JP2005350724A - Ultrahigh strength pipe bend having excellent low temperature toughness - Google Patents

Ultrahigh strength pipe bend having excellent low temperature toughness Download PDF

Info

Publication number
JP2005350724A
JP2005350724A JP2004172422A JP2004172422A JP2005350724A JP 2005350724 A JP2005350724 A JP 2005350724A JP 2004172422 A JP2004172422 A JP 2004172422A JP 2004172422 A JP2004172422 A JP 2004172422A JP 2005350724 A JP2005350724 A JP 2005350724A
Authority
JP
Japan
Prior art keywords
toughness
strength
less
value
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004172422A
Other languages
Japanese (ja)
Other versions
JP2005350724A5 (en
JP4475023B2 (en
Inventor
Hideji Okaguchi
秀治 岡口
Masahiko Hamada
昌彦 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004172422A priority Critical patent/JP4475023B2/en
Publication of JP2005350724A publication Critical patent/JP2005350724A/en
Publication of JP2005350724A5 publication Critical patent/JP2005350724A5/ja
Application granted granted Critical
Publication of JP4475023B2 publication Critical patent/JP4475023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipe bend having a tensile strength of ≥750 MPa and having excellent base material and weld zone toughness, and to provide its production method. <P>SOLUTION: The ultrahigh strength pipe bend has a composition comprising, by mass, 0.03 to 0.12% C, 0.01 to 0.2% Si, 0.8 to 2.0% Mn, ≤0.009% P, ≤0.003% S, 0.1 to 1.5% Ni, 0.003 to 0.05% Nb, 0.05 to 1.2% Mo, 0.005 to 0.03% Ti, ≤0.005% N and 0.002 to 0.07% Al, and the balance Fe with inevitable impurities, and has a microstructure where a tempered martensitic structure of ≥3% is incorporated into a tempered bainitic structure with a mean packet grain size of ≤20 μm. The pipe bend may further comprises 0.005 to 0.1% V and/or one or more kinds of metals selected from 0.1 to 1.4% Cu, 0.1 to 1.2% Cr, 0.0005 to 0.006% Ca and 0.0001 to 0.003% Mg. In its production, after heating at 820 to 1,050°C, bending is performed, thereafter, accelerated cooling is performed to ≤400°C at a cooling rate of ≥5°C/s, and subsequently, tempering treatment is performed in the temperature range of 350 to 750°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、引張強さで750MPa以上の高強度と優れた低温靱性を有するベンド管(曲がり管)およびその製造法に関する。   The present invention relates to a bend pipe (bent pipe) having a high tensile strength of 750 MPa or more and excellent low-temperature toughness, and a method for producing the same.

天然ガス、原油を長距離輸送するパイプラインにおいて、輸送コストの低減は普遍的なニーズであり、そのためには操業圧力の上昇による輸送効率の改善が必要とされている。そこで、操業圧力を高めるには、従来からの強度グレードのパイプにおいてその肉厚を増加させる方法が考えられる。   In pipelines that transport natural gas and crude oil over long distances, reducing transportation costs is a universal need, and for this purpose, transportation efficiency must be improved by increasing operating pressure. In order to increase the operating pressure, a method of increasing the wall thickness of a conventional strength grade pipe can be considered.

しかし、そのような方法では現地での溶接施工能率を低下させるとともに構造物の重量増加による施工効率の低下を生じる問題がある。これに対しパイプ素材そのものを高強度化し肉厚の増大を制限するニーズが高まっており、現在、米国石油協会(API) においてX
80グレード鋼が規格化され実用に供されてきている。さらにX100 グレードおよびそれ以
上の強度グレードの鋼管も開発が進められている。
However, in such a method, there is a problem in that the welding efficiency in the field is lowered and the construction efficiency is lowered due to an increase in the weight of the structure. On the other hand, there is a growing need to increase the strength of pipe material itself and limit the increase in wall thickness.
80 grade steel has been standardized and put into practical use. In addition, steel pipes of X100 grade and higher strength grades are being developed.

ところで、長大なパイプラインや複雑な構造の圧力容器では直線状の直管だけでは施工が不可能なため、複雑な地形や設計に応じて鋼管を対応させることができる曲がり管が必要である。   By the way, since it is impossible to construct a long pipeline or a pressure vessel with a complicated structure with only a straight straight pipe, a bent pipe capable of accommodating a steel pipe according to complicated topography and design is required.

通常、曲がり管、つまりベンド管は直管を熱間または温間にて (曲げ) 加工して製造される。これまでX80グレードまでのX100 グレード未満のベンド管(引張強さで約750MPa未満のベンド管)については種々の技術が提案され、実用化されている。しかしながら、X100 グレード以上の高強度グレードのベンド管については、高強度鋼板では溶接性と低
温靱性とを両立させるために、組織の微細化などを目的として制御圧延技術の役割が大きくなるが、この鋼管を熱間/温間曲げ加工した場合、加熱によって制御圧延の効果が消失してしまい、ベンド管を製造する際に生ずる機械的特性の低下が激しくなる傾向にあり、低温靱性を安定的に得ることが困難と考えられていた。
Usually, a bent pipe, that is, a bend pipe, is manufactured by processing (bending) a straight pipe hot or warm. So far, various techniques have been proposed and put to practical use for bend pipes less than X100 grade up to X80 grade (bend pipes having a tensile strength of less than about 750 MPa). However, for high-strength grade bend pipes of X100 grade or higher, the role of controlled rolling technology is increasing for the purpose of refining the structure in order to achieve both weldability and low-temperature toughness in high-strength steel sheets. When steel pipes are hot / warm bent, the effect of controlled rolling disappears due to heating, and the mechanical properties that occur when manufacturing bend pipes tend to deteriorate drastically. It was considered difficult to obtain.

これに対し、例えば特許文献1では成分を調整して製造した鋼管を微細なオーステナイト状態で曲げ加工し、直ちに水冷することにより平均粒径で10μm 以下のオーステナイト粒から変態したベイナイトを体積分率で70%以上含有するX100 グレード以上の高強度ベ
ンド管が提案されている。
On the other hand, in Patent Document 1, for example, a steel pipe manufactured by adjusting the components is bent in a fine austenite state and immediately cooled with water to immediately transform bainite transformed from austenite grains having an average particle size of 10 μm or less in volume fraction. A high strength bend pipe of X100 grade or higher containing 70% or more has been proposed.

