの下で、視聴データD7が視聴データD19b及び視聴データD19cと一致するかどうか決定する。従って、一致_しきい値は、経験的に決定されて、そして固定され、それによって、視聴データ一致するもののサンプルのサイズが、番組120の各実行で変化しうる。代わりに、一致_しきい値は、動的に変えられ、それによって、視聴データ一致するもののサンプルのサイズは、番組120の各実行で望ましいサンプルのサイズに近付く。
【0067】
第5の実施例では、視聴者14と視聴者15がで、一致する視聴データを有するかどうかを決定するときに、ソフトウェア130のモジュール131は段階S84中に、次の一連のステップを実行する。
【0068】
最初に、次の式[4]が、視聴データD11と視聴データD21aの属性−値のペアエントリの各特徴(f)について満足させられるとき、ex_score(j)が1だけ増加される:
【0069】
【数5】
ここで、iは視聴データD11を示し;jは視聴データD21aを示し;er_i(f)は視聴データD11からの特徴(f)の明白な等級であり;er_j(f)は視聴データD21aからの特徴(f)の明白な等級であり;er_thresholdは例えば、1又は2のいずれかである。er_thresholdの実際の値は、視聴データD11と視聴データD21a−D21cの間の実際の一致の数を制御するために経験的に決定される。
【0070】
第2に、er_score(j)の最終値は、非中性スコアを有する特徴(f)の合計の数で割ることにより、er_score(j)の最終値へ正規化され、0.0と1.0の間の視聴データ21aのern_score(j)を得る。
【0071】
最後に、視聴データD21aのern_score(j)が、例えば、0.9のような一致_しきい値(match_threshold)より大きいときに、図6Eに示されたように、視聴データD21aは、共同的なフィードバック推薦モジュール132に供給される。
【0072】
モジュール131が、その後、ステップの同じシリーズの下で、視聴データD11が視聴データD21bと視聴データD21cと一致するどうかを決定する。従って、一致_しきい値は、経験的に決定されて、そして固定され、それによって、視聴データ一致するもののサンプルのサイズが、番組130のそれぞれの実行で変化しうる。代わりに、一致_しきい値は、動的に変化し、それによって、視聴データ一致するもののサンプルのサイズが、番組130の各実行で望ましいサンプルサイズに近付く。
【0073】
ルーチン80の段階S86a中に、アプリケーションサーバ11aは、番組に対応する属性データを受信する。ルーチン80の段階S88の間に、アプリケーションサーバー11aは、一致される視聴データの関数として、番組の推薦を生成する。
【0074】
一実施例では、モジュール92は、視聴コンピュータ12bから、米国特許出願番号09/498,271に記載のされたもののようなベイズの推薦器を検索し、それにより、図6Aに示されたように視聴データD12aと属性データD13の関数として、推薦D14を発生する。モジュール91が視聴データD4と視聴データD12a−D12cの間の2又はそれ以上の一致するものを決定するシナリオでは、モジュール92は、各々の一致した視聴データD12a−D12cから個々の推薦を生成するために、適切な視聴コンピュータ12b−12dからベイズの推薦器を利用する。個々の推薦は、そして、プールされ、それによって、最も有力な推薦が推薦D14として働き、又は、推薦D14を発生するために、例えば、個々の推薦の平均が、推薦D14を発生するために計算されるような、個別の推薦を結合するための機構が実行されうる。
【0075】
第2の実施例では、モジュール102は、視聴コンピュータ12bから、米国特許出願番号09/466,406に記載されたもののような決定ツリー推薦器を使用し、それにより、図6Bに示されたように視聴データD15aと属性データD13の関数として、推薦D16を発生する。モジュール101が視聴データD3と視聴データD15a−D15cの間の2又はそれ以上の一致するものを決定するシナリオでは、モジュール102は、各一致した視聴データD15a−D15cから個々の推薦を生成するために、適切な視聴コンピュータ12b−12dから決定ツリー推薦器を利用する。個々の推薦は、そして、プールされ、それによって、最も有力な推薦が推薦D16として働き、又は、推薦D16を発生するために、例えば、次の式[5]のように、推薦D15を発生するために個々の推薦を結合するための機構が、実行されうる:
【0076】
【数6】
ここで、Kは一致する視聴データの数であり;そしてrecomm(t,dt(k))はショーtとユーザkにつての決定ツリー推薦器からの推薦である。
【0077】
第3の実施例では、モジュール112は、視聴コンピュータ12bから、米国特許出願番号09/498,271に記載されたもののようなベイズの推薦器を検索し、それにより、図6Cに示されたように視聴データD17aと属性データD13の関数として、推薦D18を発生する。モジュール111が視聴データD8と視聴データD17a−D17cの間の2又はそれ以上の一致するものを決定するシナリオでは、モジュール102は、各一致した視聴データD17a−D17cから個々の推薦を生成するために、適切な視聴コンピュータ12b−12dからベイズの推薦器を利用する。個々の推薦は、そして、プールされ、それによって、最も有力な推薦が推薦D18として働き、又は、例えば、個々の推薦の平均が推薦D18を発生するために計算されるように、推薦D18を発生するために個々の推薦を結合するための機構が、実行されうる。
【0078】
第4の実施例では、モジュール122は、視聴コンピュータ12bから、米国特許出願番号09/466,406に記載されたもののような決定ツリー推薦器を使用し、それにより、図6Dに示されたように視聴データD19aと属性データD13の関数として、推薦D20を発生する。モジュール121が視聴データD7と視聴データD19a−D19cの間の2又はそれ以上の一致するものを決定するシナリオでは、モジュール122は、各一致した視聴データD19a−D19cから個々の推薦を生成するために、適切な視聴コンピュータ12b−12dから決定ツリー推薦器を利用する。個々の推薦は、そして、プールされ、それによって、最も有力な推薦が推薦D20として働き、又は、例えば、前述の式[5]のように、推薦D20を発生するために個々の推薦を結合するための機構が、実行されうる。
【0079】
第5の実施例では、モジュール132は、視聴コンピュータ12bから、米国特許出願番号09/498,271に記載されたもののようなベイズの推薦器を検索し、それにより、図6Eに示されたように視聴データD21aと属性データD13の関数として、推薦D22を発生する。モジュール131が視聴データD10と視聴データD21a−D21cの間の2又はそれ以上の一致するものを決定するシナリオでは、モジュール132は、各一致した視聴データD21a−D21cから個々の推薦を生成するために、適切な視聴コンピュータ12b−12dからベイズの推薦器を利用する。個々の推薦は、そして、プールされ、それによって、最も有力な推薦が推薦D22として働き、又は、例えば、個々の推薦の平均が推薦D22を発生するために計算されるように、推薦D22を発生するために個々の推薦を結合するための機構が、実行されうる。
【0080】
ルーチン40の段階S46b中に推薦D14、D16、D18、D20及びD22の1つを受信することに応じて、視聴コンピュータ12は、ルーチン40の段階S48中に推薦を表示するか、又は、段階S48中に結合された推薦を表示するために段階S46a中に発生された任意の推薦とともに推薦をプールする。
【0081】
段階S86aと段階S88の代わりに、アプリケーションサーバ11aは、一致された視聴データ(例えば、視聴データ12a、視聴データ15a、視聴データ17a、視聴データ19a及び視聴データ21a)を、視聴コンピュータ12aに供給する。段階S46b中に、一致した視聴データの1つを受信することに応じて、視聴コンピュータ12aは、一致した視聴データを対応する推薦器への入力として利用し、それによって、段階S46中に推薦を生成して、そして段階S48中に推薦を表示する。
【0082】
ソフトウェア90、ソフトウェア100、ソフトウェア110、ソフトウェア120及びソフトウェア130は、ここに個々に記述された。一実施例では、図6Fに示されたように、前述のソフトウェアの2つ又はそれ以上が、共同的なフィルタリング推薦モジュール140に連結され、それにより、視聴データ12a又は視聴データ15a、及び、視聴データ17a又は視聴データ19a、及び、視聴データ21aの関数として、段階S86中に、推薦D23を発生する。一実施例では、ショーjについての最終スコアは、次の式[6]から計算される:
【0083】
【数7】
ここで、ex_score(j)は式[4]からの視聴データD21aの一致スコアであり;fb_score(j)は式[1]からの視聴データD12aの一致スコアであり;im_score(j)は式[1]からの視聴データD17aの一致スコアである。モジュール140は、その後、視聴コンピュータ12aへ推薦D23を供給するために適切な推薦器を利用する。
【0084】
当業者は、図1−6Fと共に記載された本発明は、実時間のイベント(即ち、だれにもまだ等級付けされていないイベント)に適用されることができる共同的なフィルターであることを正当に評価するであろう。当業者は、更に、図1−6Fと共に記載された本発明は、番組予定データ以外の状況で適用されうることを正当に評価する。例えば、本発明は、ラジオ放送のようなテレビジョン以外のウェブ−キャスト又は、メディア形式についての推薦を発生するために適用されることができる。さらに、本発明の自動化された共同的なフィルタリングシステム又はその代わりの実施例は、ニュース記事を提供するか、あるいは製品を売るウェブサイトの視聴者インタフェースを特別化するために使われることができる。ライブラリブラウジングはもう1つの例である。人は、オンラインのライブラリあるいは新聞記事データベースを想像するかもしれず、それにより、選択肢の範囲を制限するために、本発明のこれらの技術が使用されるかもしれない。
【0085】
本発明は、前述の説明する実施例の詳細に限定されず、そして本発明は精神あるいはその不可欠な属性から離れないで、他の特定の形式で、具体化されうることは当業者に明白であるであろう。従って、本実施例は、あらゆる点で説明するものとして、そして制約するのではないと考えられるべきであり、本発明の範囲は、前述の記載ではなく添付の請求項により示されており、そして従って請求項の均等の意味と範囲内のすべての変更は包含されるように意図される。
【図面の簡単な説明】
【0086】
【図1】自動化された共同的なフィルタリングシステムの本発明に従った一実施例の概略図を示す。
【図2】図1のシステム内で使用されるコンピュータハードウェアの本発明に従った一実施例のブロック図を示す。
【図3A】本発明のプロファイリングルーチンのフローチャートを示す。
【図3B】本発明の番組推薦ルーチンのフローチャートを示す。
【図4A】図3Aを実行する図1のシステム内で使用されるフィードバック推薦ソフトウェアの一実施例のブロック図を示す。
【図4B】図3Aを実行する図1のシステム内で使用される暗黙のプロファイリングソフトウェアの一実施例のブロック図を示す。
【図4C】図3Aを実行する図1のシステム内で使用される明白なプロファイリングソフトウェアの一実施例のブロック図を示す。
【図5】本発明の共同的なフィルタリングルーチンのフローチャートを示す。
【図6A】図5のルーチンを実行する図1のシステム内で使用されるフィードバックフィルタリングソフトウェアの第1の実施例のブロック図を示す。
【図6B】図5のルーチンを実行する図1のシステム内で使用されるフィードバックフィルタリングソフトウェアの第2の実施例のブロック図を示す。
【図6C】図5のルーチンを実行する図1のシステム内で使用される暗黙のフィルタリングソフトウェアの第1の実施例のブロック図を示す。
【図6D】図5のルーチンを実行する図1のシステム内で使用される暗黙のフィルタリングソフトウェアの第2の実施例のブロック図を示す。
【図6E】図5のルーチンを実行する図1のシステム内で使用される明白なフィルタリングソフトウェアの一実施例のブロック図を示す。
【図6F】図5のルーチンを実行する図1のシステム内で使用される組み合わせフィルタリングソフトウェアの種々の実施例のブロック図を示す。
本発明は、一般的には、多数のメディアコンテンツ選択(例えば、テレビジョン番組、チャットルーム,オンデマンドビデオメディアファイル、オーディオ等)を管理するメディア視聴者を補助する電子番組案内を使用するシステムに関連する。本発明は、特に、視聴者へ選択を提案し提案に基づいて動作する(例えば、視聴者のための番組の記録)”知能”を有するシステムに関連する。
【0002】
従来の電子番組案内は、多くの利用できるチャネルについての、番組の一覧表を表示する。一覧表は、局所的に発生されそして、対話的に示される。一覧表は、一般的にはグリッドの形式で配置される。グリッドの各行は、特定の放送チャネル又は、ケーブルチャネル(例えば、NBC、CBS、ABC、PBS、CNN、ESPN、HBO、MAX等)を示す。グリッドの各列は、特定の時間スロット(例えば、午前12:00から開始する30分の時間スロット)を示す。複数の行と複数の列がスクリーン上に同時に表示されうる。種々の予定された番組又はショーは、行と列内に配置され、それにより、それらが個々に見つけられうるチャネルと時間を示す。グリッドは、垂直にスクロールでき、それにより、視聴者は所定の時間期間内の異なるチャネルを通して走査できる。グリッドは、表示される時間期間を変更するために、水平にもスクロール(パン)され得る。
【0003】
利用できる番組に関するデータは、データレコードの組として、ケーブルシステム又は電話線により受信される。各利用できる番組は、クローズドキャプションとステレオそして、おそらく番組の短い説明が利用できるかどうかに関わらず、そのチャネル、その開始及び終了時間、そのタイトル、俳優の名前のような番組に関する情報を含む単一の対応するデータレコードを有しうる。これらの形式のデータレコードから上述のようなグリッドをフォーマットすることは困難ではない。期間(例えば、2週間)を渡るデータは、典型的には、サーバ(例えば、ケーブルシステムヘッドエンド)で一度フォーマットされ、ケーブルシステムが供給されている家庭に繰り返して且つ連続して放送される。代わりに、データは、電話線、又は、他のネットワークを介して、オンデマンドで又は予め定められた予定で、ダウンロードされうる。
【0004】
電子番組案内システムは、視聴者インターフェース(以後、”視聴者インターフェース装置”)を有する装置上で動作することができる。視聴者インターフェース装置は、セットトップボックス(STB)、汎用コンピュータ、埋め込みシステム、テレビジョン内のコントローラ又は、通信ネットワークのサーバ又はインターネットサーバの形式である。視聴者インターフェース装置は、表示を発生し且つ視聴者からの入力を受信するために、TVに接続されている。新たな列と行へスクロールするときに、視聴者インターフェース装置は、新たな行又は、列を表示するために必要な、番組情報に関する(視聴者インターフェース又は、その他の場所内の)記憶されたデータベースから適切な情報を検索する。例えば、新たな列をスクロールするときに、新たな時間スロット内に入る番組が表示される必要がある。
【0005】
電子番組案内は、無数のテレビジョン及び他のメディア視聴選択の中から選択することの管理を容易にする。電子番組案内インターラクティブ応用は、視聴者嗜好データベースを構築しそして、提案し、選択の仕事を簡単化するために現在又は将来の番組情報をフィルタし、又は、視聴者に代わって選択を行うために嗜好データを使用する。例えば、システムは、視聴者からの特定の要求又は、それが推薦するハイライト選択なしに、番組を記録できる。
【0006】
嗜好データベースを構築するための第1の形式の装置は、暗黙のプロファイラ(profiler)である。視聴者は単に、生の電子番組案内データから通常の方法で選択を行いそして、暗黙のプロファイラは、選択から視聴者の振舞いのモデルを抽出することにより個人嗜好データベースを徐々に構築する。推薦器は、そして、視聴者が将来見ることを好むものについての予測を行うために、そのモデルを使用する。この抽出処理は、同じ項目についての繰り返しての要求を検出することにより明らかな好みのものを識別するような、単純なアルゴリズムに従うことができ、又は、大きな数の入力(自由度)を有する決定−ツリー技術のような、高度な機械学習処理でもよい。そのようなモデルは、一般的にいえば、視聴者の相互作用の動作(即ち、選択を行うための視聴者インターフェース装置との相互作用)内のパターンを捜す。
【0007】
視聴者の視聴のパターンから有益な情報を抽出する暗黙のプロファイラにより実行される1つの技術は、属性−値カウント数のテーブルを発生することである。属性の例は、”1日の時間”でありそして、対応する値は”午前”である。選択がなされると、その選択を特徴化する属性−値のカウント数が増加される。通常は、所定の選択は、多くの属性−値を有する。選択がそれから区別された(随意に、同時に)ショーのサブセットを選択することにより、否定的な選択の組も発生されうる。それらの属性−値カウント数は、減少される(又は、視聴されないショーのカウント数が増加される)。このデータは、候補が視聴者により好まれる確率を予測するために候補を特徴化する特徴カウント数への重みとしてカウント数を使用する、ベイズの予測器の形式の暗黙のプロファイラに送られる。ベイズの予測器の例は、2000年2月4日に出願された、名称”ベイズのTVショー推薦器”の米国特許出願番号09/498,271に開示され、その全体は、ここで全てが述べられているように、参照によりここに組み込まれる。視聴者の振舞いの観測から受動的に暗黙のプロファイルを構築する、規則に基づく暗黙のプロファイラは、1999年1月14日に公開された、名称”知的電子番組案内”の、WO99/01984のPCT出願に記載されている。
【0008】
暗黙のプロファイラの他の例は、視聴パターンを監視することにより視聴者のテレビジョン視聴嗜好を学習するシステムの、MbTVに組み込まれたものである。MbTVは、透明に動作しそして、視聴者の好みのプロファイルを構築する。このプロファイルは、例えば、視聴者が見るのに興味を持っているテレビジョン番組を推薦する、サービスを提供するのに使用される。MbTVは、視聴者の好みの各々について学習し、そして、次に来る番組を推薦するためにそれが学習するものを使用する。MbTVは、視聴者を望ましい次に来る番組へ警告することにより、視聴者がそれらのテレビジョンを見ることを助けそして、記憶装置に加えるとともに、視聴者がいないときに自動的にこれらの番組を記録することができる。
【0009】
MbTVは、嗜好決定エンジンと記憶管理エンジンを有する。これらは、時間シフトテレビジョンを容易にするために使用される。MbTVは、望みの番組を、単純に提案するよりはむしろ、自動的に記録できる。MbTVの記憶管理エンジンは、記憶装置が最適なコンテンツを有することを保証しようとする。この処理は、どの記録された番組が(完全に又は部分的に)見られたか及び、どれが無視されたかを追跡することを含む。視聴者は、消去を避けるために、将来の視聴のために記録された番組を”ロック”できる。視聴者が番組提案又は記録されたコンテンツを扱う方法は、将来の決定を正確にするために、この情報を使用するMbTVの嗜好エンジンへ更なるフィードバックを提供する。
【0010】
MbTVは、各”成分の興味”を示す記録空間の部分を保存する。これらの”興味”は、異なるファミリメンバへ変換され得又は、異なる好みのカテゴリーを示すことが可能である。MbTVは、視聴者の介入を必要としないが、その能力を精密に調整することが望まれる者により、特別注文化が可能である。視聴者は、異なる形式の番組についての、”記憶予算”に影響する。例えば、視聴者は、子供は大多数のテレビジョンを家庭で見るが、25%のみの記録空間が、子供番組により消費されるべきであることを示しうる。
【0011】
嗜好データベースを構築する第2の形式の装置は、明白なプロファイラである。明白なプロファイラは、視聴者が、特徴を等級化することにより、好き又は嫌いを規定することを可能とする。これらは、(例えば、俳優の属性及びジョンウェインの値についての、7はスケール1−7の非常に好きである)属性−値ペアの得点であるか又は、”私はドキュメンタリーが好きであるが、しかし、ギャングが来る夜である木曜日ではない。”のような属性−値ペアの組合わせのような幾つかの他の規則−仕様である。例えば、視聴者は、視聴者インターフェース装置を通して、ドラマとアクション映画は好むが、ある特定の俳優は好まないことを示すことが可能である。これらの基準は、番組の組の中から、視聴者により好まれるものを予測するために、適用される。
【0012】
EP出願(EP0854645A2)は、例えば、状況喜劇、連続ドラマ、古い映画等の、好ましい番組カテゴリのような、一般的な嗜好を入力することを可能とする、明白なプロファイラを有するシステムを開示する。出願は、例えば、1つは10−12才の子供についての、他は、10代の少女についてのそして、他は、飛行機趣味の者等のような、嗜好プロファイルを選択することが可能な嗜好テンプレートも開示する。
【0013】
嗜好データベースを構築する第3の形式の装置は、フィードバックプロファイラである。例えば、現在TiVo(R)は、視聴者が、ショーへ、3つの賛意の合図又は3つの拒否の合図を与えることを可能とする。名称”テレビジョン予定情報を使用するシステム及び方法”のPCT出願、WO97/4924は、フィードバックプロファイラを組み込むシステムの例である。出願は、視聴者が通常のグリッドで表示される電子番組案内を通して操作できそして、種々の番組を選択できるシステムを開示する。各点で、視聴者は、記録及び視聴のために番組を選択し、番組を見るためにメモをスケジューリングし、そして、好みのものを指定するために番組を選択することを含む、任意の種々の記載されたタスクを行う。好みのものとして番組を指定することは、おそらく、”常にこのショーを見る選択を表示する”又はメモを繰り返すことを実行する、:ような固定の規則を実行するためである。好みのものを指定する目的は、出願に明確に記載されている。しかしながら、更に重要なことに、嗜好データベースを生成する目的で、視聴者が好みのものを指定するために番組を選択するときに、視聴者はそれが好みのものである理由を示す選択が提供される。この理由は、一般的な嗜好を定義することにより:他の明白な基準と同じ方法で示される。
【0014】
暗黙のプロファイリングシステムは、視聴者がフィードバックデータ又は明白なデータを提供する必要がないので、視聴者に関してより容易であるという利点を有する。視聴者は単に、システムと対話する。明白なプロファイリングシステムとフィードバックプロファイルシステムは、明白な嗜好情報を提供する利点を有する。明白なプロファイルシステムは、信頼性があるが、しかし、視聴者が、どの基準がよい弁別器で、それにどのような重みを与えるかを決定することができる点へ、自身の嗜好を抽象化する難しさを有するので、完全ではない。フィードバックプロファイリングシステムは、おそらく、最高の品質の情報を提供するがしかし、発生するのが負担であり、そして、さらに、明白なプロファイルシステムで得られる全ての情報を含まない場合があり、そして、暗黙のプロファイルシステムのような多くのショーに関する情報を必要ともしうる。
【0015】
更に、フィードバック形式と暗黙の形式のプロファイリングシステムは、視聴者に”コールドスタート”として知られる項目を経験させる。特に、視聴者の嗜好データベースを構築するこれらの種類のプロファイリングシステムの実効性の程度は、システムと視聴者の間の相互動作の成熟度とともに、増加する。このように、視聴者の嗜好データベースを構築する各形式のプロファイリングシステムの実効性の程度は、システムと視聴者の間の相互作用のはやい段階中に制限される。
【0016】
”コールドスタート”シナリオと取り組む1つの方法は、米国特許番号4,996,642及び米国特許番号5,790,426に開示されているシステムのような自動化された共同的なフィルタリングシステムの使用である。見ていない項目の推薦を要求する視聴者に応じて、これらの従来技術システムは、第2次の視聴者のグループにより視聴された項目の等級と共に、要求する視聴者により視聴された項目の等級に基づいている。しかしながら、これらの従来技術のシステムは、視聴されていない項目と視聴された項目の特定の特徴へ、直接的な考慮を与えない。従って、視聴者に提供される推薦は、視聴されていない項目の特定の特徴の視聴者の意見から異なる。更に、視聴されていない項目は、第2次の視聴者のグループにより視聴された項目の中に含まれていない場合がある。しかしながら、従来技術のシステムは、第2次の視聴者のグループにより視聴されていない項目についての推薦を発生する方法を提供しない。本発明は、これらの問題と取り組む。
【0017】
本発明は、従来技術に関連する欠点を解決する、共同的なフィルタを含む4方のメディア推薦方法及びシステムに関連する。特に、本発明は、システムのどのユーザによっても等級付けされていない項目の共同的フィルタリングの適用を容易にする。本発明の種々の面は、新規であり、自明ではなくそして、種々の利点を提供する。ここでカバーされる本発明の実際の性質は、これに添付の請求項を参照してのみ決定でき、ここに開示された実施例の特徴である特定の特徴は、次のように簡単に記載される。
【0018】
本発明の1つの形式は、第1次の視聴者による項目の推薦を提供する自動化された共同的なフィルタリング法である。最初に、第1次の視聴者による項目の第1のグループの視聴を示すデータに一致する第2次の視聴者達のグループによる項目の第2のグループの視聴を示すデータのサブセットを見つける。第2に、項目の推薦が、項目の1つ又はそれ以上の属性示すデータと共に、一致したデータのサブセットの関数として発生される。
【0019】
本発明の第2の形式は、第1次の視聴者へ項目の推薦を提供する自動化された共同的なフィルタリング法である。システムは、第1次の視聴者による項目の第1のグループの視聴を示すデータに一致する第2次の視聴者達のグループによる項目の第2のグループの視聴を示すデータのサブセットを見つける第1のモジュールを有する。システムは、更に、第1の項目の1つ又はそれ以上の属性示すデータと一致したデータのサブセットの関数として、視聴されていない項目の推薦を発生する第2のモジュールを有する。
【0020】
本発明の第3の形式は、第1次ユーザヘ項目の推薦を提供するコンピュータ読出し媒体内のコンピュータプログラムプロダクトである。コンピュータプログラムプロダクトは、第1次の視聴者による項目の第1のグループの視聴を示すデータに一致する第2次の視聴者達のグループによる項目の第2のグループの視聴を示すデータのサブセットを見つけるコンピュータ読出し可能なコードを有する。コンピュータプログラムプロダクトは、更に、項目の1つ又はそれ以上の属性示すデータと、一致したデータのサブセットの関数として、項目の推薦を発生するコンピュータ読出し可能なコードを有する。
【0021】
本発明の、前述の形式と他の形式、特徴及び利点は、添付の図面と共に読めば、現在好ましい実施例の以下の詳細な説明からさらに明らかとなろう。詳細な説明と図面は、限定するよりは、単に、本発明の説明であり、本発明の範囲は、添付の請求項と均等物により定義される。
【0022】
本発明の自動化された共同的フィルタリングシステムは、図1に示されている。システムは、アプリケーションサーバ11a、データベースサーバ11b、視聴者コンピュータ12a、視聴者コンピュータ12b、視聴者コンピュータ12c、及び視聴者コンピュータ12dの間の通信リンクを提供するのに使用される、ネットワーク10を有する。ネットワーク10は、有線、光ファイバーケーブルのような恒久的な接続又は、電話線又は、無線通信を通してなされる一時的な接続を有する。ネットワーク10は、インターネット、エクストラネット、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)の形式又は、当業者に起こりうるような他の形式である。
【0023】
視聴者コンピュータ12a−12dは、テレビジョン番組を見るために、それぞれ、第2次の視聴者14−17のグループにより使用される、それぞれテレビジョン13a−13dのグループと(一時的に又は恒久的に)通信する。
【0024】
アプリケーションサーバ11aとデータベース11bは、構造化された入力を受け、規定された規則に従って入力を処理し、そして、本発明のプロファイリングルーチン30(図3A)とプログラム推薦ルーチン40(図3B)を実行するために処理結果を出力する形式に構成されうる。視聴者コンピュータ12a−12dは、構造化された入力を受け、規定された規則に従って入力を処理し、そして、本発明の共同的フィルタリングルーチン80(図5)を実行する形式に構成されうる。アプリケーションサーバ11a、アプリケーションサーバ11b、及び視聴者コンピュータ12a−12d内で使用されるコンピュータハードウェアの一実施例が、図2に示されている。コンピュータハードウェアは、1つ又はそれ以上の中央処理ユニット(CPU)21、読出し専用メモリ(ROM)22、ランダムアクセスメモリ(RAM)23、及びコントローラ24a−24d間の電気的通信を行うバス20を有する。
【0025】
各CPU21が、好ましくは、インテルファミリーのマイクロプロセッサの1つ、AMDファミリのマイクロプロセッサの1つ、又は、モトローラファミリのマイクロプロセッサの1つである。ROM22が恒久的に種々の制御プログラムを記憶する。RAM23は、従来のオペレーティングシステムをロードして、そして選択的に制御プログラムをロードするためのメモリである。
【0026】
コントローラ24aが、CPU21とハードディスクドライブ25aの間の相互作用を慣習的に促進する。ハードディスクドライブは、従来のオペレーティングシステムとアプリケーションプログラムを記憶する。コントローラ24bは、CPU21とCD ROMドライブ25bの間に、慣習的に相互作用を促進し、それによってCD ROMディスク26上の任意のプログラムがハードウェアの上にインストールされうる。コントローラ24bは、CPU21とディスケットドライブ25cの間の相互作用を慣習的に促進し、それによって、ディスケット27上の任意のプログラムがハードウェアの上にインストールされうる。コントローラ24dは、CPU21とネットワーク10の間の相互作用を慣習的に促進する。
【0027】
本発明の原理を実行するために、当業者に生じるように、図2で示されたコンピュータハードウェアは、追加のハードウェア構成要素を含むことができる。さらに、当業者に生じるように、アプリケーションサーバー11a、アプリケーションサーバ11bと、視聴者コンピュータ12a−12dは、図2に示されたコンピュータハードウェアの修正版又は、その代わりの実施例を有しうる。
【0028】
プロファイリングルーチン30(図3A)及び番組推薦ルーチン40(図3B)は、視聴者14に対応している視聴データという状況でここに記述され、そして、共同フィルタリングルーチン80(図5)は、視聴者14−17に対応している視聴データという状況でここに記述される。しかしながら、当業者は、大きな数の視聴者(例えば、100−10,000)が活発に本発明の自動化された共同的なフィルターシステムに関係しているシナリオで、ルーチン30とルーチン80の実行を正当に評価するであろう。
【0029】
図3Aに示されたように、ルーチン30は、例えば、フィードバックプロファイリングソフトウェア50(図4A)、暗黙のプロファイリングソフトウェア60(図4B)、及び明白なプロファイリングソフトウェア70(図4C)のような、多くの形式で実装されることができる。視聴コンピュータ12aのコンピュータ読み出し可能な媒体(例えば、ハードディスクドライブ25a、CD ROMディスク26、フレキシブルディスク27、又は、任意の他の形式)が、電気的に、磁気的に、光学的に、又は、化学的に、ソフトウェア50、ソフトウェア60、及び/又は、ソフトウェア70に対応しているコンピュータ読出し可能なコードを含むように、変えられる。代わりに、ソフトウェア50、ソフトウェア60、及び/又は、ソフトウェア70は、部分的に又は完全に、アナログ回路構成、デジタル回路構成又は両方によって、視聴コンピュータ12aの中で実行されることができる。
【0030】
ルーチン30の段階S32中に、視聴コンピュータ12aは、視聴者14に対応する視聴データを受信しそして記憶する。図4Aに示されているように、段階S32中に、ソフトウェア50は、番組Xと得点Yの形式の視聴データD1を受信し、そして、視聴データD1をフィードバック履歴データベースDB1内に記録される視聴データD2へフォーマットする従来のフィードバックユーザインタフェース51を含む。図4Bに示されたように、段階S32中に、ソフトウェア60は、番組Xの形式の視聴データD5を受信しそして、視聴データD5を暗黙の履歴データベースDB3に記憶される視聴データD6へフォーマットする、従来の暗黙のユーザモニタ61を含む。図4Cに示されたように、段階S32中に、ソフトウェア70は、視聴者嗜好の形式の視聴データD9を受信しそして、視聴データD9を視聴データD10へフォーマットする、従来の明白なユーザインタフェース71を含む。
【0031】
ルーチン30の段階S34中に、視聴コンピュータ12aは、視聴者14の視聴プロファイルを更新する。図4Aに示されたように、段階S34中に、ソフトウェア50は、フィードバック履歴データD3に応じたフィードバックプロファイルデータD4を発生し、そして、フィードバックプロファイルデータベースDB2内にフィードバックプロファイルデータD4を記憶する、従来のフィードバックプロファイルモジュール52を含む。図4Bに示されたように、段階S34中に、ソフトウェア60は、暗黙の履歴データD7に応じて暗黙のプロファイルルデータD8を発生しそして、暗黙のプロファイルデータベースDB4内に暗黙のプロファイルデータD8を記憶する、従来の暗黙のプロファイルモジュール62を含む。図4Cに示されたように、段階S34中に、ソフトウェア70は、視聴データD10に応じて明白なプロファイルデータD11を生成しそして、明白なプロファイルデータベースDB5内に明白なプロファイルデータD11を記憶する、従来の明白なプロファイルモジュール72を含む。
【0032】
ソフトウェア50、ソフトウェア60及びソフトウェア70は、段階S34の完了の後にルーチン30を終了させる。
【0033】
図3Bに示されたルーチン40は、例えば、1999年12月17日に出願された名称”決定ツリーを使用してテレビジョン番組を推薦する方法及び装置”の米国出願番号09/466,406及び、2000年2月4日に出願された名称”ベイズのTVショー推薦器”の米国特許出願番号09/498,271のような本発明の原理の下で多くの形式で実行され、各々は、本発明の譲り受け人へ譲渡されそして、その全体は参照によりここに組み込まれる。視聴コンピュータ12aのコンピュータ読み出し可能な媒体(例えば、ハードディスクドライブ25a、CD ROMディスク26、フレキシブルディスク27、あるいは任意の他の形式)は、電気的に、磁気的に、光学的に、あるいは化学的に、ルーチン40を実行するソフトウェアに対応するコンピュータ読み出し可能コードを含むように変えられる。代わりに、ソフトウェアは、部分的にあるいは完全に、アナログ回路構成、デジタル回路構成あるいは両方により、視聴コンピュータ12a内で実行されることができる。
【0034】
ルーチン40の段階S42中に、視聴コンピュータ12は、番組Xに対応している属性データを受信する。ルーチン50の段階S44中に、視聴コンピュータ12aは、視聴者14がコールドスタートのシナリオを経験しているかどうかを決定する。一実施例では、視聴コンピュータ12aが、視聴者14に、固定された数より少ない推薦(例えば、20より少ない推薦)を提供したときに、視聴コンピュータ12aは視聴者14がコールドスタートのシナリオを経験していると決定する。
【0035】
視聴コンピュータ12aが視聴者14が段階S44中にコールドスタートのシナリオを経験していないと決定するときには、視聴コンピュータ12aは、ルーチン40の段階S46a中に、米国特許出願番号09/466,406又は、米国特許出願番号09/498,271に従って、慣習的に番組の推薦を発生しそして、段階S46中に推薦を表示する。
【0036】
視聴コンピュータ12aが、視聴者14が段階S44中にコールドスタートのシナリオを経験していると決定するときには、視聴コンピュータ12aは、段階S48中に表示されるアプリケーションサーバ11aからの番組Xの推薦を受信するか又は、段階S46a中に番組Xの推薦を発生するのに使用されるアプリケーションサーバー11aからの1人又はそれ以上の視聴者15−17に対応する視聴データを受信するかのいずれかの、ルーチン40の段階S46bへ進む。アプリケーションサーバー11aは、ルーチン80(図5)の実行の結果として、番組の推薦あるいは視聴データを提供する。
【0037】
図5に示されたルーチン80は、例えば、フィードバックフィルタリングソフトウェア90、(図6A)、フィードバックフィルタリングソフトウェア100(図6B)、暗黙のフィルタリングソフトウェア110(図6C)、暗黙のフィルタリングソフトウェア120(図6D)、そして明白なフィルタリングソフトウェア130(図6E)のような、多くの形式に実装されることができる。アプリケーションサーバ11aのコンピュータ読み出し可能な媒体(例えば、ハードディスクドライブ25a、CD ROMディスク26、フレキシブルディスク27、あるいは任意の他の形式)は、電気的に、磁気的に、光学的に、あるいは化学的に、ソフトウェア90、ソフトウェア100、ソフトウェア110、ソフトウェア120、及び/又は、ソフトウェア130に対応している、コンピュータ読み出し可能なコードを含むように変えられる。代わりに、ソフトウェア90、ソフトウェア100、ソフトウェア110、ソフトウェア120、及び/又は、ソフトウェア130は、部分的にあるいは完全に、アナログ回路構成、デジタル回路構成あるいは両方によって、アプリケーションサーバ11a内で、実行されることができる。
【0038】
ルーチン80の段階S82中に、アプリケーションサーバー11aは、データベースサーバ11bから、視聴者14(第1次)と視聴者15−17(第2次)に対応する視聴データを検索する。ネットワーク10(図1)を介したデータベースサーバ11b内の視聴者14−17に対応する視聴データの記憶は、固定されているか又は、ランダムなスケジュールの上に起こりうる。好ましくは、データベースサーバー11bが、アプリケーションサーバー11aによってルーチン80の開始に応じて、視聴者14−17に対応している視聴データのいっそう最新のバージョンを記憶する。
【0039】
図6Aに示されたように、段階S82中に、ソフトウェア90の共同的なフィードバックプロファイルモジュール91は、データベースサーバ11bのフィードバックプロファイルデータベースDB6から、それぞれ、視聴者15−17に対応する視聴データD12a−D12cとともに、視聴者14に対応している視聴データD4を検索する。
【0040】
図6Bに示されたように、段階S82中に、ソフトウェア100のフィードバック履歴モジュール101は、データベースサーバ11bのフィードバック履歴データベースDB7から、それぞれ、視聴者15−17に対応する視聴データD15a−D15cとともに、視聴者14に対応する視聴データD3を検索する。
【0041】
図6Cに示されたように、段階S82中に、ソフトウェア110の共同的な暗黙のプロファイルモジュール111は、データベースサーバ11bの暗黙のプロファイルデータベースDB8から、それぞれ、視聴者15−17に対応する視聴データD17a−D17cとともに、視聴者14に対応する視聴データD8を検索する。
【0042】
図6Dに示されたように、段階S82中に、ソフトウェア120の共同的な暗黙の履歴モジュール121は、データベースサーバ11bの暗黙の履歴データベースDB9から、それぞれ、視聴者15−17に対応する視聴データD19a−D19cとともに、視聴者14に対応する視聴データD7を検索する。
【0043】
図6Eに示されたように、段階S82中に、ソフトウェア130の共同的な明白なプロファイルモジュール131は、データベースサーバ11bの暗黙のプロファイルデータベースDB10から、それぞれ、視聴者15−17に対応する視聴データD21a−D21cとともに、視聴者14に対応する視聴データD11を検索する。
【0044】
ルーチン80段階S84中に、アプリケーションサーバ11aは、視聴者14の視聴するデータに一致する視聴者15−17の視聴データのサブセットを見つける。
【0045】
一実施例では、ソフトウェア90のモジュール91は、視聴者14と視聴者15は、一致する視聴データを有するどうかを決定するときに、段階S84の間に次の一連のステップを実行する。
【0046】
最初に、視聴データD4と視聴データD12aの雑音遮断より上の、確率を有する属性−値ペアエントリの各特徴(f)について以下の式[1]が満足されるときに、fb_score(j)は、1だけ増加される。
【0047】
【数1】
({cp_i(f)−cp_j(f)}<クラスC+についてのcp_しきい値)
ここで、iは視聴データD4を示し;jは視聴データD12aを示し;cp_i(f)は視聴データD4からの特徴(f)の条件確率であり;cp_j(f)は視聴データD12aからの特徴(f)の条件確率であり;cp_thresholdは例示の範囲0.0と0.10の間の数である。cp_thresholdの実際の値は、視聴データD4と視聴データD12aの間の実際の一致の数を制御するために経験的に決定される。
【0048】
第2に、fb_score(j)の最終値は、視聴データD4の雑音遮断より上の確率を有する特徴(f)の合計の数で割ることにより、fb_score(j)の最終値へ正規化され、0.0と1.0の間の視聴データD12aのfbn_score(j)を得る。
【0049】
最後に、視聴データD12aのfbn_score(j)が、例えば、0.9のような一致_しきい値(match_threshold)より大きいときに、図6Aに示されたように、視聴データD12aは、共同的なフィードバック推薦モジュール92に供給される。
【0050】
モジュール91が、その後、ステップの同じシリーズの下で、視聴データD4が視聴データD12bと視聴データD12cと一致するどうかを決定する。従って、一致_しきい値は、経験的に決定されて、そして固定され、それによって、視聴データ一致するもののサンプルのサイズが、番組90のそれぞれの実行で変化しうる。代わりに、一致_しきい値は、動的に変化し、それによって、視聴データ一致するもののサンプルのサイズが、番組90の各実行で望ましいサンプルサイズに近付く。
【0051】
第2の実施例では、視聴者14と視聴者15が一致する視聴データを有するかを決定するときに、ソフトウェア100のモジュール101は、段階S84中に、次の一連のステップを実行する。
【0052】
最初に、スコア(B、A)が、次の式[2]から計算される:
【0053】
【数2】
ここで、pos(A)は正のスコアを有するフィードバックデータD3内の番組であり;pos(B)は正のスコアを有する視聴データD15a内の番組であり;n_pos(B)は視聴データD3内の番組の数であり;match((pos(B),pos(A))はpos(A)とpos(B)の両方内に示された番組の数である。
【0054】
第2に、図6Bに示されたように、視聴データD15aは、視聴データD15aのfb_score(B,A)が、例えば、0.9のような一致_しきい値よりも大きいときに、共同的なフィードバック推薦モジュール102に供給される。
【0055】
モジュール101は、その後、同じシリーズのステップの下で、視聴データD3が視聴データD15b及び視聴データD15cと一致するかどうか決定する。従って、一致_しきい値は、経験的に決定されて、そして固定され、それによって、視聴データ一致するもののサンプルのサイズが、番組100の各実行で変化しうる。代わりに、一致_しきい値は、動的に変えられ、それによって、視聴データ一致するもののサンプルのサイズは、番組100の各実行で望ましいサンプルのサイズに近付く。
【0056】
第3の実施例では、視聴者14と視聴者15は一致する視聴データを有するかどうかを決定するときに、ソフトウェア110のモジュール111は、段階S84中に、次の一連のステップを実行する。
【0057】
最初に、視聴データD8と視聴データD17aの雑音遮断より上の、確率を有する属性−値ペアエントリの各特徴(f)について以下の式[1]が満足されるときに、im_score(j)は、1だけ増加される。
【0058】
【数3】
({cp_i(f)−cp_j(f)}<クラスC+についてのcp_しきい値)
ここで、iは視聴データD8を示し;jは視聴データD17aを示し;cp_i(f)は視聴データD8からの特徴(f)の条件確率であり;cp_j(f)は視聴データD17aからの特徴(f)の条件確率であり;cp_thresholdは例示の範囲0.0と0.10の間の数である。cp_thresholdの実際の値は、視聴データD8と視聴データD17aの間の実際の一致の数を制御するために経験的に決定される。
【0059】
第2に、im_score(j)の最終値は、視聴データD8で雑音遮断より上の確率を有する特徴(f)の合計の数で割ることにより、im_score(j)の最終値へ正規化され、0.0と1.0の間の視聴データD17aのimn_score(j)を得る。
【0060】
最後に、視聴データD17aのim_score(j)が、例えば、0.9のような一致_しきい値(match_threshold)より大きいときに、図6cに示されたように、視聴データD17aは、共同的な暗黙の推薦モジュール112に供給される。
【0061】
モジュール111が、その後、ステップの同じシリーズの下で、視聴データD8が視聴データD17bと視聴データD17cと一致するどうかを決定する。従って、一致_しきい値は、経験的に決定されて、そして固定され、それによって、視聴データ一致するもののサンプルのサイズが、番組110のそれぞれの実行で変化しうる。代わりに、一致_しきい値は、動的に変化し、それによって、視聴データ一致するもののサンプルのサイズが、番組110の各実行で望ましいサンプルサイズに近付く。
【0062】
第4の実施例では、視聴者14と視聴者15は一致する視聴データを有するかどうかを決定するときに、ソフトウェア120のモジュール121は、段階S84中に、次の一連の式を実行する。
【0063】
最初に、im_score(B,A)が、次の式[3]から計算される。
【0064】
【数4】
ここで、pos(A)は正のスコアを有する視聴データD7内の番組であり;pos(B)は正のスコアを有する視聴データD19a内の番組であり;n_pos(B)は視聴データD7内の番組の数であり;match((pos(B),pos(A))はpos(A)とpos(B)の両方内に示された番組の数である。
【0065】
第2に、図6Dに示されたように、視聴データD19aは、視聴データD19aのim_score(B,A)が、例えば、0.9のような一致_しきい値よりも大きいときに、共同的な暗黙の推薦モジュール122に供給される。
【0066】
モジュール121は、その後、同じシリーズのステップの下で、視聴データD7が視聴データD19b及び視聴データD19cと一致するかどうか決定する。従って、一致_しきい値は、経験的に決定されて、そして固定され、それによって、視聴データ一致するもののサンプルのサイズが、番組120の各実行で変化しうる。代わりに、一致_しきい値は、動的に変えられ、それによって、視聴データ一致するもののサンプルのサイズは、番組120の各実行で望ましいサンプルのサイズに近付く。
【0067】
第5の実施例では、視聴者14と視聴者15がで、一致する視聴データを有するかどうかを決定するときに、ソフトウェア130のモジュール131は段階S84中に、次の一連のステップを実行する。
【0068】
最初に、次の式[4]が、視聴データD11と視聴データD21aの属性−値のペアエントリの各特徴(f)について満足させられるとき、ex_score(j)が1だけ増加される:
【0069】
【数5】
ここで、iは視聴データD11を示し;jは視聴データD21aを示し;er_i(f)は視聴データD11からの特徴(f)の明白な等級であり;er_j(f)は視聴データD21aからの特徴(f)の明白な等級であり;er_thresholdは例えば、1又は2のいずれかである。er_thresholdの実際の値は、視聴データD11と視聴データD21a−D21cの間の実際の一致の数を制御するために経験的に決定される。
【0070】
第2に、er_score(j)の最終値は、非中性スコアを有する特徴(f)の合計の数で割ることにより、er_score(j)の最終値へ正規化され、0.0と1.0の間の視聴データ21aのern_score(j)を得る。
【0071】
最後に、視聴データD21aのern_score(j)が、例えば、0.9のような一致_しきい値(match_threshold)より大きいときに、図6Eに示されたように、視聴データD21aは、共同的なフィードバック推薦モジュール132に供給される。
【0072】
モジュール131が、その後、ステップの同じシリーズの下で、視聴データD11が視聴データD21bと視聴データD21cと一致するどうかを決定する。従って、一致_しきい値は、経験的に決定されて、そして固定され、それによって、視聴データ一致するもののサンプルのサイズが、番組130のそれぞれの実行で変化しうる。代わりに、一致_しきい値は、動的に変化し、それによって、視聴データ一致するもののサンプルのサイズが、番組130の各実行で望ましいサンプルサイズに近付く。
【0073】
ルーチン80の段階S86a中に、アプリケーションサーバ11aは、番組に対応する属性データを受信する。ルーチン80の段階S88の間に、アプリケーションサーバー11aは、一致される視聴データの関数として、番組の推薦を生成する。
【0074】
一実施例では、モジュール92は、視聴コンピュータ12bから、米国特許出願番号09/498,271に記載のされたもののようなベイズの推薦器を検索し、それにより、図6Aに示されたように視聴データD12aと属性データD13の関数として、推薦D14を発生する。モジュール91が視聴データD4と視聴データD12a−D12cの間の2又はそれ以上の一致するものを決定するシナリオでは、モジュール92は、各々の一致した視聴データD12a−D12cから個々の推薦を生成するために、適切な視聴コンピュータ12b−12dからベイズの推薦器を利用する。個々の推薦は、そして、プールされ、それによって、最も有力な推薦が推薦D14として働き、又は、推薦D14を発生するために、例えば、個々の推薦の平均が、推薦D14を発生するために計算されるような、個別の推薦を結合するための機構が実行されうる。
【0075】
第2の実施例では、モジュール102は、視聴コンピュータ12bから、米国特許出願番号09/466,406に記載されたもののような決定ツリー推薦器を使用し、それにより、図6Bに示されたように視聴データD15aと属性データD13の関数として、推薦D16を発生する。モジュール101が視聴データD3と視聴データD15a−D15cの間の2又はそれ以上の一致するものを決定するシナリオでは、モジュール102は、各一致した視聴データD15a−D15cから個々の推薦を生成するために、適切な視聴コンピュータ12b−12dから決定ツリー推薦器を利用する。個々の推薦は、そして、プールされ、それによって、最も有力な推薦が推薦D16として働き、又は、推薦D16を発生するために、例えば、次の式[5]のように、推薦D15を発生するために個々の推薦を結合するための機構が、実行されうる:
【0076】
【数6】
ここで、Kは一致する視聴データの数であり;そしてrecomm(t,dt(k))はショーtとユーザkにつての決定ツリー推薦器からの推薦である。
【0077】
第3の実施例では、モジュール112は、視聴コンピュータ12bから、米国特許出願番号09/498,271に記載されたもののようなベイズの推薦器を検索し、それにより、図6Cに示されたように視聴データD17aと属性データD13の関数として、推薦D18を発生する。モジュール111が視聴データD8と視聴データD17a−D17cの間の2又はそれ以上の一致するものを決定するシナリオでは、モジュール102は、各一致した視聴データD17a−D17cから個々の推薦を生成するために、適切な視聴コンピュータ12b−12dからベイズの推薦器を利用する。個々の推薦は、そして、プールされ、それによって、最も有力な推薦が推薦D18として働き、又は、例えば、個々の推薦の平均が推薦D18を発生するために計算されるように、推薦D18を発生するために個々の推薦を結合するための機構が、実行されうる。
【0078】
第4の実施例では、モジュール122は、視聴コンピュータ12bから、米国特許出願番号09/466,406に記載されたもののような決定ツリー推薦器を使用し、それにより、図6Dに示されたように視聴データD19aと属性データD13の関数として、推薦D20を発生する。モジュール121が視聴データD7と視聴データD19a−D19cの間の2又はそれ以上の一致するものを決定するシナリオでは、モジュール122は、各一致した視聴データD19a−D19cから個々の推薦を生成するために、適切な視聴コンピュータ12b−12dから決定ツリー推薦器を利用する。個々の推薦は、そして、プールされ、それによって、最も有力な推薦が推薦D20として働き、又は、例えば、前述の式[5]のように、推薦D20を発生するために個々の推薦を結合するための機構が、実行されうる。
【0079】
第5の実施例では、モジュール132は、視聴コンピュータ12bから、米国特許出願番号09/498,271に記載されたもののようなベイズの推薦器を検索し、それにより、図6Eに示されたように視聴データD21aと属性データD13の関数として、推薦D22を発生する。モジュール131が視聴データD10と視聴データD21a−D21cの間の2又はそれ以上の一致するものを決定するシナリオでは、モジュール132は、各一致した視聴データD21a−D21cから個々の推薦を生成するために、適切な視聴コンピュータ12b−12dからベイズの推薦器を利用する。個々の推薦は、そして、プールされ、それによって、最も有力な推薦が推薦D22として働き、又は、例えば、個々の推薦の平均が推薦D22を発生するために計算されるように、推薦D22を発生するために個々の推薦を結合するための機構が、実行されうる。
【0080】
ルーチン40の段階S46b中に推薦D14、D16、D18、D20及びD22の1つを受信することに応じて、視聴コンピュータ12は、ルーチン40の段階S48中に推薦を表示するか、又は、段階S48中に結合された推薦を表示するために段階S46a中に発生された任意の推薦とともに推薦をプールする。
【0081】
段階S86aと段階S88の代わりに、アプリケーションサーバ11aは、一致された視聴データ(例えば、視聴データ12a、視聴データ15a、視聴データ17a、視聴データ19a及び視聴データ21a)を、視聴コンピュータ12aに供給する。段階S46b中に、一致した視聴データの1つを受信することに応じて、視聴コンピュータ12aは、一致した視聴データを対応する推薦器への入力として利用し、それによって、段階S46中に推薦を生成して、そして段階S48中に推薦を表示する。
【0082】
ソフトウェア90、ソフトウェア100、ソフトウェア110、ソフトウェア120及びソフトウェア130は、ここに個々に記述された。一実施例では、図6Fに示されたように、前述のソフトウェアの2つ又はそれ以上が、共同的なフィルタリング推薦モジュール140に連結され、それにより、視聴データ12a又は視聴データ15a、及び、視聴データ17a又は視聴データ19a、及び、視聴データ21aの関数として、段階S86中に、推薦D23を発生する。一実施例では、ショーjについての最終スコアは、次の式[6]から計算される:
【0083】
【数7】
ここで、ex_score(j)は式[4]からの視聴データD21aの一致スコアであり;fb_score(j)は式[1]からの視聴データD12aの一致スコアであり;im_score(j)は式[1]からの視聴データD17aの一致スコアである。モジュール140は、その後、視聴コンピュータ12aへ推薦D23を供給するために適切な推薦器を利用する。
【0084】
当業者は、図1−6Fと共に記載された本発明は、実時間のイベント(即ち、だれにもまだ等級付けされていないイベント)に適用されることができる共同的なフィルターであることを正当に評価するであろう。当業者は、更に、図1−6Fと共に記載された本発明は、番組予定データ以外の状況で適用されうることを正当に評価する。例えば、本発明は、ラジオ放送のようなテレビジョン以外のウェブ−キャスト又は、メディア形式についての推薦を発生するために適用されることができる。さらに、本発明の自動化された共同的なフィルタリングシステム又はその代わりの実施例は、ニュース記事を提供するか、あるいは製品を売るウェブサイトの視聴者インタフェースを特別化するために使われることができる。ライブラリブラウジングはもう1つの例である。人は、オンラインのライブラリあるいは新聞記事データベースを想像するかもしれず、それにより、選択肢の範囲を制限するために、本発明のこれらの技術が使用されるかもしれない。
【0085】
本発明は、前述の説明する実施例の詳細に限定されず、そして本発明は精神あるいはその不可欠な属性から離れないで、他の特定の形式で、具体化されうることは当業者に明白であるであろう。従って、本実施例は、あらゆる点で説明するものとして、そして制約するのではないと考えられるべきであり、本発明の範囲は、前述の記載ではなく添付の請求項により示されており、そして従って請求項の均等の意味と範囲内のすべての変更は包含されるように意図される。
【図面の簡単な説明】
【0086】
【図1】自動化された共同的なフィルタリングシステムの本発明に従った一実施例の概略図を示す。
【図2】図1のシステム内で使用されるコンピュータハードウェアの本発明に従った一実施例のブロック図を示す。
【図3A】本発明のプロファイリングルーチンのフローチャートを示す。
【図3B】本発明の番組推薦ルーチンのフローチャートを示す。
【図4A】図3Aを実行する図1のシステム内で使用されるフィードバック推薦ソフトウェアの一実施例のブロック図を示す。
【図4B】図3Aを実行する図1のシステム内で使用される暗黙のプロファイリングソフトウェアの一実施例のブロック図を示す。
【図4C】図3Aを実行する図1のシステム内で使用される明白なプロファイリングソフトウェアの一実施例のブロック図を示す。
【図5】本発明の共同的なフィルタリングルーチンのフローチャートを示す。
【図6A】図5のルーチンを実行する図1のシステム内で使用されるフィードバックフィルタリングソフトウェアの第1の実施例のブロック図を示す。
【図6B】図5のルーチンを実行する図1のシステム内で使用されるフィードバックフィルタリングソフトウェアの第2の実施例のブロック図を示す。
【図6C】図5のルーチンを実行する図1のシステム内で使用される暗黙のフィルタリングソフトウェアの第1の実施例のブロック図を示す。
【図6D】図5のルーチンを実行する図1のシステム内で使用される暗黙のフィルタリングソフトウェアの第2の実施例のブロック図を示す。
【図6E】図5のルーチンを実行する図1のシステム内で使用される明白なフィルタリングソフトウェアの一実施例のブロック図を示す。
【図6F】図5のルーチンを実行する図1のシステム内で使用される組み合わせフィルタリングソフトウェアの種々の実施例のブロック図を示す。
Claims (11)
- 第1次の視聴者へ項目の推薦を提供する自動化された共同的なフィルタリングシステムであって、
第1のデータに一致する第2のデータのサブセットを見つける手段を有し、前記第1のデータは前記第1次の視聴者による項目のグループの視聴を示し、前記第2のデータは第2次の視聴者達のグループによる項目の第2のグループの視聴を示し、
第3のデータと前記第2のデータの前記サブセットの関数として前記項目の推薦を発生する手段を有し、
前記第3のデータは、前記項目の1つ又はそれ以上の属性示す、自動化された共同的なフィルタリングシステム。 - 前記システムは、第1次の視聴者への第1の項目の推薦を提供するように配置され、前記システムは、
前記第1のデータに一致する前記第2のデータの前記サブセットを見つける第1のモジュールを有し、前記第1のデータは前記第1次の視聴者による項目の第1のグループの視聴を示し、前記第2のデータは第2次の視聴者達の第1のグループによる項目の第2のグループの視聴を示し、
第3のデータと前記第2のデータの前記サブセットの関数として前記第1の項目の推薦を発生する第2モジュールを有し、
前記第3のデータは、前記第1の項目の1つ又はそれ以上の属性示す、請求項1に記載の自動化された共同的なフィルタリングシステム。 - 前記第1のデータは、前記第1次の視聴者のフィードバック視聴プロファイルを含み、
前記第2のデータは、第2次の視聴者達の前記第1のグループの各々の視聴者のフィードバック視聴プロファイルを含む、請求項2に記載の自動化された共同的なフィルタリングシステム。 - 前記第1のデータは、第1次の視聴者のフィードバック視聴履歴を有し、
前記第2のデータは、第2次の視聴者達の前記第1のグループの各々の視聴者のフィードバック視聴履歴を含む、請求項2に記載の自動化された共同的なフィルタリングシステム。 - 前記第1のデータは、前記第1次の視聴者の暗黙の視聴プロファイルを含み、
前記第2のデータは、第2次の視聴者達の前記第1のグループの各々の視聴者の暗黙の視聴プロファイルを含む、請求項2に記載の自動化された共同的なフィルタリングシステム。 - 前記第1のデータは、第1次の視聴者の暗黙の視聴履歴を有し、
前記第2のデータは、第2次の視聴者達の前記第1のグループの各々の視聴者の暗黙の視聴履歴を含む、請求項2に記載の自動化された共同的なフィルタリングシステム。 - 前記第1のデータは、前記第1次の視聴者の明白な視聴プロファイルを含み、
前記第2のデータは、第2次の視聴者達の前記第1のグループの各々の視聴者の明白な視聴プロファイルを含む、請求項2に記載の自動化された共同的なフィルタリングシステム。 - 更に、
前記第1のデータに一致する第4のデータのサブセットを見つける第3のモジュールを有し、前記第4のデータは前記第2次の視聴者の第2のグループによる項目の第3のグループの視聴を示し、
前記第2のモジュールは、第3のデータと、前記第2のデータの前記サブセットと、前記第4のデータの前記サブセットの関数として前記第1の項目の推薦を発生するように動作する、
請求項2に記載の自動化された共同的なフィルタリングシステム。 - 更に、
前記第1のデータに一致する第5のデータのサブセットを見つける第4のモジュールを有し、前記第5のデータは前記第2次の視聴者の第3のグループによる項目の第4のグループの視聴を示し、
前記第2のモジュールは、第3のデータと、前記第2のデータの前記サブセットと、前記第4のデータの前記サブセットと、前記第5のデータの前記サブセットの関数として前記第1の項目の推薦を発生するように動作する、
請求項8に記載の自動化された共同的なフィルタリングシステム。 - 第1次の視聴者へ第1の項目の推薦を提供する自動化された共同的なフィルタリング方法であって、
第1のデータに一致する第2のデータのサブセットを見つけ、前記第1のデータは前記第1次の視聴者による項目の第1のグループの視聴を示し、前記第2のデータは第2次の視聴者達の第1グループによる項目の第2のグループの視聴を示し、
第3のデータと前記第2のデータの前記サブセットの関数として前記第1の項目の推薦を発生し、前記第3のデータは、前記第1の項目の1つ又はそれ以上の属性示す、自動化された共同的なフィルタリング方法。 - コンピュータプログラムプロダクトを実行するときに、プログラム可能装置が、請求項1に記載のシステムとして機能することを可能とする、コンピュータプログラムプロダクト。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/953,385 US20030051240A1 (en) | 2001-09-10 | 2001-09-10 | Four-way recommendation method and system including collaborative filtering |
PCT/IB2002/003579 WO2003024108A1 (en) | 2001-09-10 | 2002-08-29 | Four-way recommendation method and system including collaborative filtering |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005502968A true JP2005502968A (ja) | 2005-01-27 |
JP2005502968A5 JP2005502968A5 (ja) | 2006-01-05 |
Family
ID=25493910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003528021A Pending JP2005502968A (ja) | 2001-09-10 | 2002-08-29 | 共同的なフィルタリングを含む4方の推薦方法及びシステム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20030051240A1 (ja) |
EP (1) | EP1435177A1 (ja) |
JP (1) | JP2005502968A (ja) |
KR (1) | KR20040033037A (ja) |
CN (1) | CN1326401C (ja) |
WO (1) | WO2003024108A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009520431A (ja) * | 2005-12-19 | 2009-05-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 典型的な仮想チャンネルのためのデフォルト設定を提供するテンプレートのためのシステム、装置および方法 |
JP2010534370A (ja) * | 2007-07-24 | 2010-11-04 | サムスン エレクトロニクス カンパニー リミテッド | 複合アルゴリズム利用した情報推薦方法及び装置 |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7373317B1 (en) * | 1999-10-27 | 2008-05-13 | Ebay, Inc. | Method and apparatus for facilitating sales of goods by independent parties |
US7370006B2 (en) * | 1999-10-27 | 2008-05-06 | Ebay, Inc. | Method and apparatus for listing goods for sale |
US8533094B1 (en) | 2000-01-26 | 2013-09-10 | Ebay Inc. | On-line auction sales leads |
US7284064B1 (en) * | 2000-03-21 | 2007-10-16 | Intel Corporation | Method and apparatus to determine broadcast content and scheduling in a broadcast system |
US20020143591A1 (en) * | 2001-03-30 | 2002-10-03 | Connelly Jay H. | Method and apparatus for a hybrid content on demand broadcast system |
US7185352B2 (en) * | 2001-05-11 | 2007-02-27 | Intel Corporation | Method and apparatus for combining broadcast schedules and content on a digital broadcast-enabled client platform |
US20030005465A1 (en) * | 2001-06-15 | 2003-01-02 | Connelly Jay H. | Method and apparatus to send feedback from clients to a server in a content distribution broadcast system |
US20020194603A1 (en) * | 2001-06-15 | 2002-12-19 | Jay H. Connelly | Method and apparatus to distribute content using a multi-stage broadcast system |
US20030005451A1 (en) * | 2001-06-15 | 2003-01-02 | Connelly Jay H. | Method and apparatus to distribute content descriptors in a content distribution broadcast system |
US7296055B2 (en) * | 2001-09-11 | 2007-11-13 | Sony Corporation | Information providing system, information providing apparatus, information providing method, information processing apparatus, information processing method, and program |
US8943540B2 (en) * | 2001-09-28 | 2015-01-27 | Intel Corporation | Method and apparatus to provide a personalized channel |
US20030066090A1 (en) * | 2001-09-28 | 2003-04-03 | Brendan Traw | Method and apparatus to provide a personalized channel |
US7231419B1 (en) * | 2001-10-19 | 2007-06-12 | Outlooksoft Corporation | System and method for adaptively selecting and delivering recommendations to a requester |
US8275673B1 (en) | 2002-04-17 | 2012-09-25 | Ebay Inc. | Method and system to recommend further items to a user of a network-based transaction facility upon unsuccessful transacting with respect to an item |
WO2004038547A2 (en) * | 2002-10-21 | 2004-05-06 | Ebay Inc. | Listing recommendation in a network-based commerce system |
EP1606936A1 (en) * | 2003-03-17 | 2005-12-21 | Koninklijke Philips Electronics N.V. | Recommender having display of visual cues to aid a user during a feedback process |
JP2006524473A (ja) * | 2003-04-03 | 2006-10-26 | セドナ・パテント・サービシズ・エルエルシー | コンテンツ通知および配信 |
JP2006523403A (ja) * | 2003-04-14 | 2006-10-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 番組画像のコンテンツを介した暗黙的なtv推薦の生成 |
EP1484693A1 (en) * | 2003-06-04 | 2004-12-08 | Sony NetServices GmbH | Content recommendation device with an arrangement engine |
EP1484692B1 (en) * | 2003-06-04 | 2013-07-24 | Intel Corporation | Content recommendation device with user feedback |
US7826907B2 (en) * | 2003-07-31 | 2010-11-02 | Hewlett-Packard Development Company, L.P. | Fortuitous combinations of ad-hoc available sets of different electronic devices to respond to user jobs |
WO2005050482A1 (en) | 2003-10-21 | 2005-06-02 | Nielsen Media Research, Inc. | Methods and apparatus for fusing databases |
CN1890682A (zh) * | 2003-12-03 | 2007-01-03 | 皇家飞利浦电子股份有限公司 | 用于建议的增强型协作筛选技术 |
CN1635498A (zh) * | 2003-12-29 | 2005-07-06 | 皇家飞利浦电子股份有限公司 | 一种内容推荐方法及系统 |
JP2007532988A (ja) * | 2004-03-04 | 2007-11-15 | シャープ株式会社 | インターネットに接続されたテレビのためのプレゼンス技術に基づく即時共用される個人好み同時情報のための方法およびシステム |
US8150825B2 (en) | 2004-03-15 | 2012-04-03 | Yahoo! Inc. | Inverse search systems and methods |
US9396212B2 (en) * | 2004-04-07 | 2016-07-19 | Visible World, Inc. | System and method for enhanced video selection |
US9087126B2 (en) | 2004-04-07 | 2015-07-21 | Visible World, Inc. | System and method for enhanced video selection using an on-screen remote |
JP2008502983A (ja) * | 2004-06-17 | 2008-01-31 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 性格属性を使うパーソナル化したサマリー |
US20060036565A1 (en) * | 2004-08-10 | 2006-02-16 | Carl Bruecken | Passive monitoring of user interaction with a browser application |
JP2008523493A (ja) * | 2004-12-10 | 2008-07-03 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 有料コンテンツへの自動加入方法及び装置 |
US20060277290A1 (en) * | 2005-06-02 | 2006-12-07 | Sam Shank | Compiling and filtering user ratings of products |
US7779011B2 (en) | 2005-08-26 | 2010-08-17 | Veveo, Inc. | Method and system for dynamically processing ambiguous, reduced text search queries and highlighting results thereof |
US7788266B2 (en) | 2005-08-26 | 2010-08-31 | Veveo, Inc. | Method and system for processing ambiguous, multi-term search queries |
EP1920546B1 (en) * | 2005-08-30 | 2014-04-16 | NDS Limited | Enhanced electronic program guides |
US8423323B2 (en) * | 2005-09-21 | 2013-04-16 | Icosystem Corporation | System and method for aiding product design and quantifying acceptance |
EP1783632B1 (en) * | 2005-11-08 | 2012-12-19 | Intel Corporation | Content recommendation method with user feedback |
JP5036178B2 (ja) * | 2005-12-12 | 2012-09-26 | 株式会社ソニー・コンピュータエンタテインメント | コンテンツ案内システム、コンテンツ案内方法、コンテンツ案内支援サーバ、コンテンツ案内支援方法、プログラム及び情報記憶媒体 |
US7739280B2 (en) * | 2006-03-06 | 2010-06-15 | Veveo, Inc. | Methods and systems for selecting and presenting content based on user preference information extracted from an aggregate preference signature |
EP4209927A1 (en) * | 2006-04-20 | 2023-07-12 | Veveo, Inc. | User interface methods and systems for selecting and presenting content based on user navigation and selection actions associated with the content |
US7814112B2 (en) * | 2006-06-09 | 2010-10-12 | Ebay Inc. | Determining relevancy and desirability of terms |
US8468155B2 (en) * | 2006-06-22 | 2013-06-18 | Infosys Limited | Collaborative filtering-based recommendations |
US8078884B2 (en) * | 2006-11-13 | 2011-12-13 | Veveo, Inc. | Method of and system for selecting and presenting content based on user identification |
US8799250B1 (en) * | 2007-03-26 | 2014-08-05 | Amazon Technologies, Inc. | Enhanced search with user suggested search information |
US20080250323A1 (en) * | 2007-04-04 | 2008-10-09 | Huff Gerald B | Method and apparatus for recommending an application-feature to a user |
US8050998B2 (en) * | 2007-04-26 | 2011-11-01 | Ebay Inc. | Flexible asset and search recommendation engines |
US20080275846A1 (en) * | 2007-05-04 | 2008-11-06 | Sony Ericsson Mobile Communications Ab | Filtering search results using contact lists |
US8051040B2 (en) | 2007-06-08 | 2011-11-01 | Ebay Inc. | Electronic publication system |
KR101213235B1 (ko) * | 2007-07-24 | 2012-12-17 | 삼성전자주식회사 | 콘텐트 사용자 또는 콘텐트 제작자가 콘텐트에 삽입되는광고를 선택할 수 있는 콘텐트의 재생/제작 방법 및 장치 |
US8943539B2 (en) | 2007-11-21 | 2015-01-27 | Rovi Guides, Inc. | Enabling a friend to remotely modify user data |
JP5170103B2 (ja) * | 2007-11-26 | 2013-03-27 | 富士通株式会社 | 録画再生装置 |
US20090228918A1 (en) * | 2008-03-05 | 2009-09-10 | Changingworlds Ltd. | Content recommender |
US8131732B2 (en) * | 2008-06-03 | 2012-03-06 | Nec Laboratories America, Inc. | Recommender system with fast matrix factorization using infinite dimensions |
US8037080B2 (en) * | 2008-07-30 | 2011-10-11 | At&T Intellectual Property Ii, Lp | Recommender system utilizing collaborative filtering combining explicit and implicit feedback with both neighborhood and latent factor models |
EP2169953A1 (en) * | 2008-09-24 | 2010-03-31 | Alcatel Lucent | Improved device for IP TV channel selection |
EP2224729A1 (de) * | 2009-02-25 | 2010-09-01 | MoreTV Broadcasting GmbH | Verfahren und System zur Verarbeitung von Programminformationen eines zeitlich linear ausgestrahlten Mediums |
US9166714B2 (en) | 2009-09-11 | 2015-10-20 | Veveo, Inc. | Method of and system for presenting enriched video viewing analytics |
US8914829B2 (en) * | 2009-09-14 | 2014-12-16 | At&T Intellectual Property I, Lp | System and method of proactively recording to a digital video recorder for data analysis |
US8938761B2 (en) * | 2009-09-14 | 2015-01-20 | At&T Intellectual Property I, Lp | System and method of analyzing internet protocol television content credits information |
US20110191332A1 (en) * | 2010-02-04 | 2011-08-04 | Veveo, Inc. | Method of and System for Updating Locally Cached Content Descriptor Information |
US9055347B2 (en) * | 2010-07-02 | 2015-06-09 | At&T Intellectual Property I, L.P. | Apparatus and method for providing electronic program guides |
US9420320B2 (en) | 2011-04-01 | 2016-08-16 | The Nielsen Company (Us), Llc | Methods, apparatus and articles of manufacture to estimate local market audiences of media content |
US9230212B2 (en) * | 2012-02-02 | 2016-01-05 | Peel Technologies, Inc. | Content based recommendation system |
ES2668899T3 (es) * | 2012-04-12 | 2018-05-23 | Contentwise S.R.L. | Recomendaciones de lado de cliente en redes de radiodifusión unidireccional |
JP5209129B1 (ja) * | 2012-04-26 | 2013-06-12 | 株式会社東芝 | 情報処理装置、放送受信装置及び情報処理方法 |
GB2548336B (en) * | 2016-03-08 | 2020-09-02 | Sky Cp Ltd | Media content recommendation |
US9872072B2 (en) * | 2016-03-21 | 2018-01-16 | Google Llc | Systems and methods for identifying non-canonical sessions |
US20180011615A1 (en) * | 2016-07-08 | 2018-01-11 | Netflix, Inc. | Regenerating an interactive page based on current user interaction |
US10277944B2 (en) * | 2016-11-30 | 2019-04-30 | The Nielsen Company (Us), Llc | Methods and apparatus to calibrate audience measurement ratings based on return path data |
US20180192127A1 (en) * | 2016-12-30 | 2018-07-05 | Jamdeo Canada Ltd. | System and method for digital television operation and control - conversense |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10240749A (ja) * | 1997-02-24 | 1998-09-11 | Nec Corp | 情報フィルタリング方法及びその装置並びに情報フィルタリングプログラムを記録した記録媒体 |
JP2000132559A (ja) * | 1998-10-23 | 2000-05-12 | Hitachi Ltd | 情報フィルタリングシステムにおけるプロファイル更新方法及び情報フィルタリングシステム |
JP2000227920A (ja) * | 1999-02-05 | 2000-08-15 | Nippon Telegr & Teleph Corp <Ntt> | 情報フィルタリング方法及び装置並びに情報フィルタリングプログラムを記録した記録媒体 |
JP2000331020A (ja) * | 1999-05-21 | 2000-11-30 | Nippon Telegr & Teleph Corp <Ntt> | 情報参照方法,情報参照装置および情報参照プログラムを格納した記憶媒体 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4996642A (en) * | 1987-10-01 | 1991-02-26 | Neonics, Inc. | System and method for recommending items |
US5997964A (en) * | 1991-04-11 | 1999-12-07 | Sprayex Llc | Liquid crystal display |
US5758257A (en) * | 1994-11-29 | 1998-05-26 | Herz; Frederick | System and method for scheduling broadcast of and access to video programs and other data using customer profiles |
US6029195A (en) * | 1994-11-29 | 2000-02-22 | Herz; Frederick S. M. | System for customized electronic identification of desirable objects |
AU1566597A (en) * | 1995-12-27 | 1997-08-11 | Gary B. Robinson | Automated collaborative filtering in world wide web advertising |
US5867799A (en) * | 1996-04-04 | 1999-02-02 | Lang; Andrew K. | Information system and method for filtering a massive flow of information entities to meet user information classification needs |
US6314420B1 (en) * | 1996-04-04 | 2001-11-06 | Lycos, Inc. | Collaborative/adaptive search engine |
US5848396A (en) * | 1996-04-26 | 1998-12-08 | Freedom Of Information, Inc. | Method and apparatus for determining behavioral profile of a computer user |
US5790426A (en) * | 1996-04-30 | 1998-08-04 | Athenium L.L.C. | Automated collaborative filtering system |
US5801747A (en) * | 1996-11-15 | 1998-09-01 | Hyundai Electronics America | Method and apparatus for creating a television viewer profile |
US5912696A (en) * | 1996-12-23 | 1999-06-15 | Time Warner Cable | Multidimensional rating system for media content |
US20030088872A1 (en) * | 1997-07-03 | 2003-05-08 | Nds Limited | Advanced television system |
US6175362B1 (en) * | 1997-07-21 | 2001-01-16 | Samsung Electronics Co., Ltd. | TV graphical user interface providing selection among various lists of TV channels |
US6005597A (en) * | 1997-10-27 | 1999-12-21 | Disney Enterprises, Inc. | Method and apparatus for program selection |
US5973683A (en) * | 1997-11-24 | 1999-10-26 | International Business Machines Corporation | Dynamic regulation of television viewing content based on viewer profile and viewing history |
US6530083B1 (en) * | 1998-06-19 | 2003-03-04 | Gateway, Inc | System for personalized settings |
US6898762B2 (en) * | 1998-08-21 | 2005-05-24 | United Video Properties, Inc. | Client-server electronic program guide |
US6266649B1 (en) * | 1998-09-18 | 2001-07-24 | Amazon.Com, Inc. | Collaborative recommendations using item-to-item similarity mappings |
US6317881B1 (en) * | 1998-11-04 | 2001-11-13 | Intel Corporation | Method and apparatus for collecting and providing viewer feedback to a broadcast |
US6813775B1 (en) * | 1999-03-29 | 2004-11-02 | The Directv Group, Inc. | Method and apparatus for sharing viewing preferences |
US6449632B1 (en) * | 1999-04-01 | 2002-09-10 | Bar Ilan University Nds Limited | Apparatus and method for agent-based feedback collection in a data broadcasting network |
AU5934900A (en) * | 1999-07-16 | 2001-02-05 | Agentarts, Inc. | Methods and system for generating automated alternative content recommendations |
US6487539B1 (en) * | 1999-08-06 | 2002-11-26 | International Business Machines Corporation | Semantic based collaborative filtering |
US6681247B1 (en) * | 1999-10-18 | 2004-01-20 | Hrl Laboratories, Llc | Collaborator discovery method and system |
US20050076357A1 (en) * | 1999-10-28 | 2005-04-07 | Fenne Adam Michael | Dynamic insertion of targeted sponsored video messages into Internet multimedia broadcasts |
AU2735101A (en) * | 1999-12-21 | 2001-07-03 | Tivo, Inc. | Intelligent peer-to-peer system and method for collaborative suggestions and propagation of media |
WO2001047273A1 (en) * | 1999-12-21 | 2001-06-28 | Tivo, Inc. | Intelligent system and methods of recommending media content items based on user preferences |
US7031931B1 (en) * | 2000-03-30 | 2006-04-18 | Nokia Corporation | Portable device attached to a media player for rating audio/video contents |
US20030093329A1 (en) * | 2001-11-13 | 2003-05-15 | Koninklijke Philips Electronics N.V. | Method and apparatus for recommending items of interest based on preferences of a selected third party |
US7571452B2 (en) * | 2001-11-13 | 2009-08-04 | Koninklijke Philips Electronics N.V. | Method and apparatus for recommending items of interest to a user based on recommendations for one or more third parties |
US20030126606A1 (en) * | 2001-12-27 | 2003-07-03 | Koninklijke Philips Esectronics N.V. | Hierarchical decision fusion of recommender scores |
-
2001
- 2001-09-10 US US09/953,385 patent/US20030051240A1/en not_active Abandoned
-
2002
- 2002-08-29 CN CNB028176448A patent/CN1326401C/zh not_active Expired - Fee Related
- 2002-08-29 EP EP02762670A patent/EP1435177A1/en not_active Withdrawn
- 2002-08-29 JP JP2003528021A patent/JP2005502968A/ja active Pending
- 2002-08-29 WO PCT/IB2002/003579 patent/WO2003024108A1/en active Application Filing
- 2002-08-29 KR KR10-2004-7003525A patent/KR20040033037A/ko not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10240749A (ja) * | 1997-02-24 | 1998-09-11 | Nec Corp | 情報フィルタリング方法及びその装置並びに情報フィルタリングプログラムを記録した記録媒体 |
JP2000132559A (ja) * | 1998-10-23 | 2000-05-12 | Hitachi Ltd | 情報フィルタリングシステムにおけるプロファイル更新方法及び情報フィルタリングシステム |
JP2000227920A (ja) * | 1999-02-05 | 2000-08-15 | Nippon Telegr & Teleph Corp <Ntt> | 情報フィルタリング方法及び装置並びに情報フィルタリングプログラムを記録した記録媒体 |
JP2000331020A (ja) * | 1999-05-21 | 2000-11-30 | Nippon Telegr & Teleph Corp <Ntt> | 情報参照方法,情報参照装置および情報参照プログラムを格納した記憶媒体 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009520431A (ja) * | 2005-12-19 | 2009-05-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 典型的な仮想チャンネルのためのデフォルト設定を提供するテンプレートのためのシステム、装置および方法 |
JP2010534370A (ja) * | 2007-07-24 | 2010-11-04 | サムスン エレクトロニクス カンパニー リミテッド | 複合アルゴリズム利用した情報推薦方法及び装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20040033037A (ko) | 2004-04-17 |
WO2003024108A1 (en) | 2003-03-20 |
EP1435177A1 (en) | 2004-07-07 |
CN1554192A (zh) | 2004-12-08 |
CN1326401C (zh) | 2007-07-11 |
US20030051240A1 (en) | 2003-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005502968A (ja) | 共同的なフィルタリングを含む4方の推薦方法及びシステム | |
US10327023B2 (en) | Systems and methods for modifying playback of a media asset based on an event that will interrupt playback of the media asset | |
JP4991082B2 (ja) | 3方向メディア推奨方法及びシステム指定 | |
KR100782872B1 (ko) | 전자 프로그램 가이드 시청 내역 생성 방법 및 시스템 | |
CN101374214B (zh) | 信息处理装置和信息处理方法 | |
US8250605B2 (en) | Systems and methods for presentation of preferred program selections | |
EP4283488A1 (en) | Systems and methods for determining context switching in conversation | |
JP2005505070A (ja) | 他人のプロフィールを用いた、個人用推薦装置のデータベース | |
JP2008131339A (ja) | 番組情報提供装置、番組情報提供方法及びそのプログラム | |
US20030126227A1 (en) | Method of populating an explicit profile | |
JP2005504399A (ja) | 他人のプロフィールを用いた、推薦装置による個人プロフィールの変更 | |
KR20020073525A (ko) | 이용자 프로파일의 선택적 갱신을 위한 방법 및 장치 | |
JP2007060398A (ja) | 番組情報提供装置、番組情報提供方法及びそのプログラム | |
JP2005509965A (ja) | メディアコンテンツの推奨に用いられるエージェントの作成 | |
WO2010072617A1 (en) | Adaptive implicit learning for recommender systems | |
JP2008525875A (ja) | コンテンツを推薦するための方法及び装置 | |
EP3480767A1 (en) | Systems and methods for improving accuracy in media asset recommendation models | |
US20240251135A1 (en) | Systems and methods for providing content recommendations | |
US9654830B2 (en) | Audiovisual content recommendation method and device | |
US20140373046A1 (en) | Programming Filter | |
EP1634442B1 (en) | Transformation of recommender scores depending upon the viewed status of tv shows | |
US20150169585A1 (en) | Device and method for automatic filter adjustment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050825 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080819 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090203 |