JP2005350687A - Manufacturing method of non-oriented electromagnetic steel sheet - Google Patents

Manufacturing method of non-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2005350687A
JP2005350687A JP2004169841A JP2004169841A JP2005350687A JP 2005350687 A JP2005350687 A JP 2005350687A JP 2004169841 A JP2004169841 A JP 2004169841A JP 2004169841 A JP2004169841 A JP 2004169841A JP 2005350687 A JP2005350687 A JP 2005350687A
Authority
JP
Japan
Prior art keywords
annealing
rolling
hot
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004169841A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004169841A priority Critical patent/JP2005350687A/en
Publication of JP2005350687A publication Critical patent/JP2005350687A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented electromagnetic steel sheet having a high magnetic flux density and low core loss required as an iron core material of electric equipment and excellent magnetic characteristics not possible heretofore. <P>SOLUTION: The manufacturing method of the non-oriented electromagnetic steel sheet includes hot rolling a slab containing, by mass %, ≤0.4% Si, 2.5 to 4.5% Ni, ≤0.5% Mn, P 0.01 to 0.2%, and the balance Fe and inevitable impurities, then subjecting the slab to pickling and light draft rolling of 3 to 15%, subjecting the worked and hot rolled sheet to hot rolling and annealing for ≥10 seconds and ≤5 minutes at a temperature from 740°C up to Ac 1 point, then subjecting the sheet to intermediate annealing for ≥10 seconds and ≤5 minutes in an α+ γ2 phase region from an α region of ≥700°C after cold rolling and thereafter subjecting the sheet further to skin pass rolling of the draft 3 to 15%. The atmosphere of the hot rolling annealing and intermediate annealing is specified to hydrogen ≥20% and dew point ≤10°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気機器の鉄心材料として用いられる、鉄損が低いのみならず磁束密度が高い、従来にない優れた磁気特性を有する無方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a non-oriented electrical steel sheet, which is used as an iron core material for electrical equipment, has not only low iron loss but also high magnetic flux density and has unprecedented excellent magnetic properties.

近年、電気機器、特に無方向性電磁鋼板がその鉄心材料として使用される回転機および中、小型変圧器等の分野においては、世界的な電力、エネルギー節減、さらにはフロンガス規制等の地球環境保全の動きの中で、高効率化の動きが急速に広まりつつある。このため、無方向性電磁鋼板に対しても、その特性向上、すなわち高磁束密度かつ低鉄損化への要請がますます強まってきている。   In recent years, in the fields of electrical machinery, especially rotating machines where non-oriented electrical steel sheets are used as iron core materials, and in the fields of medium and small transformers, global power conservation, energy conservation, and global environmental conservation such as CFC regulations Among these trends, the trend toward higher efficiency is spreading rapidly. For this reason, there is an increasing demand for non-oriented electrical steel sheets to improve their characteristics, that is, to achieve high magnetic flux density and low iron loss.

無方向性電磁鋼板の低鉄損化は、主としてSi,Al添加による電気抵抗率の増加により、使用時に鉄心を形成する各々の鋼板に流れる渦電流損によるジュール熱損失を低減することにより行われてきた。
一方、回転機、および鉄心を含む機器全体のエネルギー損失としては、鉄心に巻くコイルを電流が流れることによる生ずるジュール熱損失である銅損の寄与も無視できない。この銅損の低減のためには、同じ磁界強度に励磁するのに必要な電流密度を減少してやることが有効であり、同一の励磁電流でより高い磁束密度を発現する素材の開発が欠かせない。すなわち、超高磁束密度無方向性電磁鋼板の開発が必須である。
The reduction of iron loss in non-oriented electrical steel sheets is mainly achieved by reducing Joule heat loss due to eddy current loss flowing in each steel sheet forming the iron core during use by increasing the electrical resistivity by adding Si and Al. I came.
On the other hand, as energy loss of the entire device including the rotating machine and the iron core, the contribution of copper loss, which is Joule heat loss caused by current flowing through the coil wound around the iron core, cannot be ignored. In order to reduce this copper loss, it is effective to reduce the current density required to excite the same magnetic field strength, and development of a material that exhibits a higher magnetic flux density with the same excitation current is indispensable. . That is, development of an ultra high magnetic flux density non-oriented electrical steel sheet is essential.

以上のように、低鉄損超高磁束密度無方向性電磁鋼板が実現することにより、回転機、鉄心ともに小型化が可能となり、これらを積載した自動車、電車のような移動体においては系全体の重量が軽減されることにより稼働時のエネルギー損失を低減できる。
また、回転機においてはトルクが増大し、より小型で高出力の回転機が実現する。
このように、低鉄損超高磁束密度無方向性電磁鋼板が実現することにより、鉄心及び回転機の動作時のエネルギー損失を低減できるのみならず、それを含めた装置全体の系への波及効果も計り知れないものがある。
As described above, the realization of low iron loss ultra high magnetic flux density non-oriented electrical steel sheets enables both rotating machines and iron cores to be miniaturized. By reducing the weight, energy loss during operation can be reduced.
Further, in the rotating machine, the torque increases, and a more compact and high-output rotating machine is realized.
Thus, the realization of a low iron loss ultra high magnetic flux density non-oriented electrical steel sheet can not only reduce energy loss during operation of the iron core and rotating machine, but also spread to the entire system including that. Some effects are immeasurable.

従来の高磁束密度無方向性電磁鋼板製造法において概観すると、特許文献1には熱延終了温度を1000℃以上とすることにより熱延結晶組織の粗大化を図り、熱延板焼鈍を省略するとともに冷延前結晶組織を粗大化する方法が開示されている。しかしながら実際の仕上熱延機においては、噛み込み時の圧延速度と定常圧延状態の圧延速度が異なることから、コイル手方向の温度分布を解消することが困難であり、コイル長手方向で磁気特性が変動するという不利益があった。   When overviewing the conventional high magnetic flux density non-oriented electrical steel sheet manufacturing method, Patent Document 1 attempts to coarsen the hot rolled crystal structure by setting the hot rolling end temperature to 1000 ° C. or higher, and omit hot rolling sheet annealing. A method for coarsening the crystal structure before cold rolling is disclosed. However, in the actual finishing hot rolling machine, it is difficult to eliminate the temperature distribution in the coil hand direction because the rolling speed at the time of biting and the rolling speed in the steady rolling state are different, and the magnetic characteristics are in the longitudinal direction of the coil. There was a disadvantage of fluctuating.

特許文献2には、C<0.01%、Si:0.5〜3.0%、Mn:0.1〜1.5%、Al:0.1〜1.0%、P:0.005〜0.016%、S<0.005%を含有する鋼からなる熱延板を酸洗後、5〜20%の軽圧下の圧下率で冷間圧延し、これを850〜1000℃で0.5〜10分、あるいは750〜850℃にて1〜10時間軽圧下を施した熱延板の焼鈍を行い、次いで最終冷延後焼鈍する技術が開示されている。この方法においては、従来の熱延板焼鈍法に比べて磁束密度の向上が十分でなく、昨今の需要家の無方向性電磁鋼板磁気特性向上に対する要請には応え得るものではなかった。   In Patent Document 2, C <0.01%, Si: 0.5 to 3.0%, Mn: 0.1 to 1.5%, Al: 0.1 to 1.0%, P: 0.0. Hot-rolled sheet made of steel containing 005 to 0.016% and S <0.005% is pickled, and then cold-rolled at a reduction rate of 5 to 20% under light pressure, and this is 850 to 1000 ° C. A technique is disclosed in which a hot-rolled sheet subjected to light reduction at 0.5 to 10 minutes or 750 to 850 ° C. for 1 to 10 hours is annealed and then annealed after the final cold rolling. In this method, the magnetic flux density is not sufficiently improved as compared with the conventional hot-rolled sheet annealing method, and it has not been able to meet the recent demands of consumers for improving the magnetic properties of non-oriented electrical steel sheets.

またさらに、一次再結晶集合組織を改善することで無方向性電磁鋼板の磁気特性を改善する方法として、特許文献3のごとくSn添加、特許文献4のごときSn,Cu添加、もしくは特許文献5のごときSb添加により、集合組織の改善による磁気特性の優れた無方向性電磁鋼板の製造法が開示されている。しかしながら、これらの集合組織制御元素であるSn,CuもしくはSb等の添加をもってしても、昨今の需要家の超高磁束密度低鉄損無方向性電磁鋼板の要求には応えることが出来なかった。
他にも、特許文献6に記載されているような仕上げ焼鈍サイクルの工夫等の製造プロセス上の処置もなされてきたが、いずれも低鉄損化は図られても、磁束密度についてはそれほどの効果はなかった。
Furthermore, as a method for improving the magnetic properties of the non-oriented electrical steel sheet by improving the primary recrystallization texture, Sn addition as in Patent Document 3, Sn and Cu addition as in Patent Document 4, or Patent Document 5 For example, a method for producing a non-oriented electrical steel sheet having excellent magnetic properties by improving the texture by adding Sb has been disclosed. However, even with the addition of these texture control elements, such as Sn, Cu, or Sb, it has not been possible to meet the demand for ultrahigh magnetic flux density low iron loss non-oriented electrical steel sheets of recent customers. .
In addition, the manufacturing process such as the finishing annealing cycle as described in Patent Document 6 has been taken, but all of them have achieved low iron loss, but the magnetic flux density is not so much. There was no effect.

Ni添加により高磁束密度を達成する技術としては下記の4件がある。
特許文献7には、Niに加えてSn,Sb,Cu等の元素を添加した高磁束密度低鉄損を達成する方法が開示されている。しかしながら実際の製造においては、鋳造時に急冷凝固時の冷却速度を制御するか、あるいは一旦冷却後改めてAc3 変態点以上に加熱するなどして、Ar3 点からAr1 点までの2相域の冷却速度を制御する必要があり、製造コストの上昇を招く点で問題がある。
There are the following four techniques for achieving high magnetic flux density by adding Ni.
Patent Document 7 discloses a method for achieving high magnetic flux density and low iron loss by adding elements such as Sn, Sb, and Cu in addition to Ni. However, in actual production, the cooling rate during rapid solidification during casting is controlled, or once it is cooled, it is heated again above the Ac3 transformation point, etc., so that the cooling rate in the two-phase region from the Ar3 point to the Ar1 point is increased. There is a problem in that it needs to be controlled and causes an increase in manufacturing cost.

特許文献8には、Niを添加する事による高磁束密度低異方性材が開示されているが、実際の製造においてはAc3 点以上に加熱して仕上焼鈍することが必要であり、Ni添加鋼の内部酸化により鉄損が悪化しやすいという問題点があった。
特許文献9には、Ni添加により高磁束密度低異方性材料およびその製造法が開示されているが、実際の製造法においては熱延板焼鈍あるいは自己焼鈍を必須とし、これらの焼鈍中にNiの内部酸化がおこり鉄損が悪化しやすいという問題点は改善されなかった。
Patent Document 8 discloses a high magnetic flux density and low anisotropy material by adding Ni. However, in actual production, it is necessary to perform annealing by heating to the Ac3 point or higher. There was a problem that iron loss was likely to deteriorate due to internal oxidation.
Patent Document 9 discloses a high magnetic flux density low anisotropy material and its manufacturing method by adding Ni, but in the actual manufacturing method, hot-rolled sheet annealing or self-annealing is essential, and during these annealing The problem that the internal oxidation of Ni occurs and the iron loss tends to deteriorate was not improved.

発明者らは特許文献10において、超高磁束密度無方向性電磁鋼板及びその製造法を開示したが、需要家では同時に鉄損の低減をも求められており、いまだ開発課題が存在していた。
特公昭62−61644号公報 特公平 8−32927号公報 特開昭55−158252号公報 特開昭62−180014号公報 特開昭59−100217号公報 特開昭57− 35626号公報 特開平 6−271996号公報 特開平 8−246108号公報 特開平 8−109449号公報 特開2002−294415号公報
Inventors disclosed an ultra-high magnetic flux density non-oriented electrical steel sheet and a method for manufacturing the same in Patent Document 10, but customers were also required to reduce iron loss at the same time, and there were still development issues. .
Japanese Examined Patent Publication No. 62-61644 Japanese Patent Publication No. 8-32927 JP-A-55-158252 JP 62-180014 A Japanese Patent Laid-Open No. 59-100197 JP-A-57-35626 JP-A-6-271996 JP-A-8-246108 JP-A-8-109449 JP 2002-294415 A

本発明は、従来技術におけるこのような問題点を解決し、超高磁束密度かつ低鉄損の無方向性電磁鋼板を提供することを目的とするものである。   An object of the present invention is to solve such problems in the prior art and to provide a non-oriented electrical steel sheet having an ultrahigh magnetic flux density and a low iron loss.

本発明の要旨とするところは、以下の通りである。
(1)質量%で、
Si:0.4%以下、
Ni:2.5〜4.5%、
Mn:0.5%以下、
P :0.01〜0.2%、
残部Feおよび不可避不純物を含有するスラブを熱延した後、酸洗し、3%〜15%の軽圧下圧延を施し、この加工された熱延板に740℃からAc1 点までの温度で10秒以上5分以下の間熱延板焼鈍を施し、冷間圧延の後、中間焼鈍を700℃以上のα域からα+γ2相域において10秒以上5分以下施し、その後更に圧下率3%〜15%のスキンパス圧延を施すことを特徴とする無方向性電磁鋼板の製造方法。
(2)前記熱延板焼鈍および中間焼鈍の雰囲気を、水素20%以上とし、露点を10℃以下とすることを特徴とする前記(1)記載の無方向性電磁鋼板の製造方法。
The gist of the present invention is as follows.
(1) In mass%,
Si: 0.4% or less,
Ni: 2.5-4.5%,
Mn: 0.5% or less,
P: 0.01-0.2%
The slab containing the remaining Fe and unavoidable impurities is hot rolled, then pickled, subjected to light rolling at 3% to 15%, and this processed hot rolled sheet is heated for 10 seconds at a temperature from 740 ° C. to Ac1 point. Hot-rolled sheet annealing is performed for 5 minutes or less, and after cold rolling, intermediate annealing is performed for 10 seconds or more and 5 minutes or less in the α + γ2 phase region from the α region at 700 ° C. or higher, and then the rolling reduction is 3% to 15%. A method for producing a non-oriented electrical steel sheet, characterized by subjecting to skin pass rolling.
(2) The method for producing a non-oriented electrical steel sheet according to (1), wherein an atmosphere of the hot-rolled sheet annealing and intermediate annealing is 20% or more of hydrogen and a dew point is 10 ° C. or less.

本発明により、従来の無方向性電磁鋼板よりも磁束密度が高いばかりでなく、鉄損も低い優れた磁性の無方向性電磁鋼板の製造が出来、電機鉄心として使用される産業分野においては、省エネルギーかつ小型化になるなど、著しく良好な効果をもたらすものである。   According to the present invention, not only the magnetic flux density is higher than the conventional non-oriented electrical steel sheet, but also an excellent magnetic non-oriented electrical steel sheet with low iron loss can be manufactured, and in the industrial field used as an electric iron core, It brings about extremely good effects such as energy saving and downsizing.

発明者らは特許文献10に鑑み技術開発を行い、熱延板焼鈍前と中間焼鈍後にスキンパスを施す技術を検討した。その結果、適正な温度管理のもとで熱延板焼鈍を行うことにより、成品の結晶が著しく粗大化し、同時に磁束密度も高い値が得られることを見いだし、本発明の完成に至った。   Inventors performed technology development in view of patent document 10, and examined the technique of giving a skin pass before hot-rolled sheet annealing and after intermediate annealing. As a result, it was found that by performing hot-rolled sheet annealing under appropriate temperature control, the crystal of the product was significantly coarsened, and at the same time a high magnetic flux density was obtained, and the present invention was completed.

まず、成分について以下に説明する。
Siは本発明においては製品の磁束密度を低減させ有害であるから、その含有量を0.4%以下に制限する。
First, components will be described below.
Since Si is harmful by reducing the magnetic flux density of the product in the present invention, its content is limited to 0.4% or less.

Ni含有量が2.5%未満では、本発明が目的とする超高磁束密度、即ちB50の値が1.80T以上を達成することができず、また4.5%超ではB50の値が低下していく傾向があるため、Ni含有量を2.5〜4.5%に規定した。   If the Ni content is less than 2.5%, the ultra-high magnetic flux density intended by the present invention, that is, the value of B50 cannot achieve 1.80 T or more, and if it exceeds 4.5%, the value of B50 is not achieved. Since there is a tendency to decrease, the Ni content is specified to be 2.5 to 4.5%.

Mnは、本発明においては製品の磁束密度を低減させ有害であるから、その含有量を0.5%以下に制限する。   Since Mn is harmful because it reduces the magnetic flux density of the product in the present invention, its content is limited to 0.5% or less.

Alは、本発明においては製品の磁束密度を低減させ有害であるため、不可避不純物レベルとする。   Since Al is harmful because it reduces the magnetic flux density of the product in the present invention, it is at an inevitable impurity level.

Pは本発明におけるB50の値が1.80T以上の超高磁束密度かつ、L方向試料のみで測定した磁束密度B50Lの測定値と、C方向試料のみで測定した磁束密度B50Cの測定値との差、すなわち磁束密度B50のLC差が0.035T以下であることを同時に達成するために、0.01〜0.2%の範囲で添加する。P含有量が0.01%未満では磁束密度B50のLC差が0.035T以下とならないので0.01%以上に規定する。P含有量が0.2%超では磁束密度が低下するので、0.2%以下に規定する。   P is an extremely high magnetic flux density with a B50 value of 1.80 T or more in the present invention, a measured value of the magnetic flux density B50L measured only with the L direction sample, and a measured value of the magnetic flux density B50C measured only with the C direction sample. In order to simultaneously achieve the difference, that is, the LC difference of the magnetic flux density B50 is 0.035 T or less, it is added in the range of 0.01 to 0.2%. When the P content is less than 0.01%, the LC difference of the magnetic flux density B50 does not become 0.035T or less, so it is specified to be 0.01% or more. If the P content exceeds 0.2%, the magnetic flux density decreases, so it is specified to be 0.2% or less.

C含有量が0.0030%を超えると、磁気時効が発生し使用中の鉄損が悪化するため、0.0030%以下とすることが望ましい。   If the C content exceeds 0.0030%, magnetic aging occurs and the iron loss during use deteriorates.

本発明ではS,Nの低減により超高磁束密度と低鉄損との両立が可能となる。
S,Nは熱間圧延工程におけるスラブ加熱中に一部再固溶し、熱間圧延中にMnS,AlNの微細な析出物を再析出して仕上げ焼鈍時の結晶粒成長を抑制し、鉄損が悪化する原因となる。このためその含有量は共に0.0030%以下とすることが望ましい。
In the present invention, the reduction of S and N makes it possible to achieve both ultrahigh magnetic flux density and low iron loss.
S and N are partly re-dissolved during slab heating in the hot rolling process, and fine precipitates of MnS and AlN are re-precipitated during hot rolling to suppress grain growth during finish annealing. It causes the loss to worsen. For this reason, it is desirable for both the contents to be 0.0030% or less.

Tiは、窒化物、硫化物を形成し製品の鉄損を悪化させるので、その含有量をS,Nと合わせて0.004%以下にすることが望ましい。   Ti forms nitrides and sulfides and deteriorates the iron loss of the product. Therefore, the content of Ti and S and N is preferably 0.004% or less.

次にプロセス条件について説明する。
前記成分からなる鋼スラブは、転炉で溶製され連続鋳造あるいは造塊−分塊圧延により製造される。鋼スラブは公知の方法にて加熱される。このスラブに熱間圧延を施し所定の厚みとする。
Next, process conditions will be described.
The steel slab composed of the above components is melted in a converter and manufactured by continuous casting or ingot-bundling rolling. The steel slab is heated by a known method. The slab is hot rolled to a predetermined thickness.

本発明では熱延板焼鈍の前に、熱延板に圧下率3%〜15%の軽圧下を行うことが肝要である。酸洗は軽圧下の前に施すことが好ましい。圧下率が3%未満ではその効果が十分でなく、15%超では再結晶粒が生じて鉄損が著しく低下してしまうので、15%以下と定める。   In the present invention, it is important to perform a light reduction of 3 to 15% on the hot-rolled sheet before the hot-rolled sheet annealing. The pickling is preferably performed before light pressure. If the rolling reduction is less than 3%, the effect is not sufficient, and if it exceeds 15%, recrystallized grains are generated and the iron loss is remarkably reduced.

その後、加工された熱延板に740℃からAc1 点までの温度で10秒以上5分以下の間、熱延板焼鈍を施す。740℃未満であると焼鈍の効果が得られず、Ac1 点を超えると磁束密度が著しく低下するため、この範囲に温度域を定める。焼鈍時間が10秒未満であるとその効果が得られず、5分超であると効果が飽和し不経済であるので、10秒以上5分以下に定める。   Thereafter, the processed hot-rolled sheet is subjected to hot-rolled sheet annealing at a temperature from 740 ° C. to Ac1 point for 10 seconds to 5 minutes. If it is less than 740 ° C., the effect of annealing cannot be obtained, and if it exceeds the Ac 1 point, the magnetic flux density is remarkably lowered. If the annealing time is less than 10 seconds, the effect cannot be obtained, and if it exceeds 5 minutes, the effect is saturated and uneconomical.

前記の熱延板焼鈍を施した熱延板を、中間圧延により中間板厚に仕上げる。その後、中間焼鈍を実施する。中間焼鈍は、α域からα+γ2相域において10秒以上5分以下行うのが好ましい。10秒未満ではその効果が十分でなく、5分超ではその効果が飽和して不経済であるからである。
焼鈍温度域をα域からα+γ2相域に定めるのは、これ以上の温度で中間焼鈍を実施すると、磁束密度の値が著しく低下するからである。α域の温度は700℃以上で行うことが好ましい。また、焼鈍雰囲気の水素含有量を20%以上にすることが好ましい。これは、高温の焼鈍でのNiの内部酸化を防止するためである。同様の理由で、露点も10℃以下にすることが必要である。
The hot-rolled sheet subjected to the hot-rolled sheet annealing is finished to an intermediate sheet thickness by intermediate rolling. Thereafter, intermediate annealing is performed. The intermediate annealing is preferably performed for 10 seconds to 5 minutes in the α region to the α + γ2 phase region. If it is less than 10 seconds, the effect is not sufficient, and if it exceeds 5 minutes, the effect is saturated and uneconomical.
The reason why the annealing temperature range is set from the α range to the α + γ2 phase range is that when the intermediate annealing is performed at a temperature higher than this, the value of the magnetic flux density is remarkably lowered. It is preferable that the temperature in the α range is 700 ° C. or higher. Further, the hydrogen content in the annealing atmosphere is preferably 20% or more. This is to prevent internal oxidation of Ni during high temperature annealing. For the same reason, the dew point must be 10 ° C. or lower.

その後更に、3%から15%のスキンパス圧延を施す。スキンパス圧延率が3%未満であるとその効果が不十分であり、15%超であると逆効果となり、鉄損が悪化するので、最終のスキンパス圧延率は3%以上15%以下に定める。   Thereafter, further 3% to 15% skin pass rolling is performed. If the skin pass rolling rate is less than 3%, the effect is insufficient. If the skin pass rolling rate is more than 15%, the reverse effect is obtained, and the iron loss is deteriorated.

本発明による鋼板はその後、コア形状に打ち抜いた後、磁性焼鈍が施される。磁性焼鈍の温度は、650℃以上Ac1 ℃未満とし、時間は3分以上5時間以下とすることが好ましい。650℃以上とするのは、これ未満の温度であると磁性焼鈍の効果が十分でなく、Ac1 超では鉄損が大幅に悪化するので、650℃以上Ac1 以下とすることが好ましい。磁性焼鈍の時間を3分以上とするのは、3分未満では効果が不十分であり、5時間超では効果が飽和し不経済であるからである。   The steel sheet according to the present invention is then punched into a core shape and then subjected to magnetic annealing. The temperature of magnetic annealing is preferably 650 ° C. or more and less than Ac 1 ° C., and the time is preferably 3 minutes or more and 5 hours or less. When the temperature is lower than 650 ° C., the effect of magnetic annealing is not sufficient, and when the temperature is higher than Ac 1, the iron loss is greatly deteriorated. The reason for setting the magnetic annealing time to 3 minutes or more is that the effect is insufficient if it is less than 3 minutes, and if it exceeds 5 hours, the effect is saturated and uneconomical.

また、磁性焼鈍の雰囲気は水素雰囲気20%以上で露点10℃以下で行うことが好ましい。雰囲気が水素20%未満、あるいは露点が10℃超となると、成品表面の酸化が激しくなり、磁気特性が悪化するからである。   The atmosphere of magnetic annealing is preferably performed at a hydrogen atmosphere of 20% or more and a dew point of 10 ° C. or less. This is because if the atmosphere is less than 20% hydrogen or the dew point exceeds 10 ° C., the surface of the product becomes oxidative and the magnetic properties deteriorate.

次に、本発明の実施例について述べる。
表1に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、熱延により2.7mmに仕上げた。続いて酸洗を施し、5%のスキンパスを施し、750℃にて1分間、水素100%DRY(露点=−10℃)雰囲気で焼鈍を行った。その後冷間圧延により0.54mm厚に仕上げ、750℃30秒の中間焼鈍を施した。これを最終スキンパスにより0.50mm厚に仕上げ、エプスタイン試料に切断し、磁性(SRA)焼鈍を水素100%Dry(露点=−10℃)の雰囲気で2時間行った。表1に本発明と比較例の成分を、表2に磁気測定結果を示す。
このようにNiを適量添加し、適切なプロセス条件を処理することにより、磁束密度B50の値が高く、鉄損の値が低い無方向性電磁鋼板を製造することが可能である。
Next, examples of the present invention will be described.
The slab for non-oriented electrical steel having the components shown in Table 1 was heated by a normal method and finished to 2.7 mm by hot rolling. Subsequently, pickling was performed, 5% skin pass was performed, and annealing was performed in a 100% hydrogen DRY (dew point = −10 ° C.) atmosphere at 750 ° C. for 1 minute. Thereafter, it was finished to a thickness of 0.54 mm by cold rolling and subjected to an intermediate annealing at 750 ° C. for 30 seconds. This was finished to a thickness of 0.50 mm by the final skin pass, cut into Epstein samples, and magnetic (SRA) annealing was performed in an atmosphere of 100% hydrogen (dew point = −10 ° C.) for 2 hours. Table 1 shows the components of the present invention and comparative examples, and Table 2 shows the magnetic measurement results.
Thus, by adding an appropriate amount of Ni and processing appropriate process conditions, it is possible to manufacture a non-oriented electrical steel sheet having a high magnetic flux density B50 and a low iron loss value.

Figure 2005350687
Figure 2005350687

Figure 2005350687
Figure 2005350687

Claims (2)

質量%で、
Si:0.4%以下、
Ni:2.5〜4.5%、
Mn:0.5%以下、
P :0.01〜0.2%、
残部Feおよび不可避不純物を含有するスラブを熱延した後、酸洗し、3%〜15%の軽圧下圧延を施し、この加工された熱延板に740℃からAc1 点までの温度で10秒以上5分以下の間熱延板焼鈍を施し、冷間圧延の後、中間焼鈍を700℃以上のα域からα+γ2相域において10秒以上5分以下施し、その後更に圧下率3%〜15%のスキンパス圧延を施すことを特徴とする無方向性電磁鋼板の製造方法。
% By mass
Si: 0.4% or less,
Ni: 2.5-4.5%,
Mn: 0.5% or less,
P: 0.01-0.2%
The slab containing the remaining Fe and unavoidable impurities is hot rolled, then pickled, subjected to light rolling at 3% to 15%, and this processed hot rolled sheet is heated for 10 seconds at a temperature from 740 ° C. to Ac1 point. Hot-rolled sheet annealing is performed for 5 minutes or less, and after cold rolling, intermediate annealing is performed for 10 seconds or more and 5 minutes or less in the α + γ2 phase region from the α region of 700 ° C. or higher, and then the rolling reduction is 3% to 15%. A method for producing a non-oriented electrical steel sheet, characterized by subjecting to skin pass rolling.
前記熱延板焼鈍および中間焼鈍の雰囲気を、水素20%以上とし、露点を10℃以下とすることを特徴とする請求項1記載の無方向性電磁鋼板の製造方法。
The method for producing a non-oriented electrical steel sheet according to claim 1, wherein an atmosphere of the hot-rolled sheet annealing and intermediate annealing is 20% or more of hydrogen and a dew point is 10 ° C or less.
JP2004169841A 2004-06-08 2004-06-08 Manufacturing method of non-oriented electromagnetic steel sheet Withdrawn JP2005350687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004169841A JP2005350687A (en) 2004-06-08 2004-06-08 Manufacturing method of non-oriented electromagnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004169841A JP2005350687A (en) 2004-06-08 2004-06-08 Manufacturing method of non-oriented electromagnetic steel sheet

Publications (1)

Publication Number Publication Date
JP2005350687A true JP2005350687A (en) 2005-12-22

Family

ID=35585411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004169841A Withdrawn JP2005350687A (en) 2004-06-08 2004-06-08 Manufacturing method of non-oriented electromagnetic steel sheet

Country Status (1)

Country Link
JP (1) JP2005350687A (en)

Similar Documents

Publication Publication Date Title
WO2013069754A1 (en) Anisotropic electromagnetic steel sheet and method for producing same
KR20130047735A (en) Process for producing non-oriented electromagnetic steel sheet
JP5428188B2 (en) Method for producing grain-oriented electrical steel sheet
JP5724837B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2004197217A (en) Nonoriented electrical steel sheet excellent in circumferential magnetic property, and production method therefor
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JPH11310857A (en) Nonoriented silicon steel sheet and its manufacture
JP5014830B2 (en) Method for producing high magnetic flux density non-oriented electrical steel sheet
JP2011208188A (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JPH0742501B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP2006241554A (en) Method for manufacturing non-oriented electromagnetic steel sheet having high magnetic flux density
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2005187846A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP2015212403A (en) Method for manufacturing nonoriented electromagnetic steel sheet
KR102483636B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
JP2005350687A (en) Manufacturing method of non-oriented electromagnetic steel sheet
KR102483634B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
JP2005307268A (en) Method for producing nonoriented silicon steel sheet
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP2005307266A (en) Method for producing nonoriented electromagnetic steel sheet
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JP3020810B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904