JP2016107485A - Composite molding, and production method thereof - Google Patents

Composite molding, and production method thereof Download PDF

Info

Publication number
JP2016107485A
JP2016107485A JP2014246447A JP2014246447A JP2016107485A JP 2016107485 A JP2016107485 A JP 2016107485A JP 2014246447 A JP2014246447 A JP 2014246447A JP 2014246447 A JP2014246447 A JP 2014246447A JP 2016107485 A JP2016107485 A JP 2016107485A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
core material
skin material
composite molded
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014246447A
Other languages
Japanese (ja)
Inventor
慎介 日高
Shinsuke Hidaka
慎介 日高
和男 鬼頭
Kazuo Kito
和男 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2014246447A priority Critical patent/JP2016107485A/en
Publication of JP2016107485A publication Critical patent/JP2016107485A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite molding in which stress concentration is not caused due to a mold shrinkage difference between a continuous fiber-reinforced thermoplastic resin and a continuous fiber-unreinforced thermoplastic resin or a discontinuous fiber-reinforced thermoplastic resin, which is free from problems such as buckling and a crack of the continuous fiber-reinforced thermoplastic resin, in which warp deformation is not caused but adhesiveness is ensured and rigidity and weight saving are achieved efficiently, and to provide a production method of the composite molding.SOLUTION: The composite molding is obtained by: using the continuous fiber-unreinforced thermoplastic resin or the discontinuous fiber-reinforced thermoplastic resin as a core material; arranging a layer of a thermosetting resin adhesive, which causes a curing reaction with the thermoplastic resin to be used in the core material at (Tm-140°C) or lower temperature, on at least one surface of the core material; and disposing a skin material comprising the continuous fiber-reinforced thermoplastic resin on the layer of the thermosetting resin adhesive.SELECTED DRAWING: Figure 1

Description

本発明は非強化または不連続繊維強化熱可塑性樹脂組成物からなる芯材に連続繊維強化熱可塑性樹脂からなる表皮材を積層し一体化させた複合成形体およびその製造方法に関するものであり、特に剛性、軽量化に優れた自動車内外装部品などの用途に好適に用いられる複合成形体およびその製造方法に関する。   The present invention relates to a composite molded body obtained by laminating and integrating a skin material composed of a continuous fiber reinforced thermoplastic resin on a core material composed of a non-reinforced or discontinuous fiber reinforced thermoplastic resin composition, and particularly a method for producing the same. The present invention relates to a composite molded body suitably used for applications such as automobile interior and exterior parts excellent in rigidity and weight reduction, and a method for producing the same.

近年、環境意識の高まりにより自動車内外装部品などで、CO削減、軽量化などの要望が高まり、高剛性、軽量化を両立するため、炭素繊維(以下、「CF」と略することがある。)で強化することが提案されている。しかしながら炭素繊維を全面的に使用することでコスト高となり、実用化を行う上では困難である、一方で、自動車内外装部品においてその求められる強度、剛性は全体ではなく部分的なものが非常に多く、簡単に補強が可能なシート状のCF基材と樹脂との一体化による射出複合成形体の開発が急務であった。 In recent years, due to increasing environmental awareness, demands for reducing CO 2 and reducing the weight of automobile interior and exterior parts have increased, and carbon fiber (hereinafter “CF”) may be abbreviated to achieve both high rigidity and light weight. )) Is proposed to strengthen. However, using carbon fiber entirely increases the cost and is difficult to put into practical use. On the other hand, the required strength and rigidity of automobile interior and exterior parts are not partial but very partial. In many cases, there has been an urgent need to develop an injection composite molded body by integrating a sheet-like CF base material and a resin that can be easily reinforced.

例えば、射出成形の過程で予め射出金型内に補強が必要な部分にシート状のCF基材、すなわち連続繊維強化熱可塑性樹脂板をセットした状態で射出成形により連続繊維強化熱可塑性樹脂板と不連続繊維強化熱可塑性樹脂組成物とが一体化した複合成形体が知られている(特許文献1参照)。しかし、この発明は、本発明に関わる非強化または不連続繊維強化熱可塑性樹脂の射出後の成形収縮に対し、連続繊維強化熱可塑性樹脂板の熱収縮が非常に小さいため、収縮差による応力集中が発生し、連続繊維強化熱可塑性樹脂板の歪みによる皺が発生したり、状況によっては座屈、割れなどが発生するため表面外観、密着性、補強効果の低下につながる課題があった。また得られた複合成形体の成形収縮差によるソリ変形が発生するなど形状的な課題が生じ、所望の複合成形体は得られないものであった。   For example, a continuous fiber reinforced thermoplastic resin plate is formed by injection molding in a state where a sheet-like CF base material, that is, a continuous fiber reinforced thermoplastic resin plate is set in a portion that needs to be reinforced in advance in the injection molding process. A composite molded body in which a discontinuous fiber reinforced thermoplastic resin composition is integrated is known (see Patent Document 1). However, since the thermal shrinkage of the continuous fiber reinforced thermoplastic resin plate is very small compared to the molding shrinkage after injection of the unreinforced or discontinuous fiber reinforced thermoplastic resin related to the present invention, the stress concentration due to the shrinkage difference. Has occurred, causing wrinkles due to distortion of the continuous fiber reinforced thermoplastic resin plate, and buckling, cracking, etc. depending on the situation. In addition, shape problems such as warp deformation due to a difference in molding shrinkage of the obtained composite molded article arise, and a desired composite molded article cannot be obtained.

特開平9−272134号JP-A-9-272134

本発明の目的は上記の従来技術の問題を背景になされたものであり、連続繊維強化熱可塑性樹脂と、非強化または不連続繊維強化熱可塑性樹脂との成形収縮差による応力集中が生じず、連続繊維強化熱可塑性樹脂の座屈、割れなどの問題がなく、ソリ変形も発生せず密着性が確保された上で効率良く剛性、軽量化を達成した複合成形体、およびその製造方法を提供することにある。   The object of the present invention is made in the background of the above-mentioned problems of the prior art, and stress concentration due to molding shrinkage difference between continuous fiber reinforced thermoplastic resin and non-reinforced or discontinuous fiber reinforced thermoplastic resin does not occur, Providing a composite molded body that is free of buckling and cracking of continuous fiber reinforced thermoplastic resin, that does not cause warp deformation and that has secured adhesion and that has achieved efficient rigidity and weight reduction, and a method for manufacturing the same. There is to do.

本発明は、以下の構成を有する。すなわち、
(1)非強化または不連続繊維強化熱可塑性樹脂を芯材とし、前記芯材の少なくとも一面に塗布された、前記芯材に用いられる熱可塑性樹脂(融点:Tm(℃))に対し(Tm−140)℃以下で硬化反応する熱硬化性樹脂接着剤層を介して、連続繊維強化熱可塑性樹脂からなる表皮材と一体化されてなることを特徴とする複合成形体。
(2)前記芯材に含まれる不連続強化繊維の数平均繊維長が0.01〜20mmであることを特徴とする(1)に記載の複合成形体。
(3)前記表皮材が、強化繊維を一方向に引き揃えて熱可塑性樹脂を含浸させたものであることを特徴とする(1)または(2)に記載の複合成形体。
(4)前記表皮材が、強化繊維を一方向に引き揃えて熱可塑性樹脂を含浸させたテープ状基材を、積層または編み込んだ板状の表皮材からなることを特徴とする(1)〜(3)のいずれかに記載の複合成形体。
(5)前記芯材に、前記接着剤層を介して前記表皮材を積層させるにあたり、前記芯材および前記表皮材に用いられる熱可塑性樹脂(融点:Tm(℃))に対し(Tm−200)℃以上の雰囲気下で硬化反応させることを特徴とする請求項1〜4のいずれかに記載の複合成形体。
(6)非強化または不連続繊維強化熱可塑性樹脂を射出成形して平板状の芯材とし、前記芯材の少なくとも一面に接着剤層を介して連続繊維強化熱可塑性樹脂からなる表皮材を積層させる複合成形体の製造方法において、前記芯材と前記表皮材の表面温度が室温まで冷却した状態で接着剤層を塗布し、前記芯材、および前記表皮材に用いられる熱可塑性樹脂(融点:Tm(℃))に対し(Tm−140)℃以下の温度で硬化反応させた後、室温まで冷却させることを特徴とする複合成形体の製造方法である。
The present invention has the following configuration. That is,
(1) With respect to the thermoplastic resin (melting point: Tm (° C.)) used for the core material, which is applied to at least one surface of the core material, using a non-reinforced or discontinuous fiber reinforced thermoplastic resin as a core material (Tm -140) A composite molded body, which is integrated with a skin material composed of a continuous fiber reinforced thermoplastic resin through a thermosetting resin adhesive layer that undergoes a curing reaction at a temperature not higher than ° C.
(2) The composite molded article according to (1), wherein the discontinuous reinforcing fibers contained in the core material have a number average fiber length of 0.01 to 20 mm.
(3) The composite molded body according to (1) or (2), wherein the skin material is obtained by aligning reinforcing fibers in one direction and impregnating with a thermoplastic resin.
(4) The skin material is made of a plate-shaped skin material obtained by laminating or braiding a tape-like base material in which reinforcing fibers are aligned in one direction and impregnated with a thermoplastic resin. The composite molded body according to any one of (3).
(5) When the skin material is laminated on the core material via the adhesive layer, the thermoplastic resin (melting point: Tm (° C.)) used for the core material and the skin material is (Tm-200). The composite molded article according to any one of claims 1 to 4, wherein the composite is subjected to a curing reaction in an atmosphere of at least ° C.
(6) A non-reinforcing or discontinuous fiber reinforced thermoplastic resin is injection molded into a flat core material, and a skin material made of continuous fiber reinforced thermoplastic resin is laminated on at least one surface of the core material through an adhesive layer. In the method for producing a composite molded body, an adhesive layer is applied in a state where the surface temperature of the core material and the skin material is cooled to room temperature, and a thermoplastic resin (melting point: used for the core material and the skin material). It is a method for producing a composite molded article, wherein a curing reaction is carried out at a temperature of (Tm-140) ° C. or lower with respect to (Tm (° C.)) and then cooled to room temperature.

本発明によれば、連続繊維強化熱可塑性樹脂と、非強化または不連続繊維強化熱可塑性樹脂との成形収縮差による応力集中が生じず、連続繊維強化熱可塑性樹脂の座屈、割れなどの問題がなく、ソリ変形も発生せず密着性が確保された上で効率良く剛性、軽量化を達成した複合成形体、およびその製造方法を得ることができる。   According to the present invention, stress concentration due to molding shrinkage difference between continuous fiber reinforced thermoplastic resin and non-reinforced or discontinuous fiber reinforced thermoplastic resin does not occur, and problems such as buckling and cracking of continuous fiber reinforced thermoplastic resin occur. In addition, there can be obtained a composite molded body that achieves rigidity and weight reduction efficiently while ensuring adhesiveness without causing warp deformation, and a method for producing the same.

本発明に係る複合成形体の積層形態を示す概略側面図である。It is a schematic side view which shows the lamination | stacking form of the composite molded object which concerns on this invention.

本発明は、非強化または不連続繊維強化熱可塑性樹脂を芯材とし、前記芯材の少なくとも一面に塗布された、前記芯材に用いられる熱可塑性樹脂(融点:Tm(℃))に対し(Tm−140)℃以下で硬化反応する熱硬化性樹脂接着剤層を介して、連続繊維強化熱可塑性樹脂からなる表皮材とを一体化した複合成形体である。図1に示すように、不連続強化繊維11と熱可塑性樹脂12とからなる芯材10と表皮材20とが、接着剤30を介して一体化されている。   The present invention uses a non-reinforced or discontinuous fiber reinforced thermoplastic resin as a core material, and is applied to at least one surface of the core material with respect to a thermoplastic resin (melting point: Tm (° C.)) used for the core material. Tm-140) A composite molded body in which a skin material made of continuous fiber reinforced thermoplastic resin is integrated through a thermosetting resin adhesive layer that undergoes a curing reaction at a temperature of not higher than Cm. As shown in FIG. 1, a core material 10 made of discontinuous reinforcing fibers 11 and a thermoplastic resin 12 and a skin material 20 are integrated with an adhesive 30.

まず本発明である複合成形体を構成する非強化または不連続繊維強化熱可塑性樹脂の芯材に用いられる熱可塑性樹脂について説明する。なお、連続繊維強化熱可塑性樹脂の表皮材に用いられる熱可塑性樹脂も同様の樹脂を用いることもできる。好ましくは、芯材と表皮材との熱可塑性樹脂が同種類の樹脂であると、後述する接着剤との接合態様が同等となり、皺やソリの発生を抑制することができる。   First, the thermoplastic resin used for the core material of the non-reinforced or discontinuous fiber reinforced thermoplastic resin constituting the composite molded body of the present invention will be described. In addition, the same resin can also be used for the thermoplastic resin used for the skin material of a continuous fiber reinforced thermoplastic resin. Preferably, when the thermoplastic resin of the core material and the skin material is the same type of resin, the bonding mode with the adhesive described later is equivalent, and generation of wrinkles and warpage can be suppressed.

芯材および表皮材の少なくとも一方の熱可塑性樹脂としては、例えば、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ABS樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂の少なくとも1種を含む形態とすることができる。本発明で用いられる熱可塑性樹脂は特に限定されず、また、これらの樹脂を単体で用いる他、もしくは2種以上混合したアロイとして用いても良い。   The thermoplastic resin of at least one of the core material and the skin material includes, for example, at least one of polyphenylene sulfide resin, polyamide resin, polyolefin resin, polyester resin, ABS resin, polycarbonate resin, polyacetal resin, and polyether ether ketone resin. It can be in the form. The thermoplastic resin used in the present invention is not particularly limited, and these resins may be used alone or as an alloy in which two or more kinds are mixed.

本発明に係る複合成形体に使用される強化繊維としては、特に限定されるものではないが、例えば、上記芯材および上記表皮材の少なくとも一方の強化繊維として、炭素繊維、ガラス繊維、アラミド繊維から選ばれる少なくとも1種を含む形態とすることができる。中でも、高い機械特性の実現、強度設計の容易性等を考慮すると、炭素繊維を含むことが好ましい。   The reinforcing fiber used in the composite molded body according to the present invention is not particularly limited. For example, as the reinforcing fiber of at least one of the core material and the skin material, carbon fiber, glass fiber, and aramid fiber are used. It can be set as the form containing at least 1 sort (s) chosen from. Among them, it is preferable to include carbon fiber in consideration of realization of high mechanical properties, ease of strength design, and the like.

上記芯材の不連続強化繊維の数平均繊維長としては、0.01〜20mmの範囲にあることが好ましい。数平均繊維長が0.01mm未満では、強化繊維としての補強効果が得られにくく、芯材の所望の剛性、強度が出にくくなる。一方、数平均繊維長が20mmを超えると、射出成形による不連続強化繊維のランダムな分散が難しくなるおそれがあり、複合成形体としての均一性が損なわれるおそれがある。   The number average fiber length of the discontinuous reinforcing fibers of the core material is preferably in the range of 0.01 to 20 mm. When the number average fiber length is less than 0.01 mm, it is difficult to obtain a reinforcing effect as a reinforcing fiber, and it becomes difficult to obtain desired rigidity and strength of the core material. On the other hand, if the number average fiber length exceeds 20 mm, random dispersion of discontinuous reinforcing fibers by injection molding may be difficult, and the uniformity as a composite molded body may be impaired.

表皮材の強化繊維としては、特に限定されないが、表皮材が繊維強化熱可塑性樹脂からなり、最終成形形態で構造体の表層を構成して、芯材と併せて構造体の強度を担うとともに、表層部位として構造体の剛性を支配することから、所望の方向に対して高い剛性(曲げ剛性等)を有することが好ましい。そのためには、表皮材の強化繊維が連続繊維からなることが好ましい。   The reinforcing fiber of the skin material is not particularly limited, but the skin material is made of fiber reinforced thermoplastic resin, constitutes the surface layer of the structure in the final molded form, and bears the strength of the structure together with the core material, Since the rigidity of the structure is governed as a surface layer part, it is preferable to have high rigidity (bending rigidity or the like) in a desired direction. For that purpose, it is preferable that the reinforcing fiber of the skin material is composed of continuous fibers.

また、表皮材として、強化繊維を一方向に引き揃えて熱可塑性樹脂を含浸させた表皮材を用いることができる。このような表皮材を使用すれば、比較的大型大面積の複合成形体であっても、容易に表皮材を所定の位置に配置できるようになる。またこの場合、表皮材として、強化繊維を一方向に引き揃えて熱可塑性樹脂を含浸させたテープ状基材を、積層または編み込んだ板状の表皮材からなる形態も採ることができる。このような形態を採用すれば、比較的大型大面積の構造体であっても、容易に表皮材を所定の位置に配置できるとともに、表皮材に望ましい機械特性を容易に付与できるようになる。   As the skin material, a skin material in which reinforcing fibers are aligned in one direction and impregnated with a thermoplastic resin can be used. If such a skin material is used, even if it is a comparatively large large-area composite molded body, the skin material can be easily arranged at a predetermined position. Further, in this case, a form made of a plate-like skin material obtained by laminating or knitting a tape-like base material in which reinforcing fibers are aligned in one direction and impregnated with a thermoplastic resin can also be adopted as the skin material. If such a form is adopted, even if the structure is a relatively large large-area structure, the skin material can be easily arranged at a predetermined position, and desired mechanical properties can be easily imparted to the skin material.

また、表皮材として、強化繊維織物を含む形態を採ることができる。このような形態を採用すれば、複合成形体の表面に望ましい意匠性を持たせることも可能になる。また、強化繊維織物を含むことにより、複合成形体の表層を構成する表皮材自体の機械特性をより向上することも可能になるので、構造体全体としての機械特性の向上が可能になる。   Moreover, the form containing a reinforced fiber fabric can be taken as a skin material. If such a form is employ | adopted, it will also become possible to give the desired designability to the surface of a composite molded object. In addition, by including the reinforced fiber fabric, it is possible to further improve the mechanical properties of the skin material itself that constitutes the surface layer of the composite molded body, so that the mechanical properties of the entire structure can be improved.

本発明で使用する、一方向に引き揃えた連続繊維強化熱可塑性樹脂からなる表皮材の製造方法は特に限定されるものではなく、例えば、溶融樹脂が充満した含浸ダイに連続繊維を投入し、スリットダイから引き抜くプルトルージョン法や、連続繊維束に熱可塑性樹脂粉体をまぶし溶融プレスするパウダー含浸法、連続強化繊維と熱可塑性繊維を混紡した繊維を板状に配置し熱プレスする方法などが挙げられる。   The method for producing a skin material made of a continuous fiber reinforced thermoplastic resin aligned in one direction used in the present invention is not particularly limited.For example, continuous fibers are put into an impregnation die filled with a molten resin, The pultrusion method that pulls out from the slit die, the powder impregnation method in which a thermoplastic fiber powder is applied to a continuous fiber bundle and melt-pressed, the fiber that is a mixture of continuous reinforcing fiber and thermoplastic fiber is placed in a plate shape, and then hot pressed Can be mentioned.

また、本発明に係る複合成形体は、表皮材を芯材の両面に配置することもできる。このように構成すれば、適度に膨張された低比重の芯材を2つの表皮材で両側から挟んだ、いわゆるサンドイッチ構造となり、構造体の軽量性と高い機械特性が一層容易に達成される。   Moreover, the composite molded body which concerns on this invention can also arrange | position a skin material on both surfaces of a core material. If comprised in this way, it will be what is called a sandwich structure which sandwiched the core material of the low specific gravity expanded moderately by the two skin materials from both sides, and the lightweight property and high mechanical property of a structure are achieved more easily.

また、本発明の芯材である非強化または不連続繊維強化熱可塑性樹脂には、炭素繊維以外の無機充填材を配合することができる。本発明で用いる無機充填材としては、板状、棒状、球状などの非繊維状の無機充填材や繊維状または針状の無機充填材など特に制限はない。非繊維状無機充填材としてはワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水酸化物、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素およびシリカなどの充填材が挙げられ、これらは中空であってもよく、さらにはこれら充填材を2種類以上併用することも可能である。これらのうち特に好ましい充填材は、タルク、ワラステナイトである。また、繊維状または針状の無機充填材としてはガラス繊維、チタン酸カリウイスカ、酸化亜鉛ウイスカ、繊維状炭酸カルシウム、繊維状ワラステナイトなどが挙げられ、これら充填材を二種以上併用することも可能である。   In addition, an inorganic filler other than carbon fiber can be blended with the non-reinforced or discontinuous fiber reinforced thermoplastic resin which is the core material of the present invention. The inorganic filler used in the present invention is not particularly limited, such as a non-fibrous inorganic filler such as a plate, rod, or sphere, or a fibrous or acicular inorganic filler. Non-fibrous inorganic fillers include wollastonite, zeolite, sericite, kaolin, mica, clay, pyrophyllite, bentonite, asbestos, talc, alumina silicate and other silicates, alumina, silicon oxide, magnesium oxide, zirconium oxide, Metal compounds such as titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, hydroxides such as magnesium hydroxide, calcium hydroxide and aluminum hydroxide, glass Examples thereof include fillers such as beads, ceramic beads, boron nitride, silicon carbide, and silica. These may be hollow, and two or more kinds of these fillers may be used in combination. Among these, particularly preferred fillers are talc and wollastonite. Examples of the fibrous or needle-like inorganic filler include glass fiber, potassium titanate whisker, zinc oxide whisker, fibrous calcium carbonate, and fibrous wollastonite. These fillers can be used in combination of two or more. It is.

無機充填材の添加量には特に制限がないが、熱可塑性樹脂100重量部に対し、5重量部以上50重量部以下とすることが好ましい。5重量部以上の場合には、線膨張係数の低減効果が発揮され好ましい。また、50重量部以下とすることで、耐衝撃性の低下を抑制することができる。   Although there is no restriction | limiting in particular in the addition amount of an inorganic filler, It is preferable to set it as 5 to 50 weight part with respect to 100 weight part of thermoplastic resins. In the case of 5 parts by weight or more, the effect of reducing the linear expansion coefficient is exhibited, which is preferable. Moreover, the fall of impact resistance can be suppressed by setting it as 50 weight part or less.

また接着剤層で用いられる接着剤の種類として一般的に合成系接着剤が用いることが好ましい。例えば、アクリル樹脂系、ウレタン樹脂系、α−オレフィン系、エーテル系、エチレン−酢酸ビニル樹脂系、エポキシ樹脂系、塩化ビニル樹脂系、クロロプレンゴム系、シアノアクリレート系、シリコーン系、スチレン−ブタジエンゴム系、フェノール樹脂系、ポリアミド樹脂系、ポリイミド系、ポリオレフィン樹脂系などがあるが、複合成形体に用いられる熱可塑性樹脂の種類に合わせて適選変更することが可能であるが、接着剤の硬化温度が(Tm−140)℃より高いと接着する芯材、表皮材の歪みが生じ、結果としてソリ変形、表皮材の皺などが発生するため好ましくない。従って、接着剤の種類としては成形複合体に使用する熱可塑性樹脂(Tmの−140)℃以下の温度範囲で硬化させることが本発明では重要である。   In general, a synthetic adhesive is preferably used as the type of adhesive used in the adhesive layer. For example, acrylic resin, urethane resin, α-olefin, ether, ethylene-vinyl acetate resin, epoxy resin, vinyl chloride resin, chloroprene rubber, cyanoacrylate, silicone, styrene-butadiene rubber , Phenol resin system, polyamide resin system, polyimide system, polyolefin resin system, etc., but can be selected and changed according to the type of thermoplastic resin used in the composite molded product. Is higher than (Tm−140) ° C., the core material to be bonded and the skin material are distorted, and as a result, warp deformation, skin material wrinkles and the like are generated, which is not preferable. Accordingly, it is important in the present invention that the adhesive is cured in a temperature range of thermoplastic resin (Tm-140) ° C. or lower used for the molded composite.

また接着剤層の厚みは10〜500μmの範囲であることが好ましく、より好ましくは50〜200μmである。10μm以下では接着剤の効能が発揮されず、芯材と表皮材間で容易に剥離が生じる。一方で500μm以上の厚みでは接着力は問題ないが、塗布時の手間、軽量化の観点において不適である。   Moreover, it is preferable that the thickness of an adhesive bond layer is the range of 10-500 micrometers, More preferably, it is 50-200 micrometers. If it is 10 μm or less, the effect of the adhesive is not exhibited, and peeling easily occurs between the core material and the skin material. On the other hand, when the thickness is 500 μm or more, there is no problem with the adhesive force, but it is unsuitable from the viewpoint of labor during application and weight reduction.

接着剤の塗布及び硬化方法については、使用する接着剤の種類に応じて使用推奨条件の記載に従い、適選変更することが可能であるが、塗布方法は特に限定されるものではない。また、接着剤の硬化方法については、使用する接着剤により使用推奨条件の記載があるが、複合成形体に用いる熱可塑性樹脂の(Tm−140)℃以下の硬化温度条件として記載のある接着剤であればいずれの接着剤でも用いることができる。硬化温度が複合成形体に用いる熱可塑性樹脂の(Tm−140)℃を超えると、熱可塑性樹脂の加熱による応力緩和と再度室温まで温度が低下した際の芯材と表皮材との熱収縮差によるソリ変形が発生するため、好ましくない。従って硬化温度条件は室温に近ければ近いほど好ましい。   The method for applying and curing the adhesive can be appropriately changed according to the description of the recommended use conditions according to the type of the adhesive to be used, but the method for applying is not particularly limited. Moreover, about the hardening method of an adhesive agent, although use recommendation conditions are described by the adhesive agent to be used, the adhesive agent described as the curing temperature conditions below (Tm-140) degreeC of the thermoplastic resin used for a composite molded object Any adhesive can be used. When the curing temperature exceeds (Tm-140) ° C. of the thermoplastic resin used in the composite molded body, the stress relaxation due to heating of the thermoplastic resin and the difference in thermal shrinkage between the core material and the skin material when the temperature is lowered to room temperature again This is not preferable because warpage deformation due to the occurrence of warpage occurs. Therefore, the closer the curing temperature condition is to room temperature, the better.

また上記接着剤の塗布面は芯材、表皮材のいずれでも問題ないが、芯材と表皮材の両方に塗布すると、芯材および表皮材と接着剤との親和性、濡れ性を向上させることができるため、最も好ましい態様である。   In addition, there is no problem with the surface of the adhesive applied to either the core material or the skin material, but when applied to both the core material and the skin material, the affinity and wettability between the core material and the skin material and the adhesive should be improved. This is the most preferable embodiment.

また上記接着剤を塗布する芯材、表皮材はいずれも温度が室温まで冷却状態で塗布することが好ましい。特に芯材において射出成形直後の温度において接着剤を塗布した場合、芯材が冷却過程でソリ変形が発生する恐れがあり、好ましくない。従って接着剤を塗布する芯材、および表皮材の温度は室温に近ければ近いほど好ましい。なお、本発明において室温とは、15〜30℃の範囲であることが好ましく、20〜25℃がより好ましい。   Moreover, it is preferable to apply | coat both the core material and skin material which apply | coat the said adhesive agent in the state cooled to room temperature. In particular, when an adhesive is applied to the core material at a temperature immediately after injection molding, the core material may be warped during the cooling process, which is not preferable. Therefore, the temperature of the core material and the skin material to which the adhesive is applied is preferably closer to room temperature. In addition, in this invention, it is preferable that it is the range of 15-30 degreeC with room temperature, and 20-25 degreeC is more preferable.

一方、硬化反応させる雰囲気温度は、(Tm−200)℃以上の雰囲気下で硬化反応を行うことが好ましい。(Tm−200)℃未満では、接着剤層の硬化反応が進行しにくくなり、接着強度の発現が困難となるため好ましい態様とならない。   On the other hand, it is preferable to perform the curing reaction in an atmosphere of (Tm-200) ° C. or higher as the atmospheric temperature for the curing reaction. If it is less than (Tm-200) degreeC, since the hardening reaction of an adhesive bond layer will not advance easily and expression of adhesive strength will become difficult, it will not become a desirable mode.

本発明は非強化ないしは不連続繊維強化熱可塑性樹脂を芯材とし、該芯材の少なくとも一面に該芯材に用いられる熱可塑性樹脂に対し(Tm−140)℃以下で硬化反応する熱硬化性樹脂からなる接着剤層を設けて、その上に連続繊維強化熱可塑性樹脂からなる表皮材を配置する複合成形体に関し、特に剛性、軽量化に優れた自動車内外装部品などの用途に好適に用いられる複合成形体の製造方法に関するものである。   The present invention uses a non-reinforced or discontinuous fiber reinforced thermoplastic resin as a core material, and at least one surface of the core material is a thermosetting resin that undergoes a curing reaction at (Tm-140) ° C. or less with respect to the thermoplastic resin used for the core material. A composite molded body in which an adhesive layer made of resin is provided and a skin material made of continuous fiber reinforced thermoplastic resin is arranged thereon, and is particularly suitable for applications such as automotive interior and exterior parts that are excellent in rigidity and weight reduction. The present invention relates to a method for producing a composite molded body.

以下に実施例を挙げて更に詳細に説明する。なお、本実施例や比較例で得られた複合成形体の特性は以下の方法により測定、評価したが、本発明はこれらに限定されるものではない。   Examples will be described in more detail below. In addition, although the characteristic of the composite molded object obtained by the present Example and the comparative example was measured and evaluated with the following method, this invention is not limited to these.

<原材料>
本発明の芯材となる不連続繊維強化熱可塑性樹脂、および表皮材を以下のように準備した。
<Raw materials>
A discontinuous fiber reinforced thermoplastic resin and a skin material as the core material of the present invention were prepared as follows.

[非強化、または不連続繊維強化熱可塑性樹脂(芯材)]
(1)ナイロン6樹脂:東レ(株)製“アミラン”(登録商標)CM1011G45
(融点:225℃、ガラス繊維の数平均繊維長:150μm)
(2)ナイロン6樹脂:東レ(株)製“アミラン”(登録商標)CM1011G30
(融点:225℃、ガラス繊維の数平均繊維長:150μm)
(3)ナイロン6樹脂:東レ(株)製“アミラン”(登録商標)CM1011G15
(融点:225℃、ガラス繊維の数平均繊維長:150μm)
(4)ナイロン6樹脂:東レ(株)製“アミラン”(登録商標)CM1017
(融点:225℃)
[Non-reinforced or discontinuous fiber reinforced thermoplastic resin (core material)]
(1) Nylon 6 resin: “Amilan” (registered trademark) CM1011G45 manufactured by Toray Industries, Inc.
(Melting point: 225 ° C., number average fiber length of glass fiber: 150 μm)
(2) Nylon 6 resin: “Amilan” (registered trademark) CM1011G30 manufactured by Toray Industries, Inc.
(Melting point: 225 ° C., number average fiber length of glass fiber: 150 μm)
(3) Nylon 6 resin: “Amilan” (registered trademark) CM1011G15 manufactured by Toray Industries, Inc.
(Melting point: 225 ° C., number average fiber length of glass fiber: 150 μm)
(4) Nylon 6 resin: “Amilan” (registered trademark) CM1017 manufactured by Toray Industries, Inc.
(Melting point: 225 ° C)

[表皮材]
東レ(株)製炭素繊維“トレカ”(登録商標)T700S(12K)を引き揃え、ナイロン6樹脂で充満された含浸ダイに投入した後、引き抜き成形によって、幅50mm、厚み0.28mm、連続繊維含有量50重量%の表皮材Aを得た。
[Skin material]
Carbon fiber “Torayca” (registered trademark) T700S (12K) manufactured by Toray Industries, Inc. is lined up, put into an impregnation die filled with nylon 6 resin, and then drawn to form a 50 mm wide, 0.28 mm thick continuous fiber. A skin material A having a content of 50% by weight was obtained.

[接着剤]
エポキシ系接着剤:“アラルダイト”(登録商標)AW4859/HW4859(独ハンツマン社製)
アクリル系接着剤:“ハードロック”(登録商標)NS-700M20A/NS-700M20B(電気化学工業(株)製)
ガラスビーズ:φ100μm(接着剤層厚み調整用に使用)、接着剤100重量部に対し0.5重量部混合
[adhesive]
Epoxy adhesive: “Araldite” (registered trademark) AW4859 / HW4859 (manufactured by Huntsman, Germany)
Acrylic adhesive: “Hard Rock” (registered trademark) NS-700M20A / NS-700M20B (manufactured by Denki Kagaku Kogyo Co., Ltd.)
Glass beads: φ100μm (used to adjust the adhesive layer thickness), 0.5 parts by weight mixed with 100 parts by weight of adhesive

[複合成形体の評価方法]
(1)ソリ測定
10mm×150mm×2.8mmに切り出した短冊を用いた評価試験において、短冊長片側の片方を固定し、隙間ゲージを用いて固定面と反対面の浮いた先端部の高さ(ソリ)を測定した。測定はn=3で行い、平均値で比較を行った。
[Method for evaluating composite molded body]
(1) Warp measurement In an evaluation test using strips cut out to 10 mm x 150 mm x 2.8 mm, one side of the strip length is fixed, and the height of the floating tip on the opposite side of the fixed surface using a gap gauge (Sledge) was measured. The measurement was performed at n = 3, and the comparison was performed using the average value.

(2)曲げ評価
10mm×150mm×2.8mmの短冊状試験片に切り出し、スパン間距離80mm、曲げ速度2mm/minで短冊を押し曲げた。n=3で測定し、曲げ応力、曲げ弾性率による補強効果を比較した。
(2) Bending evaluation A 10 mm × 150 mm × 2.8 mm strip test piece was cut out and the strip was pressed and bent at a span distance of 80 mm and a bending speed of 2 mm / min. The measurement was performed at n = 3, and the reinforcing effects by bending stress and bending elastic modulus were compared.

(3)表皮材Aの皺、座屈、割れなどの品質確認
目視により確認し、皺、座屈、剥がれが全てないものを○、1つでも発生したものは×で判定した。
(3) Quality check of skin material A such as wrinkles, buckling, cracks, etc. Visually confirmed, those having no wrinkles, buckling, and peeling were evaluated with ○, and those with even one were determined with ×.

<実施例1>
不連続繊維強化熱可塑性樹脂として(1)CM1011G45を、シリンダー温度280℃、金型温度80℃で射出成形し、(100×150×2.5mm)のサイズとした芯材Aに対し、ガラスビーズを混合したアクリル系接着剤を室温(25℃=(Tm−200)℃)で芯材Aの片面に塗布した。次に、表皮材A(100×150×0.3mm)にも同様のアクリル系接着剤を塗布した後、双方を貼付けし、接着剤厚み0.1mmに制御した形で面圧160g/cmの状態で、室温(25℃=(Tm−200)℃)で24h硬化させた後、複合成形体A(100×150×2.9mm)を得た。
<Example 1>
As a discontinuous fiber reinforced thermoplastic resin, (1) CM1011G45 is injection-molded at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C., and a glass bead is applied to a core material A having a size of (100 × 150 × 2.5 mm). Was applied to one side of the core A at room temperature (25 ° C. = (Tm−200) ° C.). Next, the same acrylic adhesive was applied to the skin material A (100 × 150 × 0.3 mm), and then both were pasted, and the surface pressure was 160 g / cm 2 in a form controlled to an adhesive thickness of 0.1 mm. In this state, the composite molded body A (100 × 150 × 2.9 mm) was obtained after curing for 24 hours at room temperature (25 ° C. = (Tm−200) ° C.).

<実施例2>
実施例1に記載の芯材Aに対し、エポキシ系接着剤を用いた以外は実施例1と同様に塗布し、双方を貼付けし、面圧160g/cmとなる状態で80℃(=Tm−145)℃、3時間硬化させた後、複合成形体Bを得た。
<Example 2>
It apply | coats similarly to Example 1 except having used the epoxy-type adhesive agent with respect to the core material A of Example 1, and both are affixed and 80 degreeC (= Tm) in the state used as a surface pressure of 160 g / cm < 2 >. -145) After curing at 3 ° C for 3 hours, a composite molded body B was obtained.

<実施例3>
不連続繊維強化熱可塑性樹脂として(2)CM1011G30を用いた芯材Bを使用した以外は、実施例1と同様の方法で複合成形体Cを得た。
<Example 3>
A composite molded body C was obtained in the same manner as in Example 1, except that (2) the core material B using CM1011G30 was used as the discontinuous fiber reinforced thermoplastic resin.

<実施例4>
接着剤として実施例2に記載のエポキシ系接着剤を使用した以外は、実施例3と同様の方法で複合成形体Dを得た。
<Example 4>
A composite molded body D was obtained in the same manner as in Example 3 except that the epoxy adhesive described in Example 2 was used as the adhesive.

<実施例5>
不連続繊維強化熱可塑性樹脂として(3)CM1011G15を用いた芯材Cを使用した以外は、実施例1と同様の方法で複合成形体Eを得た。
<Example 5>
A composite molded body E was obtained in the same manner as in Example 1, except that (3) the core material C using CM1011G15 was used as the discontinuous fiber reinforced thermoplastic resin.

<実施例6>
接着剤として実施例2に記載のエポキシ系接着剤を使用した以外は、請求項5と同様の方法で複合成形体Fを得た。
<Example 6>
A composite molded body F was obtained in the same manner as in claim 5 except that the epoxy adhesive described in Example 2 was used as the adhesive.

<実施例7>
非強化熱可塑性樹脂として(4)CM1017を用いた芯材Dを使用した以外は、実施例1と同様の方法で複合成形体Gを得た。
<Example 7>
A composite molded body G was obtained in the same manner as in Example 1 except that (4) the core material D using CM1017 was used as the non-reinforced thermoplastic resin.

<実施例8>
接着剤として実施例2に記載のエポキシ系接着剤を使用した以外は、実施例2と同様の方法で複合成形体Hを得た。
<Example 8>
A composite molded body H was obtained in the same manner as in Example 2, except that the epoxy adhesive described in Example 2 was used as the adhesive.

<比較例1>
表皮材A(100×150×0.3mm)を金型のキャビティー面に片面セットし、不連続繊維強化熱可塑性樹脂として(1)CM1011G45を用いて、シリンダー温度280℃、金型温度80℃の条件で射出成形し、芯材Aとの複合成形体I(100×150×2.8mm)を得た。
<Comparative Example 1>
The skin material A (100 × 150 × 0.3 mm) is set on one side of the cavity surface of the mold, and (1) CM1011G45 is used as the discontinuous fiber reinforced thermoplastic resin, the cylinder temperature is 280 ° C., the mold temperature is 80 ° C. The composite molded body I (100 × 150 × 2.8 mm) with the core material A was obtained.

<比較例2>
不連続繊維強化熱可塑性樹脂として(2)CM1011G30を用いた以外は、比較例1と同様にして、芯材Bとの複合成形体Jを得た。
<Comparative Example 2>
A composite molded body J with the core material B was obtained in the same manner as in Comparative Example 1 except that (2) CM1011G30 was used as the discontinuous fiber reinforced thermoplastic resin.

<比較例3>
不連続繊維強化熱可塑性樹脂として(3)CM1011G15を用いた以外は、比較例1と同様にして、芯材Cとの複合成形体Kを得た。
<Comparative Example 3>
A composite molded body K with the core material C was obtained in the same manner as in Comparative Example 1 except that (3) CM1011G15 was used as the discontinuous fiber reinforced thermoplastic resin.

<比較例4>
非強化熱可塑性樹脂として(4)CM1017を用いた以外は、比較例1と同様にして、芯材Dとの複合成形体Lを得た。
<Comparative example 4>
A composite molded body L with the core material D was obtained in the same manner as in Comparative Example 1 except that (4) CM1017 was used as the non-reinforced thermoplastic resin.

Figure 2016107485
Figure 2016107485

Figure 2016107485
Figure 2016107485

表1に示す組成で得られた各複合成形体の物性評価結果を表2に示す。実施例1〜8の全てにおいて表皮材Aの密着性が良好であり、曲げ評価での曲げ応力、弾性率の向上効果が大きく、さらに表皮材Aの皺、座屈、割れはいずれの複合成形体にも確認しておらず、問題ないことがわかった。   Table 2 shows the physical property evaluation results of the composite molded articles obtained with the compositions shown in Table 1. In all of Examples 1 to 8, the adhesion of the skin material A is good, and the effect of improving the bending stress and the elastic modulus in bending evaluation is great. I did not check it on my body either, and found that there was no problem.

一方、比較例1〜4は全てにおいて芯材と表皮材の熱収縮差によるソリ変形が生じており、比較例1と比較して比較例2〜4と不連続繊維量が減少するに伴いソリ変形が非常に大きくなることがわかった。曲げ評価での曲げ応力、弾性率の向上効果は確認できるが、各複合成形体における表皮材Aの目視確認の結果、芯材と表皮材の熱収縮差により表皮材の一部に皺が発生し、一部剥がれが生じることがわかった。またソリ変形の大きい比較例3、4の皺の発生数は非常に多く、表皮材Aの座屈、剥がれが発生することがわかった。   On the other hand, in all of Comparative Examples 1 to 4, warp deformation is caused by the difference in thermal shrinkage between the core material and the skin material. Compared with Comparative Example 1, Comparative Examples 2 to 4 and the amount of discontinuous fibers are reduced. It turns out that the deformation becomes very large. The effect of improving bending stress and elastic modulus in bending evaluation can be confirmed, but as a result of visual confirmation of the skin material A in each composite molded product, wrinkles occur in part of the skin material due to the difference in thermal shrinkage between the core material and the skin material. And it was found that some peeling occurred. In addition, it was found that the number of wrinkles generated in Comparative Examples 3 and 4 with large warp deformation was very large, and the skin material A was buckled and peeled off.

本発明は非強化ないしは不連続繊維強化熱可塑性樹脂を芯材とし、該芯材の少なくとも一面に該芯材に用いられる熱可塑性樹脂に対し(Tm−140)℃以下で硬化反応する熱硬化性樹脂接着剤層を設けて、その上に連続繊維強化熱可塑性樹脂からなる表皮材を配置する複合成形体とその製造方法に関し、特に剛性、軽量化に優れた自動車内外装部品などの用途に好適に用いられる。   The present invention uses a non-reinforced or discontinuous fiber reinforced thermoplastic resin as a core material, and at least one surface of the core material is a thermosetting resin that undergoes a curing reaction at (Tm-140) ° C. or less with respect to the thermoplastic resin used for the core material. With regard to a composite molded body in which a resin adhesive layer is provided and a skin material made of continuous fiber reinforced thermoplastic resin is disposed thereon, and a method for producing the same, it is particularly suitable for applications such as automobile interior and exterior parts having excellent rigidity and weight reduction. Used for.

10 芯材
11 不連続強化繊維
12 熱可塑性樹脂
20 表皮材
30 接着剤
DESCRIPTION OF SYMBOLS 10 Core material 11 Discontinuous reinforcement fiber 12 Thermoplastic resin 20 Skin material 30 Adhesive

Claims (6)

非強化または不連続繊維強化熱可塑性樹脂を芯材とし、前記芯材の少なくとも一面に塗布された、前記芯材に用いられる熱可塑性樹脂(融点:Tm(℃))に対し(Tm−140)℃以下で硬化反応する熱硬化性樹脂接着剤層を介して、連続繊維強化熱可塑性樹脂からなる表皮材と一体化されてなることを特徴とする複合成形体。 (Tm-140) with respect to the thermoplastic resin (melting point: Tm (° C.)) used for the core material, which is applied to at least one surface of the core material, using a non-reinforced or discontinuous fiber reinforced thermoplastic resin as a core material. A composite molded body, which is integrated with a skin material made of a continuous fiber-reinforced thermoplastic resin via a thermosetting resin adhesive layer that undergoes a curing reaction at a temperature of not higher than ° C. 前記芯材に含まれる不連続強化繊維の数平均繊維長が0.01〜20mmであることを特徴とする請求項1記載の複合成形体。 The composite molded article according to claim 1, wherein the number average fiber length of the discontinuous reinforcing fibers contained in the core material is 0.01 to 20 mm. 前記表皮材が、強化繊維を一方向に引き揃えて熱可塑性樹脂を含浸させたものであることを特徴とする請求項1または2に記載の複合成形体。 3. The composite molded body according to claim 1, wherein the skin material is one in which reinforcing fibers are aligned in one direction and impregnated with a thermoplastic resin. 4. 前記表皮材が、強化繊維を一方向に引き揃えて熱可塑性樹脂を含浸させたテープ状基材を、積層または編み込んだ板状の表皮材からなることを特徴とする請求項1〜3のいずれかに記載の複合成形体。 The said skin material consists of a plate-shaped skin material which laminated | stacked or knitted the tape-shaped base material which aligned the reinforcement fiber in one direction and was impregnated with the thermoplastic resin, The any one of Claims 1-3 characterized by the above-mentioned. A composite molded article according to any one of the above. 前記芯材に、前記接着剤層を介して前記表皮材を積層させるにあたり、前記芯材および前記表皮材に用いられる熱可塑性樹脂(融点:Tm(℃))に対し(Tm−200)℃以上の雰囲気下で硬化反応させることを特徴とする請求項1〜4のいずれかに記載の複合成形体。 When the skin material is laminated on the core material via the adhesive layer, the thermoplastic resin (melting point: Tm (° C.)) used for the core material and the skin material is (Tm−200) ° C. or higher. The composite molded body according to any one of claims 1 to 4, wherein a curing reaction is performed in an atmosphere. 非強化または不連続繊維強化熱可塑性樹脂を射出成形して平板状の芯材とし、前記芯材の少なくとも一面に接着剤層を介して連続繊維強化熱可塑性樹脂からなる表皮材を積層させる複合成形体の製造方法において、前記芯材と前記表皮材の表面温度が室温まで冷却した状態で接着剤層を塗布し、前記芯材、および前記表皮材に用いられる熱可塑性樹脂(融点:Tm(℃))に対し(Tm−140)℃以下の温度で硬化反応させた後、室温まで冷却させることを特徴とする複合成形体の製造方法。 Composite molding in which a non-reinforced or discontinuous fiber reinforced thermoplastic resin is injection molded into a flat core material, and a skin material made of continuous fiber reinforced thermoplastic resin is laminated on at least one surface of the core material through an adhesive layer. In the body manufacturing method, the adhesive layer is applied in a state where the surface temperature of the core material and the skin material is cooled to room temperature, and the thermoplastic resin (melting point: Tm (° C.) used for the core material and the skin material is used. )), A curing reaction at a temperature of (Tm-140) ° C. or lower, and then cooling to room temperature.
JP2014246447A 2014-12-05 2014-12-05 Composite molding, and production method thereof Pending JP2016107485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014246447A JP2016107485A (en) 2014-12-05 2014-12-05 Composite molding, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014246447A JP2016107485A (en) 2014-12-05 2014-12-05 Composite molding, and production method thereof

Publications (1)

Publication Number Publication Date
JP2016107485A true JP2016107485A (en) 2016-06-20

Family

ID=56122845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246447A Pending JP2016107485A (en) 2014-12-05 2014-12-05 Composite molding, and production method thereof

Country Status (1)

Country Link
JP (1) JP2016107485A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161801A (en) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 Adhesion structural member
WO2019111737A1 (en) * 2017-12-05 2019-06-13 大塚化学株式会社 Composite laminate and method for producing same
JP6759491B1 (en) * 2019-05-17 2020-09-23 大塚化学株式会社 Composite laminate and its manufacturing method
WO2020235343A1 (en) * 2019-05-17 2020-11-26 大塚化学株式会社 Composite laminate and method for producing same
US10850772B2 (en) 2018-03-19 2020-12-01 Toyota Jidosha Kabushiki Kaisha Vehicle frame structure
US11572124B2 (en) 2021-03-09 2023-02-07 Guerrilla Industries LLC Composite structures and methods of forming composite structures
US11745443B2 (en) 2017-03-16 2023-09-05 Guerrilla Industries LLC Composite structures and methods of forming composite structures
TWI838526B (en) 2019-05-17 2024-04-11 日商大塚化學股份有限公司 Composite laminate and manufacturing method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11745443B2 (en) 2017-03-16 2023-09-05 Guerrilla Industries LLC Composite structures and methods of forming composite structures
JP7052207B2 (en) 2017-03-27 2022-04-12 三菱ケミカル株式会社 Adhesive structural member
JP2018161801A (en) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 Adhesion structural member
US11491759B2 (en) 2017-12-05 2022-11-08 Otsuka Chemical Co., Ltd. Composite laminate and method for producing same
KR20200088362A (en) * 2017-12-05 2020-07-22 오츠카 가가쿠 가부시키가이샤 Composite laminate and manufacturing method thereof
WO2019111737A1 (en) * 2017-12-05 2019-06-13 大塚化学株式会社 Composite laminate and method for producing same
CN111433015A (en) * 2017-12-05 2020-07-17 大塚化学株式会社 Composite laminate and method for producing same
JPWO2019111737A1 (en) * 2017-12-05 2020-12-10 大塚化学株式会社 Composite laminate and its manufacturing method
EP3722089A4 (en) * 2017-12-05 2021-09-01 Otsuka Chemical Co., Ltd. Composite laminate and method for producing same
TWI740075B (en) * 2017-12-05 2021-09-21 日商大塚化學股份有限公司 Composite laminated body and its manufacturing method
KR102401427B1 (en) 2017-12-05 2022-05-23 오츠카 가가쿠 가부시키가이샤 Composite laminate and manufacturing method thereof
US10850772B2 (en) 2018-03-19 2020-12-01 Toyota Jidosha Kabushiki Kaisha Vehicle frame structure
CN113710469A (en) * 2019-05-17 2021-11-26 大塚化学株式会社 Composite laminate and method for producing same
JP6759491B1 (en) * 2019-05-17 2020-09-23 大塚化学株式会社 Composite laminate and its manufacturing method
CN113710448A (en) * 2019-05-17 2021-11-26 大塚化学株式会社 Composite laminate and method for producing same
WO2020235343A1 (en) * 2019-05-17 2020-11-26 大塚化学株式会社 Composite laminate and method for producing same
EP3970936A4 (en) * 2019-05-17 2023-06-28 Otsuka Chemical Co., Ltd. Composite laminate and method for producing same
WO2020235344A1 (en) * 2019-05-17 2020-11-26 大塚化学株式会社 Composite laminate and method for producing same
TWI838526B (en) 2019-05-17 2024-04-11 日商大塚化學股份有限公司 Composite laminate and manufacturing method thereof
US11572124B2 (en) 2021-03-09 2023-02-07 Guerrilla Industries LLC Composite structures and methods of forming composite structures

Similar Documents

Publication Publication Date Title
JP2016107485A (en) Composite molding, and production method thereof
JP2741330B2 (en) Metal-coated carbon fiber reinforced plastic pipe for rotating body and method of manufacturing the same
TWI548514B (en) Method for manufacturing metal composite and electronic equipment housing
JP6002872B1 (en) Damped fiber reinforced resin molded article and automotive parts using the same
JP4645334B2 (en) Fiber reinforced plastic parts
US11926111B2 (en) Manufacturing method for fiber-reinforced plastic composite
JP6562153B2 (en) FIBER-REINFORCED COMPOSITE MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
JP2017128705A (en) Carbon fiber sheet material, prepreg, laminate, molded body and method for manufacturing them
JP4107475B2 (en) Reinforcing fibers for fiber reinforced composites
JP5966969B2 (en) Manufacturing method of prepreg
JPH0428013B2 (en)
JPH06165842A (en) Golf club head
JP2005161852A (en) Metal/fiber-reinforced plastic composite material, and its production method
JP2008073875A (en) Frp molded object and its manufacturing method
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
JPH0576628A (en) Golf club head
JP2021112849A (en) Laminate and method for producing laminate
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP7220004B2 (en) Fiber-reinforced resin composite molding and method for producing the same
CN106553353A (en) A kind of glass-coated metallic microwires reinforced epoxy and its forming technology
JP7493439B2 (en) Method for producing fiber-reinforced molding and fiber-reinforced molding
JP2011056798A (en) Method for manufacturing fiber-reinforced composite material molded product
JPH11286076A (en) Rubber composite material and its production
JP2018172474A (en) Method for manufacturing fiber-reinforced composite material