JP2005353705A - Method of manufacturing solid-state electrolytic capacitor - Google Patents

Method of manufacturing solid-state electrolytic capacitor Download PDF

Info

Publication number
JP2005353705A
JP2005353705A JP2004170599A JP2004170599A JP2005353705A JP 2005353705 A JP2005353705 A JP 2005353705A JP 2004170599 A JP2004170599 A JP 2004170599A JP 2004170599 A JP2004170599 A JP 2004170599A JP 2005353705 A JP2005353705 A JP 2005353705A
Authority
JP
Japan
Prior art keywords
capacitor element
lead wire
electrolytic capacitor
capacitor
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004170599A
Other languages
Japanese (ja)
Inventor
Akihiro Ito
明弘 伊藤
Megumi Nabuchi
恵 名渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2004170599A priority Critical patent/JP2005353705A/en
Publication of JP2005353705A publication Critical patent/JP2005353705A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid-state electrolytic capacitor having no deterioration in electric characteristics such as a decline in electrostatic capacitance and an increase in dielectric loss and leakage current, by preventing the creeping up or attachment of manganese contained in a semiconductor mother liquor or a graphite solution onto an anode lead wire. <P>SOLUTION: Valve action metal powder is press-molded and then is sintered to fabricate a capacitor element. Thereafter, the anode lead wire coated with a water-repellent insulation resin is cut into a length of 10 mm, and the cutting face is welded to the element, and thereby the creeping up of manganese onto the anode lead wire and the penetration of an insulating material into the inside of the capacitor element can be surely prevented, resulting in fabrication of the capacitor element with no deterioration in electric characteristics. Furthermore, since the size of a space between a portion where the insulating material is formed and the entire capacitor element can be minimized, the volumetric efficiency of the capacitor element is increased and thereby a solid-state electrolytic capacitor can be provided with a large capacitance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体電解コンデンサに関するものであり、詳しくは弁作用を有する金属粉末焼結体に埋設されるリード線への電解液の這い上がり防止が可能なコンデンサ素子の製造方法に関するものである。   The present invention relates to a solid electrolytic capacitor, and more particularly to a method of manufacturing a capacitor element capable of preventing the electrolyte from creeping up into a lead wire embedded in a metal powder sintered body having a valve action.

従来、固体電解コンデンサの製造方法は、最初にタンタルまたはニオブ等の弁作用を有する金属粉末を加圧成形してコンデンサ素子を形成し、該素子を焼結して焼結体を形成した後、陽極となるリード線を溶接し、誘電体となる陽極酸化皮膜を形成する。
次に、上記陽極酸化皮膜を形成したコンデンサ素子に、硝酸マンガン水溶液を含浸した後、熱処理にて硝酸マンガンを熱分解させる工程を複数回繰り返すことにより二酸化マンガン層を形成する。
Conventionally, a method for producing a solid electrolytic capacitor includes first forming a capacitor element by pressure forming metal powder having a valve action such as tantalum or niobium, and sintering the element to form a sintered body. A lead wire to be an anode is welded to form an anodic oxide film to be a dielectric.
Next, after impregnating the capacitor element on which the anodized film is formed with an aqueous manganese nitrate solution, a process of thermally decomposing the manganese nitrate by heat treatment is repeated a plurality of times to form a manganese dioxide layer.

この二酸化マンガン層を形成する際、リード線表面に硝酸マンガン水溶液が這い上がり、誘電体酸化皮膜の形成されていないリード線表面に二酸化マンガン層が形成されると、リード線とコンデンサ素子本体の表面間の電気絶縁性が損なわれ、漏れ電流特性不良やショート不良の原因になる。   When this manganese dioxide layer is formed, if the manganese nitrate aqueous solution crawls up on the surface of the lead wire and the manganese dioxide layer is formed on the surface of the lead wire on which the dielectric oxide film is not formed, The electrical insulation between them is impaired, causing leakage current characteristics failure and short circuit failure.

そこで、コンデンサ素子に溶接したリード線の根元部分に撥水性の液状絶縁剤4bを塗布した後、固化させる方法や、絶縁リング4cを挿入する方法により、陽極リード線表面に二酸化マンガン層が形成されない工夫がとられている(例えば、特許文献1、2参照)。
特開2002−270468号 特開平10−116753号
Therefore, a manganese dioxide layer is not formed on the surface of the anode lead wire by applying a water-repellent liquid insulating agent 4b to the root portion of the lead wire welded to the capacitor element and then solidifying or inserting the insulating ring 4c. Ingenuity is taken (for example, refer to Patent Documents 1 and 2).
JP 2002-270468 Japanese Patent Laid-Open No. 10-116753

しかし、図6に示す従来法では、絶縁材(撥水性の液状絶縁剤4b)をリード線表面に塗布しているため、リード線の狭い範囲に絶縁部を精度良く形成することができない。
また、リード線の根元部分に絶縁材(撥水性の液状絶縁剤4b)を塗布するため、絶縁材のコンデンサ素子内部への浸透が起こり、固体電解コンデンサの誘電損失の増加や、静電容量の低下が発生するという問題がある。
However, in the conventional method shown in FIG. 6, since the insulating material (water repellent liquid insulating agent 4b) is applied to the surface of the lead wire, the insulating portion cannot be accurately formed in a narrow range of the lead wire.
In addition, since the insulating material (water repellent liquid insulating agent 4b) is applied to the root portion of the lead wire, the insulating material penetrates into the capacitor element, increasing the dielectric loss of the solid electrolytic capacitor and reducing the capacitance. There is a problem that a decrease occurs.

そして、図7のように絶縁材(絶縁リング4c)を挿入する方法では、リード線に対する絶縁リング4cの取り付け位置のバラツキが大きくなり、さらに、コンデンサ素子を固体電解コンデンサに組み立てる際に、絶縁リング4cの分だけコンデンサ素子の体積が大きくなるため、固体電解コンデンサに収納するコンデンサ素子の体積効率を向上できないという問題がある。   Then, in the method of inserting the insulating material (insulating ring 4c) as shown in FIG. 7, the variation in the mounting position of the insulating ring 4c with respect to the lead wire becomes large, and further, when the capacitor element is assembled to the solid electrolytic capacitor, the insulating ring Since the volume of the capacitor element is increased by 4c, there is a problem that the volume efficiency of the capacitor element housed in the solid electrolytic capacitor cannot be improved.

さらにリード線と絶縁リング4cとの隙間から硝酸マンガン水溶液が這い上がり、誘電体酸化皮膜の形成されていないリード線表面に二酸化マンガン層が形成され、漏れ電流の増大やショート不良が発生するという問題もある。   Further, the manganese nitrate aqueous solution rises from the gap between the lead wire and the insulating ring 4c, and a manganese dioxide layer is formed on the surface of the lead wire on which the dielectric oxide film is not formed, resulting in an increase in leakage current and short circuit failure. There is also.

本発明は、上記の問題を解決するもので、固体電解コンデンサの静電容量の低下、誘電損失、漏れ電流の増大等、電気的特性を劣化させることのないコンデンサ素子の製造方法の提供を目的とするものである。   The present invention solves the above-described problems, and it is an object of the present invention to provide a method for manufacturing a capacitor element that does not deteriorate electrical characteristics such as a decrease in capacitance of a solid electrolytic capacitor, dielectric loss, and increase in leakage current. It is what.

すなわち、本発明は、弁作用金属粉末を加圧成形し、焼結してコンデンサ素子を形成する工程と、撥水性絶縁樹脂4aでコーティングしたリード線を切断し、該切断面を上記コンデンサ素子に溶接する工程とを有することを特徴とする固体電解コンデンサの製造方法である。   That is, the present invention is a method in which a valve-acting metal powder is pressure-molded and sintered to form a capacitor element, and a lead wire coated with the water-repellent insulating resin 4a is cut, and the cut surface is used as the capacitor element. And a step of welding.

また、上記の撥水性絶縁樹脂が四フッ化エチレン樹脂、四フッ化エチレン・パーフルオロアルキルビニルエーテル共重合体樹脂、四フッ化エチレン・六フッ化プロピレン共重合体樹脂であることを特徴とする固体電解コンデンサの製造方法である。   The water-repellent insulating resin is a tetrafluoroethylene resin, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, or a tetrafluoroethylene / hexafluoropropylene copolymer resin. This is a method of manufacturing an electrolytic capacitor.

さらに、上記のリード線の溶接方法が、リード線切断面の片面に溶接用電極を接触させ、反対側の切断面にコンデンサ素子を当接させ、電気抵抗溶接により溶接することを特徴とする固体電解コンデンサの製造方法である。   Further, in the above-described lead wire welding method, the welding electrode is brought into contact with one side of the lead wire cut surface, the capacitor element is brought into contact with the opposite cut surface, and welding is performed by electric resistance welding. This is a method of manufacturing an electrolytic capacitor.

本発明は、あらかじめ撥水性絶縁樹脂をコーティングしたリード線を使用しているため、撥水性絶縁樹脂がコンデンサ素子内部へ浸透することなく、リード線への硝酸マンガンの這い上がりを確実に防止できるため、固体電解コンデンサの静電容量の低下、誘電損失、漏れ電流の増大等の電気的特性劣化を生じさせることのないコンデンサ素子を製造できる。   Since the present invention uses a lead wire pre-coated with a water-repellent insulating resin, the water-repellent insulating resin does not penetrate into the capacitor element and can reliably prevent the manganese nitrate from creeping into the lead wire. In addition, it is possible to manufacture a capacitor element that does not cause deterioration of electrical characteristics such as a decrease in electrostatic capacitance, dielectric loss, and increase in leakage current of the solid electrolytic capacitor.

さらに、絶縁材形成部とコンデンサ素子本体の隙間寸法を最小にできるため、固体電解コンデンサの誘電損失を増大させることなく、図5に示す固体電解コンデンサ全長Lに対するコンデンサ素子全長Wを大きくすることができ、コンデンサ素子の体積効率を最大にできるため、固体電解コンデンサの大容量化を実現できる。   Furthermore, since the gap dimension between the insulating material forming portion and the capacitor element body can be minimized, the capacitor element total length W with respect to the solid electrolytic capacitor total length L shown in FIG. 5 can be increased without increasing the dielectric loss of the solid electrolytic capacitor. Since the volume efficiency of the capacitor element can be maximized, the capacity of the solid electrolytic capacitor can be increased.

以下、本発明の実施例について図面を参照しながら説明する。
まず、タンタル粉末を加圧成形したコンデンサ素子を高温で真空焼結した後、あらかじめ四フッ化エチレン樹脂でコーティングしたリール状のタンタルリード線を、長さ10mmに切断し、図3に示すようにタンタル金属が露出したリード線の切断面の片面に溶接用電極を接触させ、反対側の切断面にコンデンサ素子を押し当て、電気抵抗溶接によりコンデンサ素子にリード線を溶接する(図1、2)。
そして、リン酸水溶液中にて化成電圧30Vを印加して陽極酸化し、コンデンサ素子表面にタンタルの誘電体酸化皮膜を形成する。
Embodiments of the present invention will be described below with reference to the drawings.
First, a capacitor element in which tantalum powder was pressure-molded was vacuum-sintered at a high temperature, and then a reel-like tantalum lead wire previously coated with a tetrafluoroethylene resin was cut into a length of 10 mm, as shown in FIG. A welding electrode is brought into contact with one side of the cut surface of the lead wire where the tantalum metal is exposed, the capacitor element is pressed against the opposite cut surface, and the lead wire is welded to the capacitor element by electric resistance welding (FIGS. 1 and 2). .
Then, an anodization is performed by applying a formation voltage of 30 V in an aqueous phosphoric acid solution to form a tantalum dielectric oxide film on the surface of the capacitor element.

次に、硝酸マンガン水溶液にコンデンサ素子を含浸した後、200〜400℃で10分間熱処理を行い硝酸マンガンを熱分解する工程を複数回繰り返し、誘電体酸化皮膜上に二酸化マンガン層を充分に形成する。ついで、黒鉛粉末を懸濁させたグラファイト液に浸潰し、恒温槽中で乾燥後、陰極銀層などの金属層を形成してコンデンサ素子を形成する。   Next, after impregnating the capacitor element with an aqueous manganese nitrate solution, the process of thermally decomposing the manganese nitrate by heat treatment at 200 to 400 ° C. for 10 minutes is repeated a plurality of times to sufficiently form a manganese dioxide layer on the dielectric oxide film. . Next, it is immersed in a graphite liquid in which graphite powder is suspended, dried in a thermostatic chamber, and then a metal layer such as a cathode silver layer is formed to form a capacitor element.

その後、陽極端子に接続する部分のリード線表面の絶縁材を除去し(図4)、リード線と陽極端子を溶接により接続し、コンデンサ素子を形成する陰極銀層に陰極端子を導電性接着剤で接続し、その後トランスファーモールドを行いチップ形タンタル固体電解コンデンサを得る。   Thereafter, the insulating material on the surface of the lead wire connected to the anode terminal is removed (FIG. 4), the lead wire and the anode terminal are connected by welding, and the cathode terminal is connected to the cathode silver layer forming the capacitor element by the conductive adhesive. Then, transfer molding is performed to obtain a chip-type tantalum solid electrolytic capacitor.

次に、本発明による実施例と従来例との特性比較について述べる。上記製造方法にて得られた実施例と、タンタル粉末を加圧成形後焼結したコンデンサ素子にリード線を溶接後、リード線表面に撥水性の液状絶縁剤4bを塗布・硬化し、リード線表面に絶縁部を形成した点を除き、実施例と同一手段にて製造した従来例1と、コンデンサ素子にリード線を溶接後、コンデンサ素子のリード線に絶縁リング4cを挿入し、絶縁部を形成した点を除き、実施例と同一手段にて製造した従来例2について、それぞれの固体電解コンデンサの全長Lに対するコンデンサ素子全長W比[%]および製造後の静電容量、誘電損失、漏れ電流の値を比較した結果を表1に示し、またそれぞれの温度サイクル(−55℃30分/+125℃30分)1000回後の電気特性の値を比較した結果を表2に示す。   Next, a characteristic comparison between the embodiment of the present invention and the conventional example will be described. After the lead wire was welded to the capacitor element obtained by press-molding and sintering tantalum powder after applying the above-described manufacturing method, a water-repellent liquid insulating agent 4b was applied and cured on the surface of the lead wire. Except for the point that the insulating part was formed on the surface, the conventional example 1 manufactured by the same means as the example and after welding the lead wire to the capacitor element, the insulating ring 4c was inserted into the lead wire of the capacitor element, and the insulating part was Except for the points formed, the conventional example 2 manufactured by the same means as the example, the ratio W of the total length of the capacitor element to the total length L of each solid electrolytic capacitor [%], and the capacitance, dielectric loss, leakage current after manufacture Table 1 shows the results of the comparison of the values, and Table 2 shows the results of comparison of the values of the electrical characteristics after 1000 cycles of each temperature cycle (−55 ° C. for 30 minutes / + 125 ° C. for 30 minutes).

Figure 2005353705
Figure 2005353705

Figure 2005353705
Figure 2005353705

表1から明らかなように、実施例では従来例1と比較して、静電容量および誘電損失が改善されている。また、実施例は従来例2と比較して、固体電解コンデンサ全長Lに対するコンデンサ素子全長Wを大きくすることができ、その結果、素子の体積効率が改善されており、漏れ電流も改善されている。
また、表2より明らかなように、実施例は従来例1と比較して、温度サイクル試験後の誘電損失および漏れ電流が改善されている。かつ、実施例は従来例2と比較して漏れ電流が大きく改善されている。
なお、本手法は二酸化マンガン使用品のみでなく高分子使用品にも有効な結果が得られた。
As is apparent from Table 1, the capacitance and the dielectric loss are improved in the example as compared with the conventional example 1. In addition, the embodiment can increase the capacitor element total length W with respect to the solid electrolytic capacitor total length L compared to the conventional example 2, and as a result, the volume efficiency of the element is improved and the leakage current is also improved. .
Further, as is apparent from Table 2, the example has improved dielectric loss and leakage current after the temperature cycle test as compared with the conventional example 1. In addition, the leakage current of the example is greatly improved as compared with the conventional example 2.
This method was effective not only for products using manganese dioxide but also for products using polymers.

実施例では、リード線にコーティングする撥水性絶縁樹脂に四フッ化エチレン樹脂を使用したが、本手法は他の撥水性絶縁樹脂剤にも有効である。   In the embodiment, a tetrafluoroethylene resin is used as the water-repellent insulating resin coated on the lead wire, but this method is also effective for other water-repellent insulating resin agents.

本発明によるコンデンサ素子に撥水性絶縁樹脂でコーティングされたリード線を溶接した状態の正面図である。It is a front view of the state which welded the lead wire coated with the water repellent insulating resin to the capacitor | condenser element by this invention. 図1のコンデンサ素子を横置きしたときの斜視図である。FIG. 2 is a perspective view when the capacitor element of FIG. 1 is placed horizontally. 本発明による、コンデンサ素子に撥水性絶縁樹脂でコーティングされたリード線を溶接する時の状態図である。It is a state diagram when welding a lead wire coated with a water repellent insulating resin to a capacitor element according to the present invention. 図1のコンデンサ素子の表面に酸化皮膜と固体電解質を形成後、陽極端子と接続する部分のリード線の撥水性絶縁樹脂を除去した後の状態図である。FIG. 2 is a state diagram after forming the oxide film and the solid electrolyte on the surface of the capacitor element of FIG. 1 and then removing the water-repellent insulating resin from the lead wire connected to the anode terminal. 本発明によるコンデンサ素子を使用した固体電解コンデンサの縦断面図である。It is a longitudinal cross-sectional view of the solid electrolytic capacitor using the capacitor | condenser element by this invention. 従来例による、リード線に液状絶縁剤を塗布したコンデンサ素子の正面図である。It is a front view of the capacitor | condenser element which apply | coated the liquid insulating material to the lead wire by a prior art example. 従来例による、リード線に絶縁リングを挿入したコンデンサ素子の正面図である。It is a front view of the capacitor | condenser element which inserted the insulating ring into the lead wire by a prior art example. 図7の従来例による、コンデンサ素子を使用した固体電解コンデンサの縦断面図である。It is a longitudinal cross-sectional view of the solid electrolytic capacitor using a capacitor | condenser element by the prior art example of FIG.

符号の説明Explanation of symbols

1 コンデンサ素子
2 焼結体
3 リード線
4a 絶縁材(撥水性絶縁樹脂)
4b 絶縁材(液状絶縁剤)
4c 絶縁材(絶縁リング)
5 導電性接着剤
6 外装樹脂層
7 陽極端子
8 陰極端子
9 リード線溶接用電源
L 固体電解コンデンサの全長
W 固体電解コンデンサ素子の全長
S 絶縁リングとコンデンサ素子端面との間隔
T 陽極素子とコンデンサ素子端面との間隔
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Sintered body 3 Lead wire 4a Insulation material (water-repellent insulating resin)
4b Insulation material (liquid insulation)
4c Insulation material (insulation ring)
5 Conductive Adhesive 6 Exterior Resin Layer 7 Anode Terminal 8 Cathode Terminal 9 Lead Wire Welding Power Supply L Total Length of Solid Electrolytic Capacitor W Total Length of Solid Electrolytic Capacitor Element S Distance between Insulating Ring and Capacitor Element End Face T Anode Element and Capacitor Element Distance from end face

Claims (3)

弁作用金属粉末を加圧成形し、焼結してコンデンサ素子を形成する工程と、撥水性絶縁樹脂でコーティングしたリード線を切断し、該切断面を上記コンデンサ素子に溶接する工程とを有することを特徴とする固体電解コンデンサの製造方法。   Pressure forming metal powder and sintering to form a capacitor element, and cutting a lead wire coated with a water-repellent insulating resin and welding the cut surface to the capacitor element. A method for producing a solid electrolytic capacitor characterized by the above. 請求項1記載の撥水性絶縁樹脂が四フッ化エチレン樹脂、四フッ化エチレン・パーフルオロアルキルビニルエーテル共重合体樹脂、四フッ化エチレン・六フッ化プロピレン共重合体樹脂であることを特徴とする固体電解コンデンサの製造方法。   The water-repellent insulating resin according to claim 1 is a tetrafluoroethylene resin, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, or a tetrafluoroethylene / hexafluoropropylene copolymer resin. A method for producing a solid electrolytic capacitor. 請求項1記載のリード線の溶接方法が、リード線切断面の片面に溶接用電極を接触させ、反対側の切断面にコンデンサ素子を当接させて、電気抵抗溶接により溶接することを特徴とする固体電解コンデンサの製造方法。   The lead wire welding method according to claim 1, wherein the welding electrode is brought into contact with one side of the lead wire cut surface, the capacitor element is brought into contact with the opposite cut surface, and welding is performed by electric resistance welding. A method for manufacturing a solid electrolytic capacitor.
JP2004170599A 2004-06-09 2004-06-09 Method of manufacturing solid-state electrolytic capacitor Pending JP2005353705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170599A JP2005353705A (en) 2004-06-09 2004-06-09 Method of manufacturing solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170599A JP2005353705A (en) 2004-06-09 2004-06-09 Method of manufacturing solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2005353705A true JP2005353705A (en) 2005-12-22

Family

ID=35587932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170599A Pending JP2005353705A (en) 2004-06-09 2004-06-09 Method of manufacturing solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2005353705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7725928B2 (en) * 2005-12-02 2010-05-25 Palo Alto Research Center Incorporated System and method for establishing temporary and permanent credentials for secure online commerce

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7725928B2 (en) * 2005-12-02 2010-05-25 Palo Alto Research Center Incorporated System and method for establishing temporary and permanent credentials for secure online commerce

Similar Documents

Publication Publication Date Title
JP4010447B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2016181692A (en) Tantalum embedded microchip
KR101442339B1 (en) Solid electrolytic condenser and method for manufacturing the same
JP2009266931A (en) Solid-state electrolytic capacitor
JP2006295075A (en) Capacitor element of solid electrolytic capacitor and its manufacturing method
US11915886B2 (en) Solid electrolytic capacitor
JP4703444B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005294402A (en) Solid electrolytic capacitor and its manufacturing method
JP2007227485A (en) Solid electrolytic capacitor and its manufacturing method
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005353705A (en) Method of manufacturing solid-state electrolytic capacitor
KR20240018410A (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP5816839B2 (en) Electrolytic capacitor manufacturing method
JP2008053512A (en) Solid electrolytic capacitor
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP5273736B2 (en) Manufacturing method of solid electrolytic capacitor
JP4571040B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008091358A (en) Solid-state electrolytic capacitor, and its manufacturing process
JP4853966B2 (en) Solid electrolytic capacitor
JP4863509B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007095801A (en) Manufacturing method of solid-state electrolytic capacitor
JP2010080600A (en) Chip-shaped solid electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2012004341A (en) Solid electrolytic capacitor
JP2005101155A (en) Solid-state electrolyte capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Effective date: 20090824

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100222

Free format text: JAPANESE INTERMEDIATE CODE: A02