また特許文献2では適正量の合金元素を含む、0.03%C以下の極低C−Nb−微量Ti系鋼管を加熱後、曲げ加工しながら直後に焼き入れ処理することによって高強度と低温靱性を同時に達成するX80〜X100 級ベンド管が提案されている。
特開平11−172374号公報 特開2002−129288号公報
Further, in Patent Document 2, high strength and low temperature toughness are obtained by heating a very low C-Nb-trace amount Ti-based steel pipe containing 0.03% C or less containing an appropriate amount of alloying element and then quenching immediately after bending. X80 to X100 grade bend pipes that can be achieved simultaneously have been proposed.
JP 11-172374 A JP 2002-129288 A

しかしながら、構造体としてのパイプラインにおいてはベンド管の部位が歪み集中部位となるため、亀裂伝播停止特性に加え、極めて高い脆性亀裂発生抑制特性を具備している必要がある。特にX100 グレードあるいはX100 グレード超の超高強度鋼においては材料の脆性亀裂発生感受性が高まるため、特に留意する必要がある。   However, in a pipeline as a structure, a bend pipe portion is a strain concentration portion, and therefore, it is necessary to have extremely high brittle crack generation suppression characteristics in addition to crack propagation stop characteristics. In particular, it is necessary to pay particular attention to X100 grade or X100 grade super high strength steel because the material is more susceptible to brittle cracks.

一般にラインパイプ用鋼において、この亀裂発生抑制特性を評価するにはCTOD試験が利用されているが、従来の超高強度ベンド管の製造技術では、溶接HAZ 部を含む鋼管の亀裂発生抑制特性に対しCTOD試験による十分な検討がなされておらず、安全性が確保できているとは云えなかった。特に特許文献1と特許文献2に記載されているような、加速冷却ままで製造された高強度ベンド管では組織中に有害な硬質相が残存するため、十分な亀裂発生抑制特性と安全性が確保できているとは云えなかったのである。また、従来の低強度ベンド管製造でしばしば利用されているベンド管成型後の焼き戻し処理も、そのまま超高強度ベンド管に流用しただけでは硬質相の分解−軟化が生ずるものの、新たに粒界上やパケット界面上の炭化物の析出などによって十分な亀裂発生抑制特性を具備させることができなかったのである。   In general, the CTOD test is used to evaluate the cracking suppression characteristics of steel for line pipes. However, the conventional ultra-high-strength bend pipe manufacturing technology uses the crack generation suppression characteristics of steel pipes including welded HAZ parts. On the other hand, sufficient examination by CTOD test has not been made, and it cannot be said that safety has been secured. In particular, in high strength bend pipes manufactured with accelerated cooling as described in Patent Document 1 and Patent Document 2, since a harmful hard phase remains in the structure, sufficient crack generation suppression characteristics and safety are obtained. It could not be said that it was secured. Also, the tempering after molding of the bend pipe, which is often used in the production of conventional low-strength bend pipes, causes decomposition and softening of the hard phase just by diverting it to the ultra-high-strength bend pipes. It was not possible to provide sufficient cracking suppression properties due to precipitation of carbides on the top and on the packet interface.

すなわち、特許文献1の発明では焼き入れままのベイナイト組織を利用しているため、冷却前のオーステナイト粒を10μm の微細粒にしなければならず、そのためには鋼管の加熱温度を780 〜950 ℃のγ/α二相域に加熱する必要がある。これでは製品の加工精度、特性にバラツキが生じ、生産性も悪くなるだけでなく、X100 グレード以上の高強度、高
靱性化にも限界がある。また特許文献2の発明でも極低C鋼のため、引張強さ750MPa以上の高強度では十分な低温靱性を有するベンド管の製造は困難であった。
That is, in the invention of Patent Document 1, since the as-quenched bainite structure is used, the austenite grains before cooling must be made into 10 μm fine grains. For this purpose, the heating temperature of the steel pipe is set to 780 to 950 ° C. It is necessary to heat the γ / α two-phase region. This not only results in variations in the processing accuracy and characteristics of the product and deteriorates productivity, but also has limitations in increasing strength and toughness over the X100 grade. Further, in the invention of Patent Document 2, because of extremely low C steel, it was difficult to produce a bend pipe having sufficient low temperature toughness at a high strength of 750 MPa or more.

本発明の課題は引張強度が750MPa以上で、優れた母材および溶接部の亀裂発生抑制特性と溶接性を有する高強度ベンド管とその製造法を提供せんとするものである。   An object of the present invention is to provide a high-strength bend pipe having a tensile strength of 750 MPa or more, an excellent base metal and crack generation suppressing properties of welds and weldability, and a method for producing the same.

本発明者らは、優れた母材および溶接部靱性、亀裂発生抑制特性と溶接性を有する高強度ベンド管を開発すべく、種々検討を行った結果、以下の知見を得るに至った。
即ち、750MPa以上の引張強度を有する高強度ベンド管を熱間曲げ加工によって母材、溶接部の靱性を損なうことなく製造するには、以下の点が重要である。
As a result of various studies to develop a high-strength bend pipe having excellent base material and weld toughness, crack generation suppressing characteristics and weldability, the present inventors have obtained the following knowledge.
In other words, the following points are important for producing a high-strength bend pipe having a tensile strength of 750 MPa or more by hot bending without impairing the toughness of the base material and the welded part.

(i)ベンド管の最終組織は、焼き戻しマルテンサイトを含有する焼き戻しベイナイト(下部ベイナイト含む)組織とし、ベイナイトの平均パケット粒径を20μm 以下とする。この際十分な高強度と低温靱性を両立させるには焼き戻しマルテンサイトの生成分率を3%以上とする。  (i) The final structure of the bend tube is a tempered bainite (including lower bainite) structure containing tempered martensite, and the average packet particle size of bainite is 20 μm or less. At this time, in order to achieve both sufficient high strength and low temperature toughness, the production ratio of tempered martensite is set to 3% or more.

(ii) 上記組織をベンド管の製造工程にて得るためには、鋼管の成分系について下記(1) 式の値をに2.75〜4.00質量%に制御する。
(iii) (i)記載の組織をベンド管の製造工程にて得、さらにガスラインパイプ用ベンド管として十分な亀裂発生抑制特性を材料に具備させるのは下記(2) 式の値をに−0.08〜0.10質量%に制御する。
(ii) In order to obtain the above structure in the manufacturing process of the bend pipe, the value of the following formula (1) is controlled to 2.75 to 4.00 mass% for the component system of the steel pipe.
(iii) Obtaining the structure described in (i) in the manufacturing process of the bend pipe and further providing the material with sufficient crack generation suppressing properties as a bend pipe for a gas line pipe is based on the value of the following formula (2) − Control to 0.08 to 0.10% by mass.

(iv) (i) の組織を効率よく得て、かつ高い亀裂発生抑制特性を有するベンド管を安定的に得るためには、(ii)の成分制御を同時に行うとともに、熱間曲げ加工にてベンド管を製造する際に、820 〜1050℃の温度域に加熱後、曲げ加工を施した後、400 ℃以下の温度まで加速冷却し、その後、350 〜750 ℃の温度域で焼き戻し処理を実施する。  (iv) In order to efficiently obtain the structure of (i) and stably obtain a bend pipe having high cracking suppression characteristics, the component control of (ii) is performed simultaneously and hot bending is performed. When manufacturing a bend pipe, it is heated to a temperature range of 820 to 1050 ° C, bent and then accelerated to 400 ° C or less, and then tempered at a temperature range of 350 to 750 ° C. carry out.

