JP2020153503A - Pressure vessel inspection method - Google Patents

Pressure vessel inspection method Download PDF

Info

Publication number
JP2020153503A
JP2020153503A JP2019055042A JP2019055042A JP2020153503A JP 2020153503 A JP2020153503 A JP 2020153503A JP 2019055042 A JP2019055042 A JP 2019055042A JP 2019055042 A JP2019055042 A JP 2019055042A JP 2020153503 A JP2020153503 A JP 2020153503A
Authority
JP
Japan
Prior art keywords
pressure vessel
pressure
resin
composite material
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019055042A
Other languages
Japanese (ja)
Inventor
忠弘 西本
Tadahiro Nishimoto
忠弘 西本
一行 寺田
Kazuyuki Terada
一行 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2019055042A priority Critical patent/JP2020153503A/en
Publication of JP2020153503A publication Critical patent/JP2020153503A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To provide a method for producing a pressure vessel, in which the state of the produced pressure vessel may be easily determined in a non-destructive manner.SOLUTION: There is provided an inspection method for a pressure vessel in which dome parts 12 are provided at both ends of a straight drum part 10 and the straight drum part 10 and the dome parts 12 are formed of a container main body and a fiber-reinforced resin composite material layer. In the inspection method for a pressure vessel, with respect to a group of pressure vessels V1, V2, to Vi, to Vp consisting of p number of pressure vessels (provided that p is an integer of 3 or more) produced based on the same design for a working pressure P0 (MPa), under a state where a pressure PT (MPa) of the working pressure P0 or more is applied to each of the pressure vessels Vi,, distortion in a hoop direction is measured at 3 measurement points a1 to a3 different in the axial direction of the straight drum part 10, a standard deviation Xi is obtained, and the state of each of the pressure vessels Vi, is determined based on the standard deviation Xi.SELECTED DRAWING: Figure 4

Description

本発明は、圧力容器の検査方法に関する。 The present invention relates to a method for inspecting a pressure vessel.

容器本体が繊維強化樹脂複合材料層で補強された圧力容器は、軽量で高耐圧であるため、自動車用燃料タンクや、ガス等の貯蔵や輸送に利用されるタンクとして用いられている。繊維強化樹脂複合材料層は、例えば、長尺の強化繊維束及び硬化性樹脂を含む強化繊維複合材を容器本体の外側に巻き付けて硬化させることで形成される。比強度が高い炭素繊維を用いた圧力容器は、軽量化しやすく、ガスを移動するためのタンクに特に好適である。 A pressure vessel in which the container body is reinforced with a fiber reinforced resin composite material layer is lightweight and has a high pressure resistance, so that it is used as a fuel tank for automobiles and a tank used for storing and transporting gas and the like. The fiber-reinforced resin composite material layer is formed by, for example, wrapping a reinforcing fiber composite material containing a long reinforcing fiber bundle and a curable resin around the outside of the container body and curing it. A pressure vessel using carbon fiber having a high specific strength is easy to reduce in weight and is particularly suitable for a tank for moving gas.

圧力容器の製造方法としては、長尺の強化繊維束に硬化性樹脂が含浸された強化繊維複合材を用いたフィラメントワインディング法(以下、FW法という。)が挙げられる。例えば、樹脂製の容器本体の外側に強化繊維複合材を巻き付けた後、硬化性樹脂を硬化させる(特許文献1)。硬化性樹脂を用いる場合のFW法には、ウェット方式とドライ方式がある。ウェット方式のFW法では、長尺の強化繊維束に硬化性樹脂を含浸させて強化繊維複合材とする含浸操作と、容器本体に強化繊維複合材を巻き付ける巻付操作を連続して行う。ドライ方式のFW法では、予め製造した強化繊維複合材を容器本体に巻き付ける。長尺の強化繊維束に熱可塑性樹脂が含浸された強化繊維複合材を用いる場合は、強化繊維複合材を巻き付ける工程で加熱して熱可塑性樹脂を溶融させ、強化繊維複合材同士を一体化させた後に冷却して固化させる。 Examples of the method for manufacturing the pressure vessel include a filament winding method (hereinafter referred to as FW method) using a reinforcing fiber composite material in which a long reinforcing fiber bundle is impregnated with a curable resin. For example, a reinforcing fiber composite material is wound around the outside of a resin container body, and then the curable resin is cured (Patent Document 1). The FW method when a curable resin is used includes a wet method and a dry method. In the wet type FW method, an impregnation operation of impregnating a long reinforcing fiber bundle with a curable resin to form a reinforcing fiber composite material and a winding operation of winding the reinforcing fiber composite material around a container body are continuously performed. In the dry FW method, a prefabricated reinforcing fiber composite material is wound around the container body. When using a reinforcing fiber composite material in which a long reinforcing fiber bundle is impregnated with a thermoplastic resin, the reinforcing fiber composite material is heated in the process of winding the reinforcing fiber composite material to melt the thermoplastic resin, and the reinforcing fiber composite materials are integrated with each other. After that, it is cooled and solidified.

特許第4714672号公報Japanese Patent No. 4714672

FW法は各方式で製造条件が異なる。圧力容器を設計通りに製造するには、強化繊維の特性を十分発揮させるように、所定の量の強化繊維複合材を所定の方向に配置する必要がある。しかし、FW法による圧力容器の製造では、製造条件を精密に制御することが難しく、破壊の起点となるボイド、クラック等の欠陥や、強化繊維のずれ等によって、破裂圧力等の性能が安定して得られないことがある。このような性能低下の原因は、圧力容器を切断する等、圧力容器を破壊しなければ確認することができない。そのため、製造した圧力容器の状態を非破壊で簡便に判断できる検査方法が求められている。 The manufacturing conditions of the FW method are different for each method. In order to manufacture the pressure vessel as designed, it is necessary to arrange a predetermined amount of the reinforcing fiber composite material in a predetermined direction so as to fully exhibit the characteristics of the reinforcing fiber. However, in the production of pressure vessels by the FW method, it is difficult to precisely control the production conditions, and the performance such as burst pressure becomes stable due to defects such as voids and cracks that are the starting points of fracture, and displacement of reinforcing fibers. It may not be possible to obtain it. The cause of such performance deterioration cannot be confirmed unless the pressure vessel is destroyed, such as by cutting the pressure vessel. Therefore, there is a demand for an inspection method that can easily determine the state of the manufactured pressure vessel in a non-destructive manner.

本発明は、製造した圧力容器の状態を非破壊で簡便に判断できる圧力容器の検査方法を提供することを目的とする。 An object of the present invention is to provide a pressure vessel inspection method that can easily determine the state of a manufactured pressure vessel in a non-destructive manner.

本発明は、以下の構成を有する。
[1]筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄む形状のドーム部とを備え、
前記直胴部及び前記ドーム部が、容器本体と、前記容器本体の外側に設けられた繊維強化樹脂複合材料層とで形成された圧力容器を検査する方法であって、
使用圧力P(MPa)として同じ設計に基づいて製造されたp個(ただし、pは3以上の整数である。)の圧力容器からなる圧力容器群V、V、・・・、V、・・・Vについて、それぞれの圧力容器Vに対し、前記使用圧力P以上の圧力P(MPa)を負荷した状態で、前記直胴部の軸方向において異なる3箇所以上を含むq箇所(ただし、qは3以上の整数である。)でフープ方向の歪を測定してその標準偏差Xを求め、前記標準偏差Xを用いて各圧力容器Vの状態を判断する、圧力容器の検査方法。
[2]前記圧力容器群のうち、前記標準偏差Xが小さい圧力容器Vから順にn個(ただし、nは、1〜pの整数である。)の圧力容器を状態が良好であると判断する、[1]に記載の圧力容器の検査方法。
[3]それぞれの圧力容器Vに対し、前記標準偏差Xから前記フープ方向の歪のばらつきの変動係数Cv(%)を求め、前記変動係数Cv(%)を用いて各圧力容器Vの状態を判断する、[1]に記載の圧力容器の検査方法。
[4]前記圧力Pが下記式(i)で表される条件を満たす、[1]〜[3]のいずれかに記載の圧力容器の検査方法。
1.0×P≦P≦1.5×P ・・・(i)
The present invention has the following configurations.
[1] A tubular straight body portion and dome portions provided at both ends of the straight body portion and having a shape that narrows as the distance from the straight body portion increases.
A method of inspecting a pressure vessel in which the straight body portion and the dome portion are formed of a container body and a fiber reinforced resin composite material layer provided on the outside of the container body.
Pressure vessel group V 1 , V 2 , ..., V consisting of p pressure vessels manufactured based on the same design as the working pressure P 0 (MPa) (where p is an integer of 3 or more). For i , ... V p , with the pressure PT (MPa) of the working pressure P 0 or more being applied to each pressure container V i , three or more different locations in the axial direction of the straight body portion are placed. q locations, including (but, q is an integer of 3 or more.) in seeking the standard deviation X i by measuring the strain of the hoop direction, determines the status of the pressure vessel V i using the standard deviation X i How to inspect the pressure vessel.
[2] of the pressure vessel group, the n from the standard deviation X i is smaller pressure vessel V i in order (where, n is an integer from 1 to p.) And the state of the pressure vessel is good The method for inspecting a pressure vessel according to [1].
[3] For each of the pressure vessel V i, wherein the standard deviation X i variation coefficient of variation of distortion of the hoop direction from Cv i (%), the pressure vessel by using the variation coefficient Cv i (%) determining the state of V i, the inspection method of the pressure vessel according to [1].
[4] The method for inspecting a pressure vessel according to any one of [1] to [3], wherein the pressure PT satisfies the condition represented by the following formula (i).
1.0 x P 0 ≤ P T ≤ 1.5 x P 0 ... (i)

本発明によれば、製造した圧力容器の状態を非破壊で簡便に判断できる圧力容器の検査方法を提供できる。 According to the present invention, it is possible to provide a pressure vessel inspection method that can easily determine the state of a manufactured pressure vessel in a non-destructive manner.

本発明の圧力容器の一例を示した図であり、直胴部の軸方向に沿って切断した断面図である。It is a figure which showed an example of the pressure vessel of this invention, and is the sectional view cut along the axial direction of the straight body part. 図1の圧力容器におけるドーム部近傍の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of the vicinity of the dome portion in the pressure vessel of FIG. 圧力容器の製造方法の一工程を示した概略構成図である。It is a schematic block diagram which showed one process of the manufacturing method of a pressure vessel. 圧力容器の直胴部におけるひずみ測定を説明する正面図である。It is a front view explaining the strain measurement in the straight body part of a pressure vessel. 圧力容器の直胴部におけるひずみ測定を説明する正面図である。It is a front view explaining the strain measurement in the straight body part of a pressure vessel. 実施例における圧力容器の直胴部におけるひずみ測定の測定点を示した正面図である。It is a front view which showed the measurement point of the strain measurement in the straight body part of the pressure vessel in an Example. 例1の圧力容器Aの測定点a〜eのそれぞれにおける歪と圧力Pとの関係を示した図である。Is a diagram showing the relationship between the distortion and the pressure P T in the respective measurement points a~e of the pressure vessel A of Example 1.

本発明の圧力容器の検査方法は、筒状の直胴部と、直胴部の両端に設けられ、直胴部から離れるにつれて窄む形状のドーム部とを備え、直胴部及びドーム部が、容器本体と、容器本体の外側に設けられた繊維強化樹脂複合材料層(以下、「複合材料層」とも記す。)とで形成された圧力容器を検査する方法である。 The method for inspecting a pressure vessel of the present invention includes a tubular straight body portion and a dome portion provided at both ends of the straight body portion and narrowing as the distance from the straight body portion increases. , A method for inspecting a pressure vessel formed of a container body and a fiber-reinforced resin composite material layer (hereinafter, also referred to as “composite material layer”) provided on the outside of the container body.

(圧力容器)
検査対象の圧力容器は、樹脂製又は金属製の容器本体が、内圧に抗して容器本体を保つ複合材料層で補強された容器である。圧力容器は、FW法で製造される。容器本体は、内容物の出し入れのため、ドーム部に少なくとも1個の開口部を有し、開閉可能な弁が取り付けられるようになっている。容器本体の開口部には、弁の取り付けや、FW法による製造時に治具を取り付けるための口金等の金属加工部が設けられる。特に圧力容器が大きい場合は、両側のドーム部に金属加工部を設けることで、強化繊維複合材を巻き付ける際の張力で容器本体が偏芯することを抑制しやすくなる。治具の取り付けのみに利用する金属加工部は、ドーム部に開口部を形成せずに設けてもよい。
(Pressure vessel)
The pressure vessel to be inspected is a container in which a resin or metal container body is reinforced with a composite material layer that holds the container body against internal pressure. The pressure vessel is manufactured by the FW method. The container body has at least one opening in the dome portion for taking in and out the contents, and an openable / closable valve can be attached to the container body. The opening of the container body is provided with a metal processing part such as a mouthpiece for attaching a valve or attaching a jig at the time of manufacturing by the FW method. In particular, when the pressure vessel is large, by providing metal processing portions on both dome portions, it becomes easy to prevent the container body from being eccentric due to the tension when winding the reinforcing fiber composite material. The metal processing portion used only for attaching the jig may be provided without forming an opening in the dome portion.

検査対象の圧力容器としては、例えば、図1に例示した圧力容器1を例示できる。
圧力容器1は、図1及び図2に示すように、円筒状の直胴部10と、直胴部10の両端に設けられた、直胴部10から離れるにつれて窄む半球状のドーム部12と、を備えている。直胴部10とドーム部12とは、樹脂製の容器本体(ライナ)2と、容器本体2の外側に設けられた繊維強化樹脂複合材料層3(以下、「複合材料層3」と記す。)によって形成されている。圧力容器1における一方のドーム部12の先端部には、金属製の口金4が設けられている。口金4は、ドーム部12の先端部において、容器本体2と複合材料層3で挟まれて密着固定されている。
As the pressure vessel to be inspected, for example, the pressure vessel 1 illustrated in FIG. 1 can be exemplified.
As shown in FIGS. 1 and 2, the pressure vessel 1 has a cylindrical straight body portion 10 and a hemispherical dome portion 12 provided at both ends of the straight body portion 10 and narrowing as the distance from the straight body portion 10 increases. And have. The straight body portion 10 and the dome portion 12 are referred to as a resin container body (liner) 2 and a fiber-reinforced resin composite material layer 3 provided on the outside of the container body 2 (hereinafter, referred to as “composite material layer 3”. ) Is formed by. A metal base 4 is provided at the tip of one of the dome portions 12 in the pressure vessel 1. The base 4 is sandwiched between the container body 2 and the composite material layer 3 at the tip of the dome portion 12 and is closely fixed.

容器本体2は、樹脂製の容器である。容器本体の形状は、この例のような円筒状の直胴部の両端に半球状のドーム部が設けられた形状には限定されない。容器本体の大きさは、圧力容器の用途等に応じて適宜設定すればよい。容器本体の厚みは、圧力容器の用途等に応じて適宜設定すればよく、例えば、1〜30mm程度とすることができる。容器本体は、例えば、ブロー成形、回転成形、射出成形、押し出し成形、及びそれらで成形した部品の接合等によって製造できる。 The container body 2 is a resin container. The shape of the container body is not limited to the shape in which hemispherical dome portions are provided at both ends of the cylindrical straight body portion as in this example. The size of the container body may be appropriately set according to the use of the pressure vessel and the like. The thickness of the container body may be appropriately set according to the intended use of the pressure vessel, and can be, for example, about 1 to 30 mm. The container body can be manufactured by, for example, blow molding, rotation molding, injection molding, extrusion molding, and joining of parts formed by them.

容器本体を形成する材料としては、圧力容器に用いられている公知の材料を適宜使用でき、例えば、ガスバリア性を有する材料が挙げられる。具体例としては、例えば、高密度ポリエチレン系樹脂、架橋ポリエチレン、ポリプロピレン樹脂、環状オレフィン系樹脂等のポリオレフィン樹脂;ナイロン6、ナイロン6,6、ナイロン11、ナイロン12等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;アクリロニトリル−ブタジエン−スチレン共重合(ABS)樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂、ポリスルホン樹脂、又はポリイミド樹脂等のエンジニアリングプラスチック;等を例示できる。容器本体を形成する樹脂は、1種でもよく、2種以上でもよい。容器本体は、単層構成であってもよく、多層構成であってもよい。 As the material for forming the container body, a known material used for the pressure vessel can be appropriately used, and examples thereof include a material having a gas barrier property. Specific examples include, for example, polyolefin resins such as high-density polyethylene resins, crosslinked polyethylenes, polypropylene resins, and cyclic olefin resins; polyamide resins such as nylon 6, nylon 6, 6, nylon 11, and nylon 12; polyethylene terephthalates. Examples thereof include polyester resins such as polybutylene terephthalate; engineering plastics such as acrylonitrile-butadiene-styrene copolymer (ABS) resin, polyacetal resin, polycarbonate resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin, and polyimide resin. .. The resin forming the container body may be one type or two or more types. The container body may have a single-layer structure or a multi-layer structure.

容器本体には、ガスバリア性を有するエチレン−ビニルアルコール共重合体(EVOH)等の樹脂や、扁平形状フィラを含む樹脂層を挿入、又は貼り合わせてもよい。また、樹脂層を貼り合わせるための接着層を挿入してもよい。容器本体の外表面は、応力集中による疲労を抑制する点から、滑らかであることが好ましい。 A resin such as ethylene-vinyl alcohol copolymer (EVOH) having a gas barrier property or a resin layer containing a flat-shaped filler may be inserted or bonded to the container body. Further, an adhesive layer for bonding the resin layers may be inserted. The outer surface of the container body is preferably smooth from the viewpoint of suppressing fatigue due to stress concentration.

複合材料層3は、長尺の強化繊維束及び樹脂を含む長尺の強化繊維複合材で形成された層である。硬化性樹脂を用いる場合、複合材料層3は、強化繊維複合材の硬化物からなる。この場合、複合材料層3は、強化繊維束に硬化性樹脂が含浸された長尺の強化繊維複合材が容器本体2の外側に巻き付けられた後に、硬化性樹脂が硬化されることにより形成される。複合材料層3においては、容器本体2の内部に形成された空洞部5の周りを強化繊維複合材が周回している。 The composite material layer 3 is a layer formed of a long reinforcing fiber bundle and a long reinforcing fiber composite material containing a resin. When a curable resin is used, the composite material layer 3 is made of a cured product of a reinforcing fiber composite material. In this case, the composite material layer 3 is formed by winding a long reinforcing fiber composite material in which the reinforcing fiber bundle is impregnated with the curable resin around the outside of the container body 2 and then curing the curable resin. To. In the composite material layer 3, the reinforcing fiber composite material circulates around the cavity 5 formed inside the container body 2.

複合材料層が設けられることにより、容器本体が補強され、圧力容器の破裂圧力が高くなる。複合材料層は、容器本体の外側を全体的に覆うように設けられる。圧力容器が口金を備える場合、複合材料層は、容器本体の外側における口金が治具やバルブの係止を妨げないことを考慮した上で容器本体を全体的に覆うように設けられる。 By providing the composite material layer, the container body is reinforced and the burst pressure of the pressure vessel is increased. The composite material layer is provided so as to cover the entire outside of the container body. When the pressure vessel is provided with a cap, the composite material layer is provided so as to cover the entire vessel body, taking into account that the cap on the outside of the vessel body does not interfere with the locking of jigs and valves.

強化繊維束を形成する強化繊維としては、ピッチ系、ポリアクリロニトリル(PAN)系、レーヨン系等の炭素繊維、ガラス繊維、アラミド繊維、高延伸ポリエチレン繊維を例示でき、炭素繊維が好ましい。特に高弾性率で容器本体の変形量を抑えやすい点では、ピッチ系炭素繊維が好ましい。高い強度が得られやすい点では、PAN系炭素繊維が好ましい。金属部分との接触による電蝕が懸念される場合は、導電性の低いガラス繊維や有機繊維等を金属との接触部に用いることが好ましい。強化繊維束を形成する強化繊維は、1種でもよく、2種以上でもよい。
1本あたりの強化繊維束のフィラメント数は、特に限定されず、例えば、6,000〜60,000本とすることができる。
Examples of the reinforcing fibers forming the reinforcing fiber bundle include pitch-based, polyacrylonitrile (PAN) -based, and rayon-based carbon fibers, glass fibers, aramid fibers, and highly drawn polyethylene fibers, and carbon fibers are preferable. In particular, pitch-based carbon fibers are preferable because they have a high elastic modulus and the amount of deformation of the container body can be easily suppressed. PAN-based carbon fibers are preferable in that high strength can be easily obtained. When there is concern about electrolytic corrosion due to contact with a metal portion, it is preferable to use glass fiber, organic fiber, or the like having low conductivity for the contact portion with the metal. The reinforcing fibers forming the reinforcing fiber bundle may be one type or two or more types.
The number of filaments of the reinforcing fiber bundle per one is not particularly limited, and can be, for example, 6,000 to 60,000.

強化繊維複合材を形成する樹脂としては、硬化性樹脂、熱可塑性樹脂を例示でき、FWの捲回時間を短くできる点から、硬化性樹脂が好ましい。
硬化性樹脂としては、特に限定されず、熱硬化性樹脂であってもよく、光硬化性樹脂であってもよい。硬化性樹脂の具体例としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ユリア樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、ポリイミド樹脂、ビニルエステル樹脂等が挙げられる。硬化性樹脂としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Examples of the resin forming the reinforcing fiber composite material include a curable resin and a thermoplastic resin, and a curable resin is preferable because the winding time of the FW can be shortened.
The curable resin is not particularly limited, and may be a thermosetting resin or a photocurable resin. Specific examples of the curable resin include epoxy resin, unsaturated polyester resin, urea resin, phenol resin, melamine resin, polyurethane resin, polyimide resin, vinyl ester resin and the like. As the curable resin, one type may be used alone, or two or more types may be used in combination.

樹脂には、圧力容器に要求される物性や成形方式に応じて、反応性希釈剤、硬化剤、促進剤、クラック防止用の充填剤、耐候性付与剤等の公知の添加剤を配合してもよい。 The resin is blended with known additives such as a reactive diluent, a curing agent, an accelerator, a filler for preventing cracks, and a weather resistance imparting agent according to the physical properties required for the pressure vessel and the molding method. May be good.

複合材料層中の強化繊維の体積分率は、55体積%以上が好ましく、55〜75体積%がより好ましい。強化繊維の体積分率が前記下限値以上であれば、より少ない量の強化繊維で破裂圧力が高い圧力容器が得られる。そのため、破裂圧力が高く、軽量な圧力容器を安価に製造できる。強化繊維の体積分率が前記上限値以下であれば、外観が良好で耐疲労に優れた圧力容器が得られる。
複合材料層中の強化繊維の体積分率は、焼成法、溶解法等によって試料中の樹脂を分解し、樹脂分解前後の試料の質量を天秤により測定して強化繊維と樹脂の質量を求めた後、強化繊維及び樹脂の密度を用いて算出する。
The volume fraction of the reinforcing fibers in the composite material layer is preferably 55% by volume or more, more preferably 55 to 75% by volume. When the volume fraction of the reinforcing fibers is equal to or higher than the lower limit value, a pressure vessel having a high burst pressure can be obtained with a smaller amount of reinforcing fibers. Therefore, a lightweight pressure vessel having a high burst pressure can be manufactured at low cost. When the volume fraction of the reinforcing fiber is not more than the upper limit value, a pressure vessel having a good appearance and excellent fatigue resistance can be obtained.
For the body integration rate of the reinforcing fibers in the composite material layer, the resin in the sample was decomposed by a firing method, a melting method, etc., and the mass of the sample before and after the resin decomposition was measured with a balance to obtain the masses of the reinforcing fibers and the resin. After that, it is calculated using the densities of the reinforcing fibers and the resin.

複合材料層の平均厚さは、目的の破裂圧力に応じて適宜設定できる。破裂圧力、内容量が一定でも、圧力容器の直径Dに対する長さLの比L/Dが変われば、必要な平均厚さも変わる。
複合材料層の平均厚さは、1〜35mmが好ましく、4〜25mmがより好ましい。複合材料層の平均厚さが前記範囲の下限値以上であれば、必要な破裂圧力が得られやすい。複合材料層の平均厚さが前記範囲の上限値以下であれば、強化繊維の強度発現率が高くなり、圧力容器を軽量化しやすく、コスト面でも有利である。
The average thickness of the composite material layer can be appropriately set according to the desired burst pressure. Even if the burst pressure and the internal volume are constant, if the ratio L / D of the length L to the diameter D of the pressure vessel changes, the required average thickness also changes.
The average thickness of the composite material layer is preferably 1 to 35 mm, more preferably 4 to 25 mm. When the average thickness of the composite material layer is not less than the lower limit of the above range, the required burst pressure can be easily obtained. When the average thickness of the composite material layer is not more than the upper limit of the above range, the strength development rate of the reinforcing fibers is high, the weight of the pressure vessel can be easily reduced, and it is advantageous in terms of cost.

口金の形態は、圧力容器に用いられる公知の形態とすることができる。圧力容器1における口金4は、貫通孔を有する略円筒状になっている。口金の内面の形状は、口金内に取り付けられるバルブ等の形状に応じて設計される。例えば、口金の貫通孔における上端寄りの内周面に雌螺子を形成し、ガス供給及び取出用のバルブ等をねじ込みにより取り付け可能にすることができる。貫通孔を有する略円筒状部に半径方向に張り出したフランジ部が設けられた口金は、フランジ部が複合材料層に覆われることで容器の内圧に抗する効果が高い。 The form of the base can be a known form used for the pressure vessel. The base 4 in the pressure vessel 1 has a substantially cylindrical shape having a through hole. The shape of the inner surface of the base is designed according to the shape of the valve or the like mounted inside the base. For example, a female screw can be formed on the inner peripheral surface of the through hole of the base near the upper end, and a valve for supplying and taking out gas can be attached by screwing. A mouthpiece provided with a flange portion protruding in the radial direction in a substantially cylindrical portion having a through hole has a high effect of resisting the internal pressure of the container by covering the flange portion with a composite material layer.

口金を構成する金属としては、特に限定されず、公知の金属を用いることができる。例えば、アルミニウム合金、ステンレス鋼(SUS)、炭素鋼、合金鋼、黄銅等を例示できる。口金を構成する金属は、1種でもよく、2種以上でもよい。
口金と容器本体の間、口金と複合材料層の間には、ガスシール、接着、応力緩衝、電蝕防止等の目的で金属以外の材料を用いてもよい。
The metal constituting the base is not particularly limited, and a known metal can be used. For example, aluminum alloy, stainless steel (SUS), carbon steel, alloy steel, brass and the like can be exemplified. The metal constituting the base may be one type or two or more types.
A material other than metal may be used between the base and the container body and between the base and the composite material layer for the purpose of gas sealing, adhesion, stress buffering, prevention of electrolytic corrosion, and the like.

(製造方法)
圧力容器は、例えば、FW法により、長尺の強化繊維複合材を容器本体に巻き付け、必要に応じて硬化させる方法で製造できる。強化繊維複合材の巻き付け中、巻き付け後、及び硬化中の強化繊維の所定位置からの移動が小さくなるように、各種材料及び条件を設定する。
(Production method)
The pressure vessel can be manufactured, for example, by a method in which a long reinforcing fiber composite material is wound around the container body and cured as necessary by the FW method. Various materials and conditions are set so that the movement of the reinforcing fiber from a predetermined position during winding, after winding, and during curing of the reinforcing fiber composite material is small.

圧力容器の製造方法としては、強化繊維束への樹脂の含浸と、強化繊維複合材の巻き付けを連続して行うウェット方式のFW法を採用することが好ましい。例えば、複数本の長尺の強化繊維束を引き揃えた強化繊維基材に硬化性樹脂を含浸させて強化繊維複合材とする。続いて、強化繊維複合材を容器本体の外側に巻き付けた後、硬化性樹脂を硬化させて複合材料層を形成する。
硬化性樹脂を炭素繊維束に含浸させる方法は、特に限定されず、公知の方法を採用できる。
As a method for manufacturing the pressure vessel, it is preferable to adopt a wet type FW method in which the reinforcing fiber bundle is impregnated with the resin and the reinforcing fiber composite material is continuously wound. For example, a reinforcing fiber base material in which a plurality of long reinforcing fiber bundles are aligned is impregnated with a curable resin to obtain a reinforcing fiber composite material. Subsequently, the reinforcing fiber composite material is wound around the outside of the container body, and then the curable resin is cured to form a composite material layer.
The method of impregnating the carbon fiber bundle with the curable resin is not particularly limited, and a known method can be adopted.

圧力容器の製造方法の具体例としては、例えば、以下の方法が挙げられる。
図3に示すように、複数本の長尺の炭素繊維束を引き揃えた炭素繊維束20を、複数のガイドローラ102によって、硬化性樹脂Pが収容された樹脂槽100に案内する。樹脂槽100内の硬化性樹脂Pに外周面が接するように配置された樹脂添着ロール104を回転させ、前記外周面に付着した硬化性樹脂Pを炭素繊維束20に付着させ、含浸させて炭素繊維複合材22とする。このとき、樹脂添着ロール104の外周面における硬化性樹脂Pを付着させる側に、前記外周面から所定の距離だけ離間するようにスクレーパ106を配置し、余分な硬化性樹脂Pを掻き取る。次いで、炭素繊維複合材22を容器本体2の外側に巻き付け、硬化性樹脂Pを硬化させて複合材料層を形成する。
樹脂添着ロール104の外周面とスクレーパ106の先端との距離を調節することで、硬化性樹脂Pの付着量を調節し、炭素繊維複合材における炭素繊維の体積分率を調節することができる。
Specific examples of the method for manufacturing the pressure vessel include the following methods.
As shown in FIG. 3, the carbon fiber bundle 20 in which a plurality of long carbon fiber bundles are aligned is guided to the resin tank 100 containing the curable resin P by the plurality of guide rollers 102. The resin-impregnated roll 104 arranged so that the outer peripheral surface is in contact with the curable resin P in the resin tank 100 is rotated, and the curable resin P adhering to the outer peripheral surface is adhered to the carbon fiber bundle 20 and impregnated with carbon. The fiber composite material 22 is used. At this time, the scraper 106 is arranged on the outer peripheral surface of the resin-attached roll 104 so as to be separated from the outer peripheral surface by a predetermined distance on the side to which the curable resin P is attached, and the excess curable resin P is scraped off. Next, the carbon fiber composite material 22 is wound around the outside of the container body 2 and the curable resin P is cured to form a composite material layer.
By adjusting the distance between the outer peripheral surface of the resin-coated roll 104 and the tip of the scraper 106, the amount of the curable resin P adhered can be adjusted, and the volume fraction of carbon fibers in the carbon fiber composite material can be adjusted.

強化繊維束への含浸時の樹脂粘度は、10〜1000mPa・sが好ましい。樹脂粘度が前記範囲の上限値以下であれば、含浸時に強化繊維束内に樹脂が含浸しやすい。樹脂粘度が前記範囲の下限値以上であれば、巻き付けから硬化前までの間に樹脂が飛散したり、移動したりすることを抑制しやすい。樹脂粘度は、樹脂の種類、及び含浸時の樹脂温度を調節することで調節できる。 The resin viscosity when impregnated into the reinforcing fiber bundle is preferably 10 to 1000 mPa · s. When the resin viscosity is not more than the upper limit of the above range, the resin is likely to be impregnated in the reinforcing fiber bundle at the time of impregnation. When the resin viscosity is equal to or higher than the lower limit of the above range, it is easy to prevent the resin from scattering or moving between winding and before curing. The resin viscosity can be adjusted by adjusting the type of resin and the resin temperature at the time of impregnation.

ウェット方式のFW法において樹脂粘度が低い場合、樹脂が飛散しない程度の速度で容器本体を回転させ、樹脂が滴下したり、移動して偏在したりしないようにすることが好ましい。強化繊維複合材の巻き付け後、樹脂の漏出や飛散を防ぐために樹脂フィルム、テープ等を強化繊維複合材の上に巻いてもよい。ドライ方式のFW法では、強化繊維束に樹脂を含浸後、巻き付けまでの保管時に樹脂が移動しないように、常温での樹脂粘度はウェット方式の場合よりも高くすることが一般的である。硬化時には樹脂が流動し、強化繊維束間及び重なっている強化繊維複合材間の空間を満たすことが可能で、かつ流動しすぎて樹脂が流失することを抑制できる粘度特性とすることが好ましい。 When the resin viscosity is low in the wet FW method, it is preferable to rotate the container body at a speed at which the resin does not scatter so that the resin does not drip or move and is unevenly distributed. After wrapping the reinforcing fiber composite material, a resin film, tape or the like may be wrapped on the reinforced fiber composite material in order to prevent leakage or scattering of the resin. In the dry FW method, after impregnating the reinforcing fiber bundle with the resin, the resin viscosity at room temperature is generally higher than that in the wet method so that the resin does not move during storage until winding. It is preferable that the resin has a viscosity characteristic that allows the resin to flow during curing to fill the space between the reinforcing fiber bundles and the overlapping reinforcing fiber composite materials, and to prevent the resin from flowing out due to excessive flow.

強化繊維複合材中の樹脂量は、硬化後の強化繊維束内の繊維間の隙間、繊維束間の空間、及び重なっている強化繊維複合材間を樹脂で充填することを考慮して設定する。また、巻き込まれた気体を流出させる目的で、若干多めに設定することが好ましい。ただし、樹脂量が多すぎると、巻き付けられた強化繊維複合材の締め付けによって樹脂が絞り出され、それに伴って強化繊維が所定の位置及び角度からずれるおそれがある。樹脂量が少ない場合は、強化繊維束内、強化繊維束間、強化繊維複合材間にボイド(空隙)が生じるおそれがある。複合材料層に大きなボイドが無い場合、繊維強度に依存する静的加圧による破裂試験に対しては影響が出にくい。しかし、多量のボイドがあると樹脂破壊のきっかけとなり、疲労性能の低下を招く。 The amount of resin in the reinforcing fiber composite material is set in consideration of filling the gaps between the fibers in the reinforcing fiber bundle after curing, the spaces between the fiber bundles, and the overlapping reinforcing fiber composite materials with resin. .. Further, it is preferable to set a slightly larger amount for the purpose of causing the entrained gas to flow out. However, if the amount of resin is too large, the resin may be squeezed out by tightening the wound reinforcing fiber composite material, and the reinforcing fibers may be displaced from a predetermined position and angle accordingly. When the amount of resin is small, voids (voids) may occur in the reinforcing fiber bundles, between the reinforcing fiber bundles, and between the reinforcing fiber composite materials. In the absence of large voids in the composite layer, it is less likely to affect burst testing by static pressurization, which depends on fiber strength. However, if there are a large amount of voids, it will trigger resin destruction and reduce fatigue performance.

強化繊維複合材における強化繊維の体積分率は、55〜75体積%が好ましい。前記体積分率が前記範囲の下限値以上であれば、破裂圧力が高く、軽量で低コストの圧力容器が得られやすい。前記体積分率が前記範囲の上限値以下であれば、外観が良好で耐疲労に優れた圧力容器が得られやすい。 The volume fraction of the reinforcing fibers in the reinforcing fiber composite material is preferably 55 to 75% by volume. When the volume fraction is at least the lower limit of the above range, the burst pressure is high, and a lightweight and low-cost pressure vessel can be easily obtained. When the volume fraction is not more than the upper limit of the above range, it is easy to obtain a pressure vessel having a good appearance and excellent fatigue resistance.

硬化性樹脂を硬化させる方法は、硬化性樹脂の種類に応じて適宜選択すればよい。具体的には、熱硬化性樹脂を使用する場合は加熱により硬化させ、光硬化性樹脂を使用する場合は光照射により硬化させる。 The method for curing the curable resin may be appropriately selected according to the type of the curable resin. Specifically, when a thermosetting resin is used, it is cured by heating, and when a photocurable resin is used, it is cured by light irradiation.

FW法による圧力容器の製造においては、強化繊維複合材の巻き付けの形態が各工程の影響で所望の形態とならず、複合材料層中に破壊の起点となるボイド等が発生し、破裂圧力が低下することがある。例えば、強化繊維複合材の重なり部分で段差が大きくなると、気体を巻き込んでボイドが生じる。ドライ方式では、一般にウェット方式に比べて高粘度の樹脂が用いられるため、巻き付け後に樹脂が流動しにくいことでボイドが生じることがある。ウェット方式では、強化繊維束の形状、張力、含浸時間、樹脂粘度、樹脂添着量等が周囲の環境変化、運転中の振動等で変動しやすく、強化繊維複合材の樹脂量が少なくなるとボイドが生じる。 In the manufacture of pressure vessels by the FW method, the form of winding the reinforcing fiber composite material does not become the desired form due to the influence of each process, voids and the like that are the starting points of fracture are generated in the composite material layer, and the burst pressure is increased. May decrease. For example, if the step becomes large at the overlapping portion of the reinforcing fiber composite material, gas is entrained and a void is generated. In the dry method, a resin having a higher viscosity than in the wet method is generally used, so that the resin does not easily flow after winding, which may cause voids. In the wet method, the shape, tension, impregnation time, resin viscosity, resin adhesion amount, etc. of the reinforcing fiber bundle are likely to fluctuate due to changes in the surrounding environment, vibration during operation, etc., and voids occur when the resin amount of the reinforcing fiber composite material decreases. Occurs.

ウェット方式においては、樹脂の流動性を上げ、硬化前に巻き込んだ気体を追い出すボイド対策がある。しかし、この方法は、硬化前に流動性が高い樹脂が巻き付けた強化繊維複合材から垂れ落ちるため、強化繊維複合材の樹脂量を多めに設定する必要がある。そのため、余分な樹脂が絞り出されるのに伴い、特に容器本体に近い内側部分で強化繊維が緩んで繊維の蛇行や屈曲が生じやすい。強化繊維に蛇行や屈曲が生じて配置がずれると、強化繊維の強度発現率が低下し、破裂圧力が低下する。 In the wet method, there is a void countermeasure that increases the fluidity of the resin and expels the gas entrained before curing. However, in this method, since the highly fluid resin drips from the wound reinforcing fiber composite material before curing, it is necessary to set a large amount of resin in the reinforcing fiber composite material. Therefore, as the excess resin is squeezed out, the reinforcing fibers are loosened especially in the inner portion close to the container body, and the fibers are likely to meander or bend. When the reinforcing fibers meander or bend and are misaligned, the strength development rate of the reinforcing fibers decreases and the burst pressure decreases.

このように、製造条件の制御によってボイドや強化繊維のずれ等を完全に防ぐことは難しい。強化繊維複合材の巻き付け量を多くすれば、破裂圧力が十分に高い圧力容器が得られるが、圧力容器が重くなるうえ、コストも高くなる。破壊試験を行った圧力容器は使用できないことから、特に軽量の圧力容器を得るためには、非破壊試験による圧力容器の検査方法が重要である。 In this way, it is difficult to completely prevent voids and displacement of reinforcing fibers by controlling the manufacturing conditions. If the winding amount of the reinforcing fiber composite material is increased, a pressure vessel having a sufficiently high burst pressure can be obtained, but the pressure vessel becomes heavy and the cost increases. Since a pressure vessel subjected to a destructive test cannot be used, a method for inspecting the pressure vessel by a non-destructive test is particularly important in order to obtain a lightweight pressure vessel.

(検査方法)
本発明の圧力容器の検査方法は、非破壊試験によって圧力容器の状態を検査できる。具体的には、本発明の圧力容器の検査方法は、以下の工程(x)及び工程(y)を有する。
(x)使用圧力P(MPa)として同じ設計に基づいて製造されたp個(ただし、pは3以上の整数である。)の圧力容器からなる圧力容器群V、V、・・・、V、・・・Vについて、それぞれの圧力容器Vに対し、使用圧力P以上の圧力P(MPa)を負荷した状態で、直胴部の軸方向において異なる3箇所以上を含むq箇所(ただし、qは3以上の整数である。)でフープ方向の歪を測定する。
(y)q箇所のフープ方向の歪の標準偏差Xを求め、標準偏差Xを用いて各圧力容器Vの状態を判断する。
(Inspection method)
The pressure vessel inspection method of the present invention can inspect the condition of the pressure vessel by a non-destructive test. Specifically, the pressure vessel inspection method of the present invention has the following steps (x) and (y).
(X) Pressure vessel group consisting of p pressure vessels manufactured based on the same design as the working pressure P 0 (MPa) (where p is an integer of 3 or more) V 1 , V 2 , ... ·, V i, for · · · V p, for each of the pressure vessel V i, in a state loaded with working pressure P 0 or more pressure P T (MPa), different three or more in the axial direction of the cylindrical body portion The strain in the hoop direction is measured at q points including (where q is an integer of 3 or more).
(Y) a standard deviation X i of the distortion in the hoop direction of the q points, to determine the state of the pressure vessel V i using standard deviation X i.

pは、3以上の整数であり、3〜200の整数が好ましい。 p is an integer of 3 or more, and an integer of 3 to 200 is preferable.

使用圧力Pは、製造する圧力容器について予め設定される使用時の内圧の最高値である。
圧力P、すなわち試験圧力は、検査精度が高くなる点から、下記式(i)で表される条件を満たすことが好ましい。
1.0×P≦P≦1.5×P ・・・(i)
圧力Pは、圧力容器に破損が生じない範囲で、使用圧力Pに対して、1.0倍以上1.5倍以下が好ましく、1.5倍が特に好ましい。圧力Pが下限値以上であれば、使用時の歪範囲をカバーでき、上限値以内であれば、容器の欠陥を増やす可能性が少ない。圧力Pは、例えば、圧力容器内に水を充填することによって調節できる。
The working pressure P 0 is the maximum value of the internal pressure at the time of use set in advance for the pressure vessel to be manufactured.
The pressure PT , that is, the test pressure, preferably satisfies the condition represented by the following formula (i) from the viewpoint of increasing the inspection accuracy.
1.0 x P 0 ≤ P T ≤ 1.5 x P 0 ... (i)
The pressure P T is within a range that does not cause damage to the pressure vessel, with respect to working pressure P 0, preferably 1.0 times to 1.5 times or less, particularly preferably 1.5 times. If the pressure PT is at least the lower limit value, the strain range during use can be covered, and if it is within the upper limit value, there is little possibility of increasing defects in the container. The pressure PT can be adjusted, for example, by filling the pressure vessel with water.

工程(x)では、各圧力容器Vの直胴部の軸方向において異なる3箇所以上を含むq箇所でフープ方向の歪を測定する。
FW法で製造される圧力容器は、一般に容器が直胴部の軸方向に対して垂直方向に破断して破壊部分が飛散しないように、フープ方向の強化繊維複合材が破裂強度に最もクリティカルになるように設計される。そのため、破裂圧力と歪との相関を見るために、フープ方向に沿って歪を測定する。具体的には、圧力容器の直胴部のフープ層の強化繊維束の繊維軸方向の歪を測定する。
In step (x), to measure the strain in the hoop direction by q positions containing more than three different in the axial direction of the straight body portion of the pressure vessel V i.
In pressure vessels manufactured by the FW method, the reinforcing fiber composite material in the hoop direction is the most critical to the burst strength so that the vessel generally breaks in the direction perpendicular to the axial direction of the straight body and the fractured part does not scatter. Designed to be. Therefore, the strain is measured along the hoop direction in order to see the correlation between the burst pressure and the strain. Specifically, the strain in the fiber axis direction of the reinforcing fiber bundle in the hoop layer of the straight body of the pressure vessel is measured.

歪の測定箇所は、直胴部の軸方向において異なる3箇所以上を含むq箇所である。
本発明では、q箇所の測定箇所が、直胴部の軸方向における両側のドーム部とのそれぞれの境界近傍の2箇所と、直胴部の軸方向の中央の1箇所の合計3箇所を含むことが好ましい。例えば、図4に示すように、直胴部10における両側のドーム部12との境界近傍の2箇所の測定点a1,a3と、直胴部10の軸方向の中央の1箇所の測定点a2とを、直胴部10の軸方向に並べる態様が挙げられる。直胴部10の軸方向において異なる位置であれば、図5に示すように、3箇所の測定点a1〜a3を周方向において異なる位置にしてもよい。
The strain measurement points are q points including three or more points that differ in the axial direction of the straight body portion.
In the present invention, the measurement points of q points include two points near the boundary between the dome portions on both sides in the axial direction of the straight body portion and one point in the center in the axial direction of the straight body portion, for a total of three points. Is preferable. For example, as shown in FIG. 4, two measurement points a1 and a3 in the vicinity of the boundary between the straight body portion 10 and the dome portions 12 on both sides and one measurement point a2 in the center of the straight body portion 10 in the axial direction. And are arranged in the axial direction of the straight body portion 10. As long as the positions are different in the axial direction of the straight body portion 10, the three measurement points a1 to a3 may be set to different positions in the circumferential direction as shown in FIG.

q個の測定箇所は、直胴部の軸方向において異なる測定箇所を3箇所以上含んでいれば、直胴部の軸方向は同じ位置で、周方向に異なる2箇所以上の測定箇所を含んでいてもよい。歪と破裂圧力との相関が高く、圧力容器の状態の検査精度がより高くなる点では、q個の測定箇所がすべて直胴部の軸方向において互いに異なる位置であることが好ましい。 If the q measurement points include three or more measurement points that differ in the axial direction of the straight body, the axial direction of the straight body includes two or more measurement points that differ in the circumferential direction. You may. It is preferable that all q measurement points are located at different positions in the axial direction of the straight body portion in that the correlation between the strain and the burst pressure is high and the inspection accuracy of the state of the pressure vessel is high.

qは、3以上の整数であり、3〜15の整数が好ましく、3〜6の整数がより好ましい。qが前記範囲の下限値以上であれば、圧力容器の状態を高い精度で検査できる。qが前記範囲の上限値以下であれば、コストの増加や作業負荷を抑えることができる。 q is an integer of 3 or more, preferably an integer of 3 to 15, and more preferably an integer of 3 to 6. When q is equal to or higher than the lower limit of the above range, the state of the pressure vessel can be inspected with high accuracy. When q is equal to or less than the upper limit of the above range, an increase in cost and a workload can be suppressed.

歪の測定方法としては、特に限定されず、ひずみゲージ法、オプティカルファイバー法、画像相関法等を例示できる。 The strain measuring method is not particularly limited, and examples thereof include a strain gauge method, an optical fiber method, and an image correlation method.

工程(y)では、q箇所のフープ方向の歪の標準偏差Xを求め、標準偏差Xを用いて各圧力容器Vの状態を判断する。
標準偏差Xは、下記式(1)及び(2)から求められる。
In step (y), a standard deviation X i hoop direction of the distortion of the q points, to determine the state of the pressure vessel V i using standard deviation X i.
The standard deviation X i is obtained from the following equations (1) and (2).

Figure 2020153503
Figure 2020153503

ただし、前記式(1)及び(2)中、ε は、圧力容器Vのj箇所目の歪の測定値である。ε aveは、圧力容器Vのq箇所の歪の平均値である。 However, the above formula (1) and (2), epsilon i j is a measure of the distortion of the j point th of the pressure vessel V i. ε i ave is the average value of the strain at q points of the pressure vessel V i .

例えば、圧力容器群のうち、標準偏差Xが小さい圧力容器Vから順にn個(ただし、nは、1〜pの整数である。)の圧力容器を状態が良好であると判断する。nは、使用圧力P、容器本体及び複合材料層の材料、成形条件等、圧力容器の設計に応じて適宜設定できる。 For example, of the pressure vessel group, n pieces from the standard deviation X i is smaller pressure vessel V i in order (where, n is an integer from 1 to p.) States the pressure vessel is determined to be good. n can be appropriately set according to the design of the pressure vessel, such as the working pressure P 0 , the material of the container body and the composite material layer, and the molding conditions.

本発明では、他の容器と比較しやすくなる点から、それぞれの圧力容器Vに対し、標準偏差Xからフープ方向の歪のばらつきの変動係数Cv(%)を求め、変動係数Cv(%)を用いて各圧力容器Vの状態を判断することが好ましい。
変動係数Cvは、下記式(3)から求められる。
In the present invention, from the viewpoint of easily compared with other containers, for each of the pressure vessel V i, determined from the standard deviation X i of variations in the hoop direction of the strain variation coefficient Cv i (%), the variation coefficient Cv i (%) it is preferable to determine the state of the pressure vessel V i with.
Variation coefficient Cv i is determined from the following equation (3).

Figure 2020153503
Figure 2020153503

変動係数Cvは圧力容器の破裂圧力と相関があり、変動係数Cvが低いほど、破裂圧力が高い圧力容器である。そのため、圧力容器の設計に応じて変動係数Cvの閾値を設定して、製造した圧力容器群のうち、変動係数Cvが閾値以下の圧力容器を状態が良好であると判断することができる。
変動係数Cvの閾値は、圧力容器の設計に応じて適宜設定でき、例えば、後述の製造例のような材料、積層構成、形状、及び製造条件の場合、10%とすることができる。
The coefficient of variation Cv i correlates with the burst pressure of the pressure vessel, and the lower the coefficient of variation Cvi i , the higher the burst pressure of the pressure vessel. Therefore, by setting the threshold value of the variation coefficient Cv i depending on the design of the pressure vessel, within the pressure vessel group produced can be variation coefficient Cv i is less of a pressure vessel threshold condition is determined to be good ..
The threshold value of the coefficient of variation Cv i can be appropriately set according to the design of the pressure vessel, and can be set to 10%, for example, in the case of the material, laminated structure, shape, and manufacturing conditions as in the manufacturing example described later.

以上説明したように、本発明では、p個の圧力容器のそれぞれに対し、圧力Pを負荷した状態で、直胴部の軸方向において異なる3箇所以上を含むq箇所でフープ方向の歪を測定し、その標準偏差Xを用いて各圧力容器Vの状態を判断する。標準偏差X、及び標準偏差Xから求められる変動係数Cvは、圧力容器の破裂圧力と相関があるため、非破壊で圧力容器の状態を判断することができる。このように、本発明の圧力容器の検査方法によれば、ボイドの発生、強化繊維束の蛇行や屈曲等による破裂圧力の低下の有無を非破壊で判断できるため、破裂圧力が高い圧力容器を安定して確保することができる。
また、強化繊維複合材の巻き付け量を過度に多くしなくても、破裂圧力が高い圧力容器を確保できるため、圧力容器を軽量化することができ、コスト面でも有利である。
As described above, in the present invention, strain in the hoop direction is applied to each of the p pressure vessels at q points including three or more different points in the axial direction of the straight body portion in a state where the pressure PT is applied. measured, to determine the state of the pressure vessel V i using the standard deviation X i. Standard deviation X i, and the variation coefficient Cv i obtained from the standard deviation X i, since it is correlated with the burst pressure of the pressure vessel, it is possible to determine the state of the pressure vessel in a non-destructive. As described above, according to the pressure vessel inspection method of the present invention, it is possible to non-destructively determine whether or not the burst pressure is reduced due to the generation of voids, meandering or bending of the reinforcing fiber bundle, etc., so that the pressure vessel having a high burst pressure can be used. It can be secured stably.
Further, since the pressure vessel having a high burst pressure can be secured without excessively increasing the winding amount of the reinforcing fiber composite material, the weight of the pressure vessel can be reduced, which is advantageous in terms of cost.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。本実施例では、炭素繊維束への樹脂添着量を変更して複数の圧力容器を製造し、その状態を確認した。
[原料]
本実施例に使用した原料を以下に示す。
(炭素繊維束)
炭素繊維束(A−1):Mitsubishi Chemical Carbon fiber and Compasites社製の商品名「Grafil 37−800WD」(フィラメント数:30,000本、繊維繊度:1.675g/m)。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following description. In this example, a plurality of pressure vessels were manufactured by changing the amount of resin attached to the carbon fiber bundle, and the state was confirmed.
[material]
The raw materials used in this example are shown below.
(Carbon fiber bundle)
Carbon fiber bundle (A-1): Trade name "Grafil 37-800WD" manufactured by Mitsubishi Chemical Carbon fiber and Companies (number of filaments: 30,000, fiber fineness: 1.675 g / m).

(硬化性樹脂組成物)
硬化性樹脂組成物(B−1):ビスフェノールA型エポキシ樹脂(Huntsman社製、商品名「Araldite LY 564/1564」)100質量部に対して、硬化剤(Huntsman社製、商品名「Aradur 917」)を98質量部、促進剤(Huntsman社製、商品名「Accelerator 960−1」)を3質量部配合した組成物。
(Curable resin composition)
Curable resin composition (B-1): Bisphenol A type epoxy resin (manufactured by Huntsman, trade name "Araldite LY 564/1564") with respect to 100 parts by mass of a curing agent (manufactured by Huntsman, trade name "Aradur 917"). A composition containing 98 parts by mass of ") and 3 parts by mass of an accelerator (manufactured by Huntsman Corporation, trade name" Accelerator 960-1 ").

(容器本体用樹脂)
容器本体用樹脂(C−1):ポリエチレン樹脂(日本ポリエチレン社製、商品名「ノバテックHB111R」)。
(Resin for container body)
Container body resin (C-1): Polyethylene resin (manufactured by Japan Polyethylene Corporation, trade name "Novatec HB111R").

(口金)
アルミ合金6061に熱処理T6を施したブロックから、容器本体との接合ネジ、及びFW装置の軸及び加圧ノズルを取り付けるためのネジを切った口金を切削加工によって得た。
(Cap)
From the block obtained by subjecting the aluminum alloy 6061 to the heat treatment T6, a joining screw to the container body and a threaded mouthpiece for attaching the shaft of the FW device and the pressure nozzle were obtained by cutting.

[製造例1]
容器本体用樹脂(C−1)を用いたブロー成形により、図1に例示した容器本体2を作製した。容器本体2のドーム部先端の口金接合部のネジ部にアルミ用接着剤を塗布し、口金4をねじ込みながら接着固定した。
使用圧力P(MPa)よりも十分に大きい目標の破裂圧力を表1に示すとおりに設定し、それを満たすように炭素繊維複合材の樹脂添着量及び巻き付け量を調節し、FW法で圧力容器A〜Iを製造した。
具体的には、樹脂添着ロール104を用いて長尺の炭素繊維束(A−1)に硬化性樹脂組成物(B−1)を添着し、容器本体2の外側に巻き付けた後、硬化炉に導いて95℃で加熱し、硬化して圧力容器を得た。硬化炉における加熱時間(硬化時間)は、炭素繊維複合材の巻き付け量に応じて2〜12時間の範囲で決定した。製造中は、樹脂添着ロール104の外周面とスクレーパ106の先端との距離を調節し、樹脂添着ロール104の外周面上の硬化性樹脂組成物(B−1)の厚みを調節することで、炭素繊維束(A−1)への硬化性樹脂組成物(B−1)の添着量を調節した。
[Manufacturing Example 1]
The container body 2 illustrated in FIG. 1 was produced by blow molding using the container body resin (C-1). An aluminum adhesive was applied to the threaded portion of the base joint at the tip of the dome portion of the container body 2, and the base 4 was screwed and fixed.
Set the target burst pressure sufficiently larger than the working pressure P 0 (MPa) as shown in Table 1, adjust the resin attachment amount and winding amount of the carbon fiber composite material so as to satisfy it, and apply the pressure by the FW method. Containers A to I were manufactured.
Specifically, a curable resin composition (B-1) is attached to a long carbon fiber bundle (A-1) using a resin-impregnated roll 104, wound around the outside of the container body 2, and then cured. The mixture was heated at 95 ° C. and cured to obtain a pressure vessel. The heating time (curing time) in the curing furnace was determined in the range of 2 to 12 hours depending on the winding amount of the carbon fiber composite material. During production, the distance between the outer peripheral surface of the resin-coated roll 104 and the tip of the scraper 106 is adjusted, and the thickness of the curable resin composition (B-1) on the outer peripheral surface of the resin-coated roll 104 is adjusted. The amount of the curable resin composition (B-1) attached to the carbon fiber bundle (A-1) was adjusted.

[容器発現率]
各圧力容器について、水圧式加圧試験器により、破裂圧力を測定した。目標の破裂圧力に対する破裂圧力の測定値の割合を容器発現率として算出した。
[Container expression rate]
The burst pressure of each pressure vessel was measured with a hydraulic pressure tester. The ratio of the measured value of the burst pressure to the target burst pressure was calculated as the container expression rate.

[例1]
以下の3つの検査方法で圧力容器A〜Iの状態を検査した。
(検査方法I)
設計の使用圧力Pに対して1.5倍の圧力P(MPa)を負荷した状態の圧力容器の直胴部において、軸方向の両側のドーム部との境界近傍と、中央の3箇所(図6の測定点a〜c)のフープ方向の歪をひずみゲージを用いて測定し、式(1)〜(3)からフープ方向の歪の変動係数Cvを求めた。
[Example 1]
The condition of the pressure vessels A to I was inspected by the following three inspection methods.
(Inspection method I)
In the straight body of the pressure vessel with a pressure PT (MPa) 1.5 times the design working pressure P 0 , the vicinity of the boundary with the dome on both sides in the axial direction and three points in the center. The strain in the hoop direction at the measurement points a to c in FIG. 6 was measured using a strain gauge, and the coefficient of variation Cv i of the strain in the hoop direction was obtained from the equations (1) to (3).

(検査方法II)
検査方法Iの3点に加え、直胴部の軸方向の中央において、検査方法Iでの測定点bから周方向に90°方向の2箇所のフープ方向の歪を同様に測定し、合計5箇所(図6の測定点a〜e)のフープ方向の歪を用いて式(1)〜(3)から変動係数Cvを求めた。
圧力容器Aの測定点a〜eのそれぞれにおける歪と圧力Pとの関係を図7に示す。
(Inspection method II)
In addition to the three points of the inspection method I, the strains in the hoop direction at two points 90 ° in the circumferential direction from the measurement point b in the inspection method I were similarly measured at the center of the straight body in the axial direction, for a total of 5 points. It was determined variation coefficient Cv i from the point with the hoop direction of the strain (measurement point a~e 6) equation (1) to (3).
Figure 7 shows the relationship between the distortion and the pressure P T in the respective measurement points a~e of the pressure vessel A.

(検査方法III)
検査方法I、IIで測定した直胴部の軸方向の中央における周方向の3箇所(図6の測定点b、d、e)のフープ方向の歪を用いて式(1)〜(3)から変動係数Cvを求めた。
各検査方法による標準偏差X及び変動係数Cvを表1に示す。
(Inspection method III)
Equations (1) to (3) using the strain in the hoop direction at three points in the circumferential direction (measurement points b, d, and e in FIG. 6) in the center of the axial direction of the straight body measured by the inspection methods I and II. to determine the coefficient of variation Cv i from.
Standard deviation X i and coefficient of variation Cv i by each test method are shown in Table 1.

Figure 2020153503
Figure 2020153503

表1及び図7に示すように、直胴部の軸方向の異なる3箇所のフープ方向の歪を用いる検査方法I、IIは、変動係数Cvと容器発現率との相関が見られ、変動係数Cviが低いほど容器発現率が高かった。特に直胴部の軸方向の異なる3箇所のフープ方向の歪のみを用いた検査方法Iは、変動係数Cvと容器発現率との相関が高かった。
一方、直胴部の周方向の異なる3箇所のフープ方向の歪を用いる検査方法IIIは、変動係数Cviと容器発現率との相関が低かった。
As shown in Table 1 and Figure 7, the inspection method I, II using a strain of the hoop direction of the axis directions of three different places of the straight body portion is found a correlation between the variation coefficient Cv i and the container incidence, variation The lower the coefficient Cvi, the higher the container expression rate. In particular testing method I only was used strain hoop direction of the axis directions of three different places of the straight body portion was higher correlation with the variation coefficient Cv i and the container incidence.
On the other hand, in the inspection method III using the strains in the hoop direction at three points different in the circumferential direction of the straight body portion, the correlation between the coefficient of variation Cvi and the container expression rate was low.

1…圧力容器、2…容器本体、3…繊維強化樹脂複合材料層、4…口金、10…直胴部、12…ドーム部。 1 ... Pressure vessel, 2 ... Container body, 3 ... Fiber reinforced resin composite material layer, 4 ... Base, 10 ... Straight body, 12 ... Dome.

Claims (4)

筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄む形状のドーム部とを備え、
前記直胴部及び前記ドーム部が、容器本体と、前記容器本体の外側に設けられた繊維強化樹脂複合材料層とで形成された圧力容器を検査する方法であって、
使用圧力P(MPa)として同じ設計に基づいて製造されたp個(ただし、pは3以上の整数である。)の圧力容器からなる圧力容器群V、V、・・・、V、・・・Vについて、それぞれの圧力容器Vに対し、前記使用圧力P以上の圧力P(MPa)を負荷した状態で、前記直胴部の軸方向において異なる3箇所以上を含むq箇所(ただし、qは3以上の整数である。)でフープ方向の歪を測定してその標準偏差Xを求め、前記標準偏差Xを用いて各圧力容器Vの状態を判断する、圧力容器の検査方法。
It is provided with a tubular straight body portion and dome portions provided at both ends of the straight body portion and having a shape that narrows as the distance from the straight body portion increases.
A method of inspecting a pressure vessel in which the straight body portion and the dome portion are formed of a container body and a fiber reinforced resin composite material layer provided on the outside of the container body.
Pressure vessel group V 1 , V 2 , ..., V consisting of p pressure vessels manufactured based on the same design as the working pressure P 0 (MPa) (where p is an integer of 3 or more). For i , ... V p , with the pressure PT (MPa) of the working pressure P 0 or more being applied to each pressure container V i , three or more different locations in the axial direction of the straight body portion are placed. q locations, including (but, q is an integer of 3 or more.) in seeking the standard deviation X i by measuring the strain of the hoop direction, determines the status of the pressure vessel V i using the standard deviation X i How to inspect the pressure vessel.
前記圧力容器群のうち、前記標準偏差Xが小さい圧力容器Vから順にn個(ただし、nは、1〜pの整数である。)の圧力容器を状態が良好であると判断する、請求項1に記載の圧力容器の検査方法。 Among the pressure vessel group, the n from the standard deviation X i is smaller pressure vessel V i in order (where, n is an integer from 1 to p.) States the pressure vessel is determined to be good, The method for inspecting a pressure vessel according to claim 1. それぞれの圧力容器Vに対し、前記標準偏差Xから前記フープ方向の歪のばらつきの変動係数Cv(%)を求め、前記変動係数Cv(%)を用いて各圧力容器Vの状態を判断する、請求項1に記載の圧力容器の検査方法。 For each of the pressure vessel V i, wherein the standard deviation X i of the distortion of the hoop direction determined coefficient of variation of the variation Cv i (%), of the pressure vessel V i using the coefficient of variation Cv i (%) The method for inspecting a pressure vessel according to claim 1, wherein the state is determined. 前記圧力Pが下記式(i)で表される条件を満たす、請求項1〜3のいずれか一項に記載の圧力容器の検査方法。
1.0×P≦P≦1.5×P ・・・(i)
The method for inspecting a pressure vessel according to any one of claims 1 to 3, wherein the pressure PT satisfies the condition represented by the following formula (i).
1.0 x P 0 ≤ P T ≤ 1.5 x P 0 ... (i)
JP2019055042A 2019-03-22 2019-03-22 Pressure vessel inspection method Pending JP2020153503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019055042A JP2020153503A (en) 2019-03-22 2019-03-22 Pressure vessel inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019055042A JP2020153503A (en) 2019-03-22 2019-03-22 Pressure vessel inspection method

Publications (1)

Publication Number Publication Date
JP2020153503A true JP2020153503A (en) 2020-09-24

Family

ID=72558504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055042A Pending JP2020153503A (en) 2019-03-22 2019-03-22 Pressure vessel inspection method

Country Status (1)

Country Link
JP (1) JP2020153503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106793A1 (en) * 2019-11-25 2021-06-03 ダイキン工業株式会社 Refrigerant cycle system
DE102022114777A1 (en) 2021-06-14 2022-12-15 Toyota Jidosha Kabushiki Kaisha Pressure Vessel Strain Analysis Apparatus and Pressure Vessel Manufacturing Method

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113519A (en) * 1978-02-23 1979-09-05 Kawajiyuu Bousai Kougiyou Kk Pressure container
US5356499A (en) * 1989-10-25 1994-10-18 Thiokol Corporation Method for increasing fiber strength translation in composite pressure vessels using matrix resin formulations containing surface acting agents
JPH0716687A (en) * 1993-07-05 1995-01-20 Tetsuaki Nishimura Instrument for automatically inspecting forging condition in forging machine
JPH08219393A (en) * 1995-02-15 1996-08-30 Toray Ind Inc Gas cylinder
JPH09502939A (en) * 1994-02-18 1997-03-25 サイオコル・コーポレーション Matrix resin formulation containing acid anhydride curing agent and surfactant
JPH10153596A (en) * 1996-11-26 1998-06-09 Nkk Corp Method for evaluating surface defect of frp
JPH10298050A (en) * 1997-04-30 1998-11-10 Lion Corp Powdery artificial tooth cleaning agent in metered discharge container
JP2001503868A (en) * 1996-11-12 2001-03-21 ホイフト ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for determining parameters in a closed vessel, for example, filling level, pressure or gas composition
JP2001074199A (en) * 1999-09-03 2001-03-23 Venture Labo:Kk Internal pressure vessel made of fiber-reinforced resin compound and connector
JP2005337394A (en) * 2004-05-27 2005-12-08 Nippon Oil Corp Fiber-reinforced pressure vessel, and its manufacturing method
JP2006153633A (en) * 2004-11-29 2006-06-15 Mitsubishi Electric Engineering Co Ltd Flaw determining device of matter to be inspected
JP2008089427A (en) * 2006-10-02 2008-04-17 Olympus Corp Stirrer, judge circuit, abnormality judging method of stirrer and analyzer
JP2013113765A (en) * 2011-11-30 2013-06-10 Mitsubishi Materials Corp Method for measuring young's modulus by small-diameter core
JP2013530894A (en) * 2010-06-17 2013-08-01 スリーエム イノベイティブ プロパティズ カンパニー Composite pressure vessel
JP2015007441A (en) * 2013-06-25 2015-01-15 株式会社日本自動車部品総合研究所 Method and system for inspecting high-pressure tank, and high-pressure tank
JP2016212025A (en) * 2015-05-13 2016-12-15 太平洋セメント株式会社 Measuring method of crack occurrence strength of ultra-high strength fiber reinforcement concrete, and specimen of ultra-high strength fiber reinforcement concrete used for the same
JP2017115938A (en) * 2015-12-22 2017-06-29 ニッタ株式会社 High pressure vessel and process of manufacture of high pressure vessel

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113519A (en) * 1978-02-23 1979-09-05 Kawajiyuu Bousai Kougiyou Kk Pressure container
US5356499A (en) * 1989-10-25 1994-10-18 Thiokol Corporation Method for increasing fiber strength translation in composite pressure vessels using matrix resin formulations containing surface acting agents
JPH0716687A (en) * 1993-07-05 1995-01-20 Tetsuaki Nishimura Instrument for automatically inspecting forging condition in forging machine
JPH09502939A (en) * 1994-02-18 1997-03-25 サイオコル・コーポレーション Matrix resin formulation containing acid anhydride curing agent and surfactant
JPH08219393A (en) * 1995-02-15 1996-08-30 Toray Ind Inc Gas cylinder
JP2001503868A (en) * 1996-11-12 2001-03-21 ホイフト ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for determining parameters in a closed vessel, for example, filling level, pressure or gas composition
JPH10153596A (en) * 1996-11-26 1998-06-09 Nkk Corp Method for evaluating surface defect of frp
JPH10298050A (en) * 1997-04-30 1998-11-10 Lion Corp Powdery artificial tooth cleaning agent in metered discharge container
JP2001074199A (en) * 1999-09-03 2001-03-23 Venture Labo:Kk Internal pressure vessel made of fiber-reinforced resin compound and connector
JP2005337394A (en) * 2004-05-27 2005-12-08 Nippon Oil Corp Fiber-reinforced pressure vessel, and its manufacturing method
JP2006153633A (en) * 2004-11-29 2006-06-15 Mitsubishi Electric Engineering Co Ltd Flaw determining device of matter to be inspected
JP2008089427A (en) * 2006-10-02 2008-04-17 Olympus Corp Stirrer, judge circuit, abnormality judging method of stirrer and analyzer
JP2013530894A (en) * 2010-06-17 2013-08-01 スリーエム イノベイティブ プロパティズ カンパニー Composite pressure vessel
JP2013113765A (en) * 2011-11-30 2013-06-10 Mitsubishi Materials Corp Method for measuring young's modulus by small-diameter core
JP2015007441A (en) * 2013-06-25 2015-01-15 株式会社日本自動車部品総合研究所 Method and system for inspecting high-pressure tank, and high-pressure tank
JP2016212025A (en) * 2015-05-13 2016-12-15 太平洋セメント株式会社 Measuring method of crack occurrence strength of ultra-high strength fiber reinforcement concrete, and specimen of ultra-high strength fiber reinforcement concrete used for the same
JP2017115938A (en) * 2015-12-22 2017-06-29 ニッタ株式会社 High pressure vessel and process of manufacture of high pressure vessel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106793A1 (en) * 2019-11-25 2021-06-03 ダイキン工業株式会社 Refrigerant cycle system
DE102022114777A1 (en) 2021-06-14 2022-12-15 Toyota Jidosha Kabushiki Kaisha Pressure Vessel Strain Analysis Apparatus and Pressure Vessel Manufacturing Method
CN115479210A (en) * 2021-06-14 2022-12-16 丰田自动车株式会社 Deformation analysis device for pressure vessel and method for manufacturing pressure vessel
CN115479210B (en) * 2021-06-14 2024-04-05 丰田自动车株式会社 Deformation analysis device for pressure vessel and method for manufacturing pressure vessel

Similar Documents

Publication Publication Date Title
Alabtah et al. The use of fiber reinforced polymeric composites in pipelines: A review
Sebaey Design of oil and gas composite pipes for energy production
US20150192251A1 (en) High pressure carbon composite pressure vessel
KR102039001B1 (en) High-pressure tank
Meijer et al. A failure envelope for±60 filament wound glass fibre reinforced epoxy tubulars
CN106989265B (en) The manufacturing method of pressure pan
JP2007039684A (en) Composite pressure vessel or composite tube, and composite intermediate
US10260678B2 (en) Pressure vessel having wet-wrapped carbon-fiber-reinforced plastic
JP2020153503A (en) Pressure vessel inspection method
Pavlopoulou et al. Numerical and experimental investigation of the hydrostatic performance of fibre reinforced tubes
US11105465B2 (en) Pressure vessel
US20210339491A1 (en) Manufacturing method of high-pressure tank
JP2008296494A (en) Fiber-reinforced composite material molding system and method, and fiber-reinforced composite material
JP6922393B2 (en) Pressure vessel
Reddy Design and Finite Element Analysis of E-glass Fiber Reinforced Epoxy Composite Air Bottle used in Missile System: Experimental Validation
JP7318578B2 (en) pressure vessel
Kaddour et al. Residual stress assessment in thin angle ply tubes
US20230134272A1 (en) Tank
Tabuchi et al. Development of a filament-winding machine based on internal heating by a high-temperature fluid for composite vessels
Kannan et al. Development and mechanical testing of filament wound FRP composite components
Hanson Glass-, boron-, and graphite-filament-wound resin composites and liners for cryogenic pressure vessels
Imielińska Environmental stress cracking in e-glass and aramid/glass epoxy composites
RU213938U1 (en) LARGE-SIZED CYLINDER FOR COMPRESSED HYDROGEN GAS WITH A POLYMER-COMPOSITE SHELL
Alabtah Development of internally pressurized composite/metallic/composite hybrid pipes
PRIMON CHAPTER THREE MOTOR CASES: PRODUCTION AND CONTROL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704