JP5131715B2 - Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness - Google Patents

Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness Download PDF

Info

Publication number
JP5131715B2
JP5131715B2 JP2011505304A JP2011505304A JP5131715B2 JP 5131715 B2 JP5131715 B2 JP 5131715B2 JP 2011505304 A JP2011505304 A JP 2011505304A JP 2011505304 A JP2011505304 A JP 2011505304A JP 5131715 B2 JP5131715 B2 JP 5131715B2
Authority
JP
Japan
Prior art keywords
less
segregation
steel
temperature toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011505304A
Other languages
Japanese (ja)
Other versions
JPWO2011030768A1 (en
Inventor
卓也 原
泰志 藤城
好男 寺田
豪 鈴木
太郎 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011505304A priority Critical patent/JP5131715B2/en
Application granted granted Critical
Publication of JP5131715B2 publication Critical patent/JP5131715B2/en
Publication of JPWO2011030768A1 publication Critical patent/JPWO2011030768A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、石油、天然ガス等の輸送用ラインパイプ等の用途に最適な低温靭性に優れたラインパイプ用鋼板及びラインパイプ用鋼管に関する。   The present invention relates to a steel plate for a line pipe and a steel pipe for a line pipe, which are excellent in low-temperature toughness and are optimal for uses such as oil and natural gas transportation line pipes.

近年、原油・天然ガスの長距離輸送方法としてパイプラインの重要性がますます高まっている。現在、長距離輸送用の幹線ラインパイプとしては米国石油協会(API)規格X65が設計の基本になっており、実際の使用量も圧倒的に多い。しかし、(1)高圧化による輸送効率の向上や(2)ラインパイプの外径・重量の低減による現地施工能率向上のため、より高強度のラインパイプが要望されている。これまでにX80(引張強さ620MPa以上)までのラインパイプの実用化がされているが、さらに高強度のラインパイプに対するニーズが強くなってきた。現在、高強度ラインパイプ製造法の研究は、X80ラインパイプの製造技術(非特許文献1及び2)、X100(引張強さ760MPa以上)ラインパイプの製造技術さらには、X120ラインパイプの製造技術(特許文献1及び2)について報告が行われている。しかし、このような高強度ラインパイプも脆性破壊き裂伝播停止特性や高速延性破壊き裂伝播停止特性が求められ、これに関する課題が解決できないと鋼板および鋼管の製造できてもラインパイプとして実用化することは不可能である。   In recent years, pipelines have become increasingly important as long-distance transportation methods for crude oil and natural gas. Currently, the American Petroleum Institute (API) standard X65 is the basic design for trunk line pipes for long-distance transportation, and the actual usage is overwhelmingly large. However, there is a demand for higher-strength line pipes in order to (1) improve transportation efficiency by increasing pressure and (2) improve local construction efficiency by reducing the outer diameter and weight of the line pipe. Up to now, line pipes up to X80 (tensile strength of 620 MPa or more) have been put into practical use, but the need for higher-strength line pipes has become stronger. Currently, research on high-strength line pipe manufacturing methods includes X80 line pipe manufacturing technology (Non-Patent Documents 1 and 2), X100 (tensile strength of 760 MPa or more) line pipe manufacturing technology, and X120 line pipe manufacturing technology ( Reports have been made on Patent Documents 1 and 2). However, these high-strength line pipes are also required to have brittle fracture crack propagation stopping characteristics and high-speed ductile fracture propagation stopping characteristics. It is impossible to do.

脆性破壊き裂伝播停止特性は、特にラインパイプをつなぐ円周溶接部から脆性破壊が発生しても脆性破壊を停止させる必要がある。脆性破壊のき裂伝播速度は350m/s以上にもなり、脆性破壊は、100mから数kmにもおよぶ長距離破壊の可能性があり、それにより想定される被害の大きさから重要視されている。この脆性破壊き裂伝播停止特性を評価する小型試験として、DWTT (Drop Weight Tear Test:落重試験)にて仕様温度にて、85%以上の延性破面率を有することが求められている。   The brittle fracture crack propagation stop characteristic requires that brittle fracture be stopped even if brittle fracture occurs from a circumferential weld that connects the line pipes. The crack propagation speed of brittle fracture is 350 m / s or more, and brittle fracture has the possibility of long-distance fracture ranging from 100 m to several km, which is regarded as important because of the expected damage magnitude. Yes. As a small test for evaluating this brittle fracture crack propagation stop characteristic, it is required to have a ductile fracture surface ratio of 85% or more at a specified temperature in a DWTT (Drop Weight Tear Test).

一方、高速延性破壊き裂伝播停止特性は、鋼管の管軸方向に延性破壊が100m/s以上もの高速で長距離伝播する現象である。この高速延性破壊についても、100mから数kmにもおよぶ長距離破壊の可能性があり、それにより想定される被害の大きさから重要視されている。この高速延性破壊は、鋼管のシャルピーエネルギーと相関があるとされており、このシャルピー吸収エネルギーを確保することにより防止されてきた。   On the other hand, the high-speed ductile fracture crack propagation stop property is a phenomenon in which ductile fracture propagates at a high speed over a long distance of 100 m / s or more in the tube axis direction of a steel pipe. This high-speed ductile fracture also has a possibility of long-distance fracture ranging from 100m to several kilometers, and is regarded as important because of the magnitude of damage assumed. This high-speed ductile fracture has been correlated with the Charpy energy of the steel pipe, and has been prevented by securing this Charpy absorbed energy.

しかしながら、これらの防止基準は70ksi(=490MPa)以下の強度レベルの鋼管で確立されたものであり、近年開発されてきている80ksi(=560MPa)以上の引張強度を持つ鋼板では、上記パラメーターでは不十分であることが懸念されている。この80ksi以上を有する鋼板の高速延性破壊伝播停止特性を予測する手段が確立されていない。これに対して、高強度ラインパイプに対しては、DWTTによる破壊の伝播エネルギーや、き裂開口角度(CTOA)あるいは、プリクラックにて一度延性破壊を発生させた後のDWTTによる伝播エネルギーが高速延性破壊き裂伝播停止特性と対応するという考え方が提案されている。   However, these prevention standards have been established for steel pipes with a strength level of 70 ksi (= 490 MPa) or less. For steel plates with a tensile strength of 80 ksi (= 560 MPa) or more that have been developed in recent years, the above parameters are not acceptable. There are concerns that it will be sufficient. No means has been established for predicting the high-speed ductile fracture propagation stopping characteristics of steel sheets having 80 ksi or more. On the other hand, for high-strength line pipes, the propagation energy of fracture due to DWTT, the crack opening angle (CTOA), or the propagation energy due to DWTT after the occurrence of ductile fracture once by pre-crack is high. The idea of dealing with ductile fracture crack propagation stopping properties has been proposed.

このDWTTによる脆性き裂伝播停止特性や延性き裂伝播停止特性を上げるには、延性・脆性遷移温度を仕様温度以下にする必要がある。延性・脆性遷移温度を下げるすなわち、低温靭性を良好にするには、結晶粒径を微細にする必要がある。高強度ラインパイプのミクロ組織としては、ベイナイト・マルテンサイト主体の組織になる。ベイナイト・マルテンサイト主体の組織における結晶粒微細化の方法として、パンケーキ厚みを細かくすることが知られている。ただし、パンケーキ厚みを細かくすることには限界がある。さらに、ベイナイト・マルテンサイト主体の組織の場合、圧延方向を軸として圧延面に40°傾いた面(以降40°面と呼ぶ)に{100}が集積することが知られている。{100}は鉄のへき開面であり、中心偏析などの脆化部が存在すると、その脆化部から脆性破壊が発生し、{100}が集積した40°面に脆性破壊が一気に伝播してしまい、延性破壊に移行しにくくなる。以上が、ベイナイト・マルテンサイト主体の組織におけるDWTT延性・脆性破壊温度が低温側にシフトしない大きな課題であった。そのため、ベイナイト・マルテンサイト主体の組織からフェライトを生成させた複相組織を形成させ、40°面に{100}を集積させない組織を創製し、中心偏析などがあった場合でも、すぐに脆性破壊を抑制する組織制御を行っていた(特許文献3)。このようなフェライトを創製させる場合には、高強度になればなるほどフェライト量が制限される。フェライト量が制限されると40°面の{100}の集積が抑制されなくなるので、その面に脆性き裂が伝播しやすくなる。また、鋼管全体にフェライトを均一に分散させることも課題である。   In order to improve the brittle crack propagation stop characteristics and ductile crack propagation stop characteristics by this DWTT, it is necessary to set the ductility / brittle transition temperature below the specified temperature. In order to lower the ductile / brittle transition temperature, that is, to improve the low temperature toughness, it is necessary to make the crystal grain size fine. The microstructure of the high-strength line pipe is a bainite / martensite-based structure. As a method for refining crystal grains in a bainite / martensite-based structure, it is known to reduce the pancake thickness. However, there is a limit to reducing the pancake thickness. Furthermore, in the case of a bainite-martensite-based structure, it is known that {100} accumulates on a surface inclined by 40 ° with respect to the rolling surface with the rolling direction as an axis (hereinafter referred to as a 40 ° surface). {100} is a cleavage plane of iron, and if there is a brittle part such as center segregation, brittle fracture occurs from the brittle part, and brittle fracture propagates all at once to the 40 ° plane where {100} is accumulated. Therefore, it becomes difficult to shift to ductile fracture. The above is a big problem that the DWTT ductility / brittle fracture temperature in the structure mainly composed of bainite / martensite does not shift to the low temperature side. For this reason, a multiphase structure in which ferrite is generated is formed from a structure mainly composed of bainite and martensite, and a structure in which {100} is not accumulated on a 40 ° plane is created. The tissue control which suppresses was performed (patent document 3). When creating such a ferrite, the higher the strength, the more limited the amount of ferrite. When the amount of ferrite is limited, accumulation of {100} on the 40 ° plane is not suppressed, so that a brittle crack easily propagates to that plane. Another problem is to uniformly disperse ferrite throughout the steel pipe.

国際公開96/023083号明細書International Publication No. 96/023083 国際公開96/023909号明細書International Publication No. 96/023909 特開2008−013800号公報JP 2008-013800 A

NKK技報No.138(1992), pp24-31NKK Technical Review No.138 (1992), pp24-31 The 7th Offshore Mechanics and Arctic Engineering (1988), Volume V, pp179-185The 7th Offshore Mechanics and Arctic Engineering (1988), Volume V, pp179-185

従来より、ベイナイト・マルテンサイト主体の組織における結晶粒微細化の方法として、パンケーキ厚みを細かくすることが知られているが、鋳片の厚みに上限があるので、パンケーキ厚みを細かくすることには限界がある。さらに、ベイナイト・マルテンサイト主体の組織の場合、圧延方向を軸として圧延面に40°傾いた面(以降40°面と呼ぶ)に{100}が集積することが知られている。{100}は鉄のへき開面であり、中心偏析などの脆化部が存在すると、その脆化部から脆性破壊が発生し、{100}が集積した40°面に脆性破壊が一気に伝播してしまい、延性破壊に移行しない大きな課題であった。   Conventionally, as a method of refining crystal grains in a structure mainly composed of bainite and martensite, it is known to reduce the pancake thickness, but since there is an upper limit on the thickness of the slab, the pancake thickness should be reduced. Has its limits. Furthermore, in the case of a bainite-martensite-based structure, it is known that {100} accumulates on a surface inclined by 40 ° with respect to the rolling surface with the rolling direction as an axis (hereinafter referred to as a 40 ° surface). {100} is a cleavage plane of iron, and if there is a brittle part such as center segregation, brittle fracture occurs from the brittle part, and brittle fracture propagates all at once to the 40 ° plane where {100} is accumulated. Therefore, it was a big problem that did not shift to ductile fracture.

本発明は、このような実情に鑑みてなされたものであり、ベイナイト・マルテンサイト主体の組織を有するラインパイプ等に使用される鋼管の低温靭性、特に脆性破壊き裂伝播停止特性や高速延性破壊き裂伝播停止特性を改善することを課題とするものである。   The present invention has been made in view of such circumstances, and low temperature toughness of steel pipes used for line pipes having a structure mainly composed of bainite and martensite, particularly brittle fracture crack propagation stopping characteristics and high-speed ductile fracture. It is an object to improve the crack propagation stop characteristic.

本発明者らは、引張り強度が600MPa以上の低温靭性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管を得るための鋼材が満足すべき条件について鋭意研究を行い、新しい超高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管を発明するに至った。そして、ベイナイト・マルテンサイト主体の組織でも中心偏析のような脆化相が著しく緩和され、その場所の低温靭性が向上すると、DWTTなどの延性・脆性遷移温度が低下することが可能となることを見出した。本発明の要旨は以下のとおりである。
(1)質量%で、
C :0.03〜0.08%、
Si:0.01〜0.5%、
Mn:1.6〜2.3%、
Nb:0.001〜0.05%、
N :0.0010〜0.0050%、
Ca:0.0001〜0.0050%
を含み、
P :0.015%以下、
S :0.0020%以下、
Ti:0.030%以下、
Al:0.030%以下、
O :0.0035%以下
に制限され、残部がFe及び不可避的不純物元素からなり、
S/Ca<0.5
を満足し、更に、
最大Mn偏析度:2.0以下、
Nb偏析度:4.0以下、
Ti偏析度:4.0以下
に制限し、
更に、
ベイナイト+マルテンサイト組織を有し、前記ベイナイト+マルテンサイト組織の平均旧オーステナイトの平均粒径が10μm以下であり、前記ベイナイト+マルテンサイト組織でフェライト分率が10%未満であり、
更に、
圧延方向を軸として、圧延面に40°傾いた場所の{100}の集積度が4.0以下に制限され、引張り強度600MPa以上743MPa以下を有することを特徴とする低温靭性に優れた高強度ラインパイプ用鋼板。
(2)更に、質量%で、
Ni:0.01〜2.0%、
Cu:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜0.20%
W :0.01〜1.0%、
V :0.01〜0.10%、
Zr:0.0001〜0.050%、
Ta:0.0001〜0.050%、
B :0.0001〜0.0020%
の1種又は2種以上を、更に含有することを特徴とする(1)に記載の低温靭性に優れた高強度ラインパイプ用鋼板。
(3)質量%で
REM:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Y :0.0001〜0.005%、
Hf:0.0001〜0.005%、
Re:0.0001〜0.005%
の1種又は2種以上を含み、更に含有することを特徴とする(1)又は(2)に記載の低温靭性に優れた高強度ラインパイプ用鋼板。
(4)中心偏析部の最高硬度が400Hv以下であることを特徴とする(1)〜(3)のいずれかに記載の低温靭性に優れた高強度ラインパイプ用鋼板。
(5)母材が、質量%で、
C :0.03〜0.08%、
Si:0.01〜0.5%、
Mn:1.6〜2.3%、
Nb:0.001〜0.05%、
N :0.0010〜0.0050%、
Ca:0.0001〜0.0050%
を含み、
P :0.015%以下、
S :0.002%以下、
Ti:0.001〜0.030%、
Al:0.030%以下、
O :0.0035%以下
に制限され、残部がFe及び不可避的不純物元素からなり、
S/Ca<0.5
を満足し、更に、
最大Mn偏析度:2.0以下、
Nb偏析度:4.0以下、
Ti偏析度:4.0以下
に制限され、
更に、
ベイナイト+マルテンサイト組織を有し、前記ベイナイト+マルテンサイト組織の平均旧オーステナイトの平均粒径が10μm以下であり、前記ベイナイト+マルテンサイト組織でフェライト分率が10%未満であり、
更に、
圧延方向を軸として、圧延面に40°傾いた場所の{100}の集積度が4.0以下に制限され、引張り強度600MPa以上743MPa以下を有することを特徴とする低温靭性に優れた高強度ラインパイプ用鋼管。
(6)更に、質量%で、
Ni:0.01〜2.0%、
Cu:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜0.20%、
W :0.01〜1.0%、
V :0.01〜0.10%、
Zr:0.0001〜0.050%、
Ta:0.0001〜0.050%、
B :0.0001〜0.0020%
の1種又は2種以上を含有することを特徴とする(5)に記載の低温靭性に優れた高強度ラインパイプ用鋼管。
(7)更に、質量%で
REM:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Y :0.0001〜0.005%、
Hf:0.0001〜0.005%、
Re:0.0001〜0.005%
の1種又は2種以上を含有することを特徴とする(5)又は(6)に記載の低温靭性に優れた高強度ラインパイプ用鋼管。
(8)中心偏析部の最高硬度が400Hv以下であることを特徴とする(5)〜(7)のいずれかに記載の低温靭性に優れた高強度ラインパイプ用鋼管。
The present inventors conducted earnest research on the conditions that should be satisfied by steel materials for obtaining high-strength linepipe steel sheets and high-strength linepipe steel pipes that have excellent tensile strength of 600 MPa or more and low-temperature toughness. It came to invent the steel plate for line pipes and the steel pipe for high-strength line pipes. And even in the structure mainly composed of bainite and martensite, the embrittlement phase such as central segregation is remarkably relaxed, and if the low temperature toughness of the place is improved, the ductile / brittle transition temperature such as DWTT can be lowered. I found it. The gist of the present invention is as follows.
(1) In mass%,
C: 0.03-0.08%,
Si: 0.01 to 0.5%,
Mn: 1.6 to 2.3%
Nb: 0.001 to 0.05%,
N: 0.0010 to 0.0050%,
Ca: 0.0001 to 0.0050%
Including
P: 0.015% or less,
S: 0.0020% or less,
Ti: 0.030% or less,
Al: 0.030% or less,
O: limited to 0.0035% or less, with the balance being Fe and inevitable impurity elements,
S / Ca <0.5
Satisfied,
Maximum Mn segregation degree: 2.0 or less,
Nb segregation degree: 4.0 or less,
Ti segregation degree: limited to 4.0 or less,
Furthermore,
It has a bainite + martensite structure, the average grain size of the average prior austenite of the bainite + martensite structure is 10 μm or less, and the ferrite fraction in the bainite + martensite structure is less than 10%,
Furthermore,
High strength with excellent low temperature toughness, characterized in that the {100} accumulation degree is limited to 4.0 or less and the tensile strength is 600 MPa or more and 743 MPa or less with the rolling direction as the axis and tilted at 40 ° to the rolling surface. Steel plate for line pipe.
(2) Furthermore, in mass%,
Ni: 0.01 to 2.0%,
Cu: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: 0.01 to 0.20%
W: 0.01-1.0%
V: 0.01 to 0.10%,
Zr: 0.0001 to 0.050%,
Ta: 0.0001 to 0.050%,
B: 0.0001 to 0.0020%
The steel sheet for high-strength line pipe excellent in low-temperature toughness according to (1), further comprising one or more of the above.
(3) By mass% REM: 0.0001 to 0.01%,
Mg: 0.0001 to 0.01%
Y: 0.0001 to 0.005%,
Hf: 0.0001 to 0.005%,
Re: 0.0001 to 0.005%
The steel sheet for high-strength line pipe excellent in low-temperature toughness according to (1) or (2), further comprising one or more of the above.
(4) The steel sheet for a high-strength line pipe excellent in low-temperature toughness according to any one of (1) to (3) , wherein the maximum hardness of the center segregation part is 400 Hv or less.
(5) The base material is mass%,
C: 0.03-0.08%,
Si: 0.01 to 0.5%,
Mn: 1.6 to 2.3%
Nb: 0.001 to 0.05%,
N: 0.0010 to 0.0050%,
Ca: 0.0001 to 0.0050%
Including
P: 0.015% or less,
S: 0.002% or less,
Ti: 0.001 to 0.030%,
Al: 0.030% or less,
O: limited to 0.0035% or less, with the balance being Fe and inevitable impurity elements,
S / Ca <0.5
Satisfied,
Maximum Mn segregation degree: 2.0 or less,
Nb segregation degree: 4.0 or less,
Ti segregation degree: limited to 4.0 or less,
Furthermore,
It has a bainite + martensite structure, the average grain size of the average prior austenite of the bainite + martensite structure is 10 μm or less, and the ferrite fraction in the bainite + martensite structure is less than 10%,
Furthermore,
High strength with excellent low temperature toughness, characterized in that the {100} accumulation degree is limited to 4.0 or less and the tensile strength is 600 MPa or more and 743 MPa or less with the rolling direction as the axis and tilted at 40 ° to the rolling surface. Steel pipe for line pipe.
(6) Furthermore, in mass%,
Ni: 0.01 to 2.0%,
Cu: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: 0.01 to 0.20%,
W: 0.01-1.0%
V: 0.01 to 0.10%,
Zr: 0.0001 to 0.050%,
Ta: 0.0001 to 0.050%,
B: 0.0001 to 0.0020%
The steel pipe for high-strength line pipe excellent in low-temperature toughness according to (5) , characterized by containing one or more of the above.
(7) Furthermore, in mass% REM: 0.0001 to 0.01%,
Mg: 0.0001 to 0.01%
Y: 0.0001 to 0.005%,
Hf: 0.0001 to 0.005%,
Re: 0.0001 to 0.005%
The steel pipe for high-strength line pipe excellent in low-temperature toughness according to (5) or (6) , characterized by containing one or more of the above.
(8) The steel pipe for a high-strength line pipe excellent in low-temperature toughness according to any one of (5) to (7 ), wherein the maximum hardness of the center segregation part is 400 Hv or less.

本発明によれば、Mn、Nb、Tiの偏析度が低下し、中心偏析部の最高硬さの上昇が抑制され、低温靭性に優れたラインパイプ用鋼板及びラインパイプ用鋼管の製造が可能であるなど、産業上の貢献が極めて顕著である。   According to the present invention, the segregation degree of Mn, Nb, and Ti is reduced, the increase in the maximum hardness of the central segregation part is suppressed, and it is possible to produce a steel plate for line pipe and a steel pipe for line pipe excellent in low temperature toughness. For example, the industrial contribution is extremely remarkable.

0.06C−1.9Mn−Ni−Cu−Cr系でのDWTT延性破面率に及ぼす最大M偏析度の影響を示すThe influence of the maximum M segregation degree on the DWTT ductile fracture surface ratio in the 0.06C-1.9Mn-Ni-Cu-Cr system is shown. 0.06C−1.9Mn−Ni−Cu−Cr系でのDWTT延性破面率に及ぼすNb偏析度の影響を示すThe influence of the Nb segregation degree on the DWTT ductile fracture surface ratio in the 0.06C-1.9Mn-Ni-Cu-Cr system is shown. 0.06C−1.9Mn−Ni−Cu−Cr系でのDWTT延性破面率に及ぼすTi偏析度の影響を示すThe influence of Ti segregation degree on the DWTT ductile fracture surface ratio in the 0.06C-1.9Mn-Ni-Cu-Cr system is shown.

以下、本発明の内容について詳細に説明する。本発明は600MPa以上の引張強さ(TS)を有する低温靭性に優れた超高強度ラインパイプに関する発明である。この強度水準の超高強度ラインパイプでは、従来主流であるX65と較べて高い圧力に耐えるため、同じサイズで多くのガスを輸送することが可能になる。X65の場合は圧力を高めるためには肉厚を厚くする必要があり、材料費、輸送費、現地溶接施工費が高くなってパイプライン敷設費が大幅に上昇する。これが600MPa以上の引張強さ(TS)を有する高速延性破壊特性に優れた超高強度ラインパイプが必要とされる理由である。一方、高強度になると急激に鋼管の製造が困難になる。この場合、シーム溶接部も含めた目標特性を得るには特に高速破壊特性を改善すること、母材の低温靱性を改善すること、溶接金属および溶接熱影響部の低温靱性を改善すること、また、バースト試験で管体破断させる必要がある。   Hereinafter, the contents of the present invention will be described in detail. The present invention relates to an ultra-high-strength line pipe excellent in low-temperature toughness having a tensile strength (TS) of 600 MPa or more. Since the ultra-high-strength line pipe of this strength level can withstand a higher pressure than the conventional mainstream X65, it is possible to transport many gases with the same size. In the case of X65, in order to increase the pressure, it is necessary to increase the wall thickness, which increases the material cost, transportation cost, and local welding construction cost, and the pipeline laying cost significantly increases. This is the reason why an ultra-high strength line pipe having a tensile strength (TS) of 600 MPa or more and excellent in high-speed ductile fracture characteristics is required. On the other hand, when the strength is increased, it becomes difficult to manufacture a steel pipe. In this case, in order to obtain the target characteristics including seam welds, it is particularly necessary to improve the high speed fracture characteristics, improve the low temperature toughness of the base metal, improve the low temperature toughness of the weld metal and the weld heat affected zone, It is necessary to break the tube body in a burst test.

母材の高速延性破壊特性について説明する。本発明者らは母材の高速延性破壊特性を満足させるために母材の鋼板の破壊靱性に関して鋭意研究を行った結果、以下のことを見いだした。   The high-speed ductile fracture characteristics of the base material will be described. As a result of intensive studies on the fracture toughness of the base steel sheet in order to satisfy the high-speed ductile fracture characteristics of the base metal, the present inventors have found the following.

脆性破壊き裂伝播抵抗特性と、高速延性破壊き裂伝播特性を向上させるには、母材の高い破壊伝播停止特性を有する必要がある。これを達成させるために、例えば落重試験(DWTT)における延性破面率を向上させる、および破壊伝播エネルギーを向上させることが重要であることが知られている。600MPa以上の引張り強度を有する高強度の場合には基本的にはベイナイトあるいはマルテンサイト主体の組織になり、その場合にはAr3点以上の温度から冷却し、鋼板とする。この場合には、鉄のへき開面である{100}は圧延方向を軸として圧延面に対して40度の位置に集積する。以後、本明細書において、圧延方向を軸として圧延面に対して40度の位置する面を「40°面」と呼ぶ。具体的にはランダムな場合の集積に比べて2倍以上を有するものになっていた。以後、本明細書において、このランダムな場合と比較しての{100}の集積の割合を「集積度」と呼ぶ。   In order to improve the brittle fracture crack propagation resistance characteristic and the high-speed ductile fracture crack propagation characteristic, it is necessary to have a high fracture propagation stop characteristic of the base material. In order to achieve this, it is known that, for example, it is important to improve the ductile fracture surface ratio in the drop weight test (DWTT) and to improve the fracture propagation energy. In the case of a high strength having a tensile strength of 600 MPa or more, the structure is basically a bainite or martensite-based structure. In that case, the steel sheet is cooled from a temperature of Ar3 point or higher to form a steel plate. In this case, {100}, which is a cleavage plane of iron, is accumulated at a position of 40 degrees with respect to the rolling surface with the rolling direction as an axis. Hereinafter, in this specification, a surface positioned at 40 degrees with respect to the rolling surface with the rolling direction as an axis is referred to as a “40 ° surface”. Specifically, it has more than twice the accumulation in the random case. Hereinafter, in this specification, the ratio of {100} accumulation compared to this random case is referred to as “integration degree”.

高強度鋼の場合、たとえば中心偏析のレベルが悪いと、中心偏析から脆性破壊が発生し、その脆性破壊が40°面にそって伝播し、DWTT延性破面率や伝播エネルギーが著しく低下してしまう。発明者らは、中心偏析部の最大Mn偏析度、Ti偏析度、Nbの偏析度とDWTT延性破面率およびDWTT伝播エネルギーの関係を調査し、中心偏析の最大Mn偏析度、Ti偏析度、Nb偏析度がDWTT延性破面率あるいはDWTT伝播エネルギーと大きく影響することを見いだした。   In the case of high-strength steel, for example, if the level of center segregation is poor, brittle fracture occurs from center segregation, the brittle fracture propagates along the 40 ° plane, and the DWTT ductile fracture surface rate and propagation energy decrease significantly. End up. The inventors investigated the relationship between the maximum Mn segregation degree of the center segregation part, the Ti segregation degree, the segregation degree of Nb, the DWTT ductile fracture surface ratio, and the DWTT propagation energy, the maximum Mn segregation degree of the center segregation, the Ti segregation degree, It was found that the degree of segregation of Nb greatly affects the DWTT ductile fracture surface ratio or the DWTT propagation energy.

図1〜3に0.06C−1.9Mn−Ni−Cu−Cr系でのDWTT延性破面率に及ぼすMn,Ti,Nbの最大偏析度の影響を示す。最大Mn偏析度、Ti偏析度、Nb偏析度が下がると、DWTT延性破面率が著しくて低下することが判明した。特に、最大Mn偏析度が2.0以下、Ti偏析度が4.0以下、Nbの偏析度が4.0以下になると、DWTT延性破面率が著しく上昇した。このように最大Mn偏析度、Ti偏析度、Nb偏析度が下がることによって、DWTT延性破面率が著しく向上した理由を発明者らは以下のように考えている。   FIGS. 1 to 3 show the influence of the maximum segregation degree of Mn, Ti and Nb on the DWTT ductile fracture rate in the 0.06C-1.9Mn—Ni—Cu—Cr system. It has been found that when the maximum Mn segregation degree, Ti segregation degree, and Nb segregation degree decrease, the DWTT ductile fracture surface ratio decreases remarkably. In particular, when the maximum Mn segregation degree was 2.0 or less, the Ti segregation degree was 4.0 or less, and the segregation degree of Nb was 4.0 or less, the DWTT ductile fracture surface ratio significantly increased. Thus, the inventors consider the reason why the DWTT ductile fracture surface ratio is remarkably improved by decreasing the maximum Mn segregation degree, Ti segregation degree, and Nb segregation degree as follows.

Mn偏析度が上がると、その領域におけるMn濃度が上昇する。従って、中心偏析部の焼入れ性が高くなり、正常部よりも硬度が大きく上昇する。その領域における硬度が上昇すると、低温靭性具体的には破壊の発生特性が著しく低下する。従って、容易に中心偏析から破壊が発生し、40°面に脆性破壊が進展する。これに対して、最大Mn偏析度が下がると、中心偏析部の硬度の上昇が抑制され、破壊の発生抵抗値が上がる。   When the degree of segregation of Mn increases, the Mn concentration in that region increases. Therefore, the hardenability of the center segregation portion is increased, and the hardness is greatly increased as compared with the normal portion. When the hardness in that region is increased, the low temperature toughness, specifically the fracture occurrence characteristics, is significantly reduced. Therefore, the fracture easily occurs from the center segregation, and the brittle fracture progresses on the 40 ° plane. On the other hand, when the maximum Mn segregation degree decreases, the increase in the hardness of the center segregation part is suppressed, and the resistance value of fracture increases.

一方、Ti偏析度、Nb偏析度が上がると、中心偏析部におけるTi,Nbの炭窒化物の生成が顕著になり、これも破壊の発生特性を著しく下げる。逆にTi,Nbの偏析度が下がると、中心偏析部のTi,Nbの炭窒化物の生成が抑制され、破壊の発生特性が向上する。なお、最大Mn偏析度が上がると、MnSの生成が顕著にならないように、Caを添加して、MnSの形成を抑制している。   On the other hand, when the degree of segregation of Ti and the degree of segregation of Nb increase, the formation of carbonitrides of Ti and Nb in the central segregation part becomes remarkable, and this also significantly reduces the fracture occurrence characteristics. Conversely, when the degree of segregation of Ti and Nb decreases, the generation of Ti and Nb carbonitrides in the central segregation part is suppressed, and the fracture occurrence characteristics are improved. In addition, when the maximum Mn segregation degree increases, Ca is added to suppress the formation of MnS so that the generation of MnS does not become remarkable.

ここで、本発明において、最大Mn偏析度とは、鋼板及び鋼管の中心偏析部を除いた平均のMn量に対する中心偏析部の最大のMn量である。同様に、Nb偏析度とTi偏析度は、鋼板及び鋼管の中心偏析部を除いた平均のNb量(Ti量)に対する中心偏析部の平均化した最大のNb量(Ti量)である。   Here, in the present invention, the maximum Mn segregation degree is the maximum amount of Mn in the center segregation part relative to the average Mn amount excluding the center segregation part of the steel plate and the steel pipe. Similarly, the Nb segregation degree and the Ti segregation degree are the average Nb amount (Ti amount) averaged at the center segregation portion with respect to the average Nb amount (Ti amount) excluding the center segregation portion of the steel plate and the steel pipe.

また、最大Mn偏析度を測定する場合、EPMA(Electron Probe Micro Analyzer)、又はEPMAによる測定結果を画像処理することができるCMA(Computer Aided Micro Analyzer)によって鋼板及び鋼管のMn濃度分布を測定する。同様に、Nb偏析度及びTi偏析度についても、EPMA又はCMAによって、それぞれ、Nb濃度分布及びTi濃度分布を測定する。   When measuring the maximum Mn segregation degree, the Mn concentration distribution of the steel sheet and the steel pipe is measured by EPMA (Electron Probe Micro Analyzer) or CMA (Computer Aided Micro Analyzer) capable of image processing the measurement result by EPMA. Similarly, regarding the Nb segregation degree and the Ti segregation degree, the Nb concentration distribution and the Ti concentration distribution are measured by EPMA or CMA, respectively.

この際、EPMA(又はCMA)のプローブ径によって最大Mn偏析度の数値が変化する。本発明者らは、プローブ径を2μmとすることにより、適正にMnの偏析を評価できることを見出した。Nb偏析度及びTi偏析度についても、プローブ径を2μmとすることにより、適正に偏析を評価できることがわかった。NbとTiの場合には、最大値を正確にもとめることはできないので、測定データを平均化した値すなわち、板厚方向の平均の最大値を求めることにした。なお、MnS、TiN、Nb(C,N)などの介在物が存在すると最大Mn偏析度、Ti偏析度、Nb偏析度が見かけ上大きくなるので、介在物が当たった場合はその値は除いて評価するものとする。   At this time, the numerical value of the maximum Mn segregation degree varies depending on the probe diameter of EPMA (or CMA). The present inventors have found that the segregation of Mn can be properly evaluated by setting the probe diameter to 2 μm. As for the Nb segregation degree and the Ti segregation degree, it was found that the segregation can be properly evaluated by setting the probe diameter to 2 μm. In the case of Nb and Ti, the maximum value cannot be accurately determined. Therefore, the average value of the measurement data, that is, the average maximum value in the thickness direction is determined. When inclusions such as MnS, TiN, and Nb (C, N) are present, the maximum Mn segregation degree, Ti segregation degree, and Nb segregation degree increase apparently. Shall be evaluated.

以下、本発明での母材の化学成分の限定理由について述べる。   The reason for limiting the chemical components of the base material in the present invention will be described below.

C:Cは鋼の強度を向上させる元素であり、その有効な下限として0.03%以上の添加が必要である。一方、C量が0.08%を超えると、炭化物の生成が促進されて中心偏析部の低温靭性を損なうため、上限を0.08%以下とする。また、正常部の低温靭性や溶接性や靱性の低下を抑制するには、C量の上限を0.07%以下とすることが好ましい。   C: C is an element that improves the strength of steel, and as an effective lower limit, addition of 0.03% or more is necessary. On the other hand, if the C content exceeds 0.08%, the formation of carbides is promoted and the low temperature toughness of the central segregation part is impaired, so the upper limit is made 0.08% or less. Moreover, in order to suppress the low temperature toughness of a normal part, weldability, and the fall of toughness, it is preferable to make the upper limit of C amount into 0.07% or less.

Si:Siは脱酸元素であり、0.01%以上の添加が必要である。一方、Si量が0.5%を超えると、溶接熱影響部(HAZ)の靱性を低下させるため、上限を0.5%以下とする。   Si: Si is a deoxidizing element and needs to be added in an amount of 0.01% or more. On the other hand, if the Si content exceeds 0.5%, the toughness of the weld heat affected zone (HAZ) is lowered, so the upper limit is made 0.5% or less.

Mn:Mnは、強度及び靱性を向上させる元素であり、1.6%以上の添加が必要である。一方、Mn量が、2.3%を超えると、中心偏析部の低温靭性やHAZ靱性を低下させるため、上限を2.3%以下とする。中心偏析部の低温靭性劣化を抑制するには、Mn量の上限を2.0%以下とすることが好ましい。   Mn: Mn is an element that improves strength and toughness, and needs to be added in an amount of 1.6% or more. On the other hand, if the amount of Mn exceeds 2.3%, the low temperature toughness and the HAZ toughness of the center segregation part are lowered, so the upper limit is made 2.3% or less. In order to suppress the low temperature toughness deterioration of the center segregation part, the upper limit of the Mn content is preferably set to 2.0% or less.

Nb:Nbは、炭化物、窒化物を形成し、強度の向上に寄与する元素である。効果を得るためには、0.001%以上のNbを添加することが必要である。しかし、Nbを過剰に添加すると、Nb偏析度が増加し、Nbの炭窒化物の集積を招いて、耐HIC性が低下する。したがって、本発明においては、Nb量の上限を0.05%以下とする。   Nb: Nb is an element that forms carbides and nitrides and contributes to improvement in strength. In order to obtain the effect, it is necessary to add 0.001% or more of Nb. However, if Nb is added excessively, the degree of segregation of Nb increases, and the accumulation of Nb carbonitrides is invited, resulting in a decrease in HIC resistance. Therefore, in the present invention, the upper limit of the Nb amount is 0.05% or less.

N:Nは、TiN、NbNなどの窒化物を形成する元素であり、窒化物を利用して加熱時のオーステナイト粒径を微細にするためには、N量の下限値を0.0010%以上とすることが必要である。しかし、Nの含有量が0.0050%を超えると、TiとNbの炭窒化物が集積しやすくなり、耐HIC性を損なう。したがって、N量の上限を0.0050%以下とする。なお、靭性などが要求される場合には、TiNの粗大化を抑制するため、N量の上限を0.0035%以下にすることが好ましい。   N: N is an element that forms nitrides such as TiN and NbN, and in order to make the austenite grain size at the time of heating using nitrides, the lower limit value of N amount is 0.0010% or more. Is necessary. However, if the N content exceeds 0.0050%, Ti and Nb carbonitrides are likely to accumulate, and the HIC resistance is impaired. Therefore, the upper limit of the N amount is set to 0.0050% or less. In addition, when toughness etc. are requested | required, in order to suppress the coarsening of TiN, it is preferable to make the upper limit of N amount 0.0035% or less.

P:Pは不純物であり、含有量が0.015%を超えると、耐HIC性を損ない、また、HAZの靱性が低下する。したがって、Pの含有量の上限を0.01%以下に制限する。   P: P is an impurity. When the content exceeds 0.015%, the HIC resistance is impaired, and the toughness of the HAZ is lowered. Therefore, the upper limit of the P content is limited to 0.01% or less.

S:Sは、熱間圧延時に圧延方向に延伸するMnSを生成して、低温靭性を低下させる元素である。したがって、本発明では、S量を低減することが必要であり、上限を0.0020%以下に制限する。また、靱性を向上させるためには、S量を0.0010%以下とすることが好ましい。S量は、少ないほど好ましいが、0.0001%未満にすることは困難であり、製造コストの観点から、下限を0.0001%以上にすることが好ましい。   S: S is an element that reduces the low-temperature toughness by producing MnS that extends in the rolling direction during hot rolling. Therefore, in the present invention, it is necessary to reduce the amount of S, and the upper limit is limited to 0.0020% or less. In order to improve toughness, the S content is preferably 0.0010% or less. The smaller the amount of S, the better. However, it is difficult to make it less than 0.0001%, and the lower limit is preferably made 0.0001% or more from the viewpoint of manufacturing cost.

Ti:Tiは、通常、脱酸剤や窒化物形成元素として結晶粒の細粒化に利用される元素であるが、本発明では、炭窒化物の形成によって耐HIC性や靱性を低下させる元素である。したがって、Tiの含有量の上限は、0.030%以下に制限する。また、0.001%未満の添加では結晶粒微細化の効果が得られないため、下限を0.001%とする。   Ti: Ti is an element that is usually used for grain refinement as a deoxidizer or nitride-forming element. In the present invention, an element that lowers HIC resistance and toughness by forming carbonitrides. It is. Therefore, the upper limit of the Ti content is limited to 0.030% or less. Further, if the addition is less than 0.001%, the effect of crystal grain refinement cannot be obtained, so the lower limit is made 0.001%.

Al:Alは脱酸元素であるが、本発明においては、添加量が0.030%を超えるとAl酸化物の集積クラスターが確認されるため、0.030%以下に制限する。靭性が要求される場合には、Al量の上限を0.017%以下にすることが好ましい。Al量の下限値は特に限定しないが、溶鋼中の酸素量を低減させるためには、Alを0.0005%以上添加することが好ましい。   Al: Al is a deoxidizing element. However, in the present invention, when the addition amount exceeds 0.030%, an accumulation cluster of Al oxide is confirmed, so it is limited to 0.030% or less. When toughness is required, the upper limit of Al content is preferably set to 0.017% or less. Although the lower limit of the amount of Al is not particularly limited, it is preferable to add Al in an amount of 0.0005% or more in order to reduce the amount of oxygen in the molten steel.

O:Oは不純物であり、酸化物の集積を抑制して、低温靭性を向上させるために、上限を0.0035%以下に制限する。酸化物の生成を抑制して、母材及びHAZ靭性を向上させるためには、O量の上限値を0.0030%以下とすることが好ましい。O量の最適な上限は0.0020%以下である。   O: O is an impurity, and the upper limit is limited to 0.0035% or less in order to suppress oxide accumulation and improve low-temperature toughness. In order to suppress the formation of oxides and improve the base material and the HAZ toughness, the upper limit value of the O amount is preferably 0.0030% or less. The optimum upper limit of the amount of O is 0.0020% or less.

Ca:Caは硫化物CaSを生成し、圧延方向に伸長するMnSの生成を抑制し、低温靭性の改善に顕著に寄与する元素である。Caの添加量が0.0001%未満では、効果が得られないため、下限値を0.0001%以上とする。一方、Caの添加量が0.0050%を超えると、酸化物が集積し、低温靭性を損なうため、上限を0.0050%以下とする。   Ca: Ca is an element that generates sulfide CaS, suppresses the generation of MnS extending in the rolling direction, and contributes significantly to the improvement of low-temperature toughness. If the addition amount of Ca is less than 0.0001%, the effect cannot be obtained, so the lower limit is made 0.0001% or more. On the other hand, if the Ca content exceeds 0.0050%, oxides accumulate and the low temperature toughness is impaired, so the upper limit is made 0.0050% or less.

本発明では、Caを添加して、CaSを形成させることにより、Sを固定するため、S/Caの比は重要な指標である。S/Caの比が0.5以上であると、MnSが生成し、圧延時に延伸化したMnSが形成される。その結果、低温靭性が劣化する。したがって、S/Caの比を0.5未満とした。   In the present invention, since S is fixed by adding Ca to form CaS, the ratio of S / Ca is an important index. MnS produces | generates that ratio of S / Ca is 0.5 or more, and MnS extended at the time of rolling is formed. As a result, low temperature toughness deteriorates. Accordingly, the S / Ca ratio is set to less than 0.5.

なお、本発明においては、強度及び靱性を改善する元素として、Ni、Cu、Cr、Mo、W、V、Zr、Ta、Bの中で、1種又は2種以上の元素を添加することができる。   In the present invention, one or more elements among Ni, Cu, Cr, Mo, W, V, Zr, Ta, and B may be added as elements for improving strength and toughness. it can.

Ni:Niは、靱性及び強度の改善に有効な元素であり、その効果を得るためには0.01%以上の添加が必要であるが、2.0%以上の添加では溶接性が低下するために、その上限を2.0%とすることが好ましい。   Ni: Ni is an element effective for improving toughness and strength, and in order to obtain the effect, addition of 0.01% or more is necessary. However, addition of 2.0% or more reduces weldability. Therefore, the upper limit is preferably set to 2.0%.

Cu:Cuは、靱性を低下させずに強度の上昇に有効な元素であるが、0.01%未満では効果がなく、1.0%を超えると鋼片加熱時や溶接時に割れを生じやすくする。従って、その含有量を0.01〜1.0%以下とすることが好ましい。   Cu: Cu is an element effective for increasing the strength without reducing toughness, but if it is less than 0.01%, there is no effect, and if it exceeds 1.0%, cracking is likely to occur during heating of the steel slab or during welding. To do. Therefore, the content is preferably 0.01 to 1.0% or less.

Cr:Crは析出強化による鋼の強度を向上させるために、0.01%以上の添加が有効であるが、多量に添加すると、焼入れ性を上昇させ、ベイナイト組織を生じさせ、低温靱性を低下させる。従って、その上限を1.0%とすることが好ましい。   Cr: Cr is effective to improve the strength of the steel by precipitation strengthening. Addition of 0.01% or more is effective, but if added in a large amount, the hardenability is increased, the bainite structure is generated, and the low temperature toughness is lowered. Let Therefore, the upper limit is preferably 1.0%.

Mo:Moは、焼入れ性を向上させると同時に、炭窒化物を形成し強度を改善する元素であり、その効果を得るためには、0.01%以上の添加が好ましい。一方、Moを0.60%を超えて多量に添加すると、コストが上昇するため、上限を0.60%以下にすることが好ましい。また、鋼の強度が上昇すると、低温靱性が低下することがあるため、好ましい上限を0.20%以下とする。   Mo: Mo is an element that improves hardenability and at the same time forms carbonitrides and improves strength. To obtain the effect, addition of 0.01% or more is preferable. On the other hand, when Mo is added in a large amount exceeding 0.60%, the cost increases, so the upper limit is preferably made 0.60% or less. Moreover, since the low temperature toughness may decrease when the strength of the steel increases, the preferable upper limit is made 0.20% or less.

W:Wは、強度の向上に有効な元素であり、0.01%以上の添加が好ましく、0.05%以上の添加がより好ましい。一方、1.0%を超えるWを添加すると、靱性の低下を招くことがあるため、上限を1.0%以下とすることが好ましい。   W: W is an element effective for improving the strength, and is preferably added in an amount of 0.01% or more, more preferably 0.05% or more. On the other hand, if W exceeding 1.0% is added, the toughness may be lowered, so the upper limit is preferably made 1.0% or less.

V:Vは、炭化物、窒化物を形成し、強度の向上に寄与する元素であり、効果を得るためには、0.01%以上の添加が好ましい。一方、0.10%を超えるVを添加すると、低温靱性の低下を招くことがあるため、上限を0.10%以下とすることが好ましい。   V: V is an element that forms carbides and nitrides and contributes to improvement in strength. In order to obtain the effect, addition of 0.01% or more is preferable. On the other hand, if V exceeding 0.10% is added, the low temperature toughness may be lowered, so the upper limit is preferably made 0.10% or less.

Zr、Ta:Zr及びTaは、Vと同様に炭化物、窒化物を形成し強度の向上に寄与する元素であり、効果を得るために、0.0001%以上を添加することが好ましい。一方、Zr及びTaを、0.050%を超えて過剰に添加すると、低温靱性の低下を招くことがあるため、その上限を0.050%以下とすることが好ましい。   Zr, Ta: Zr and Ta are elements that form carbides and nitrides as well as V and contribute to the improvement of strength, and in order to obtain the effect, 0.0001% or more is preferably added. On the other hand, if Zr and Ta are added excessively over 0.050%, the low temperature toughness may be lowered, so the upper limit is preferably made 0.050% or less.

B:Bは、鋼の粒界に偏析して焼入れ性の向上に著しく寄与する元素である。この効果を得るには、0.0001%以上のBの添加が好ましい。また、BはBNを生成し、固溶Nを低下させて、溶接熱影響部の靱性の向上にも寄与する元素であるため、0.0005%以上の添加がより好ましい。一方。Bを過剰に添加すると、粒界への偏析が過剰になり、低温靱性の低下を招くことがあるため、上限を0.0020%とすることが好ましい。   B: B is an element that segregates at the grain boundaries of steel and contributes significantly to improving the hardenability. In order to obtain this effect, 0.0001% or more of B is preferably added. Further, B is an element that generates BN, lowers the solid solution N, and contributes to the improvement of the toughness of the weld heat affected zone. Therefore, addition of 0.0005% or more is more preferable. on the other hand. When B is added excessively, segregation to the grain boundary becomes excessive, and the low temperature toughness may be lowered, so the upper limit is preferably made 0.0020%.

更に、酸化物や硫化物などの介在物を制御するために、REM、Mg、Zr、Ta、Y、Hf、Reの1種又は2種以上を含有させても良い。   Furthermore, in order to control inclusions such as oxides and sulfides, one or more of REM, Mg, Zr, Ta, Y, Hf, and Re may be included.

REM:REMは、脱酸剤及び脱硫剤として添加される元素であり、0.0001%以上の添加が好ましい。一方、0.010%を超えて添加すると、粗大な酸化物を生じて、HIC性や、母材及びHAZの靱性を低下させることがあり、好ましい上限は0.010%以下である。   REM: REM is an element added as a deoxidizer and a desulfurizer, and 0.0001% or more is preferably added. On the other hand, if added over 0.010%, a coarse oxide is formed, which may reduce the HIC property and the toughness of the base material and HAZ. The preferable upper limit is 0.010% or less.

Mg:Mgは、脱酸剤及び脱硫剤として添加される元素であり、特に、微細な酸化物を生じて、HAZ靭性の向上にも寄与する。この効果を得るには、0.0001%以上のMgを添加することが好ましく、0.0005%以上添加することがより好ましい。一方、Mgを0.010%超添加すると、酸化物が凝集、粗大化し易くなり、HIC性の劣化や、母材及びHAZの靱性の低下をもたらすことがある。したがって、Mg量の上限を、0.010%以下とすることが好ましい。   Mg: Mg is an element added as a deoxidizing agent and a desulfurizing agent. In particular, a fine oxide is generated and contributes to improvement of HAZ toughness. In order to obtain this effect, 0.0001% or more of Mg is preferably added, and 0.0005% or more is more preferably added. On the other hand, if Mg is added in an amount exceeding 0.010%, the oxide tends to aggregate and coarsen, which may lead to deterioration in HIC properties and toughness of the base material and HAZ. Therefore, it is preferable that the upper limit of the amount of Mg is 0.010% or less.

Y、Hf、Re:Y、Hf、Reは、Caと同様、硫化物を生成し、圧延方向に伸長したMnSの生成を抑制し、耐HIC性の向上に寄与する元素である。このような効果を得るには、Y、Hf、Reを、0.0001%以上添加することが好ましく、0.0005%以上添加することがより好ましい。一方、Y、Hf、Reの量が0.0050%を超えると、酸化物が増加し、凝集、粗大化すると耐HIC性を損なうため、上限を0.0050%以下とすることが好ましい。   Y, Hf, Re: Y, Hf, and Re are elements that, like Ca, generate sulfides, suppress the generation of MnS elongated in the rolling direction, and contribute to improvement in HIC resistance. In order to obtain such an effect, 0.0001% or more of Y, Hf, or Re is preferably added, and more preferably 0.0005% or more. On the other hand, if the amount of Y, Hf, Re exceeds 0.0050%, the oxides increase, and if aggregation or coarsening impairs the HIC resistance, the upper limit is preferably made 0.0050% or less.

更に、本発明では、最大Mn偏析度、Nb偏析度及びTi偏析度を、それぞれ、2.0以下、4.0以下及び4.0以下とする。   Furthermore, in the present invention, the maximum Mn segregation degree, the Nb segregation degree, and the Ti segregation degree are 2.0 or less, 4.0 or less, and 4.0 or less, respectively.

最大Mn偏析度を2.0以下にすることにより中心偏析部の硬度上昇が抑制され、中心偏析部の低温靭性が向上する。また、Nb偏析度を4.0以下にすると集積したNb(C,N)の生成が抑制され、Ti偏析度を4.0以下にすると集積したTiNの生成が抑制され、いずれも中心偏析部の低温靭性の劣化を防止することができる。   By setting the maximum Mn segregation degree to 2.0 or less, an increase in the hardness of the central segregation part is suppressed, and the low temperature toughness of the central segregation part is improved. Further, when the Nb segregation degree is 4.0 or less, the production of accumulated Nb (C, N) is suppressed, and when the Ti segregation degree is 4.0 or less, the production of accumulated TiN is suppressed, both of which are the central segregation part. It is possible to prevent the deterioration of the low temperature toughness.

最大Mn偏析度は、鋼板及び鋼管の中心偏析部を除いた平均のMn量に対する中心偏析部の最大のMn量であり、プローブ径を2μmとするEPMA又はCMAによって鋼板及び鋼管のMn濃度分布を測定し、求めることができる。Nb偏析度及びTi偏析度についても同様であり、プローブ径を2μmとするEPMA又はCMAによって、それぞれ、Nb濃度分布及びTi濃度分布を測定し、鋼板及び鋼管の中心偏析部を除いた平均のNb量に対する中心偏析部の平均化した最大のNb量(Nb偏析度)、鋼板及び鋼管の中心偏析部を除いた平均のTi量に対する中心偏析部の平均化した最大のTi量(Ti偏析度)を求めるものとする。   The maximum Mn segregation degree is the maximum Mn amount of the central segregation part relative to the average Mn amount excluding the central segregation part of the steel plate and steel pipe, and the Mn concentration distribution of the steel plate and steel pipe is determined by EPMA or CMA with a probe diameter of 2 μm. Can be measured and determined. The same applies to the degree of Nb segregation and the degree of Ti segregation. The Nb concentration distribution and the Ti concentration distribution were measured by EPMA or CMA with a probe diameter of 2 μm, respectively, and the average Nb excluding the central segregation portion of the steel plate and the steel pipe was measured. The average Nb amount averaged at the center segregation part with respect to the amount (Nb segregation degree), the average maximum Ti amount at the center segregation part with respect to the average Ti amount excluding the center segregation part of the steel plate and steel pipe (Ti segregation degree) Is to be sought.

最大Mn偏析度、Nb偏析度及びTi偏析度を抑制するための方法について以下に説明する。   A method for suppressing the maximum Mn segregation degree, Nb segregation degree, and Ti segregation degree will be described below.

Mn、Nb及びTiの偏析を抑制するには、連続鋳造における最終凝固時の軽圧下が最適である。最終凝固時の軽圧下は、鋳造の冷却の不均一に起因する、凝固部と未凝固部との混在を解消するために施すものであり、これにより、幅方向に均一に最終凝固させることができる。
「40°面」の{100}の集積度が4.0を超えると、斜行した全面脆性破面が観察されて、DWTT延性破面率85%を満足しなくなるので{100}の集積度を4.0以下とした。
In order to suppress segregation of Mn, Nb and Ti, light reduction at the time of final solidification in continuous casting is optimal. The light reduction at the time of final solidification is applied to eliminate the mixing of solidified and unsolidified parts due to non-uniform cooling of the casting. it can.
When the {100} accumulation degree of the “40 ° plane” exceeds 4.0, a skewed entire brittle fracture surface is observed, and the DWTT ductile fracture surface ratio of 85% is not satisfied. Was 4.0 or less.

連続鋳造において、通常、鋼片は水冷されるが、幅方向の端部は冷却が速く、幅方向の中央部の冷却は強化される。そのため、鋼片の幅方向の端部及び中央部では凝固していても、幅方向の1/4部では、凝固が遅れて、鋼片の内部には未凝固部が残存する。そのため、鋼片の幅方向において、凝固部と未凝固部が均一にならずに、例えば、凝固部と未凝固部との界面の形状が幅方向にW型となってしまうことがある。このような幅方向に不均一な凝固を生じてしまうと、偏析が助長されて、硬度が上昇し、低温靭性を劣化させる。   In continuous casting, the steel slab is usually water-cooled, but the end in the width direction is cooled quickly, and the cooling in the center in the width direction is strengthened. Therefore, even if the steel piece is solidified at the end portion and the center portion in the width direction, solidification is delayed at a quarter portion in the width direction, and an unsolidified portion remains inside the steel piece. Therefore, in the width direction of the steel slab, the solidified part and the unsolidified part are not uniform, and for example, the shape of the interface between the solidified part and the unsolidified part may be W-shaped in the width direction. If such non-uniform solidification occurs in the width direction, segregation is promoted, hardness increases, and low temperature toughness deteriorates.

これに対して、連続鋳造において、最終凝固時の軽圧下を行うと、未凝固部が押し出されて、幅方向に均一に凝固させることができる。また、幅方向に不均一な凝固が生じた後で軽圧下を加えると、凝固部の変形抵抗が大きいことに起因して、未凝固部を効果的に押し出すことができなくなる。   On the other hand, in continuous casting, when light reduction is performed at the time of final solidification, an unsolidified portion is pushed out and can be solidified uniformly in the width direction. Further, if light pressure is applied after uneven solidification occurs in the width direction, the unsolidified portion cannot be effectively pushed out due to the large deformation resistance of the solidified portion.

したがって、このようなW型の凝固を生じさせないようにするためには、鋳片の最終凝固位置における中心固相率の幅方向の分布に応じて圧下量を制御しながら軽圧下することが好ましい。これにより、幅方向でも中心偏析が抑制され、最大Mn偏析度、Nb偏析度、Ti偏析度を更に小さくすることができる。   Therefore, in order to prevent such W-type solidification from occurring, it is preferable to lightly reduce the amount of reduction while controlling the amount of reduction according to the distribution in the width direction of the central solid fraction at the final solidification position of the slab. . Thereby, center segregation is suppressed also in the width direction, and the maximum Mn segregation degree, Nb segregation degree, and Ti segregation degree can be further reduced.

上記の成分を含有する鋼は、製鋼工程で溶製後、連続鋳造により鋼片とし、鋼片を再加熱して厚板圧延を施し、鋼板とされる。この場合、鋼片の再加熱温度を1000℃以上とし、再結晶温度域での圧下比を2以上に、未再結晶域での圧下比を3以上にして厚板圧延を行なう。更に、圧延終了後水冷を行うが、水冷開始温度をAr3点以上の温度から行い、また、水冷停止温度を250〜600℃にすることが好ましい。水冷停止温度が250℃未満の場合、割れが生じる場合がある。この温度範囲とすればベイナイト・マルテンサイト分率が90%以上を有するミクロ組織になる。さらに、平均旧オーステナイト粒径を10μm以下にすることができる。
平均旧オーステナイト粒径の測定方法は、ASTMのE112の測定方法に準拠する。再結晶温度域での圧下比を2未満、かつ、未再結晶域での圧下比を3未満にして厚板圧延を行なうと、平均旧オーステナイト粒径を10μm以下にすることができなくなる。平均の旧オーステナイト粒径が10μm以上になると、DWTT延性破面率85%を満足できなくなる。従って、平均旧オーステナイト粒径を10μm以下とした。
なお、再結晶温度域は、圧延後に再結晶が生じる温度範囲であり、本発明の鋼の成分では概ね900℃超である。一方、未再結晶温度域は、圧延後に再結晶及びフェライト変態が生じない温度範囲であり、本発明の鋼の成分では概ね750〜900℃である。再結晶温度域での圧延を再結晶圧延又は粗圧延といい、未再結晶温度域での圧延を未再結晶圧延又は仕上げ圧延という。
Steel containing the above components is made into a steel slab by continuous casting after melting in the steel making process, and the steel slab is reheated and subjected to thick plate rolling to obtain a steel plate. In this case, the steel plate is rolled by setting the reheating temperature of the steel slab to 1000 ° C. or more, setting the reduction ratio in the recrystallization temperature region to 2 or more, and reducing the reduction ratio in the non-recrystallization region to 3 or more. Furthermore, although water cooling is performed after completion | finish of rolling, it is preferable to perform water cooling start temperature from the temperature more than Ar3 point, and to make water cooling stop temperature into 250-600 degreeC. If the water cooling stop temperature is less than 250 ° C., cracking may occur. If it is this temperature range, it will become a microstructure which has a bainite martensite fraction of 90% or more. Furthermore, the average prior austenite particle size can be made 10 μm or less.
The measurement method of the average prior austenite particle size conforms to the measurement method of ASTM E112. If the rolling reduction is performed with the reduction ratio in the recrystallization temperature range of less than 2 and the reduction ratio in the non-recrystallization range of less than 3, the average prior austenite grain size cannot be made 10 μm or less. When the average prior austenite grain size is 10 μm or more, the DWTT ductile fracture surface ratio of 85% cannot be satisfied. Therefore, the average prior austenite particle size was set to 10 μm or less.
The recrystallization temperature range is a temperature range where recrystallization occurs after rolling, and is generally over 900 ° C. for the steel components of the present invention. On the other hand, the non-recrystallization temperature range is a temperature range in which recrystallization and ferrite transformation do not occur after rolling, and is generally 750 to 900 ° C. for the steel components of the present invention. Rolling in the recrystallization temperature range is called recrystallization rolling or rough rolling, and rolling in the non-recrystallization temperature range is called non-recrystallization rolling or finish rolling.

未再結晶圧延後、Ar3℃以上の温度から水冷を開始し、水冷停止温度を250℃以上とすることにより、中心偏析の最大硬度を400Hv以下にすることができる。また、水冷停止温度を400℃以上にすると、同じように、変態後の硬質なマルテンサイトが一部分解し、硬度を350Hv以下に抑制することができる。また、水冷停止温度は、高すぎると強度が低下するので、合金を多く添加する必要があるため、600℃以下が好ましい。なお、硬度測定方法は、中心偏析部をプローブ径2μmとするEPMA又はCMAによって鋼板及び鋼管のMn濃度分布を測定において、その測定場所を25gの荷重を0.5mmピッチにて格子状に打ったときの最高荷重を示す。   After non-recrystallization rolling, water cooling is started from a temperature of Ar 3 ° C. or higher, and the water cooling stop temperature is 250 ° C. or higher, so that the maximum hardness of center segregation can be 400 Hv or lower. Further, when the water cooling stop temperature is set to 400 ° C. or higher, similarly, the hard martensite after transformation is partially decomposed, and the hardness can be suppressed to 350 Hv or lower. Further, if the water-cooling stop temperature is too high, the strength is lowered, so that it is necessary to add a large amount of alloy, and therefore 600 ° C. or less is preferable. The hardness measurement method is to measure the Mn concentration distribution of steel plates and steel pipes by EPMA or CMA with a probe diameter of 2 μm at the center segregation part, and place the measurement place in a grid at a load of 25 g at a pitch of 0.5 mm The maximum load is shown.

次に、本発明を実施例によって更に詳細に説明する。表1に示す化学成分を有する鋼を溶製し、連続鋳造により、厚みが240mmである鋼片とした。連続鋳造では、最終凝固時の軽圧下を実施した。得られた鋼片を1050〜1250℃に加熱し、900℃超の再結晶温度域で熱間圧延を行い、引き続き、750〜900℃の未再結晶温度域での熱間圧延を行った。熱間圧延後は、700℃以上で水冷を開始し、250〜500℃の温度で水冷を停止した。これにより、鋼片のミクロ組織はベイナイトとマルテンサイトの合計の分率が90%以上の組織を得た。   Next, the present invention will be described in further detail with reference to examples. Steel having chemical components shown in Table 1 was melted, and a steel piece having a thickness of 240 mm was obtained by continuous casting. In continuous casting, light reduction during final solidification was performed. The obtained steel slab was heated to 1050 to 1250 ° C., hot-rolled in a recrystallization temperature range exceeding 900 ° C., and subsequently hot-rolled in a non-recrystallization temperature range of 750 to 900 ° C. After hot rolling, water cooling was started at 700 ° C. or higher, and water cooling was stopped at a temperature of 250 to 500 ° C. Thereby, the microstructure of the steel slab obtained a structure in which the total fraction of bainite and martensite was 90% or more.

更に、鋼板を、Cプレス、Uプレス、Oプレスによって管状に成形し、端面を仮付け溶接し、内外面から本溶接を行った後、拡管後、鋼管とした。なお、本溶接は、サブマージドアーク溶接を採用した。   Further, the steel plate was formed into a tubular shape by a C press, U press, and O press, end surfaces were tack welded, main welding was performed from the inner and outer surfaces, and then expanded to obtain a steel pipe. In addition, submerged arc welding was adopted for this welding.

得られた鋼板及び鋼管から引張試験片、DWTT片、マクロ試験片を採取し、それぞれの試験に供した。DWTTは、API5L3に準拠して行った。また、マクロ試験片を用いて、Mn、Nb、Tiの偏析度をEPMAによって測定した。EPMAによる偏析度の測定は、プローブ径を2μmとし、全厚×20mm幅の測定面積で実施した。中心偏析のビッカース硬度をJIS Z 2244に準拠して測定した。ビッカース硬度の測定は、荷重を25gとし、EPMAによって測定した厚み方向のMn濃度の分布における、Mn濃度が最も高い部位で測定した。   Tensile test pieces, DWTT pieces, and macro test pieces were collected from the obtained steel plates and steel pipes, and used for each test. DWTT was performed according to API5L3. Moreover, the segregation degree of Mn, Nb, and Ti was measured by EPMA using a macro test piece. The segregation degree was measured by EPMA with a probe diameter of 2 μm and a measurement area of total thickness × 20 mm width. The center segregation Vickers hardness was measured according to JIS Z 2244. Vickers hardness was measured at a site where the load was 25 g and the Mn concentration was highest in the distribution of Mn concentration in the thickness direction measured by EPMA.

表2には、鋼板の板厚、最大Mn偏析度、Nb偏析度、Ti偏析度、中心偏析部の最高硬さ、引張り強度及びDWTTによって求められた延性破面率を示す。また、表3には、鋼管の肉厚、本溶接の入熱量、DWTTによって求められた延性破面率を示す。なお、鋼管の最大Mn偏析度、Nb偏析度、Ti偏析度、中心偏析部の最高硬さは鋼板と同等であり、鋼管の引張り強度は鋼板よりも10%程度大きくなっている。   Table 2 shows the steel sheet thickness, maximum Mn segregation degree, Nb segregation degree, Ti segregation degree, maximum hardness of the central segregation part, tensile strength, and ductile fracture surface ratio determined by DWTT. Table 3 shows the thickness of the steel pipe, the heat input amount of the main welding, and the ductile fracture surface ratio obtained by DWTT. The maximum Mn segregation degree, the Nb segregation degree, the Ti segregation degree, and the maximum hardness of the central segregation portion of the steel pipe are the same as those of the steel sheet, and the tensile strength of the steel pipe is about 10% larger than that of the steel sheet.

鋼1〜22(No2,9,13,21を除く)および32は本発明の例であり、これらの鋼板は最大Mn偏析度は2.0以下、Nb偏析度は4.0以下、Ti偏析度は4.0以下、中心偏析部の最高硬さは400Hv以下になっており、DWTT延性破面率はいずれも85%以上を満足している。これらの鋼板を素材とする鋼管も同様である。   Steels 1 to 22 (except for No2,9,13,21) and 32 are examples of the present invention, and these steel sheets have a maximum Mn segregation degree of 2.0 or less, Nb segregation degree of 4.0 or less, and Ti segregation. The degree is 4.0 or less, the maximum hardness of the central segregation part is 400 Hv or less, and the DWTT ductile fracture surface ratio satisfies 85% or more. The same applies to steel pipes made of these steel plates.

一方、鋼23〜31および33〜35は本発明の範囲外である比較例を示す。すなわち、基本成分あるいは選択元素の内いずれかの元素が、本発明の範囲外であるため、あるいは、S/Caが0.5以上であるためにDWTTによる延性破面率が85%を下回っていることがわかる。
鋼33は、40°面の{100}の集積度が4.0を超えており、延性破面率が85%を下回っている。鋼34は基本成分の元素が本発明の範囲外であり、かつ40°面の{100}の集積度が4.0を超えているので、延性破面率が85%を下回っている。鋼35はNbの偏析度、Tiの偏析度が4.0を超えており、かつ40°面の{100}の集積度が4.0を超えているために、延性破面率が85%を下回っている。
On the other hand, steels 23 to 31 and 33 to 35 show comparative examples that are outside the scope of the present invention. That is, either the basic component or the selected element is out of the scope of the present invention, or because S / Ca is 0.5 or more, the ductile fracture surface ratio by DWTT is less than 85%. I understand that.
In Steel 33, the {100} accumulation degree on the 40 ° surface exceeds 4.0, and the ductile fracture surface ratio is less than 85%. Steel 34 has a basic component element outside the scope of the present invention, and the degree of {100} accumulation on the 40 ° plane exceeds 4.0, so the ductile fracture surface ratio is less than 85%. Steel 35 has a segregation degree of Nb and a segregation degree of Ti exceeding 4.0, and a degree of {100} accumulation on the 40 ° surface exceeds 4.0, so that the ductile fracture surface ratio is 85%. Is below.

Figure 0005131715
Figure 0005131715

Figure 0005131715
Figure 0005131715

Figure 0005131715
Figure 0005131715

本発明の化学成分および製造方法に限定し、中心偏析部の最高硬さおよび未圧着部の長さを限定する。この効果により低温靭性に優れたラインパイプ用鋼板およびラインパイプ用鋼管の製造が可能である。その結果、ラインパイプに対する安全性が大幅に向上し、産業上の利用可能性が高い。   It limits to the chemical component and manufacturing method of this invention, and limits the maximum hardness of a center segregation part and the length of an uncrimped part. This effect makes it possible to manufacture steel plates for line pipes and steel pipes for line pipes that are excellent in low temperature toughness. As a result, the safety for the line pipe is greatly improved and the industrial applicability is high.

Claims (8)

質量%で、
C :0.03〜0.08%、
Si:0.01〜0.5%、
Mn:1.6〜2.3%、
Nb:0.001〜0.05%、
N :0.0010〜0.0050%、
Ca:0.0001〜0.0050%
を含み、
P :0.015%以下、
S :0.0020%以下、
Ti:0.001〜0.030%、
Al:0.030%以下、
O :0.0035%以下
に制限され、
残部がFe及び不可避的不純物元素からなり、
S/Ca<0.5
を満足し、更に、
最大Mn偏析度:2.0以下、
Nb偏析度:4.0以下、
Ti偏析度:4.0以下
に制限され、
更に、
ベイナイト+マルテンサイト組織を有し、前記ベイナイト+マルテンサイト組織の平均旧オーステナイトの平均粒径が10μm以下であり、前記ベイナイト+マルテンサイト組織でフェライト分率が10%未満であり、
更に、
圧延方向を軸として、圧延面に40°傾いた場所の{100}の集積度が4.0以下に制限され、引張り強度600MPa以上743MPa以下を有することを特徴とする低温靭性に優れた高強度ラインパイプ用鋼板。
% By mass
C: 0.03-0.08%,
Si: 0.01 to 0.5%,
Mn: 1.6 to 2.3%
Nb: 0.001 to 0.05%,
N: 0.0010 to 0.0050%,
Ca: 0.0001 to 0.0050%
Including
P: 0.015% or less,
S: 0.0020% or less,
Ti: 0.001 to 0.030%,
Al: 0.030% or less,
O: limited to 0.0035% or less,
The balance consists of Fe and inevitable impurity elements,
S / Ca <0.5
Satisfied,
Maximum Mn segregation degree: 2.0 or less,
Nb segregation degree: 4.0 or less,
Ti segregation degree: limited to 4.0 or less,
Furthermore,
It has a bainite + martensite structure, the average grain size of the average prior austenite of the bainite + martensite structure is 10 μm or less, and the ferrite fraction in the bainite + martensite structure is less than 10%,
Furthermore,
High strength with excellent low temperature toughness, characterized in that the {100} accumulation degree is limited to 4.0 or less and the tensile strength is 600 MPa or more and 743 MPa or less with the rolling direction as the axis and tilted at 40 ° to the rolling surface. Steel plate for line pipe.
更に、質量%で、
Ni:0.01〜2.0%、
Cu:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜0.20%
W :0.01〜1.0%、
V :0.01〜0.10%、
Zr:0.0001〜0.050%、
Ta:0.0001〜0.050%、
B :0.0001〜0.0020%
の1種又は2種以上を含有することを特徴とする請求項1に記載の低温靭性に優れた高強度ラインパイプ用鋼板。
Furthermore, in mass%,
Ni: 0.01 to 2.0%,
Cu: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: 0.01 to 0.20%
W: 0.01-1.0%
V: 0.01 to 0.10%,
Zr: 0.0001 to 0.050%,
Ta: 0.0001 to 0.050%,
B: 0.0001 to 0.0020%
The steel plate for high-strength line pipe excellent in low-temperature toughness according to claim 1, comprising one or more of the following.
更に、質量%で
REM:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Y :0.0001〜0.005%、
Hf:0.0001〜0.005%、
Re:0.0001〜0.005%
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の低温靭性に優れた高強度ラインパイプ用鋼板。
Furthermore, REM: 0.0001 to 0.01% by mass%,
Mg: 0.0001 to 0.01%
Y: 0.0001 to 0.005%,
Hf: 0.0001 to 0.005%,
Re: 0.0001 to 0.005%
The steel plate for high-strength line pipe excellent in low temperature toughness according to claim 1 or 2, characterized by containing one or more of the following.
中心偏析部の最高硬度が400Hv以下であることを特徴とする請求項1〜3のいずれか1項に記載の低温靭性に優れた高強度ラインパイプ用鋼板。The steel sheet for high-strength line pipe excellent in low-temperature toughness according to any one of claims 1 to 3 , wherein the maximum hardness of the center segregation part is 400 Hv or less. 母材が、質量%で、
C :0.03〜0.08%、
Si:0.01〜0.5%、
Mn:1.6〜2.3%、
Nb:0.001〜0.05%、
N :0.0010〜0.0050%、
Ca:0.0001〜0.0050%
を含み、
P :0.015%以下、
S :0.002%以下、
Ti:0.030%以下、
Al:0.030%以下、
O :0.0035%以下
に制限され、残部がFe及び不可避的不純物元素からなり、
S/Ca<0.5
を満足し、更に、
最大Mn偏析度:2.0以下、
Nb偏析度:4.0以下、
Ti偏析度:4.0以下
に制限され、
更に、
ベイナイト+マルテンサイト組織を有し、前記ベイナイト+マルテンサイト組織の平均旧オーステナイトの平均粒径が10μm以下であり、前記ベイナイト+マルテンサイト組織でフェライト分率が10%未満であり、
更に、
圧延方向を軸として、圧延面に40°傾いた場所の{100}の集積度が4.0以下に制限し、
引張り強度が600MPa以上743MPa以下を有することを特徴とする低温靭性に優れた高強度ラインパイプ用鋼管。
The base material is mass%.
C: 0.03-0.08%,
Si: 0.01 to 0.5%,
Mn: 1.6 to 2.3%
Nb: 0.001 to 0.05%,
N: 0.0010 to 0.0050%,
Ca: 0.0001 to 0.0050%
Including
P: 0.015% or less,
S: 0.002% or less,
Ti: 0.030% or less,
Al: 0.030% or less,
O: limited to 0.0035% or less, with the balance being Fe and inevitable impurity elements,
S / Ca <0.5
Satisfied,
Maximum Mn segregation degree: 2.0 or less,
Nb segregation degree: 4.0 or less,
Ti segregation degree: limited to 4.0 or less,
Furthermore,
It has a bainite + martensite structure, the average grain size of the average prior austenite of the bainite + martensite structure is 10 μm or less, and the ferrite fraction in the bainite + martensite structure is less than 10%,
Furthermore,
With the rolling direction as the axis, the accumulation degree of {100} in a place inclined by 40 ° to the rolling surface is limited to 4.0 or less,
A steel pipe for high-strength line pipe excellent in low-temperature toughness characterized by having a tensile strength of 600 MPa or more and 743 MPa or less.
更に、質量%で、
Ni:0.01〜2.0%、
Cu:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜0.20%
W :0.01〜1.0%、
V :0.01〜0.10%、
Zr:0.0001〜0.050%、
Ta:0.0001〜0.050%、
B :0.0001〜0.0020%
の1種又は2種以上を含有することを特徴とする請求項に記載の低温靭性に優れた高強度ラインパイプ用鋼管。
Furthermore, in mass%,
Ni: 0.01 to 2.0%,
Cu: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: 0.01 to 0.20%
W: 0.01-1.0%
V: 0.01 to 0.10%,
Zr: 0.0001 to 0.050%,
Ta: 0.0001 to 0.050%,
B: 0.0001 to 0.0020%
The steel pipe for high-strength line pipe excellent in low-temperature toughness according to claim 5 , comprising one or more of the following.
更に、質量%で
REM:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Y :0.0001〜0.005%、
Hf:0.0001〜0.005%、
Re:0.0001〜0.005%
の1種又は2種以上を含有することを特徴とする請求項5又は6に記載の低温靭性に優れた高強度ラインパイプ用鋼管。
Furthermore, REM: 0.0001 to 0.01% by mass%,
Mg: 0.0001 to 0.01%
Y: 0.0001 to 0.005%,
Hf: 0.0001 to 0.005%,
Re: 0.0001 to 0.005%
The steel pipe for high-strength line pipe excellent in low-temperature toughness according to claim 5 or 6 , characterized by containing one or more of the following.
中心偏析部の最高硬度が400Hv以下であることを特徴とする請求項5〜7のいずれか1項に記載の低温靭性に優れた高強度ラインパイプ用鋼管。The steel pipe for a high-strength line pipe excellent in low-temperature toughness according to any one of claims 5 to 7 , wherein the maximum hardness of the center segregation part is 400 Hv or less.
JP2011505304A 2009-09-09 2010-09-01 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness Active JP5131715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011505304A JP5131715B2 (en) 2009-09-09 2010-09-01 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009208324 2009-09-09
JP2009208324 2009-09-09
JP2011505304A JP5131715B2 (en) 2009-09-09 2010-09-01 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness
PCT/JP2010/065354 WO2011030768A1 (en) 2009-09-09 2010-09-01 Steel sheet for high-strength line pipe having excellent low-temperature toughness, and steel pipe for high-strength line pipe

Publications (2)

Publication Number Publication Date
JP5131715B2 true JP5131715B2 (en) 2013-01-30
JPWO2011030768A1 JPWO2011030768A1 (en) 2013-02-07

Family

ID=43732440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011505304A Active JP5131715B2 (en) 2009-09-09 2010-09-01 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness

Country Status (4)

Country Link
JP (1) JP5131715B2 (en)
CN (1) CN102482744B (en)
BR (1) BR112012005189A2 (en)
WO (1) WO2011030768A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857693B2 (en) * 2011-12-05 2016-02-10 Jfeスチール株式会社 Steel plate for large heat input and manufacturing method thereof
JP5590253B2 (en) * 2011-12-28 2014-09-17 新日鐵住金株式会社 High strength steel pipe excellent in deformation performance and low temperature toughness, high strength steel plate, and method for producing said steel plate
CN102899559A (en) * 2012-10-12 2013-01-30 吉林建龙钢铁有限责任公司 Preparation method of steel for oil delivery pipeline
WO2015012317A1 (en) * 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
CN103952639B (en) * 2014-04-04 2016-05-04 日照钢铁控股集团有限公司 There is the pipe line steel that excellent spreading resistance destroys
CN103898407B (en) * 2014-04-09 2016-07-06 武汉钢铁(集团)公司 600MPa hot rolled ribbed bars and preparation method thereof
KR101908819B1 (en) 2016-12-23 2018-10-16 주식회사 포스코 High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
KR102497363B1 (en) * 2017-10-19 2023-02-08 제이에프이 스틸 가부시키가이샤 High strength steel plate for sour-resistant line pipes and high strength steel pipe using same
JP7159785B2 (en) * 2018-10-22 2022-10-25 日本製鉄株式会社 Steel for line pipes
JP7206793B2 (en) * 2018-10-22 2023-01-18 日本製鉄株式会社 Electric resistance welded steel pipes for line pipes and hot-rolled steel plates for line pipes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124775A (en) * 2004-10-28 2006-05-18 Nippon Steel Corp Ultrahigh strength steel sheet and ultrahigh strength steel pipe having excellent pipe line deformation property and low temperature toughness and method for producing them
JP2006257499A (en) * 2005-03-17 2006-09-28 Sumitomo Metal Ind Ltd High tensile strength steel sheet, welded steel tube and method for producing them
WO2006106591A1 (en) * 2005-04-04 2006-10-12 Nippon Steel Corporation High-strength steel sheet and high-strength welded steel pipe excelling in ductile fracture performance and process for producing them
JP2008007841A (en) * 2006-06-30 2008-01-17 Sumitomo Metal Ind Ltd Continuously cast ingot for thick steel plate, its manufacturing method, and thick steel plate
JP2009133005A (en) * 2007-11-07 2009-06-18 Jfe Steel Corp Steel plate for line pipe and steel pipe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223379B2 (en) * 2007-03-08 2013-06-26 新日鐵住金株式会社 High strength hot rolled steel sheet for spiral pipe with excellent low temperature toughness and method for producing the same
JP5423323B2 (en) * 2009-02-12 2014-02-19 新日鐵住金株式会社 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP5423324B2 (en) * 2009-02-12 2014-02-19 新日鐵住金株式会社 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124775A (en) * 2004-10-28 2006-05-18 Nippon Steel Corp Ultrahigh strength steel sheet and ultrahigh strength steel pipe having excellent pipe line deformation property and low temperature toughness and method for producing them
JP2006257499A (en) * 2005-03-17 2006-09-28 Sumitomo Metal Ind Ltd High tensile strength steel sheet, welded steel tube and method for producing them
WO2006106591A1 (en) * 2005-04-04 2006-10-12 Nippon Steel Corporation High-strength steel sheet and high-strength welded steel pipe excelling in ductile fracture performance and process for producing them
JP2008007841A (en) * 2006-06-30 2008-01-17 Sumitomo Metal Ind Ltd Continuously cast ingot for thick steel plate, its manufacturing method, and thick steel plate
JP2009133005A (en) * 2007-11-07 2009-06-18 Jfe Steel Corp Steel plate for line pipe and steel pipe

Also Published As

Publication number Publication date
CN102482744B (en) 2014-09-10
WO2011030768A1 (en) 2011-03-17
JPWO2011030768A1 (en) 2013-02-07
BR112012005189A2 (en) 2016-03-08
CN102482744A (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5131714B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness
JP5131715B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness
KR101730756B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional souring resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
JP5423324B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP4671959B2 (en) Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
EP2799567B1 (en) High-strength steel plate and high-strength steel pipe excellent in deformability and low-temperature toughness, and manufacturing method of the steel plate
JP4837807B2 (en) High strength welded steel pipe and manufacturing method thereof
WO2011065578A1 (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
CN108603266B (en) Steel plate for high-strength high-toughness steel pipe and method for producing same
JP5884201B2 (en) Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5884202B2 (en) Hot-rolled steel sheet for high-strength line pipe
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5439889B2 (en) Thick steel plate for thick and high toughness steel pipe material and method for producing the same
JP5927927B2 (en) High-strength hot-rolled steel sheet for line pipes with excellent on-site weldability and manufacturing method thereof
JP5020691B2 (en) Steel sheet for high-strength linepipe excellent in low-temperature toughness, high-strength linepipe, and production method thereof
JP2009084599A (en) Method for manufacturing steel sheet and steel pipe for ultrahigh-strength line pipe superior in deformability and low-temperature toughness
JP2012193446A (en) Steel plate for high-ductile high-strength welded steel pipe, steel pipe, and method for manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5131715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350