M値=5.5 C+0.6Si +Mn+0.5Cu +0.7Cr +0.4Ni +1.5Mo +2 V・・・(1)
CP値=Nb−0.6Si −5S−5(Ti−0.05)+0.2 V ・・・(2)
超高強度ベンド管の亀裂伝播発生特性を向上させるには、1)組織の微細化と、2)歪み集中により亀裂発生の起点となりうる硬化組織の除去を同時に実施する必要がある。
M value = 5.5 C + 0.6Si + Mn + 0.5Cu + 0.7Cr + 0.4Ni + 1.5Mo + 2 V ... (1)
CP value = Nb−0.6Si −5S−5 (Ti−0.05) +0.2 V (2)
In order to improve the crack propagation characteristics of an ultra-high strength bend pipe, it is necessary to simultaneously perform 1) refinement of the structure and 2) removal of the hardened structure that can be the starting point of crack generation due to strain concentration.

M値は750MPa以上の高強度と十分に高い靱性を得るための組織微細化に必要な成分値を規定しており、これによってベンド加工処理とその後の熱処理によって、十分微細なパケットサイズを有する焼き戻しベイナイト−マルテンサイトを得ることができる。焼き戻し処理によって亀裂発生抑制特性に有害な硬質の島状マルテンサイト(MA)相の多くは分解される傾向にあるが、一部残存したり、炭化物が粒界上やパケット上に点列状あるいは膜状、塊状に析出するために、十分な特性が得られない場合がある。   The M value defines the component values necessary for refining the structure in order to obtain high strength of 750 MPa or more and sufficiently high toughness. By this, baking with a sufficiently fine packet size is performed by bend processing and subsequent heat treatment. Returned bainite-martensite can be obtained. Although many of the hard island martensite (MA) phases, which are harmful to cracking suppression properties, tend to be decomposed by tempering treatment, some of them remain, or some carbides form a dotted line on grain boundaries or packets. Alternatively, sufficient characteristics may not be obtained due to deposition in the form of a film or a lump.

また、粗大硫化物の生成やTiC などマトリックスの脆性破壊抵抗を著しく弱める析出物の生成も亀裂発生抑制抵抗を低下させる要因となるが、CP値を抑制することによってこれらの阻害点が除去され、亀裂発生抑制抵抗が安定化することが判明した。   In addition, the formation of coarse sulfides and the formation of precipitates that significantly weaken the brittle fracture resistance of the matrix such as TiC are also factors that reduce the cracking suppression resistance, but these inhibition points are eliminated by suppressing the CP value, It was found that the resistance to crack initiation was stabilized.

図1は本発明にかかる鋼組成をもった、引張強さ750MPa以上の超高強度ベンド管の−20℃におけるCTOD特性とCP値の関係をまとめたものだが、本発明の範囲内に制御することによって、ガスラインパイプとして十分に安全な0.2mm 以上のCTOD特性値が得られることが分かる。   FIG. 1 summarizes the relationship between the CTOD characteristics at −20 ° C. and the CP value of an ultrahigh strength bend pipe having a steel composition according to the present invention and having a tensile strength of 750 MPa or more, and is controlled within the scope of the present invention. Thus, it can be seen that a CTOD characteristic value of 0.2 mm or more, which is sufficiently safe as a gas line pipe, can be obtained.

したがって、本発明により×100 グレード以上の高強度ベンド管に対し、優れた低温靱性と溶接性が得られるだけでなく、ベンド管製造時の加工精度 (鋼管寸法) や鋼管特性のバラツキが少なく、かつ生産性にも優れるといった効果を得ることが可能となる。   Therefore, according to the present invention, not only excellent low-temperature toughness and weldability can be obtained for high-strength bend pipes of x100 grade or higher, but there are few variations in processing accuracy (steel pipe dimensions) and steel pipe characteristics when manufacturing bend pipes. In addition, it is possible to obtain an effect of excellent productivity.

本発明は、また、具体的には発明の請求範囲に限定される製造法によって当該性能ベンド管を製造可能ならしめるものである。   The present invention also makes it possible to manufacture the performance bend pipe by a manufacturing method specifically limited to the claims of the invention.

本発明によれば、引張り強さ750MPa以上を具備し、かつ低温靱性の良好な高強度ベンド管を得ることができる。その結果、パイプラインの輸送効率・施工能率を飛躍的に改善することが可能となった。   According to the present invention, a high-strength bend pipe having a tensile strength of 750 MPa or more and good low-temperature toughness can be obtained. As a result, it has become possible to dramatically improve the transportation efficiency and construction efficiency of the pipeline.

本発明を上記のように限定した理由を詳述する。以後の説明において合金元素の含有率の「%」は「質量%」を表示する。
C:0.03〜0.12%
Cは強度上昇に有効な元素であり、本発明鋼において所望の強度を得るためには0.03%以上が必要である。しかし、0.12%を超える過剰添加は鋼の溶接性を劣化させるだけでなく、熱間曲げ加工後の母材、溶接熱影響部の靱性および亀裂発生抑制特性を劣化させるため、上限を0.12%と制限する。
The reason why the present invention is limited as described above will be described in detail. In the following explanation, “%” of the alloy element content rate represents “mass%”.
C: 0.03-0.12%
C is an element effective for increasing the strength, and 0.03% or more is necessary to obtain a desired strength in the steel of the present invention. However, excessive addition exceeding 0.12% not only deteriorates the weldability of the steel, but also degrades the base metal after hot bending, the toughness of the weld heat affected zone, and the cracking suppression properties, so the upper limit is set to 0.12%. Restrict.

Si:0.01〜0.2 %以下
Siは脱酸に有効な元素であるが、その効果を得るためには0.01%以上添加する。0.2 %を超えて添加すると溶接熱影響部の靱性を低下させるだけでなく、熱間曲げ加工後の母材、溶接熱影響部の靱性および亀裂発生抑制特性を劣化させるため、上限を0.2 %と制限する。好ましくは、0.18%以下である。さらに好ましくは、0.15%以下である。
Si: 0.01 to 0.2% or less
Si is an element effective for deoxidation, but in order to obtain the effect, 0.01% or more is added. Adding more than 0.2% not only lowers the toughness of the weld heat affected zone, but also degrades the base metal after hot bending, the toughness of the weld heat affected zone, and cracking suppression properties, so the upper limit is set at 0.2%. Restrict. Preferably, it is 0.18% or less. More preferably, it is 0.15% or less.

Mn:0.8 〜2.0 %
Mnは強度上昇に有効な元素であり、そのためには、0.8 %以上添加する。しかし、2.0 %を超えて添加すると溶接部の靱性が劣化するだけでなく、熱間曲げ加工後の母材、溶接熱影響部の靱性および亀裂発生抑制特性を劣化させるため、上限を2.0 %と制限する。好ましくは、1.8 %以下、さらに好ましくは、1.7 %未満である。
Mn: 0.8 to 2.0%
Mn is an element effective in increasing the strength. For that purpose, 0.8% or more is added. However, adding over 2.0% not only deteriorates the toughness of the weld, but also degrades the base metal after hot bending, the toughness of the heat affected zone of the weld, and cracking suppression properties, so the upper limit is set at 2.0%. Restrict. Preferably, it is 1.8% or less, more preferably less than 1.7%.

P:0.009 %以下、S:0.003 %以下
PやSの含有量は鋼の靱性に著しい影響を及ぼすため、含有量の低減を図る必要がある。P量の低減はスラブの中心偏析を軽減するとともに、粒界での脆性破壊を低減する。SはMnS となって鋼中に析出し、これが圧延により延伸し靱性および亀裂発生抑制特性に悪影響を及ぼす。これらの悪影響を抑制するためには、Pを0.009 %以下、Sを0.003 %以下とする。
P: 0.009% or less, S: 0.003% or less Since the content of P and S significantly affects the toughness of steel, it is necessary to reduce the content. Reducing the amount of P reduces the center segregation of the slab and reduces brittle fracture at the grain boundaries. S becomes MnS and precipitates in the steel, which is stretched by rolling and adversely affects the toughness and crack generation suppressing properties. In order to suppress these adverse effects, P is 0.009% or less and S is 0.003% or less.

特にSは、後述するCP値に大きく影響するために、0.002 %以下、より好ましくは0.0015%以下に限定する。また、亀裂発生特性を安定化させるためにはP量を0.006 %以下にすることが好ましい。   In particular, S is limited to 0.002% or less, more preferably 0.0015% or less, because it greatly affects the CP value described later. In order to stabilize the crack generation characteristics, the P content is preferably 0.006% or less.

Ni:0.1 〜1.5 %
Niは強度上昇に有効な元素であると同時に、靱性および脆性亀裂の伝播停止特性を改善する効果を有する。また、熱間曲げ加工後の母材、溶接熱影響部の靱性の劣化を抑制する作用を有する。これらの効果を得るには0.1 %以上添加する。しかし、1.5 %を超える過量添加はコストアップに見合うだけの強度上昇と靱性の改善が得られないため上限を1.5 %とする。
Ni: 0.1 to 1.5%
Ni is an element effective for increasing the strength, and at the same time has an effect of improving the toughness and the propagation stop property of the brittle crack. Moreover, it has the effect | action which suppresses the toughness deterioration of the base material after a hot bending process, and a welding heat affected zone. To obtain these effects, 0.1% or more is added. However, an excessive amount exceeding 1.5% cannot increase strength and improve toughness to meet the cost increase, so the upper limit is set to 1.5%.

Nb:0.003 〜0.05%
Nbは熱間曲げ加工による組織・特性の劣化を抑制し、加工後の母材、溶接熱影響部の靱性劣化を抑制する作用を有する元素である。その効果のためには、0.003 %以上添加する。0.05%を超えて添加すると溶接性が低下すると同時に、かえって加工後の母材、溶接熱影響部の低温靱性が劣化するため、上限を0.05%とする。溶接部靱性、特に周溶接部の靱性を考慮すると、上限量を0.03%以下、さらには0.01%未満に抑えるのが望ましい。
Nb: 0.003 to 0.05%
Nb is an element that suppresses the deterioration of the structure and properties due to hot bending and suppresses the deterioration of the toughness of the base material after welding and the heat affected zone. Add 0.003% or more for the effect. If added over 0.05%, the weldability deteriorates, and at the same time, the low temperature toughness of the base material after welding and the heat affected zone deteriorates, so the upper limit is made 0.05%. Considering the toughness of the welded portion, particularly the toughness of the circumferential welded portion, it is desirable to keep the upper limit to 0.03% or less, and further to less than 0.01%.

Mo:0.05〜1.2 %
Moは強度上昇に有効な元素であると同時に、熱間曲げ加工後の母材、溶接熱影響部の靱性劣化を抑制する作用を有する。これらの効果を得るには0.05%以上、望ましくは0.1 %以上の添加を行う。しかし、1.2 %を超える過量添加はコストアップに見合うだけの強度上昇と靱性の改善が得られなくなるだけでなく、母材、溶接部の靱性低下を招くため上限を1.2 %とする。
Mo: 0.05-1.2%
Mo is an element effective for increasing the strength, and at the same time has an effect of suppressing toughness deterioration of the base material after hot bending and the weld heat affected zone. To obtain these effects, 0.05% or more, preferably 0.1% or more is added. However, excessive addition exceeding 1.2% not only prevents an increase in strength and improvement in toughness commensurate with an increase in cost, but also causes a decrease in the toughness of the base metal and welded portion, so the upper limit is set to 1.2%.

Ti:0.002 〜0.03%
Tiはスラブ加熱時のオーステナイト結晶粒の微細化に有効な元素であり、0.002 %以上添加する。特にNb添加鋼の場合には、Nbによって助長される連続鋳造スラブ表面のヒビワレを抑制するのに有効である。0.002 %以上でこうした効果を発揮するが、0.03%を超えて添加すると、TiN が粗大化しオーステナイト結晶粒の微細化効果が消滅するとともに、過剰なTiによる母材熱影響部の靱性低下が生ずるため、Ti添加量を0.03%以下とする。好ましくは0.005 %以上添加する。
Ti: 0.002 to 0.03%
Ti is an effective element for refining austenite grains during slab heating, and is added in an amount of 0.002% or more. In particular, in the case of Nb-added steel, it is effective for suppressing cracks on the surface of the continuously cast slab promoted by Nb. These effects are exhibited at 0.002% or more, but if added over 0.03%, TiN becomes coarse and the effect of refining austenite crystal grains disappears, and the toughness of the base metal heat-affected zone is reduced due to excess Ti. , Ti addition amount is 0.03% or less. Preferably 0.005% or more is added.

N:0.005 %以下
Nは母材、溶接部の靱性低下を招くだけでなく、熱間曲げ加工後の特性低下を顕著化させる有害な元素である。0.005 %を超えて含まれると、他の条件を調整してもベンド管としての良好な特性が得られなくなるため、上限を0.005 %とした。望ましくは0.003 %以下である。
N: 0.005% or less N is a harmful element that not only causes a decrease in toughness of the base metal and the welded portion, but also makes the characteristic deterioration after hot bending remarkable. If the content exceeds 0.005%, good characteristics as a bend pipe cannot be obtained even if other conditions are adjusted, so the upper limit was made 0.005%. Desirably, it is 0.003% or less.

Al:0.002 〜0.07%
Alは脱酸に有効な元素であるが、0.002 %以上でなければ脱酸が不十分になり、低級酸化物の生成により母材などの靱性低下を引き起こすおそれがあるので、下限値を0.002 %とした。シーム溶接および周溶接金属部の靱性改善のためには0.03%超、望ましくは0.05%超の添加が望ましい。一方、0.07%を超えて添加すると溶接熱影響部の靱性を低下させるだけでなく、熱間曲げ加工後の母材、溶接熱影響部の靱性を劣化させるため、上限を0.07%とする。
Al: 0.002 to 0.07%
Al is an element effective for deoxidation, but if it is not 0.002% or more, deoxidation will be insufficient, and the formation of lower oxides may cause a decrease in the toughness of the base metal, so the lower limit is set to 0.002% It was. In order to improve the toughness of the seam weld and the peripheral weld metal part, it is desirable to add more than 0.03%, desirably more than 0.05%. On the other hand, if added over 0.07%, not only the toughness of the weld heat affected zone is lowered, but also the base material after hot bending and the toughness of the weld heat affected zone are deteriorated, so the upper limit is made 0.07%.

本発明にあっては、好ましくは、さらに次のような元素を含有させてもよい。
V:0.005 〜0.1 %
Vは母材の強化に有用であるがその効果は0.005 %以上で発揮される。しかし0.1 %超
添加すると母材、溶接部の靱性を劣化させるため、上限を0.1 %とする。
In the present invention, preferably, the following elements may be further contained.
V: 0.005 to 0.1%
V is useful for strengthening the base material, but the effect is exhibited at 0.005% or more. However, if added over 0.1%, the toughness of the base metal and the welded part deteriorates, so the upper limit is made 0.1%.

特に、Vの場合、後述するCP値に影響し、鋼管の加熱に際しての結晶微細化、そして靱性強化に大きく寄与する。
さらに本発明にあっては、以下の成分元素はその範囲内の添加によって、母材、溶接熱影響部の低温靱性、溶接性の劣化を伴わず高強度化や耐食性の向上が可能なため、より厚肉の鋼板や高強度材などを製造する際に使用可能である。
In particular, in the case of V, it affects the CP value described later and greatly contributes to crystal refinement and toughness strengthening during heating of the steel pipe.
Furthermore, in the present invention, the following component elements can be added within the range, so that the base material, the low temperature toughness of the heat affected zone of the weld, and the weldability can be increased without increasing the strength and corrosion resistance. It can be used when producing thicker steel plates or high strength materials.

Cu:0.1 〜1.4 %
Cuは強度上昇や耐食性向上に有効な元素であるが、0.1 %未満では効果が期待できず、1.4 %を超えて添加すると靱性を劣化させるため、下限を0.1 %、上限を1.4 %とする。
Cu: 0.1-1.4%
Cu is an element effective in increasing strength and improving corrosion resistance. However, if less than 0.1%, the effect cannot be expected, and if added over 1.4%, the toughness deteriorates, so the lower limit is made 0.1% and the upper limit is made 1.4%.

Cr:0.1 〜1.2 %以下
Crは強度確保や耐食性向上のために添加するが、その効果は0.1 %以上の添加で発揮され、1.2 %を超えて含まれると母材、溶接部の靱性が劣化するため、上限を1.2 %とする。
Cr: 0.1 to 1.2% or less
Cr is added to ensure strength and improve corrosion resistance, but the effect is demonstrated by addition of 0.1% or more, and if it exceeds 1.2%, the toughness of the base metal and weld zone deteriorates, so the upper limit is 1.2% And

Ca:0.0005〜0.006 %
CaはMnS の形態制御を行い鋼の圧延方向に対する直角方向の物性向上のために含有させる元素である。またその微細な酸化物/硫化物により母材および溶接熱影響部靱性を向上させる効果も有するが、これらの効果を期待するには0.0005%以上添加する。また0.006 %を超えて含有させると鋼中の非金属介在物が増加し内部欠陥の原因となる。したがってCa含有量は0.0005〜0.006 %の範囲とする。
Ca: 0.0005 to 0.006%
Ca is an element to control the morphology of MnS and improve the physical properties in the direction perpendicular to the rolling direction of steel. The fine oxide / sulfide also has the effect of improving the toughness of the base metal and the weld heat affected zone, but 0.0005% or more is added to expect these effects. If the content exceeds 0.006%, non-metallic inclusions in the steel increase and cause internal defects. Therefore, the Ca content is in the range of 0.0005 to 0.006%.

Mg:0.0001〜0.003 %
Mgも微細酸化物/硫化物の生成を通じ、母材および溶接熱影響部靱性を向上させる効果を有するが、これらの効果を期待するには0.0001%以上添加する。また0.003 %を超えて含有させると鋼中の非金属介在物が増加し内部欠陥の原因となる。したがってMg含有量は0.0001〜0.003 %の範囲とする。好ましくは、0.0002〜0.002 %である。
Mg: 0.0001 to 0.003%
Mg also has the effect of improving the toughness of the base metal and weld heat affected zone through the formation of fine oxides / sulfides, but 0.0001% or more is added to expect these effects. If the content exceeds 0.003%, non-metallic inclusions in the steel increase and cause internal defects. Therefore, the Mg content is in the range of 0.0001 to 0.003%. Preferably, it is 0.0002 to 0.002%.

本発明の目標とする母材およびシーム/周溶接部靱性を得るためには、鋼成分を上記の組成範囲内に調整するだけでは不十分で、さらに下記に示す成分調整が必要である。
M値:2.75〜4.00%
下記(1) 式に示すM値を適正範囲に調整することにより、熱間曲げ加工による組織・特性の劣化を抑制し、加工後の母材、溶接熱影響部の靱性の劣化を抑制することが可能である。ベイナイトおよびマルテンサイト組織の最適化を図り、上記効果を得ようとすると、M値を質量%にて、2.75〜4.00%の範囲に制御する。M値が2.75%未満の場合、上記に示した個々の元素がそれぞれ本発明の規定値内であっても、曲げ加工後の母材、溶接熱影響部の靱性劣化を抑制することができなくなり、また4.00%を超える場合、溶接性および溶接熱影響部(HAZ)靱性が劣化するだけでなく、鋼管製造コストも大きく劣化する。母材、溶接部靱性バランスの最適化およびコストの観点から、好ましくは、2.8 〜3.8 %、より好ましい成分範囲は2.9 %〜3.5 %である。
In order to obtain the target base material and seam / circumferential weld toughness of the present invention, it is not sufficient to adjust the steel components within the above composition range, and the following component adjustments are necessary.
M value: 2.75 to 4.00%
By adjusting the M value shown in the following formula (1) to an appropriate range, the deterioration of the structure and properties due to hot bending is suppressed, and the toughness of the base metal after welding and the heat affected zone of the weld is suppressed. Is possible. In order to optimize the bainite and martensite structures and obtain the above effect, the M value is controlled in the range of 2.75 to 4.00% in mass%. When the M value is less than 2.75%, it becomes impossible to suppress the toughness deterioration of the base material after welding and the weld heat affected zone even if the individual elements shown above are within the specified values of the present invention. Also, if it exceeds 4.00%, not only the weldability and weld heat affected zone (HAZ) toughness will deteriorate, but also the steel pipe manufacturing cost will greatly deteriorate. From the viewpoint of optimization of the base metal, weld toughness balance, and cost, it is preferably 2.8 to 3.8%, and a more preferable component range is 2.9% to 3.5%.

M値=5.5C+0.6Si +Mn+0.5Cu +0.7Cr +0.4Ni +1.5Mo +2 V・・・(1)
CP値:−0.08〜0.10%
下記(2) 式に示すCP値は、Nbの有効化を示す指標であり、言わばNb当量に相当する。
M value = 5.5C + 0.6Si + Mn + 0.5Cu + 0.7Cr + 0.4Ni + 1.5Mo + 2 V ... (1)
CP value: -0.08 to 0.10%
The CP value shown in the following formula (2) is an index indicating the activation of Nb, and corresponds to the Nb equivalent.

CP値を−0.08〜0.10%の適正範囲に調整することにより、曲げ加工前の加熱時のオーステナイト粒を微細化すると同時に、冷却後に生成するベイナイトおよびマルテンサイト組織のマトリクス靱性が向上することによって母材部の靱性を向上させることができる。   By adjusting the CP value to an appropriate range of -0.08 to 0.10%, the austenite grains during heating before bending are refined, and at the same time, the matrix toughness of the bainite and martensite structures formed after cooling is improved, thereby improving the matrix The toughness of the material part can be improved.

また、後者の効果は溶接熱影響部についても効力を発揮し、溶接熱影響部の靱性劣化も抑制する。これらの効果はCP値を−0.08%以上にすることによって得ることができ、CP値が0.10%を超えると溶接熱影善部中の島状マルテンサイトが急激に増加し、靱性を損なう恐れがある。母材、溶接部靱性バランスの最適化およびコストの観点から、より好ましい成分範囲は−0.05%〜0.05%である。   In addition, the latter effect is also effective for the weld heat affected zone and suppresses toughness deterioration of the weld heat affected zone. These effects can be obtained by setting the CP value to −0.08% or more. If the CP value exceeds 0.10%, the island-like martensite in the welded thermal shadow zone increases rapidly, which may impair toughness. From the viewpoints of optimization of the base metal, weld toughness balance and cost, a more preferable component range is -0.05% to 0.05%.

CP値=Nb−0.6Si −5S−5(Ti−0.05)+0.2 V・・・(2)
次に、本発明にかかるベンド管の製造方法について説明する。
本発明では上記に規定された成分組成の鋼管を820 〜1050℃に加熱後、曲げ加工し、400 ℃以下まで加速冷却後、焼き戻し処理をするか、または加工後、450 〜250 ℃の温度まで加速冷却をし、その後室温まで空冷をすることによって、所定のミクロ組織を得るものである。
CP value = Nb-0.6Si-5S-5 (Ti-0.05) +0.2 V ... (2)
Next, the manufacturing method of the bend pipe | tube concerning this invention is demonstrated.
In the present invention, the steel pipe having the above-defined component composition is heated to 820 to 1050 ° C. and then bent, accelerated and cooled to 400 ° C. or lower, and tempered, or after processing, a temperature of 450 to 250 ° C. A predetermined microstructure is obtained by performing accelerated cooling to room temperature and then air cooling to room temperature.

曲げ加工に供する鋼管はSAW(サブマージドアーク溶接)、MIG(メタルイナートガス溶接)、TIG(タングステンイナートガス)溶接などを含む種々の溶接法により溶接されたUOE 鋼管、ロールベンド鋼管やシームレス鋼管などを使用することができる。   Steel pipes used for bending use UOE steel pipes, roll-bend steel pipes, seamless steel pipes, etc. welded by various welding methods including SAW (submerged arc welding), MIG (metal inert gas welding), TIG (tungsten inert gas) welding, etc. can do.

鋼管加熱温度:
曲げ加工前の加熱温度が820 ℃を下回る場合、組織が不均一となり、加工精度(鋼管寸法)や特性バラツキが大きく劣化するだけでなく、変形抵抗が大きくなるため曲げ加工の生産性が著しく低下してしまう。また、1050℃を超える場合には加熱時のオーステナイト粒が粗大化してしまい、成分調整や冷却条件の制御を行ってもベイナイトの平均パケットサイズを20μm 以下とすることができず、高強度と良好な低温靱性を両立できなくなってしまう。
Steel tube heating temperature:
When the heating temperature before bending is less than 820 ° C, the structure becomes non-uniform, and not only the processing accuracy (steel pipe dimensions) and characteristic variation are greatly deteriorated, but also the deformation resistance increases, so the bending productivity is significantly reduced. Resulting in. In addition, when the temperature exceeds 1050 ° C., the austenite grains are coarsened during heating, and the average packet size of bainite cannot be reduced to 20 μm or less even when the component adjustment or the control of the cooling conditions is performed. It becomes impossible to achieve both low temperature toughness.

加工後の冷却速度:
加工後の冷却速度は適度のマルテンサイトを含むベイナイト組織を得るために重要である。冷却速度が5℃/秒未満では所望のミクロ組織を得ることができなくなる。冷却速度は大きくてもミクロ組織の調整は可能であるが、50℃/秒を大きく超える場合、成分や冷却停止温度などによる組織調整が難しくなり、また冷却設備が過大になるなどの不具合が発生する可能性があるため、50℃/秒を大きく超えないようにすることが望ましい。
Cooling rate after processing:
The cooling rate after processing is important for obtaining a bainite structure containing moderate martensite. If the cooling rate is less than 5 ° C./second, a desired microstructure cannot be obtained. The microstructure can be adjusted even if the cooling rate is high, but if it exceeds 50 ° C / second, it will be difficult to adjust the structure due to the components and cooling stop temperature, and problems such as excessive cooling equipment will occur. Therefore, it is desirable not to greatly exceed 50 ° C / second.

冷却停止温度/焼き戻し温度:
冷却停止温度が400 ℃を上回る条件では適量のマルテンサイトが得られない。また焼き戻しの際、焼き戻し温度が350 ℃未満または750 ℃を超える場合には高強度と良好な低温靱性の両立ができなくなる。
Cooling stop temperature / tempering temperature:
An appropriate amount of martensite cannot be obtained under conditions where the cooling stop temperature exceeds 400 ° C. Further, when tempering, if the tempering temperature is less than 350 ° C. or exceeds 750 ° C., both high strength and good low temperature toughness cannot be achieved.

次に、本発明の作用効果について実施例に基づいてさらに具体的に説明する。   Next, the function and effect of the present invention will be described more specifically based on examples.

曲げ加工に供する供試鋼管は、表1に示す化学成分を有する鋼を常法により溶製、鋳造し得られた鋳片から熱間圧延により鋼板を製造し、UOE 製管またはロールベンディング(BR)製管により得た。これらの供試鋼管からは、表2に示す加熱、冷却条件/熱処理条件にてベンド管を製造した。鋼管の板厚は18〜40mmである。   The steel pipes to be used for bending are steel plates having the chemical components shown in Table 1 are melted and cast by hot rolling, and steel sheets are manufactured by hot rolling, and UOE pipes or roll bending (BR ) Obtained by pipe making. From these test steel pipes, bend pipes were produced under the heating and cooling conditions / heat treatment conditions shown in Table 2. The plate thickness of the steel pipe is 18-40mm.

このようにして製造されてベンド管から切り出した試験片について引張り試験および2mmV ノッチシャルピー衝撃試験、そしてCTOD試験を行い、それぞれの特性を同じく表2にまとめて示してある。   The test pieces thus manufactured and cut out from the bend pipe were subjected to a tensile test, a 2 mmV notch Charpy impact test, and a CTOD test, and the respective characteristics are summarized in Table 2.

本発明例では引張強度で750MPa以上の強度とvTrs(シヤルピー破面遷移温度)で−80℃以下の良好な低温靱性が得られている。また−20℃におけるCTOD特性も本発明例はいずれも0.2mm 以上の良好な特性を有している。   In the examples of the present invention, a tensile strength of 750 MPa or more and a good low temperature toughness of −80 ° C. or less in vTrs (shear rupture transition temperature) are obtained. Further, the CTOD characteristics at −20 ° C. all have good characteristics of 0.2 mm or more.

Figure 2005350724
Figure 2005350724

Figure 2005350724
Figure 2005350724

CP値と−20℃におけるCTOD値との関係を示すグラフである。It is a graph which shows the relationship between CP value and CTOD value in -20 degreeC.

Claims (4)

質量比にて
C:0.03〜0.12% Si:0.01〜0.2 %
Mn:0.8 %〜2.0 % P:0.009 %以下、
S:0.003 %以下 Ni:0.1 〜1.5 %
Nb:0.003 〜0.05% Mo:0.05〜1.2 %
Ti:0.002 〜0.03% N:0.005 %以下
Al:0.002 〜0.07%
残部Feおよび不可避不純物からなり、かつ(1) および(2) 式で示されるM値およびCP値がそれぞれ2.75〜4.00%および−0.08〜0.10%の範囲の成分組成を有し、さらにミクロ組織が平均パケット粒径20μm 以下の焼き戻しベイナイト組織中に焼き戻しマルテンサイト組織を3%以上含有する組織であることを特徴とする引張強さ750MPa以上の超高強度ベンド管。
M値=5.5 C+0.6Si +Mn+0.5Cu +0.7Cr +0.4Ni +1.5Mo +2V・・・(1)
CP値=Nb−0.6Si −5S−5(Ti−0.05)+0.2 V・・・(2)
By mass ratio C: 0.03-0.12% Si: 0.01-0.2%
Mn: 0.8% to 2.0% P: 0.009% or less,
S: 0.003% or less Ni: 0.1-1.5%
Nb: 0.003 to 0.05% Mo: 0.05 to 1.2%
Ti: 0.002 to 0.03% N: 0.005% or less
Al: 0.002 to 0.07%
It consists of the remainder Fe and inevitable impurities, and has a component composition in which the M value and CP value represented by the formulas (1) and (2) are in the range of 2.75 to 4.00% and −0.08 to 0.10%, respectively, and the microstructure is An ultra-high-strength bend pipe having a tensile strength of 750 MPa or more, wherein the tempered martensite structure is 3% or more in a tempered bainite structure having an average packet particle size of 20 μm or less.
M value = 5.5 C + 0.6Si + Mn + 0.5Cu + 0.7Cr + 0.4Ni + 1.5Mo + 2V (1)
CP value = Nb-0.6Si-5S-5 (Ti-0.05) +0.2 V ... (2)
前記成分組成が、質量比で、さらに、V:0.005 〜0.1 %含有することを特徴とする請求項1記載の超高強度ベンド管。   The ultra-high-strength bend pipe according to claim 1, wherein the component composition further contains V: 0.005 to 0.1% by mass ratio. 前記成分組成が、質量比で、さらに
Cu:0.1 〜1.4 %、 Cr :0.1 〜1.2 %
Ca:0.0005〜0.006 % Mg :0.0001〜0.003 %
の1 種または2種以上を含有することを特徴とする請求項1または2記載の超高強度ベンド管。
The component composition is a mass ratio, and
Cu: 0.1-1.4%, Cr: 0.1-1.2%
Ca: 0.0005 to 0.006% Mg: 0.0001 to 0.003%
The ultra high strength bend pipe according to claim 1 or 2, comprising one or more of the following.
請求項1ないし3のいずれかに記載された成分組成を有する鋼管を、820 〜1050℃に加熱後、曲げ加工を施した後、400 ℃以下の温度まで5℃/秒以上の冷却速度にて加速冷却を行い、その後、350 〜750 ℃の温度域で焼き戻し処理を施すことを特徴とする引張強さ750MPa以上の超高強度ベンド管の製造方法。   The steel pipe having the component composition according to any one of claims 1 to 3 is heated to 820 to 1050 ° C, subjected to bending, and then cooled to a temperature of 400 ° C or lower at a cooling rate of 5 ° C / second or more. A method for producing an ultra-high strength bend pipe having a tensile strength of 750 MPa or more, characterized by performing accelerated cooling and then performing tempering treatment in a temperature range of 350 to 750 ° C.
JP2004172422A 2004-06-10 2004-06-10 Ultra high strength bend pipe with excellent low temperature toughness Expired - Fee Related JP4475023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172422A JP4475023B2 (en) 2004-06-10 2004-06-10 Ultra high strength bend pipe with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172422A JP4475023B2 (en) 2004-06-10 2004-06-10 Ultra high strength bend pipe with excellent low temperature toughness

Publications (3)

Publication Number Publication Date
JP2005350724A true JP2005350724A (en) 2005-12-22
JP2005350724A5 JP2005350724A5 (en) 2006-11-02
JP4475023B2 JP4475023B2 (en) 2010-06-09

Family

ID=35585443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172422A Expired - Fee Related JP4475023B2 (en) 2004-06-10 2004-06-10 Ultra high strength bend pipe with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP4475023B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007737A1 (en) * 2006-07-13 2008-01-17 Sumitomo Metal Industries, Ltd. Bend pipe and process for producing the same
WO2008139639A1 (en) 2007-05-16 2008-11-20 Sumitomo Metal Industries, Ltd. Bend pipe and process for manufacturing the same
EP2028284A1 (en) * 2006-03-28 2009-02-25 Nippon Steel Corporation High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
JP2010100903A (en) * 2008-10-24 2010-05-06 Jfe Steel Corp Thick high tensile strength steel plate having low yield ratio and brittle crack generation resistance, and method of producing the same
JP2011513584A (en) * 2008-02-28 2011-04-28 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング High strength low alloy steel for seamless pipes with excellent weldability and corrosion resistance
CN108754325A (en) * 2018-06-14 2018-11-06 鞍钢股份有限公司 560 MPa-level Cu aging hot bending steel plate for pipe and production method thereof
KR20190096423A (en) * 2017-01-25 2019-08-19 제이에프이 스틸 가부시키가이샤 Hot Rolled Steel Sheets for Coiled Tubing
KR20190096424A (en) * 2017-01-25 2019-08-19 제이에프이 스틸 가부시키가이샤 Electric pipe for coiled tubing and its manufacturing method
US20200347478A1 (en) * 2017-12-24 2020-11-05 Posco High strength steel plate and manufacturing method therefor
CN114871699A (en) * 2022-05-26 2022-08-09 中南大学 High-strength-toughness X70 pipeline steel elbow with welding joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569745B2 (en) 2018-01-29 2019-09-04 Jfeスチール株式会社 Hot rolled steel sheet for coiled tubing and method for producing the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028284A1 (en) * 2006-03-28 2009-02-25 Nippon Steel Corporation High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
EP2028284A4 (en) * 2006-03-28 2010-12-22 Nippon Steel Corp High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
JP5200932B2 (en) * 2006-07-13 2013-06-05 新日鐵住金株式会社 Bend pipe and manufacturing method thereof
US7770428B2 (en) 2006-07-13 2010-08-10 Sumitomo Metal Industries, Ltd. Hot bend pipe and a process for its manufacture
WO2008007737A1 (en) * 2006-07-13 2008-01-17 Sumitomo Metal Industries, Ltd. Bend pipe and process for producing the same
NO341765B1 (en) * 2007-05-16 2018-01-15 Sumitomo Metal Ind Method of producing a bent tube
JPWO2008139639A1 (en) * 2007-05-16 2010-07-29 住友金属工業株式会社 Bend pipe and manufacturing method thereof
US7780800B2 (en) 2007-05-16 2010-08-24 Sumitomo Metal Industries, Ltd. Method of manufacturing a bent pipe
WO2008139639A1 (en) 2007-05-16 2008-11-20 Sumitomo Metal Industries, Ltd. Bend pipe and process for manufacturing the same
CN102605276A (en) * 2007-05-16 2012-07-25 住友金属工业株式会社 Bent pipe and a method for its manufacture
KR101175420B1 (en) 2007-05-16 2012-08-20 수미도모 메탈 인더스트리즈, 리미티드 Bend pipe and process for manufacturing the same
EP2147986A4 (en) * 2007-05-16 2014-10-15 Nippon Steel & Sumitomo Metal Corp Bend pipe and process for manufacturing the same
EP2147986A1 (en) * 2007-05-16 2010-01-27 Sumitomo Metal Industries, Ltd. Bend pipe and process for manufacturing the same
JP2011513584A (en) * 2008-02-28 2011-04-28 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング High strength low alloy steel for seamless pipes with excellent weldability and corrosion resistance
JP2010100903A (en) * 2008-10-24 2010-05-06 Jfe Steel Corp Thick high tensile strength steel plate having low yield ratio and brittle crack generation resistance, and method of producing the same
CN110234777A (en) * 2017-01-25 2019-09-13 杰富意钢铁株式会社 Connecting pipes hot rolled steel plate
KR20190096424A (en) * 2017-01-25 2019-08-19 제이에프이 스틸 가부시키가이샤 Electric pipe for coiled tubing and its manufacturing method
KR20190096423A (en) * 2017-01-25 2019-08-19 제이에프이 스틸 가부시키가이샤 Hot Rolled Steel Sheets for Coiled Tubing
KR102274265B1 (en) * 2017-01-25 2021-07-06 제이에프이 스틸 가부시키가이샤 Hot Rolled Steel Sheet for Coiled Tubing
KR102274267B1 (en) * 2017-01-25 2021-07-06 제이에프이 스틸 가부시키가이샤 Electric resistance welded steel pipe for coiled tubing and manufacturing method thereof
US11326240B2 (en) 2017-01-25 2022-05-10 Jfe Steel Corporation Hot-rolled steel sheet for coiled tubing
US11421298B2 (en) * 2017-01-25 2022-08-23 Jfe Steel Corporation Electric resistance welded steel tube for coiled tubing and method for manufacturing the same
US20200347478A1 (en) * 2017-12-24 2020-11-05 Posco High strength steel plate and manufacturing method therefor
CN108754325A (en) * 2018-06-14 2018-11-06 鞍钢股份有限公司 560 MPa-level Cu aging hot bending steel plate for pipe and production method thereof
CN114871699A (en) * 2022-05-26 2022-08-09 中南大学 High-strength-toughness X70 pipeline steel elbow with welding joint
CN114871699B (en) * 2022-05-26 2023-11-24 中南大学 High-strength and high-toughness X70 pipeline steel bent pipe with welded joint

Also Published As

Publication number Publication date
JP4475023B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP4837807B2 (en) High strength welded steel pipe and manufacturing method thereof
JP4484123B2 (en) High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness
JPWO2015030210A1 (en) Steel plates and line pipes for thick-walled high-strength line pipes with excellent sour resistance, crush resistance and low temperature toughness
JP5131715B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
KR101629129B1 (en) Base material for high-toughness clad steel plate and method for producing said clad steel plate
JP2006233263A (en) Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness
JP4475023B2 (en) Ultra high strength bend pipe with excellent low temperature toughness
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5439889B2 (en) Thick steel plate for thick and high toughness steel pipe material and method for producing the same
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP2008195991A (en) Steel sheet and steel pipe with excellent high temperature characteristics for steam transport piping, and their manufacturing methods
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP2003306749A (en) Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP3466450B2 (en) High strength and high toughness bend pipe and its manufacturing method
JP5000447B2 (en) High strength ERW line pipe
JP2004124167A (en) Method for producing high strength steel pipe and high strength steel sheet having excellent weld zone toughness and deformability
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP3745722B2 (en) Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JP4133566B2 (en) Manufacturing method of high strength bend pipe with excellent low temperature toughness
JP2002285283A (en) Superhigh strength steel pipe having excellent high speed ductile fracture characteristic
JP2000355729A (en) High strength line pipe excellent in low temperature toughness

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4475023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees