JP2005337394A - Fiber-reinforced pressure vessel, and its manufacturing method - Google Patents

Fiber-reinforced pressure vessel, and its manufacturing method Download PDF

Info

Publication number
JP2005337394A
JP2005337394A JP2004157714A JP2004157714A JP2005337394A JP 2005337394 A JP2005337394 A JP 2005337394A JP 2004157714 A JP2004157714 A JP 2004157714A JP 2004157714 A JP2004157714 A JP 2004157714A JP 2005337394 A JP2005337394 A JP 2005337394A
Authority
JP
Japan
Prior art keywords
layer
reinforcing fiber
wound
resin
peeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004157714A
Other languages
Japanese (ja)
Inventor
Takayuki Matsumoto
隆之 松本
Haruyoshi Mizuta
美能 水田
Kenichi Aoyanagi
健一 青柳
Mitsuhiro Ishii
光浩 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2004157714A priority Critical patent/JP2005337394A/en
Publication of JP2005337394A publication Critical patent/JP2005337394A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced pressure vessel which can show an excellent reinforcement effect of a wound layer to a maximum by effectively suppressing the peeling, etc. of the layer of hardened resin-impregnated reinforcing fiber wound on a metallic liner, and has the excellent burst strength, and can suppress the scatter of the burst strength, and further to provide its manufacturing method which can suppress the drop of the production efficiency due to the generation, etc. of the scatter of the burst strength. <P>SOLUTION: The fiber-reinforced pressure vessel comprises a metallic liner, a layer of hardened resin impregnated reinforcing fiber wound on the metallic liner, and a peeling suppressing material layer including a hardening resin for suppressing the peeling of the wound layer. The peeling suppressing material layer is provided between the metallic liner and the wound layer. The hardening resin contained in the peeling suppressing material layer has an elongation of 10-200% at a maximum tensile force at 23°C, and a tensile strength of 0.1-50 MPa at 23°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧縮天然ガスを燃料とする車両用燃料容器、燃料電池用の燃料容器、医療用、消防用及びレジャー用の圧縮空気等の圧縮ガス充填用等に利用可能な圧力容器、特に、該容器の強度を強化繊維で補強した繊維強化圧力容器及びその製造法に関する。   The present invention relates to a fuel container for a vehicle using compressed natural gas as a fuel, a fuel container for a fuel cell, a pressure container that can be used for filling a compressed gas such as compressed air for medical use, fire fighting and leisure, The present invention relates to a fiber reinforced pressure vessel in which the strength of the vessel is reinforced with reinforcing fibers and a method for producing the same.

近年、酸素ボンベやCNGボンベをはじめとする、軽量化が要求される圧力容器においては、炭素繊維等の強化繊維の複合材料が使用されるようになってきている。
このような圧力容器は、アルミニウム等の金属で作製されたライナーの表面に、熱硬化性樹脂を含浸させた強化繊維をフィラメントワインディング法(FW法)により巻き付けた後、加熱硬化させる方法、若しくは前記熱硬化性樹脂を強化繊維に含浸させながらFW法により巻き付けた後、加熱硬化させる方法により製造されるのが一般的である。
このようなFW法により製造される繊維強化圧力容器は、金属ライナー表面に熱硬化樹脂含浸強化繊維の巻回層が直接設けられるのが一般的であるが、例えば、特許文献1に開示されるように、圧力容器の再利用資源の回収を容易にするために、金属ライナーと前記巻回層との間に、離型剤の塗布膜や離型用フィルムからなる固着防止層を設けることが提案されている。
該固着防止層としては、シリコン系、フッ素系の耐熱性離型剤やフッ素樹脂熱収縮性フィルム等が挙げられているが、フッ素樹脂は23℃での引張最大荷重時伸びが350%程度である。
また、特許文献2には、該巻回層の外側に合成ゴムを含むコーティングを施すことが提案されている。しかしながら、このコーティングは外部からの衝撃を緩和する目的で容器の外層に設けられることが意図されているにすぎない。
特開平10−292899号公報 特開2003−521659号公報
In recent years, composite materials of reinforcing fibers such as carbon fibers have been used in pressure vessels that require weight reduction, such as oxygen cylinders and CNG cylinders.
Such a pressure vessel is a method in which a reinforcing fiber impregnated with a thermosetting resin is wound around the surface of a liner made of a metal such as aluminum by the filament winding method (FW method), and then heated and cured, or In general, it is manufactured by a method in which a reinforcing fiber is impregnated with a thermosetting resin, wound by the FW method, and then heated and cured.
A fiber-reinforced pressure vessel manufactured by such an FW method is generally provided with a wound layer of a thermosetting resin-impregnated reinforcing fiber directly on the surface of a metal liner. As described above, in order to facilitate the recovery of the reusable resources of the pressure vessel, an anti-adhesion layer comprising a release agent coating film or a release film may be provided between the metal liner and the winding layer. Proposed.
Examples of the anti-adhesion layer include silicon-based and fluorine-based heat-resistant release agents, fluororesin heat-shrinkable films, etc., but fluororesin has an elongation at 23 ° C of about 350% at the maximum tensile load. is there.
Further, Patent Document 2 proposes that a coating containing synthetic rubber is applied to the outside of the wound layer. However, this coating is only intended to be provided on the outer layer of the container for the purpose of mitigating external impacts.
Japanese Patent Laid-Open No. 10-292899 JP 2003-521659 A

ところで、上記繊維強化圧力容器の工業的生産においては、上記巻回層による補強効果を十分に有する容器の製造が可能であるが、中には、理想の補強効果が得られず、圧力容器としてのバースト強度が低下したり、バースト強度がばらつく個体が発生し、歩留まり低下による生産効率の低下が生じることがある。
そこで、このような課題の原因を追求したところ、製造時における上記巻回層の硬化終了後、室温まで冷却した際に、ライナーと巻回層との間で剥離が発生したり、強化繊維自体が傷つけられていることが判明した。このような現象は、ライナーの金属と強化繊維との熱膨張係数が大きく異なるために生じるものと考えられる。
By the way, in the industrial production of the fiber reinforced pressure vessel, it is possible to produce a vessel having a sufficient reinforcing effect by the wound layer. In some cases, the burst strength decreases, or individuals with varying burst strength occur, resulting in a decrease in production efficiency due to a decrease in yield.
Therefore, when the cause of such a problem was pursued, when the winding layer was cured at the time of production, when it was cooled to room temperature, peeling occurred between the liner and the winding layer, or the reinforcing fiber itself Turned out to be hurt. Such a phenomenon is considered to occur because the thermal expansion coefficients of the metal of the liner and the reinforcing fiber are greatly different.

従って本発明の課題は、金属ライナーと硬化樹脂含浸強化繊維の巻回層との剥離等を有効に抑制し、該巻回層の本来有する優れた補強効果を最大限に発揮させることが可能であり、優れたバースト強度を備え、且つ該バースト強度のばらつきを抑制した繊維強化圧力容器を提供することにある。
本発明の別の課題は、金属ライナーと硬化樹脂含浸強化繊維の巻回層との剥離等を有効に抑制でき、バースト強度のばらつきの発生等による生産効率の低下を改善することが可能な繊維強化圧力容器の製造法を提供することにある。
Therefore, the problem of the present invention is to effectively suppress the peeling between the metal liner and the wound layer of the cured resin-impregnated reinforcing fiber, and to maximize the excellent reinforcing effect inherent in the wound layer. Another object is to provide a fiber reinforced pressure vessel having an excellent burst strength and suppressing variations in the burst strength.
Another subject of the present invention is a fiber that can effectively suppress the peeling between the metal liner and the wound layer of the cured resin-impregnated reinforcing fiber, and can improve the decrease in production efficiency due to the occurrence of variations in burst strength, etc. The object is to provide a method of manufacturing a reinforced pressure vessel.

即ち本発明によれば、金属ライナーと、該ライナーを被覆する、硬化樹脂含浸強化繊維の巻回層と、該巻回層の剥離を抑制するための硬化樹脂を含む剥離抑制材層とを備え、該剥離抑制材層が、該金属ライナーと該巻回層との間に設けられており、該剥離抑制材層に含まれる硬化樹脂が、23℃での引張最大荷重時伸びが10〜200%で、且つ23℃での引張強度が0.1〜50MPaを示す硬化樹脂であることを特徴とする繊維強化圧力容器が提供される。
また本発明によれば、金属ライナーと、熱硬化性樹脂含浸強化繊維と、硬化させた際の23℃での引張最大荷重時伸びが10〜200%で、且つ23℃での引張強度が0.1〜50MPaを示す熱硬化性樹脂(X)を含む原材料(a)とを準備する工程(A)、金属ライナーの外表面上に前記原材料(a)の層を形成する工程(B)、前記原材料(a)の層を硬化させ、剥離抑制材層を設ける工程(C)、工程(C)の後、金属ライナーの少なくとも口金部を除く全外表面を、熱硬化性樹脂含浸強化繊維により巻回被覆する工程(D)及び、工程(D)で巻回被覆した熱硬化性樹脂含浸強化繊維を硬化させ、硬化樹脂含浸強化繊維の巻回層を形成する工程(E)を含むことを特徴とする上記繊維強化圧力容器の製造法が提供される。
更に本発明によれば、金属ライナーと、強化繊維と、該強化繊維に含浸させる熱硬化性樹脂と、硬化させた際の23℃での引張最大荷重時伸びが10〜200%で、且つ23℃での引張強度が0.1〜50MPaを示す熱硬化性樹脂(X)を含む原材料(a)とを準備する工程(A')、金属ライナーの外表面上に前記原材料(a)の層を形成する工程(B)、前記原材料(a)の層を硬化させ、剥離抑制材層を設ける工程(C)、工程(C)の後、強化繊維に熱硬化性樹脂を含浸させながら、得られるウェット状の熱硬化性樹脂含浸強化繊維により、金属ライナーの少なくとも口金部を除く全外表面を巻回被覆する工程(D')及び、工程(D')で巻回被覆した熱硬化性樹脂含浸強化繊維を硬化させ、硬化樹脂含浸強化繊維の巻回層を形成する工程(E')とを含むことを特徴とする前記繊維強化圧力容器の製造法が提供される。
That is, according to the present invention, a metal liner, a wound layer of a reinforced resin-impregnated reinforcing fiber covering the liner, and a delamination suppressing material layer containing a cured resin for suppressing delamination of the wound layer are provided. The peeling inhibiting material layer is provided between the metal liner and the wound layer, and the cured resin contained in the peeling inhibiting material layer has a tensile maximum load elongation at 23 ° C. of 10 to 200. % And a cured resin having a tensile strength at 23 ° C. of 0.1 to 50 MPa is provided.
Further, according to the present invention, the metal liner, the thermosetting resin-impregnated reinforcing fiber, the elongation at the maximum tensile load at 23 ° C. when cured is 10 to 200%, and the tensile strength at 23 ° C. is 0. A step (A) of preparing a raw material (a) containing a thermosetting resin (X) exhibiting 1 to 50 MPa, a step (B) of forming a layer of the raw material (a) on the outer surface of a metal liner, Steps (C) and (C) for curing the layer of the raw material (a) and providing a peeling inhibitor layer, after the step (C), the entire outer surface excluding at least the base portion of the metal liner is made of a thermosetting resin-impregnated reinforcing fiber. Including the step (D) of winding coating and the step (E) of curing the thermosetting resin-impregnated reinforcing fiber wound and coated in step (D) to form a wound layer of the cured resin-impregnated reinforcing fiber. A method for producing the above-described fiber-reinforced pressure vessel is provided.
Furthermore, according to the present invention, the metal liner, the reinforcing fiber, the thermosetting resin impregnated in the reinforcing fiber, the elongation at the maximum load at 23 ° C. when cured is 10 to 200%, and 23 Preparing a raw material (a) containing a thermosetting resin (X) having a tensile strength at 0.1 ° C. of 0.1 to 50 MPa, a layer of the raw material (a) on the outer surface of a metal liner After the step (B) of forming the layer, the layer of the raw material (a) is cured, and the step (C) and the step (C) of providing the peeling inhibitor layer, the reinforcing fiber is impregnated with the thermosetting resin. Step (D ′) for winding and coating the entire outer surface of the metal liner except at least the base portion with a wet-type thermosetting resin impregnated reinforcing fiber, and the thermosetting resin wound and coated in step (D ′) Curing the impregnated reinforcing fiber and forming a wound layer of the cured resin-impregnated reinforcing fiber (E ′). Preparation of reinforced pressure vessel is provided.

本発明の繊維強化圧力容器は、金属ライナーと、該ライナーを被覆する、硬化樹脂含浸強化繊維の巻回層との間に、該巻回層の剥離を抑制するための特定の硬化樹脂を含む剥離抑制材層を備えるので、金属ライナーと硬化樹脂含浸強化繊維の巻回層とを一体化させ、巻回層の剥離等を有効に抑制でき、容器のエネルギー吸収性能を向上させることができる。従って、該巻回層の本来有する優れた補強効果を最大限に発揮させることが可能であり、優れたバースト強度を備え、且つ該バースト強度のばらつきを有効に抑制することができる。
本発明の製造法は、前記特定の剥離抑制層を設ける工程を採用するので、金属ライナーと硬化樹脂含浸強化繊維の巻回層との剥離等を有効に抑制でき、結果として高価な強化繊維の使用量を減らすことが可能となり、製品の低コスト化・巻回時間の削減による製造時間の短縮等の効果がある。
The fiber-reinforced pressure vessel of the present invention includes a specific cured resin for suppressing peeling of the wound layer between the metal liner and the wound layer of the cured resin-impregnated reinforcing fiber covering the liner. Since the peeling suppressing material layer is provided, the metal liner and the wound layer of the cured resin-impregnated reinforcing fiber can be integrated, peeling of the wound layer can be effectively suppressed, and the energy absorption performance of the container can be improved. Accordingly, it is possible to maximize the excellent reinforcing effect inherent in the wound layer, to provide excellent burst strength, and to effectively suppress variations in the burst strength.
Since the production method of the present invention employs the step of providing the specific debonding suppression layer, it is possible to effectively suppress delamination between the metal liner and the wound layer of the cured resin-impregnated reinforcing fiber, and as a result, the expensive reinforcing fiber It is possible to reduce the amount of use, and there is an effect of shortening the manufacturing time by reducing the cost of the product and reducing the winding time.

以下本発明を更に詳細に説明する。
本発明の繊維強化圧力容器は、金属ライナーと、該ライナーを被覆する、硬化樹脂含浸強化繊維の巻回層と、該巻回層の剥離を抑制するための特定の硬化樹脂を含む剥離抑制材層とを備える。
前記金属ライナーとしては、例えば、口金部を有する、スチール製、ステンレス製、アルミニウム製又はその合金製、チタン製又はその合金製等の金属ライナーが挙げられる。
The present invention will be described in detail below.
The fiber-reinforced pressure vessel of the present invention includes a metal liner, a wound layer of a reinforced resin-impregnated reinforcing fiber covering the liner, and a delamination suppressing material including a specific cured resin for suppressing delamination of the wound layer. And a layer.
Examples of the metal liner include metal liners having a cap portion, such as steel, stainless steel, aluminum or an alloy thereof, titanium or an alloy thereof.

前記巻回層を構成する強化繊維としては、例えば、炭素繊維、ガラス繊維、セラミック繊維、アラミド繊維、炭化珪素繊維又はこれら2種以上を組合わせた繊維等が挙げられる。特に、軽量で且つ耐食性に優れた炭素繊維を含むことが好ましい。該炭素繊維としては、ピッチ系炭素繊維あるいはPAN系炭素繊維あるいはこれらを組合わせた繊維の使用が好ましい。   Examples of the reinforcing fibers constituting the wound layer include carbon fibers, glass fibers, ceramic fibers, aramid fibers, silicon carbide fibers, or fibers obtained by combining two or more of these. In particular, it is preferable to include carbon fibers that are lightweight and have excellent corrosion resistance. As the carbon fiber, it is preferable to use pitch-based carbon fiber, PAN-based carbon fiber, or a combination of these.

前記巻回層を構成する硬化樹脂の原料となる熱硬化性樹脂としては、例えば、エポキシ樹脂、メチルメタクリレート樹脂、メタクリレート樹脂、ポリエステル樹脂又はこれらの2種以上の混合物等が挙げられ、通常、FRPに用いられる公知の熱硬化性樹脂等が使用できる。
前記巻回層に用いる熱硬化性樹脂は、強化繊維同士の接着作用を有する必要があるため、硬化させた後の23℃での引張最大荷重時伸びは、通常6%以下であり、10%に達することはない。
前記巻回層を調製する際に用いる熱硬化性樹脂含浸強化繊維は、トウプリプレグのように予め熱硬化性樹脂を含浸させたドライの樹脂含浸強化繊維を用いることができる他、フィラメントワインディング時に液状の熱硬化性樹脂を強化繊維に含浸させて得られる繊維を用いることもできる。
Examples of the thermosetting resin that is a raw material of the cured resin that constitutes the wound layer include an epoxy resin, a methyl methacrylate resin, a methacrylate resin, a polyester resin, or a mixture of two or more thereof. The well-known thermosetting resin etc. which are used for can be used.
Since the thermosetting resin used for the wound layer needs to have an adhesive action between the reinforcing fibers, the elongation at the maximum tensile load at 23 ° C. after curing is usually 6% or less, and 10% Never reach.
As the thermosetting resin-impregnated reinforcing fiber used for preparing the wound layer, a dry resin-impregnated reinforcing fiber impregnated with a thermosetting resin in advance, such as a tow prepreg, can be used. It is also possible to use fibers obtained by impregnating reinforcing fibers with the thermosetting resin.

前記剥離抑制材層は、少なくとも前記巻回層の剥離を抑制することが可能な特定の硬化樹脂を含む。該硬化樹脂の23℃での引張最大荷重時伸びは、10〜200%、好ましくは10〜100%である。23℃での引張最大荷重時伸びが10%未満又は200%を超える場合には、所望の剥離抑制効果が得られず、容器のバースト強度の向上効果が得られない。
更に、剥離抑制材層に含まれる硬化樹脂の23℃での引張最大荷重時伸びは、前記巻回層における強化繊維に含浸させた硬化樹脂より大きいことが特に好ましい。
また、前記剥離抑制材層に含まれる硬化樹脂の引張強度は、23℃において0.1〜50MPaであり、23℃での引張弾性率は、0.1〜50MPaであることが好ましい。
尚、本発明において、引張最大荷重時伸び、引張強度及び引張弾性率は、JIS K7113に従い測定することができる。
前記23℃での引張最大荷重時伸び及び引張強度、更には引張弾性率を上記範囲内とすることにより、巻回層の剥離を防止し、巻回層が有する補強強度を最大限に利用することができる。
The said peeling suppression material layer contains the specific hardening resin which can suppress peeling of the said winding layer at least. The elongation at the maximum tensile load at 23 ° C. of the cured resin is 10 to 200%, preferably 10 to 100%. When the elongation at the maximum tensile load at 23 ° C. is less than 10% or exceeds 200%, a desired peeling suppression effect cannot be obtained, and the effect of improving the burst strength of the container cannot be obtained.
Furthermore, it is particularly preferable that the elongation at 23 ° C. of the cured resin contained in the exfoliation suppressing material layer is larger than the cured resin impregnated in the reinforcing fiber in the wound layer.
Moreover, it is preferable that the tensile strength of the cured resin contained in the said peeling suppression material layer is 0.1-50 MPa in 23 degreeC, and the tensile elasticity modulus in 23 degreeC is 0.1-50 MPa.
In the present invention, the elongation at the maximum tensile load, the tensile strength and the tensile elastic modulus can be measured according to JIS K7113.
The elongation at the maximum load at 23 ° C. and the tensile strength, and further the tensile elastic modulus within the above-mentioned range prevent peeling of the winding layer and make maximum use of the reinforcing strength of the winding layer. be able to.

前記剥離抑制材層に含まれる硬化樹脂は、更に、5℃での引張最大荷重時伸びが10〜200%、より好ましくは10〜100%、5℃での引張強度が0.1〜50MPaであることが好ましい。更にまた前記硬化樹脂の5℃での引張弾性率が0.1〜50MPa、特に0.5〜10MPaであることが所望の効果をより向上させるために好ましい。このように低温においても上記材料特性を維持できる硬化樹脂を用いることにより、寒冷における使用条件下においても良好な補強効果が得られる。
前記剥離抑制材層の厚さは、所望の効果が得られるように適宜選択できるが、通常100〜2000μm、好ましくは200〜1000μmとすることができる。
The cured resin contained in the exfoliation suppressing material layer further has an elongation at the maximum tensile load at 5 ° C. of 10 to 200%, more preferably 10 to 100%, and a tensile strength at 5 ° C. of 0.1 to 50 MPa. Preferably there is. Furthermore, it is preferable that the cured resin has a tensile elastic modulus at 5 ° C. of 0.1 to 50 MPa, particularly 0.5 to 10 MPa in order to further improve the desired effect. Thus, by using the cured resin that can maintain the material characteristics even at a low temperature, a good reinforcing effect can be obtained even under use conditions in the cold.
The thickness of the exfoliation suppressing material layer can be appropriately selected so as to obtain a desired effect, but is usually 100 to 2000 μm, preferably 200 to 1000 μm.

前記剥離抑制材層を主に構成する硬化樹脂の原料としては、硬化させた際に上述の特定の物性を示す、例えば、エポキシ樹脂、メチルメタクリレート樹脂、メタクリレート樹脂、ナイロン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂又はこれら2種以上の混合物等の熱硬化性樹脂(X)が挙げられる。
熱硬化性樹脂(X)としては、市販品の樹脂を用いることもでき、例えば、東邦アーステック社製の商品名EE50、EE50W、EE60等が挙げられる。
熱硬化性樹脂、特に常温硬化性の熱硬化性樹脂が、作業性が良好であるため好ましい。また、2液混合型の樹脂も好ましい。
熱硬化性樹脂(X)は、常温硬化性の熱硬化性樹脂を含むものであり、20℃における可使時間が好ましくは30分間〜5時間、さらに好ましくは30分間〜2時間のものが製造時の作業性の点で望ましい。また20℃における塗膜硬化時間が好ましくは30分〜12時間、さらに好ましくは30分〜4時間のものが製造工程の点で望ましい。熱硬化性樹脂(X)の設計強度発現時間は、20℃において通常1〜20日、好ましくは1〜7日である。また熱硬化性樹脂(X)の粘度はJIS K6833測定法で20℃において通常50〜1000000mPa・s、好ましくは5000〜300000mPa・sであることが、塗布作業上望ましい。
As a raw material of the cured resin mainly constituting the exfoliation suppressing material layer, it exhibits the above-mentioned specific properties when cured, for example, epoxy resin, methyl methacrylate resin, methacrylate resin, nylon resin, polycarbonate resin, polyurethane resin , A thermosetting resin (X) such as a polyethylene resin, a polypropylene resin, or a mixture of two or more thereof.
As the thermosetting resin (X), a commercially available resin can be used, and examples thereof include trade names EE50, EE50W, and EE60 manufactured by Toho Earthtech Co., Ltd.
A thermosetting resin, particularly a room temperature curable thermosetting resin is preferred because of its good workability. A two-component mixed resin is also preferable.
The thermosetting resin (X) contains a room temperature curable thermosetting resin, and the pot life at 20 ° C. is preferably 30 minutes to 5 hours, more preferably 30 minutes to 2 hours. It is desirable in terms of workability at the time. The coating film curing time at 20 ° C. is preferably 30 minutes to 12 hours, more preferably 30 minutes to 4 hours in view of the production process. The design strength expression time of the thermosetting resin (X) is usually 1 to 20 days, preferably 1 to 7 days at 20 ° C. The viscosity of the thermosetting resin (X) is usually 50 to 1,000,000 mPa · s at 20 ° C., preferably 5,000 to 300,000 mPa · s at 20 ° C. according to the JIS K6833 measurement method.

前記剥離抑制材層には、前記硬化樹脂に加えて、剥離抑制材層の形成に際して適切な粘度範囲を維持したりたれを防止すること等により塗布作業を良好にするために、且つ本発明の目的を損なわない範囲で、適宜各種充填材等を含有することもできる。このような充填材の添加により、剥離抑制材層の引張最大荷重時伸びはやや低下するが、逆に剥離抑制材層の引張強度や引張弾性率を向上させることができる。従って、剥離抑制材層は、前記硬化樹脂90〜100質量%及び充填材0〜10質量%からなることが好ましい。
充填材としては、カーボンブラック、炭酸カルシウム、タルク、珪酸、珪酸塩、無機顔料として知られる鉛白、鉛丹、黄鉛、二酸化チタン、ストロンチウムクロメート、チタニウムイエロー、その他の顔料等の他、ヒュームドシリカ、層状粘度鉱物、膨潤性マイカ、合成スメクタイト、ベントナイト、カーボンブラック、ヘクトライト等の揺変性付与剤を挙げることができる。
In addition to the cured resin, the release inhibitor layer is provided with a suitable viscosity range during formation of the release inhibitor layer or by preventing sagging. Various fillers and the like can be appropriately contained as long as the purpose is not impaired. By adding such a filler, the elongation at the maximum tensile load of the peeling inhibitor layer is slightly reduced, but conversely, the tensile strength and tensile elastic modulus of the peeling inhibitor layer can be improved. Therefore, it is preferable that a peeling suppression material layer consists of the said cured resin 90-100 mass% and a filler 0-10 mass%.
As fillers, carbon black, calcium carbonate, talc, silicic acid, silicate, lead white, red lead, yellow lead, titanium dioxide, strontium chromate, titanium yellow, other pigments known as inorganic pigments, fumed Mention may be made of thixotropic agents such as silica, lamellar viscous minerals, swellable mica, synthetic smectite, bentonite, carbon black, hectorite and the like.

本発明の繊維強化圧力容器を製造するには、例えば、金属ライナーと、熱硬化性樹脂含浸強化繊維と、硬化させた際の23℃での引張最大荷重時伸びが10〜200%で、且つ23℃での引張強度が0.1〜50MPaを示す熱硬化性樹脂(X)を含む原材料(a)とを準備する工程(A)、金属ライナーの外表面上に前記原材料(a)の層を形成する工程(B)、前記原材料(a)の層を硬化させ、剥離抑制材層を設ける工程(C)、工程(C)の後、金属ライナーの少なくとも口金部を除く全外表面を、熱硬化性樹脂含浸強化繊維により巻回被覆する工程(D)及び、工程(D)で巻回被覆した熱硬化性樹脂含浸強化繊維を硬化させ、硬化樹脂含浸強化繊維の巻回層を形成する工程(E)を含む本発明の第1の製造法、若しくは金属ライナーと、強化繊維と、該強化繊維に含浸させる熱硬化性樹脂と、前記熱硬化性樹脂(X)を含む原材料(a)とを準備する工程(A')、金属ライナーの外表面上に前記原材料(a)の層を形成する工程(B)、前記原材料(a)の層を硬化させ、剥離抑制材層を設ける工程(C)、工程(C)の後、強化繊維に熱硬化性樹脂を含浸させながら、得られるウェット状の熱硬化性樹脂含浸強化繊維により、金属ライナーの少なくとも口金部を除く全外表面を巻回被覆する工程(D')及び、工程(D')で巻回被覆した熱硬化性樹脂含浸強化繊維を硬化させ、硬化樹脂含浸強化繊維の巻回層を形成する工程(E')とを含む本発明の第2の製造法等により得ることができる。
本発明の第1及び第2で製造法において用いる、金属ライナー、熱硬化性樹脂含浸強化繊維、熱硬化性樹脂(X)を含む原材料(a)、強化繊維、及び該強化繊維に含浸させる熱硬化性樹脂としては、前述の各種例示のものを好ましく挙げることができる。従って、前記工程(A)及び工程(A')では、これらの材料を準備すれば良い。
In order to produce the fiber-reinforced pressure vessel of the present invention, for example, a metal liner, a thermosetting resin-impregnated reinforcing fiber, and an elongation at a maximum tensile load at 23 ° C. of 10 to 200% when cured, Preparing a raw material (a) containing a thermosetting resin (X) having a tensile strength at 23 ° C. of 0.1 to 50 MPa, a layer of the raw material (a) on the outer surface of a metal liner Step (B) of forming the layer of the raw material (a), the step of providing a release inhibitor layer (C), after the step (C), the entire outer surface excluding at least the base portion of the metal liner, Step (D) of winding and coating with thermosetting resin-impregnated reinforcing fiber and curing of the thermosetting resin-impregnated reinforcing fiber wound and coated in step (D) to form a winding layer of the cured resin-impregnated reinforcing fiber The first production method of the present invention including the step (E), or a metal liner, a reinforcing fiber, and impregnating the reinforcing fiber A step (A ′) of preparing a curable resin and a raw material (a) containing the thermosetting resin (X), and a step (B) of forming a layer of the raw material (a) on the outer surface of a metal liner After the steps (C) and (C) for curing the layer of the raw material (a) and providing a peeling inhibitor layer, the wet fiber obtained is obtained while impregnating the thermosetting resin into the reinforcing fibers. Step (D ′) for winding and coating the entire outer surface excluding at least the base portion of the metal liner with the resin-impregnated reinforcing fiber, and curing the thermosetting resin-impregnated reinforcing fiber wound and coated in the step (D ′), It can be obtained by the second production method of the present invention including the step (E ′) of forming a wound layer of the cured resin-impregnated reinforcing fiber.
Metal liner, thermosetting resin impregnated reinforcing fiber, raw material (a) containing thermosetting resin (X), reinforcing fiber, and heat impregnating the reinforcing fiber used in the first and second production methods of the present invention Preferred examples of the curable resin include those exemplified above. Therefore, these materials may be prepared in the step (A) and the step (A ′).

工程(B)において、金属ライナーの外表面上に原材料(a)の層を形成するには、例えば、流動性を有する原材料(a)を金属ライナーの少なくとも巻回層の剥離が生じ易い箇所、好ましくは口金部を除く全外表面に塗布する方法、予め原材料(a)をフィルム状等の形状に成形し、前記所望箇所に貼付する方法等が挙げられる。
前記原材料(a)を塗布する場合には、液だれが問題となるときがあるが、その場合は金属ライナーを回転させながら塗布することで解決できる。また、塗布は、原材料(a)をローラー刷毛やゴムベラ、金ゴテ等で、硬化後の厚さが通常100〜2000μm、好ましくは200〜1000μmとなるように均一に塗布することにより行うことができる。
前記原材料(a)をフィルム状等の成形物にして貼付する場合には、例えば、熱による融着、接着剤による接着等が挙げられる。接着剤としては、熱硬化性樹脂(X)と同一材料系のものが好ましい。
In the step (B), in order to form a layer of the raw material (a) on the outer surface of the metal liner, for example, a location where the raw material having fluidity (a) is likely to peel off at least the wound layer of the metal liner, Preferably, a method of applying to the entire outer surface excluding the base portion, a method of previously forming the raw material (a) into a film shape and the like, and affixing it to the desired location are mentioned.
When the raw material (a) is applied, dripping may be a problem. In such a case, the problem can be solved by applying the metal liner while rotating it. Moreover, application | coating can be performed by apply | coating raw material (a) uniformly with a roller brush, rubber spatula, a gold trowel, etc. so that the thickness after hardening may be 100-2000 micrometers normally, Preferably it is 200-1000 micrometers. .
When the raw material (a) is applied in the form of a film or the like, for example, heat fusion, adhesion with an adhesive, and the like can be mentioned. The adhesive is preferably of the same material system as the thermosetting resin (X).

工程(C)において原材料(a)の層を硬化させるには、例えば、工程(B)の後に熱ロールやドライヤー等で硬化温度まで加熱する方法、若しくは常温硬化性の熱硬化性樹脂を含む場合は、単に常温で、前記設計強度発現時間まで放置する方法等により行なうことができる。
また。硬化中に液だれが問題となるときがあるが、その場合は樹脂の流動性がなくなるまで回転させながら硬化することで解決できる。
工程(C)において得られる剥離抑制材層は、必要に応じて、表面、即ち後述する熱硬化性樹脂含浸強化繊維と接触する側の面を、物理的あるいは化学的処理により改質し、熱硬化性樹脂含浸強化繊維との密着性を向上させることができる。該物理的処理としては、表面の研磨、サンドペーパー等による目粗し、又は超音波処理等を挙げることができ、化学的処理としては、表面を一部酸化、官能基付加させる方法等が挙げられる。具体的には例えば、表面のコロナ処理、プラズマ処理、酸化剤処理等が挙げられ、これらの処理は、特に前記熱硬化性樹脂(X)として、ポリエチレン樹脂、ポリプロピレン樹脂等を含む場合に好ましく適用することができる。
In order to cure the layer of the raw material (a) in the step (C), for example, a method of heating to a curing temperature with a heat roll or a dryer after the step (B), or a case of including a room temperature curable thermosetting resin Can be carried out by simply leaving it at room temperature until the design strength expression time.
Also. In some cases, dripping becomes a problem during curing. In such a case, the problem can be solved by curing while rotating until the fluidity of the resin is lost.
The peeling suppression material layer obtained in the step (C) is optionally modified by physical or chemical treatment on the surface, that is, the surface in contact with the thermosetting resin-impregnated reinforcing fiber described later, by heat treatment. Adhesiveness with the curable resin-impregnated reinforcing fiber can be improved. Examples of the physical treatment include surface polishing, roughening with sandpaper, or ultrasonic treatment, and examples of chemical treatment include a method of partially oxidizing the surface and adding a functional group. It is done. Specifically, for example, surface corona treatment, plasma treatment, oxidant treatment, and the like are mentioned, and these treatments are preferably applied particularly when the thermosetting resin (X) includes a polyethylene resin, a polypropylene resin, or the like. can do.

工程(D)は、工程(C)で形成した剥離抑制材層を含む金属ライナーの所望外表面に、トウプリプレグ等の熱硬化性樹脂含浸強化繊維をFW法により巻きつける、所謂ドライワインディング法による工程であり、公知の方法等により適宜条件を設定して実施することができる。
一方、工程(D')は、強化繊維に流動性の熱硬化性樹脂を含浸させながら、得られるウェット状の熱硬化性樹脂含浸強化繊維をFW法により巻きつける、所謂ウェットワインディング法による工程であり、公知の方法等により適宜条件を設定して実施することができる。
The step (D) is based on a so-called dry winding method in which a thermosetting resin-impregnated reinforcing fiber such as tow prepreg is wound around the desired outer surface of the metal liner including the peeling inhibitor layer formed in the step (C) by the FW method. It is a process and can be carried out by appropriately setting conditions by a known method or the like.
On the other hand, the process (D ′) is a process by a so-called wet winding method in which the reinforcing fiber is impregnated with a fluid thermosetting resin and the resulting wet thermosetting resin-impregnated reinforcing fiber is wound by the FW method. Yes, it can be carried out by appropriately setting conditions by a known method or the like.

工程(E)及び(E')において、熱硬化性樹脂含浸強化繊維の硬化は、オートクレーブや加熱炉等で硬化温度まで加熱する方法、若しくは常温硬化性の熱硬化性樹脂を含む場合は、単に常温で、前記設計強度発現時間まで放置する方法等により行なうことができる。
硬化中に樹脂が重力で移動して偏ってしまうような場合は、硬化が終了するまで回転させながら硬化を行なうことができる。
本発明の製造法において、本発明の所望の効果を損なわない範囲で、また、他の効果を付加する目的で、金属ライナーと剥離抑制材層との間に、若しくは剥離抑制材層と硬化樹脂含浸強化繊維の巻回層との間に他の層を介して設けても良い。
In the steps (E) and (E ′), the curing of the thermosetting resin-impregnated reinforcing fiber is a method of heating to a curing temperature in an autoclave, a heating furnace, or the like, or when a room temperature curable thermosetting resin is included. It can be carried out by, for example, a method of leaving it at room temperature until the design strength expression time.
When the resin moves due to gravity and is biased during the curing, the curing can be performed while rotating until the curing is completed.
In the production method of the present invention, within the range that does not impair the desired effect of the present invention, and for the purpose of adding other effects, or between the metal liner and the delamination suppressing material layer, or the delamination suppressing material layer and the cured resin. Another layer may be provided between the wound layer of the impregnated reinforcing fibers.

以下に実施例及び比較例を参照して本発明をより詳細に説明するが、本発明はこれらに限定されない。
実施例1
供試体として、SAMTECH社製のアルミニウムライナー(長さ345mm、外径100mm、内容積2.1リットル、材質A6061-T6)を使用した。液だれを防止するため、この供試体を回転させながら、口金部を除く外表面全域に、エポキシ系の熱硬化性樹脂(エポキシ樹脂、商品名トーホーダイトEE50(株式会社東邦アーステック製)、硬化時における23℃での引張最大荷重時伸び95%(JIS K7113により測定)、引張強度1.4N/mm2(JIS K7113により測定)、5℃における引張最大荷重時伸び65%、引張強度6.5N/mm2)を、硬化後の剥離抑制材層の厚さが200μmとなるように塗布し、室温で24時間硬化させて剥離抑制材層を形成した。
硬化後、フィラメントワインディング装置を用い、新日本石油(株)製のトウプリプレグ(炭素繊維:東レ製M30S−18K、樹脂:130℃硬化型エポキシ樹脂)を巻き付けた(内層:ヘリカル巻き、1.1mm厚+外層:フープ巻き、1.6mm)。
ワインディング終了後、供試体を回転させながら、硬化炉内で130℃、2時間硬化を行い、硬化樹脂含浸強化繊維の巻回層を形成し、繊維強化圧力ボンベを作製した。
得られたボンベを室温まで徐冷後、該ボンベの図1に示す3箇所のクロス型の歪みゲージをNo.1〜No.3として貼付し、円周方向と長手方向各3箇所の歪みを測定した。代表的な応力歪みグラフを図2に示す。図2より各測定点において一様な歪みが発生していることがわかる。
また、水圧によるバースト試験をKHK S1121(2000)に従って実施し、バースト強度を測定した。また、冷却時の剥離音の有無についても観察した。サンプル数7点における結果を表1に示す。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
Example 1
As a specimen, an aluminum liner (length: 345 mm, outer diameter: 100 mm, inner volume: 2.1 liter, material A6061-T6) manufactured by SAMTECH was used. In order to prevent dripping, while rotating this specimen, epoxy-based thermosetting resin (epoxy resin, trade name Toho Dite EE50 (manufactured by Toho Earth Tech Co., Ltd.)) and curing is applied to the entire outer surface except the base. 5. Tensile elongation at 23 ° C. at 95 ° C. (measured according to JIS K7113), tensile strength 1.4 N / mm 2 (measured according to JIS K7113) 65% elongation at maximum tensile load at 5 ° C., tensile strength 6. 5N / mm 2 ) was applied so that the thickness of the peel-off suppressing material layer after curing was 200 μm and cured at room temperature for 24 hours to form a peel-inhibiting material layer.
After curing, a tow prepreg (carbon fiber: M30S-18K manufactured by Toray Industries, Inc., resin: 130 ° C. curable epoxy resin) manufactured by Nippon Oil Corporation was wound using a filament winding apparatus (inner layer: helical winding, 1.1 mm). Thickness + outer layer: hoop winding, 1.6 mm).
After completion of the winding, while rotating the specimen, curing was performed in a curing furnace at 130 ° C. for 2 hours to form a wound layer of the cured resin-impregnated reinforcing fiber, and a fiber-reinforced pressure cylinder was produced.
After the obtained cylinder is gradually cooled to room temperature, the three cross-type strain gauges shown in FIG. 1 of the cylinder are attached as No. 1 to No. 3, and the distortion in each of the circumferential direction and the longitudinal direction is applied. It was measured. A typical stress strain graph is shown in FIG. From FIG. 2, it can be seen that uniform distortion occurs at each measurement point.
Moreover, the burst test by water pressure was implemented according to KHK S1121 (2000), and the burst strength was measured. The presence or absence of peeling noise during cooling was also observed. The results for 7 samples are shown in Table 1.

実施例2
剥離抑制層緩衝材層の厚さを500μmとした他は実施例1と同様に操作してボンベを作製し、バースト試験を実施した。結果を表1に示す。
Example 2
A bomb was produced in the same manner as in Example 1 except that the thickness of the peeling suppression layer buffer material layer was 500 μm, and a burst test was performed. The results are shown in Table 1.

比較例1
剥離抑制材層を形成せずに、供試体に直接硬化樹脂含浸強化繊維の巻回層を形成した以外は実施例1と同様にボンベを作製し、バースト試験を行った。結果を表1に示す。また、実施例1と同様に歪みの測定を行なった。代表的な応力歪みグラフを図3に示す。図3より歪みが場所によりばらついており、このことがバースト圧力を低くし、かつばらつきが大きい原因と考えられる。
Comparative Example 1
A cylinder was prepared and a burst test was performed in the same manner as in Example 1 except that the wound layer of the cured resin-impregnated reinforcing fiber was directly formed on the specimen without forming the peeling inhibitor layer. The results are shown in Table 1. Further, distortion was measured in the same manner as in Example 1. A typical stress strain graph is shown in FIG. As can be seen from FIG. 3, the strain varies from place to place, and this is considered to be a cause of low burst pressure and large variation.

Figure 2005337394
Figure 2005337394

実施例1及び比較例1で行なった歪み測定の歪みゲージの貼付箇所を示す概略図である。It is the schematic which shows the sticking location of the strain gauge of the strain measurement performed in Example 1 and Comparative Example 1. FIG. 実施例1で測定した代表的応力歪みを示すグラフである。2 is a graph showing typical stress strain measured in Example 1. FIG. 比較例1で測定した代表的応力歪みを示すグラフである。5 is a graph showing typical stress strain measured in Comparative Example 1.

Claims (6)

金属ライナーと、該ライナーを被覆する、硬化樹脂含浸強化繊維の巻回層と、該巻回層の剥離を抑制するための硬化樹脂を含む剥離抑制材層とを備え、
該剥離抑制材層が、該金属ライナーと該巻回層との間に設けられており、該剥離抑制材層に含まれる硬化樹脂が、23℃での引張最大荷重時伸びが10〜200%で、且つ23℃での引張強度が0.1〜50MPaを示す硬化樹脂であることを特徴とする繊維強化圧力容器。
A metal liner, a wound layer of a reinforced resin-impregnated reinforcing fiber covering the liner, and a release inhibitor material layer containing a cured resin for suppressing peeling of the wound layer,
The peeling inhibiting material layer is provided between the metal liner and the wound layer, and the cured resin contained in the peeling inhibiting material layer has an elongation at a maximum tensile load at 23 ° C. of 10 to 200%. And a cured resin having a tensile strength at 23 ° C. of 0.1 to 50 MPa.
前記剥離抑制材層が、前記硬化樹脂90〜100質量%及び充填材0〜10質量%を含み、且つ23℃での引張弾性率が0.1〜50MPaであることを特徴とする請求項1記載の繊維強化圧力容器。   The said peeling suppression material layer contains the said cured resin 90-100 mass% and the filler 0-10 mass%, and the tensile elasticity modulus in 23 degreeC is 0.1-50 Mpa, It is characterized by the above-mentioned. The fiber-reinforced pressure vessel as described. 前記剥離抑制材層に含まれる硬化樹脂が、5℃での引張最大荷重時伸びが10〜200%で、5℃での引張強度が0.1〜50MPaを示す硬化樹脂であり、且つ前記剥離抑制材層の5℃での引張弾性率が0.1〜50MPaであることを特徴とする請求項1又は2記載の繊維強化圧力容器。   The cured resin contained in the exfoliation suppressing material layer is a cured resin having an elongation at a maximum tensile load at 5 ° C. of 10 to 200% and a tensile strength at 5 ° C. of 0.1 to 50 MPa, and the exfoliation The fiber-reinforced pressure vessel according to claim 1 or 2, wherein the inhibitor layer has a tensile elastic modulus at 5 ° C of 0.1 to 50 MPa. 前記剥離抑制材層の平均厚さが、100〜2000μmであることを特徴とする請求項1〜3のいずれか1項記載の繊維強化圧力容器。   The average thickness of the said peeling suppression material layer is 100-2000 micrometers, The fiber reinforced pressure vessel of any one of Claims 1-3 characterized by the above-mentioned. 金属ライナーと、熱硬化性樹脂含浸強化繊維と、硬化させた際の23℃での引張最大荷重時伸びが10〜200%で、且つ23℃での引張強度が0.1〜50MPaを示す熱硬化性樹脂(X)を含む原材料(a)とを準備する工程(A)、
金属ライナーの外表面上に前記原材料(a)の層を形成する工程(B)、
前記原材料(a)の層を硬化させ、剥離抑制材層を設ける工程(C)、
工程(C)の後、金属ライナーの少なくとも口金部を除く全外表面を、熱硬化性樹脂含浸強化繊維により巻回被覆する工程(D)及び、
工程(D)で巻回被覆した熱硬化性樹脂含浸強化繊維を硬化させ、硬化樹脂含浸強化繊維の巻回層を形成する工程(E)を含むことを特徴とする請求項1記載の繊維強化圧力容器の製造法。
Metal liner, thermosetting resin-impregnated reinforcing fiber, heat at which the elongation at 23 ° C. when cured is 10 to 200% and the tensile strength at 23 ° C. is 0.1 to 50 MPa. Preparing a raw material (a) containing a curable resin (X) (A),
Forming a layer of the raw material (a) on the outer surface of the metal liner (B),
Step (C) of curing the layer of the raw material (a) and providing a peeling inhibitor layer,
After step (C), the entire outer surface excluding at least the base portion of the metal liner is wound and coated with a thermosetting resin-impregnated reinforcing fiber (D), and
2. The fiber reinforcement according to claim 1, comprising a step (E) of curing the thermosetting resin-impregnated reinforcing fiber wound and coated in step (D) to form a wound layer of the cured resin-impregnated reinforcing fiber. Manufacturing method for pressure vessels.
金属ライナーと、強化繊維と、該強化繊維に含浸させる熱硬化性樹脂と、硬化させた際の23℃での引張最大荷重時伸びが10〜200%で、且つ23℃での引張強度が0.1〜50MPaを示す熱硬化性樹脂(X)を含む原材料(a)とを準備する工程(A')、
金属ライナーの外表面上に前記原材料(a)の層を形成する工程(B)、
前記原材料(a)の層を硬化させ、剥離抑制材層を設ける工程(C)、
工程(C)の後、強化繊維に熱硬化性樹脂を含浸させながら、得られるウェット状の熱硬化性樹脂含浸強化繊維により、金属ライナーの少なくとも口金部を除く全外表面を巻回被覆する工程(D')及び、
工程(D')で巻回被覆した熱硬化性樹脂含浸強化繊維を熱硬化させ、硬化樹脂含浸強化繊維の巻回層を形成する工程(E')とを含むことを特徴とする請求項1記載の繊維強化圧力容器の製造法。
Metal liner, reinforcing fiber, thermosetting resin impregnated in the reinforcing fiber, elongation at 23 ° C. under tensile maximum load when cured is 10 to 200%, and tensile strength at 23 ° C. is 0 A step (A ′) of preparing a raw material (a) containing a thermosetting resin (X) exhibiting 1 to 50 MPa,
Forming a layer of the raw material (a) on the outer surface of the metal liner (B),
Step (C) of curing the layer of the raw material (a) and providing a peeling inhibitor layer,
After step (C), while impregnating the reinforcing fiber with the thermosetting resin, the entire outer surface excluding the base part of the metal liner is wound and covered with the obtained wet thermosetting resin-impregnated reinforcing fiber. (D ') and
The method further comprises a step (E ′) of thermosetting the thermosetting resin-impregnated reinforcing fiber wound and coated in the step (D ′) to form a wound layer of the cured resin-impregnated reinforcing fiber. The manufacturing method of the fiber reinforced pressure vessel of description.
JP2004157714A 2004-05-27 2004-05-27 Fiber-reinforced pressure vessel, and its manufacturing method Pending JP2005337394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157714A JP2005337394A (en) 2004-05-27 2004-05-27 Fiber-reinforced pressure vessel, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157714A JP2005337394A (en) 2004-05-27 2004-05-27 Fiber-reinforced pressure vessel, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005337394A true JP2005337394A (en) 2005-12-08

Family

ID=35491186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157714A Pending JP2005337394A (en) 2004-05-27 2004-05-27 Fiber-reinforced pressure vessel, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005337394A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143009A (en) * 2008-12-17 2010-07-01 Nisshin Steel Co Ltd Plate-like composite material
WO2014174845A1 (en) * 2013-04-26 2014-10-30 Jfeスチール株式会社 Accumulator
WO2017149817A1 (en) * 2016-03-04 2017-09-08 日産自動車株式会社 High-pressure gas storage container and method for producing high-pressure gas storage container
WO2017149818A1 (en) * 2016-03-04 2017-09-08 日産自動車株式会社 Structure body, and method for manufacturing structure body
JP2018513318A (en) * 2015-02-27 2018-05-24 カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Pressure vessel and method for manufacturing a pressure vessel
JP2020153503A (en) * 2019-03-22 2020-09-24 三菱ケミカル株式会社 Pressure vessel inspection method
CN111795295A (en) * 2019-04-01 2020-10-20 丰田自动车株式会社 High-pressure tank and method for manufacturing same
CN112446112A (en) * 2020-11-24 2021-03-05 北京宇航系统工程研究所 Design method of low-temperature composite material gas cylinder
CN113423978A (en) * 2019-02-13 2021-09-21 株式会社丰田自动织机 Method and apparatus for manufacturing pressure vessel
CN118110913A (en) * 2024-02-01 2024-05-31 沈阳欧施盾新材料科技有限公司 Lining-free fiber composite material gas cylinder suitable for ultralow-temperature liquid hydrogen environment and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292899A (en) * 1997-04-18 1998-11-04 Nippon Steel Corp Complex container for fuel system of natural gas-fueled automobile
JP2000193194A (en) * 1998-12-25 2000-07-14 Mitsubishi Chemicals Corp Pressure vessel and its manufacture
JP2001214999A (en) * 2000-01-31 2001-08-10 Yokohama Rubber Co Ltd:The Composite material pressure vessel and method of manufacturing the same
JP2002070495A (en) * 2000-08-31 2002-03-08 Shimizu Corp Reinforced structure of concrete structure having curved surface
JP2002211524A (en) * 2001-01-18 2002-07-31 Asahi Seisakusho Co Ltd Method for protecting label
JP2002240658A (en) * 2001-02-15 2002-08-28 Toray Ind Inc Impact absorber member made of metal/frp
JP2003193685A (en) * 2000-06-29 2003-07-09 Shimizu Corp Buffer used for reinforcing method of concrete structure
JP2003521659A (en) * 2000-02-04 2003-07-15 アドバンスト ライトウェイト コンストラクションズ グループ ベー.フェー. Fiber reinforced pressure vessel and method of manufacturing fiber reinforced pressure vessel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292899A (en) * 1997-04-18 1998-11-04 Nippon Steel Corp Complex container for fuel system of natural gas-fueled automobile
JP2000193194A (en) * 1998-12-25 2000-07-14 Mitsubishi Chemicals Corp Pressure vessel and its manufacture
JP2001214999A (en) * 2000-01-31 2001-08-10 Yokohama Rubber Co Ltd:The Composite material pressure vessel and method of manufacturing the same
JP2003521659A (en) * 2000-02-04 2003-07-15 アドバンスト ライトウェイト コンストラクションズ グループ ベー.フェー. Fiber reinforced pressure vessel and method of manufacturing fiber reinforced pressure vessel
JP2003193685A (en) * 2000-06-29 2003-07-09 Shimizu Corp Buffer used for reinforcing method of concrete structure
JP2002070495A (en) * 2000-08-31 2002-03-08 Shimizu Corp Reinforced structure of concrete structure having curved surface
JP2002211524A (en) * 2001-01-18 2002-07-31 Asahi Seisakusho Co Ltd Method for protecting label
JP2002240658A (en) * 2001-02-15 2002-08-28 Toray Ind Inc Impact absorber member made of metal/frp

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143009A (en) * 2008-12-17 2010-07-01 Nisshin Steel Co Ltd Plate-like composite material
WO2014174845A1 (en) * 2013-04-26 2014-10-30 Jfeスチール株式会社 Accumulator
JP5956602B2 (en) * 2013-04-26 2016-07-27 Jfeスチール株式会社 Accumulator
US10837602B2 (en) 2013-04-26 2020-11-17 Jfe Steel Corporation Hydrogen storage tank
JP2018513318A (en) * 2015-02-27 2018-05-24 カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Pressure vessel and method for manufacturing a pressure vessel
KR20180108859A (en) * 2016-03-04 2018-10-04 닛산 지도우샤 가부시키가이샤 Structure, and method for manufacturing the structure
US11040479B2 (en) 2016-03-04 2021-06-22 Nissan Motor Co., Ltd. Structure and method for manufacturing structure
CN108779893A (en) * 2016-03-04 2018-11-09 日产自动车株式会社 The manufacturing method of tectosome and tectosome
JPWO2017149817A1 (en) * 2016-03-04 2018-12-20 日産自動車株式会社 High pressure gas storage container and method for manufacturing high pressure gas storage container
CN109073148A (en) * 2016-03-04 2018-12-21 日产自动车株式会社 The manufacturing method of high pressure gas storage container and high pressure gas storage container
JPWO2017149818A1 (en) * 2016-03-04 2019-01-31 日産自動車株式会社 Structure and manufacturing method of structure
KR20190060017A (en) * 2016-03-04 2019-05-31 닛산 지도우샤 가부시키가이샤 Structure and automobile panel
KR101998540B1 (en) 2016-03-04 2019-07-09 닛산 지도우샤 가부시키가이샤 Structure, and method for manufacturing the structure
CN108779893B (en) * 2016-03-04 2019-07-23 日产自动车株式会社 The manufacturing method of tectosome and tectosome
US11590725B2 (en) 2016-03-04 2023-02-28 Nissan Motor Co., Ltd. Method for producing high-pressure gas storage container
KR102164167B1 (en) * 2016-03-04 2020-10-12 닛산 지도우샤 가부시키가이샤 Structure and automobile panel
WO2017149818A1 (en) * 2016-03-04 2017-09-08 日産自動車株式会社 Structure body, and method for manufacturing structure body
CN109073148B (en) * 2016-03-04 2020-10-23 日产自动车株式会社 High-pressure gas storage container and method for manufacturing high-pressure gas storage container
WO2017149817A1 (en) * 2016-03-04 2017-09-08 日産自動車株式会社 High-pressure gas storage container and method for producing high-pressure gas storage container
US10940663B2 (en) 2016-03-04 2021-03-09 Nissan Motor Co., Ltd. High-pressure gas storage container and method for producing high-pressure gas storage container
CN113423978A (en) * 2019-02-13 2021-09-21 株式会社丰田自动织机 Method and apparatus for manufacturing pressure vessel
JP2020153503A (en) * 2019-03-22 2020-09-24 三菱ケミカル株式会社 Pressure vessel inspection method
CN111795295A (en) * 2019-04-01 2020-10-20 丰田自动车株式会社 High-pressure tank and method for manufacturing same
CN112446112A (en) * 2020-11-24 2021-03-05 北京宇航系统工程研究所 Design method of low-temperature composite material gas cylinder
CN112446112B (en) * 2020-11-24 2023-07-14 北京宇航系统工程研究所 Design method of low-temperature composite material gas cylinder
CN118110913A (en) * 2024-02-01 2024-05-31 沈阳欧施盾新材料科技有限公司 Lining-free fiber composite material gas cylinder suitable for ultralow-temperature liquid hydrogen environment and preparation method thereof

Similar Documents

Publication Publication Date Title
Hawa et al. Burst strength and impact behaviour of hydrothermally aged glass fibre/epoxy composite pipes
Nguyen et al. Curing effects on steel/CFRP double strap joints under combined mechanical load, temperature and humidity
US10233324B2 (en) Epoxy resin composition
JP6436593B2 (en) Adhesive gel sheet having adhesive application, method for producing the same, method for fixing a pair of adherends, and composite material
CN106989265B (en) The manufacturing method of pressure pan
Choi Surface modification of carbon fiber/epoxy composites with randomly oriented aramid fiber felt for adhesion strength enhancement
JP2005337394A (en) Fiber-reinforced pressure vessel, and its manufacturing method
Sordo et al. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites
WO2021032140A1 (en) Pre-tightening force repairing method, repairing method involving combination of pre-tightening force and clamp, and repaired pipeline
WO2019188020A1 (en) Internal mold release agent for fiber-reinforced composite material, fiber-reinforced composite material, molding method therefor, and joining method for fiber-reinforced resin molded product
JP5004940B2 (en) Composite member and manufacturing method thereof
Hogg Factors affecting the stress corrosion of GRP in acid environments
JP2016107485A (en) Composite molding, and production method thereof
KR20190103170A (en) Method of internal lining and lining pipes for pipe surfaces
Sun et al. Investigation on cryogenic mechanical properties of basalt fiber-reinforced epoxy composites
JP3977719B2 (en) Cushioning material used for reinforcement of concrete structures
Cho et al. Optimum design of co-cured steel–composite tubular single lap joints under axial load
JP2006198784A (en) Fiber reinforced composite material and its manufacturing method
WO2021112069A1 (en) Continuous fiber reinforcement material, method for producing continuous fiber reinforcement material and concrete structure
WO2022252260A1 (en) Self-lubricating coating, preparation method therefor, and application thereof
JP2018189178A (en) Pressure vessel
Zhou et al. A novel fiber-reinforced polymer rope: Concept design and experimental evaluation
Jiao et al. Fatigue behaviour of steel elements strengthened with stand CFRP sheets
JP4576655B2 (en) COMPOSITE PRESSURE CONTAINER AND MANUFACTURING METHOD THEREOF
CN106397811B (en) A kind of carbon fibre composite hand brake stay cable and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713