JP2001214999A - Composite material pressure vessel and method of manufacturing the same - Google Patents

Composite material pressure vessel and method of manufacturing the same

Info

Publication number
JP2001214999A
JP2001214999A JP2000027187A JP2000027187A JP2001214999A JP 2001214999 A JP2001214999 A JP 2001214999A JP 2000027187 A JP2000027187 A JP 2000027187A JP 2000027187 A JP2000027187 A JP 2000027187A JP 2001214999 A JP2001214999 A JP 2001214999A
Authority
JP
Japan
Prior art keywords
composite material
pressure vessel
inner liner
resin layer
material pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000027187A
Other languages
Japanese (ja)
Other versions
JP4576655B2 (en
Inventor
Tomohiro Ito
友裕 伊藤
Yoshiaki Someya
佳昭 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2000027187A priority Critical patent/JP4576655B2/en
Publication of JP2001214999A publication Critical patent/JP2001214999A/en
Application granted granted Critical
Publication of JP4576655B2 publication Critical patent/JP4576655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite material pressure vessel that makes the most of the effects of a reinforcing composite material layer, exhibits high burst pressure resisting performance and is light in weight. SOLUTION: The composite material pressure vessel has a resin layer interposed between an inner liner and FRP. The resin layer is preferably a thermoplastic resin layer with an appreciable adhesive property and a high elongation percentage. Alternatively, a resin layer is interposed between the inner liner and FRP to form a filament-wound structure using towpreg. The inner liner may be a metallic inner liner.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、軽量で宇宙用気
蓄器などに用いられる圧力容器等及びその製造方法に係
り、更に詳しくは、高い破壊圧力を発現させた複合材圧
力容器とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight pressure vessel used for a space storage device and the like and a method of manufacturing the same, and more particularly, to a composite material pressure vessel exhibiting a high burst pressure and its production. It is about the method.

【0002】[0002]

【従来の技術】気体を蓄積する圧力容器としては、一般
にスチール製が広く用いられており、消火器、窒素ガス
容器、プロパンガス容器などが広く知られている。しか
しスチール製容器は重いので用途によっては適用されな
い。例えば、特に軽量であることが要求される宇宙用気
蓄器や航空機用途にはFRPを補強材に用いた複合材圧
力容器が多く使用されている。その他、民生用としても
例えば近年環境保護の点で注目されている天然ガス容器
(NGV)には軽量な複合材圧力容器が適用されてい
る。
2. Description of the Related Art Generally, steel is widely used as a pressure vessel for accumulating a gas, and a fire extinguisher, a nitrogen gas vessel, a propane gas vessel and the like are widely known. However, steel containers are heavy and are not applicable in some applications. For example, a composite material pressure vessel using FRP as a reinforcing material is often used for space gas storage and aircraft applications that are required to be particularly lightweight. In addition, a lightweight composite material pressure vessel is applied to a natural gas vessel (NGV) which has been attracting attention in recent years, for example, in terms of environmental protection.

【0003】この種の圧力容器は、一般に非金属(主に
樹脂)或いは金属製のインナーライナの上に補強層を設
ける方法、また必要に応じてはウェット・フィラメント
ワインディングする方法等で製造されている。
[0003] This type of pressure vessel is generally manufactured by a method of providing a reinforcing layer on a non-metal (mainly resin) or metal inner liner and, if necessary, a method of wet filament winding. I have.

【0004】すなわち、例えば薄膜中空のチタニウム製
のライナ(内層容器)の上に、エポキシ樹脂組成物を含
浸したガラス繊維トゥ或いは炭素繊維トゥ等の補強層を
フィラメント(補強繊維)をフープ巻き、ヘリカル巻き
等により連続的に密に巻回することでフィラメントワイ
ンディングを行う。
That is, a filament (reinforcing fiber) is wound around a thin film hollow titanium liner (inner container) with a reinforcing layer such as a glass fiber toe or a carbon fiber toe impregnated with an epoxy resin composition, and a helical winding is performed. Filament winding is performed by continuously densely winding by winding or the like.

【0005】その後、所定時間、オーブン中で全体を加
熱して硬化させ冷却させることにより各部を固化させる
ことで繊維補強された複合材圧力容器が完成する。もち
ろん必要とされる強度が低いものについてはフィラメン
トワインディングは行わず単にFRP等の補強材のみを
巻回した構造も採用される。
[0005] Thereafter, the whole is heated and cured in an oven for a predetermined time, and then cooled and cooled to solidify each part, thereby completing a fiber reinforced composite material pressure vessel. Needless to say, a structure in which only a reinforcing material such as FRP is wound without performing filament winding is used for a material having a low required strength.

【0006】ところで、複合材圧力容器においては、複
合材の保有する破断歪み以前で圧力容器が破壊する例も
見られる。圧力破壊させた後の供試体を詳細に観察し、
また応力解析の結果、想定値より低い圧力で破壊した圧
力容器の場合には、金属ライナーと複合材層との間に間
隙が生じると層間でスベリが発生していることが推定さ
れた。
Meanwhile, in the case of a composite material pressure vessel, there is an example in which the pressure vessel breaks before the breaking strain of the composite material. Observe the specimen after pressure rupture in detail,
As a result of the stress analysis, it was estimated that in the case of a pressure vessel that broke at a pressure lower than the expected value, slippage occurred between the metal liner and the composite material layer when a gap was formed between the layers.

【0007】しかしながら、上述したような従来の方法
においては、樹脂が室温で液状であるという制限があ
り、複合材料の機械的特性を高められない問題点があっ
た。特に、高い機械的特性を発揮するトウプレグを使用
した構造のものは内層の容器ライナと複合材層の間に
“間隙”及び“スベリ”が生じ、本来の高い破壊圧力を
発現できない欠点があった。
[0007] However, in the above-mentioned conventional method, there is a problem that the resin is liquid at room temperature, and there is a problem that the mechanical properties of the composite material cannot be enhanced. In particular, a structure using a tow prep exhibiting high mechanical properties has a drawback in that a "gap" and "slip" occur between the inner container liner and the composite material layer, and the original high breaking pressure cannot be exhibited. .

【0008】[0008]

【発明が解決しようとする課題】この発明は、かかる従
来技術の持つ課題に着目して案出されたもので、補強用
の複合材層の効果を最大限に引き出して高い耐破壊圧力
性能を発揮する軽量の複合材圧力容器を提供することを
目的とするものである。
SUMMARY OF THE INVENTION The present invention was devised in view of the problems of the prior art, and maximizes the effect of the reinforcing composite material layer to achieve high burst pressure resistance. It is an object of the present invention to provide a lightweight composite material pressure vessel that can be used.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、複合材圧力容器を、インナライナとF
RPの間に樹脂層を介在させた構造とする。前記樹脂層
は接着性に優れ且つ伸びの大きい熱可塑性樹脂層として
も良い。或いは、インナライナとFRPの間に接着性に
優れ且つ伸びの大きい熱可塑脂層を介在させてトウプレ
グによりフィラメントワインディングして複合材圧力容
器を構成する。また、上記の夫々において前記インナラ
イナは金属インナライナを用いても良い。本発明の複合
材圧力容器の製造方法では、インナライナとFRPの間
に樹脂層を介在させる。
According to the present invention, there is provided a composite pressure vessel comprising: an inner liner;
The structure is such that a resin layer is interposed between RPs. The resin layer may be a thermoplastic resin layer having excellent adhesion and large elongation. Alternatively, a composite material pressure vessel is formed by interposing a thermoplastic resin layer having excellent adhesion and large elongation between the inner liner and the FRP and winding the filament with a towpreg. In each of the above, the inner liner may be a metal inner liner. In the method for manufacturing a composite material pressure vessel according to the present invention, a resin layer is interposed between the inner liner and the FRP.

【0010】このように接着性及び伸びの大きい熱可塑
性樹脂を金属容器ライナと複合材層の間に介在させるこ
とにより、高い破壊圧力を発揮する軽量の圧力容器を提
供することができる。
As described above, by interposing the thermoplastic resin having high adhesiveness and elongation between the metal container liner and the composite material layer, it is possible to provide a lightweight pressure container exhibiting a high breaking pressure.

【0011】[0011]

【発明の実施の形態】圧力破壊後の供試体を詳細に観察
し、また応力解析の結果、低い圧力で破壊した複合材圧
力容器では、金属ライナーと複合材層との間に間隙が生
じると層間でスベリが発生しており、結果、複合材の保
有する破断歪み以前で圧力容器が破壊に至ることが推定
された。
BEST MODE FOR CARRYING OUT THE INVENTION A specimen after pressure rupture was observed in detail, and as a result of stress analysis, in a composite material pressure vessel that was broken at a low pressure, a gap was formed between the metal liner and the composite material layer. Sliding occurred between the layers, and as a result, it was presumed that the pressure vessel was broken before the breaking strain held by the composite material.

【0012】こうした、圧力破壊後の供試体の検証か
ら、ライナーと複合材層との間に間隙が生じると層間で
スベリが発生し強度を減じる結果となっていることが知
られる。接着性に優れ、且つ、伸びの大きい樹脂を層間
に介在させることが解決手段と考え、トウブレグに配合
されているフェノキシ樹脂を塗布した結果、所定の成果
をあげることが確認できた。
It is known from the examination of the specimen after the pressure rupture that if a gap is formed between the liner and the composite material layer, slippage occurs between the layers and the strength is reduced. Considering that a resin having excellent adhesion and large elongation is interposed between layers is a solution, and it was confirmed that the phenoxy resin blended in the tow reg was applied to obtain a predetermined result.

【0013】従って、本発明では前述目的を達成するた
めに、接着性及び伸びの大きい熱可塑性樹脂を容器ライ
ナと複合材層の間に介在させる。これにより、圧力負荷
印加時に発生する層間の間隙及びスベリが抑止されて高
い破壊圧力を発揮する軽量の圧力容器が得られる。
Therefore, in the present invention, in order to achieve the above object, a thermoplastic resin having high adhesiveness and elongation is interposed between the container liner and the composite material layer. As a result, a lightweight pressure vessel that exhibits a high breaking pressure by suppressing the gap between layers and slippage generated when a pressure load is applied can be obtained.

【0014】当該発明に適用して好適な樹脂としては、
フェノキシ樹脂、ゴム変性エポキシ樹脂、ウレタン変性
エポキシ樹脂、ナイロン変性エポキシ樹脂などが挙げら
れる。これ以外でも、金属ライナと複合材の層間に介在
させ、接着性及び伸びに優れる樹脂であれば同様の効果
を得ることができる。
Preferred resins applied to the present invention include:
Phenoxy resins, rubber-modified epoxy resins, urethane-modified epoxy resins, nylon-modified epoxy resins, and the like. Other than this, the same effect can be obtained if the resin is provided between the metal liner and the composite material and has excellent adhesiveness and elongation.

【0015】インナライナは金属ライナ以外でも良く同
様の考えで非金属ライナにも適用することができる。金
属ライナと複合材層との間にフェノキシレジンを介在さ
せた構成の複合材圧力容器では、充分な強度を得ること
ができる。
The inner liner is not limited to a metal liner, and can be applied to a non-metal liner with the same idea. In a composite material pressure vessel having a structure in which phenoxy resin is interposed between a metal liner and a composite material layer, sufficient strength can be obtained.

【0016】上記のような容器を製造するためには、例
えば薄膜中空のチタニウム製のライナ(内層容器)を用
意し、その上に、エポキシ樹脂組成物を含浸したガラス
繊維トゥ或いは炭素繊維トゥ等の補強層(FRP層)を
密に積層する。
In order to manufacture the above-mentioned container, for example, a thin-film hollow liner made of titanium (inner layer container) is prepared, and glass fiber toe or carbon fiber toe impregnated with an epoxy resin composition is placed thereon. Are densely laminated.

【0017】その後、所定時間、オーブン中で全体を加
熱して硬化させ冷却させることにより各部を固化させる
ことで繊維補強された複合材圧力容器が完成する。もち
ろんより強度が必要とされるものについてはフィラメン
トワインディングを行うようにしても良い。
Thereafter, the whole is heated and cured in an oven for a predetermined period of time, and then cooled and cooled to solidify each part, thereby completing a fiber reinforced composite material pressure vessel. Needless to say, filament winding may be performed for those requiring higher strength.

【0018】この場合には、例えば薄膜中空のチタニウ
ム製のライナ(内層容器)を用意し、その上に、エポキ
シ樹脂組成物を含浸したガラス繊維トゥ或いは炭素繊維
トゥ等の補強層をフィラメント(補強繊維)をフープ巻
き、ヘリカル巻き等により連続的に密に巻回することで
フィラメントワインディングを行う。
In this case, for example, a thin-film hollow liner made of titanium (inner container) is prepared, and a reinforcing layer such as glass fiber toe or carbon fiber toe impregnated with an epoxy resin composition is provided on the liner (reinforcing). Filament winding is performed by continuously and densely winding the fiber) by hoop winding, helical winding, or the like.

【0019】その後は、前述したと同様に所定時間、オ
ーブン中で全体を加熱し、冷却させて複合材圧力容器を
得る。
Thereafter, the whole is heated in an oven for a predetermined time and cooled as described above to obtain a composite material pressure vessel.

【0020】このように本発明は、フェノキシレジンそ
の他の樹脂を金属ライナまたは非金属ライナと複合材層
との間に介在させる複合材圧力容器を構成することで、
圧力負荷印加時に発生する層間の間隙及びスベリを防止
してその耐破壊圧力を高めることを要旨とするものであ
る。
As described above, the present invention provides a composite material pressure vessel in which a phenoxy resin or other resin is interposed between a metal liner or a non-metallic liner and a composite material layer.
It is an object of the present invention to prevent gaps and slippage between layers generated when a pressure load is applied and to increase the breakdown pressure.

【0021】なお、本発明は宇宙用等の特殊用途だけで
なく、NGV等の民生用にも利用できる。また、より大
型構造の容器に適用することも可能である。
The present invention can be used not only for special purposes such as space use but also for consumer use such as NGV. Further, the present invention can be applied to a container having a larger structure.

【0022】〔実験例〕複合材圧力容器の前述層間に介
在させる接着性に優れ且つ伸びの大きい樹脂をとして、
トウプレグに配合されているフェノキシ樹脂を塗布した
結果、所定の強度的成果をあげることができた。
[Experimental Example] A resin having excellent adhesion and large elongation interposed between the above-mentioned layers of the composite material pressure vessel is defined as:
As a result of applying the phenoxy resin blended in the tow prep, it was possible to obtain predetermined strength results.

【0023】実施例1;チタニウム製ライナの上に、フ
ェノキシ樹脂/MEK溶液を塗布し乾燥する。その上
に、エポキシ樹脂組成物を含浸した炭素繊維トゥ(T8
00H東レ製)をフィラメントワインディングする。そ
の後、180°C×3時間、オーブン中で加熱し硬化さ
せて実施例の複合圧力容器を得た(供試体A)。
Example 1 A phenoxy resin / MEK solution is applied on a titanium liner and dried. On top of that, a carbon fiber tu (T8) impregnated with an epoxy resin composition
00H manufactured by Toray Co., Ltd.). Thereafter, the mixture was heated and cured in an oven at 180 ° C. for 3 hours to obtain a composite pressure vessel of the example (specimen A).

【0024】比較例1;上記の製法から、フェノキシ樹
脂/MEK溶液を塗布する工程を削除して比較例の複合
圧力容器を得た(供試体B)。
Comparative Example 1 A composite pressure vessel of a comparative example was obtained by removing the step of applying a phenoxy resin / MEK solution from the above-mentioned production method (sample B).

【0025】〔結果特性〕供試体Aでは、439(kgf/
cm^2 )の破壊圧力が得られた。供試体Bでは、370
(kgf/cm^2 )の破壊圧力であった。
[Result Characteristics] In the test sample A, 439 (kgf /
cm ^ 2) burst pressure was obtained. In specimen B, 370
(Kgf / cm ^ 2).

【0026】[0026]

【発明の効果】以上説明した如く、本発明方法によれ
ば、軽量で破壊圧を発揮する複合材圧力容器を産業用或
いは民生用途に提供することが出来る。
As described above, according to the method of the present invention, it is possible to provide a lightweight composite pressure vessel exhibiting a burst pressure for industrial or consumer use.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 インナライナとFRPの間に樹脂層を介
在させた複合材圧力容器。
1. A composite material pressure vessel having a resin layer interposed between an inner liner and an FRP.
【請求項2】 前記樹脂層が接着性に優れ且つ伸びの大
きい熱可塑性樹脂層である請求項1に記載の複合材圧力
容器。
2. The composite material pressure vessel according to claim 1, wherein the resin layer is a thermoplastic resin layer having excellent adhesiveness and large elongation.
【請求項3】 インナライナとFRPの間に接着性に優
れ且つ伸びの大きい熱可塑脂層を介在させてトウプレグ
によりフィラメントワインディングした複合材圧力容
器。
3. A composite material pressure vessel in which a thermoplastic resin layer having excellent adhesion and high elongation is interposed between the inner liner and the FRP, and the filament is wound by a towpreg.
【請求項4】 前記インナライナが金属インナライナで
ある請求項1〜3のいずれか1項に記載の複合圧力容
器。
4. The composite pressure vessel according to claim 1, wherein the inner liner is a metal inner liner.
【請求項5】 インナライナとFRPの間に樹脂層を介
在させる複合材圧力容器の製造方法。
5. A method for manufacturing a composite material pressure vessel in which a resin layer is interposed between an inner liner and an FRP.
JP2000027187A 2000-01-31 2000-01-31 COMPOSITE PRESSURE CONTAINER AND MANUFACTURING METHOD THEREOF Expired - Fee Related JP4576655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027187A JP4576655B2 (en) 2000-01-31 2000-01-31 COMPOSITE PRESSURE CONTAINER AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027187A JP4576655B2 (en) 2000-01-31 2000-01-31 COMPOSITE PRESSURE CONTAINER AND MANUFACTURING METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP2001214999A true JP2001214999A (en) 2001-08-10
JP4576655B2 JP4576655B2 (en) 2010-11-10

Family

ID=18552788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027187A Expired - Fee Related JP4576655B2 (en) 2000-01-31 2000-01-31 COMPOSITE PRESSURE CONTAINER AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP4576655B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337394A (en) * 2004-05-27 2005-12-08 Nippon Oil Corp Fiber-reinforced pressure vessel, and its manufacturing method
JP2008164131A (en) * 2006-12-28 2008-07-17 Nippon Polyethylene Kk Pressure container and its manufacturing method
JP2016199042A (en) * 2016-06-16 2016-12-01 八千代工業株式会社 Manufacturing method of pressure container
JP2018513318A (en) * 2015-02-27 2018-05-24 カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Pressure vessel and method for manufacturing a pressure vessel
JP2020131658A (en) * 2019-02-25 2020-08-31 八千代工業株式会社 Pressure vessel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119282A (en) * 1990-05-25 1992-04-20 Nkk Corp Frp pipe and manufacture thereof
JPH09112796A (en) * 1995-10-12 1997-05-02 Toyoda Gosei Co Ltd Pressure container
JPH09280496A (en) * 1996-04-18 1997-10-31 Toray Ind Inc Pressure vessel and its manufacture
JPH10267195A (en) * 1997-03-24 1998-10-09 Kobe Steel Ltd Lightweight pressure vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119282A (en) * 1990-05-25 1992-04-20 Nkk Corp Frp pipe and manufacture thereof
JPH09112796A (en) * 1995-10-12 1997-05-02 Toyoda Gosei Co Ltd Pressure container
JPH09280496A (en) * 1996-04-18 1997-10-31 Toray Ind Inc Pressure vessel and its manufacture
JPH10267195A (en) * 1997-03-24 1998-10-09 Kobe Steel Ltd Lightweight pressure vessel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337394A (en) * 2004-05-27 2005-12-08 Nippon Oil Corp Fiber-reinforced pressure vessel, and its manufacturing method
JP2008164131A (en) * 2006-12-28 2008-07-17 Nippon Polyethylene Kk Pressure container and its manufacturing method
JP2018513318A (en) * 2015-02-27 2018-05-24 カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Pressure vessel and method for manufacturing a pressure vessel
JP2016199042A (en) * 2016-06-16 2016-12-01 八千代工業株式会社 Manufacturing method of pressure container
JP2020131658A (en) * 2019-02-25 2020-08-31 八千代工業株式会社 Pressure vessel

Also Published As

Publication number Publication date
JP4576655B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
Dong et al. Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites
US3240644A (en) Method of making pressure vessels
US4229473A (en) Partial interlaminar separation system for composites
US5150812A (en) Pressurized and/or cryogenic gas containers and conduits made with a gas impermeable polymer
US4274901A (en) Method of making a partial interlaminar separation composite system
US4927038A (en) Container for high pressure gases
US8932695B1 (en) Basalt-based pressure vessel for gas storage and method for its production
JP2001214999A (en) Composite material pressure vessel and method of manufacturing the same
Davies et al. Tensile fatigue behaviour of PBO fibres
Hogg Factors affecting the stress corrosion of GRP in acid environments
JP6277583B2 (en) Vacuum insulation outer packaging, vacuum insulation, and equipment with vacuum insulation
CN106147227A (en) A kind of high-frequency copper-clad plate, prepreg and preparation method thereof
AU2014343797B2 (en) Material and device for the containment of cryogenic liquids
WO2006137916A2 (en) Lightweight spherical blast resistant container
Rahmani et al. The experimental analysis of creep and corrosion properties of polymeric tube reinforced by glass, carbon and Kevlar fibers
Mak et al. Performance of SiO2-impregnated flax fibre reinforced polymers under wet dry and freeze thaw cycles
JP2006234137A (en) Ground type lng tank
JP2014228114A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and device with vacuum heat insulation material
Santulli et al. Damage characterisation on PP-hemp/aluminium fibre–metal laminates using acoustic emission
JP2005337394A (en) Fiber-reinforced pressure vessel, and its manufacturing method
JP7111311B2 (en) flame retardant material
Kim et al. Thermally induced stress analysis of composite/aluminum ring specimens at cryogenic temperature
JP2018189178A (en) Pressure vessel
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
Sreenivasa et al. Influence of cryogenic treatment on mechanical behavior of glass fiber-reinforced plastic composite laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees