JP2010143009A - Plate-like composite material - Google Patents

Plate-like composite material Download PDF

Info

Publication number
JP2010143009A
JP2010143009A JP2008320968A JP2008320968A JP2010143009A JP 2010143009 A JP2010143009 A JP 2010143009A JP 2008320968 A JP2008320968 A JP 2008320968A JP 2008320968 A JP2008320968 A JP 2008320968A JP 2010143009 A JP2010143009 A JP 2010143009A
Authority
JP
Japan
Prior art keywords
plate
reinforced plastic
fiber reinforced
adhesive layer
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008320968A
Other languages
Japanese (ja)
Inventor
Koichiro Ueda
耕一郎 上田
Tadashi Nakano
忠 中野
Hirobumi Taketsu
博文 武津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008320968A priority Critical patent/JP2010143009A/en
Publication of JP2010143009A publication Critical patent/JP2010143009A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plate-like metal/plastic composite material which exhibits excellent durability even in an environment wherein a low temperature or a high temperature is repeated. <P>SOLUTION: In the composite material, a plate-like fiber-reinforced plastic material containing fibers at least 10 mm in length in a thermosetting resin is jointed to the surface of a plate-like metallic material through a thermoplastic resin adhesive layer. When the average thickness of the plate-like metallic material is t<SB>M</SB>(mm), the average thickness of the adhesive layer is t<SB>C</SB>(mm), and the elongation of the thermoplastic resin constituting the adhesive layer is δ(%), the following formulas (1) and (2) are satisfied: (1) t<SB>C</SB>×δ≥0.16 and (2) t<SB>C</SB>/t<SB>M</SB>≥0.01. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、板状金属材料と板状繊維強化プラスチック材料を接着剤にて接合した板状複合材料に関する。   The present invention relates to a plate-like composite material in which a plate-like metal material and a plate-like fiber reinforced plastic material are joined with an adhesive.

金属と繊維強化プラスチックを接合した複合材料は、金属材料単体の場合と比較して比強度(引張強さ/比重の比)を大幅に向上させることが可能であることから、建築物、自動車、船舶などの構成部材として普及しつつある。   A composite material made by joining metal and fiber reinforced plastic can greatly improve the specific strength (tensile strength / specific gravity ratio) compared to the case of a single metal material. It is becoming widespread as a structural member for ships and the like.

繊維強化プラスチックとしては、短繊維を樹脂組成物のマトリクス中に分散配合させたもの、長繊維を樹脂に埋め込んだものなどが知られている。繊維の種類は用途に応じて様々であるが、強度特性に優れた繊維としては炭素繊維やガラス繊維などが代表的である。このような高強度繊維を用いた板状繊維強化プラスチック材料は強度が非常に高いので、板状金属材料の比強度向上には特に有利である。   Known fiber-reinforced plastics include those obtained by dispersing and blending short fibers in a matrix of a resin composition, and those obtained by embedding long fibers in a resin. There are various types of fibers depending on the application, but carbon fibers and glass fibers are typical examples of fibers having excellent strength characteristics. The plate-like fiber reinforced plastic material using such high-strength fibers has a very high strength and is particularly advantageous for improving the specific strength of the plate-like metal material.

特許文献1には軽金属と繊維強化プラスチックを接着剤で一体化し、耐食性、強度・衝撃エネルギー吸収性能を向上させた軽金属/CFRPハイブリッド構造材が記載されている。特許文献2には金属板に熱可塑性樹脂を基材とする繊維強化プラスチックを積層した、耐食性、耐衝撃性、制振性に優れた多層積層板が記載されている。特許文献3には金属と繊維強化プラスチックが発泡樹脂を介して接合されている高強度金属樹脂複合構造体が記載されている。   Patent Document 1 describes a light metal / CFRP hybrid structural material in which light metal and fiber reinforced plastic are integrated with an adhesive to improve corrosion resistance, strength and impact energy absorption performance. Patent Document 2 describes a multilayer laminate having excellent corrosion resistance, impact resistance, and vibration damping properties, in which a fiber reinforced plastic based on a thermoplastic resin is laminated on a metal plate. Patent Document 3 describes a high-strength metal-resin composite structure in which a metal and a fiber-reinforced plastic are joined via a foamed resin.

WO99/10168号再公表公報WO99 / 10168 republication gazette 特開平6−115007号公報Japanese Patent Laid-Open No. 6-115007 特開2007−196545号公報JP 2007-196545 A

従来、金属と繊維強化プラスチックを接着剤により接合して金属/プラスチック複合材料とする場合、その接着剤にはエポキシ系樹脂等の熱硬化性樹脂を使用することが一般的である。熱硬化性樹脂は硬質で強度が高く、複合材料の強度レベルを向上させる上で有利となる。しかしながら、自動車部材等の用途に適用される金属/プラスチック複合材料は、低温(常温)と高温に繰り返し曝されるという環境(低温・高温繰り返し環境)で使用されることが多い。発明者らの調査によると、従来の金属/プラスチック複合材料を自動車のエンジンルーム内の部材やボディー部材に適用すると、低温・高温繰り返し環境によって、材料変形や、金属/プラスチック間での剥離が生じる恐れがあることがわかった。その要因としては金属と樹脂の熱膨張係数に大きな差があることが挙げられる。レーシングカー等の短期的な使用では従来の金属/プラスチック複合材料において軽量化と高強度化の目的は達せられるが、一般の乗用車等に適用する場合には長期の使用に耐える必要があり、耐久性の面で不安がある。   Conventionally, when a metal / fiber reinforced plastic is bonded with an adhesive to form a metal / plastic composite material, it is common to use a thermosetting resin such as an epoxy resin for the adhesive. The thermosetting resin is hard and has high strength, which is advantageous in improving the strength level of the composite material. However, metal / plastic composite materials applied to uses such as automobile parts are often used in an environment (low temperature / high temperature repeat environment) in which they are repeatedly exposed to low temperatures (normal temperatures) and high temperatures. According to the investigation by the inventors, when a conventional metal / plastic composite material is applied to a member or a body member in an engine room of an automobile, material deformation or peeling between the metal / plastic occurs due to repeated low and high temperature environments. I found out there was a fear. The reason for this is that there is a large difference in the coefficient of thermal expansion between the metal and the resin. The short-term use of racing cars, etc. can achieve the purpose of reducing the weight and increasing the strength of conventional metal / plastic composite materials. However, when applied to ordinary passenger cars, etc., it must withstand long-term use and is durable. I have anxiety in terms of sex.

一方、特許文献3に示されるように金属とプラスチックを発泡樹脂で接合する場合、接合時の加熱冷却では変形は生じない。しかし、自動車の車内など、昇温・降温サイクルが短い周期で頻繁に発生する部位に適用した場合、金属とプラスチックの熱膨張特性の差に起因する応力が発泡樹脂層に繰り返し頻繁に付与され、発泡樹脂層は経時劣化によって強度低下を引き起こすことが懸念される。また、発泡樹脂層は樹脂を発泡させるために厚くなり、薄い材料が必要な部位への適用が困難となる。   On the other hand, as shown in Patent Document 3, when metal and plastic are joined with foamed resin, deformation does not occur in heating and cooling during joining. However, when applied to a part where the temperature rising / falling cycle frequently occurs in a short cycle, such as the interior of an automobile, stress due to the difference in thermal expansion characteristics between the metal and the plastic is repeatedly applied to the foamed resin layer, There is a concern that the foamed resin layer may cause a decrease in strength due to deterioration over time. Further, the foamed resin layer becomes thick in order to foam the resin, and it becomes difficult to apply it to a site where a thin material is required.

本発明は、低温・高温繰り返し環境においても優れた耐久性を呈する板状の金属/プラスチック複合材料を提供することを目的とする。   An object of the present invention is to provide a plate-like metal / plastic composite material that exhibits excellent durability even in a low temperature / high temperature repeated environment.

上述のように、金属/プラスチック複合材料を低温・高温繰り返し環境で使用した場合に問題となる材料変形や、金属/プラスチック間での剥離は、主として金属とプラスチックの熱膨張差に起因して生じる。発明者らは詳細な検討の結果、金属とプラスチックを接合するための接着剤として伸び率の良好な熱可塑性樹脂を使用し、その伸び率と接着剤層の厚さとの積を一定以上に確保するとともに、接着剤層の厚さを金属材料の板厚に応じて十分に厚くすることによって、複合材料として求められる高強度を維持しながら、金属とプラスチックの熱膨張差に起因するひずみを接着剤層に吸収させることが可能になることを見出した。本発明はこのような知見に基づいて完成したものである。   As described above, material deformation and delamination between metal and plastic, which are problematic when metal / plastic composite materials are used in low-temperature and high-temperature repeated environments, are mainly caused by the difference in thermal expansion between metal and plastic. . As a result of detailed studies, the inventors used a thermoplastic resin having a good elongation rate as an adhesive for joining metal and plastic, and secured a product of the elongation rate and the thickness of the adhesive layer above a certain level. At the same time, by increasing the thickness of the adhesive layer according to the plate thickness of the metal material, the strain caused by the difference in thermal expansion between the metal and plastic can be bonded while maintaining the high strength required as a composite material. It was found that it can be absorbed in the agent layer. The present invention has been completed based on such findings.

すなわち本発明では、板状金属材料の表面に、熱可塑性樹脂の接着剤層を介して、長さ10mm以上の繊維を熱硬化性樹脂中に含有する板状繊維強化プラスチック材料が接合されている複合材料であって、板状金属材料の平均厚さをtM(mm)、接着剤層の平均厚さをtC(mm)、接着剤層を構成する熱可塑性樹脂の伸びをδ(%)とするとき、下記(1)式および(2)式を満たす板状複合材料が提供される。
C×δ≧0.16 …(1)
C/tM≧0.01 …(2)
That is, in the present invention, a plate-like fiber reinforced plastic material containing fibers having a length of 10 mm or more in a thermosetting resin is bonded to the surface of the plate-like metal material via a thermoplastic resin adhesive layer. The composite material, wherein the average thickness of the plate-like metal material is t M (mm), the average thickness of the adhesive layer is t C (mm), and the elongation of the thermoplastic resin constituting the adhesive layer is δ (% ), A plate-shaped composite material satisfying the following formulas (1) and (2) is provided.
t C × δ ≧ 0.16 (1)
t C / t M ≧ 0.01 (2)

ここで、板状複合材料は、1枚の板状金属材料と1枚の板状繊維強化プラスチック材料を接合した構造としても構わないし、1枚の板状金属材料の両面に板状繊維強化プラスチック材料を接合したサンドイッチ構造のものや、複数枚の板状金属材料と複数枚の板状繊維強化プラスチック材料を交互に積層した構造のものを採用することもできる。複数の接着剤層や金属材料の層を有する構造の場合は、(1)式、(2)式のtC、およびtMはそれぞれの層のトータル厚さを採用すればよい。また、複数の接着剤層を有する構造のものにおいて各接着剤層を構成する樹脂の伸びδの値が異なる場合は、各接着剤層ごとにtC×δを算出してそれらを合計した値を(1)式左辺の値として採用すればよい。 Here, the plate-like composite material may have a structure in which one plate-like metal material and one piece of plate-like fiber reinforced plastic material are joined, or plate-like fiber reinforced plastic on both sides of one plate-like metal material. A sandwich structure in which materials are joined or a structure in which a plurality of plate-like metal materials and a plurality of plate-like fiber reinforced plastic materials are alternately laminated can also be employed. In the case of a structure having a plurality of adhesive layers and metal material layers, the total thickness of each layer may be adopted as t C and t M in the formulas (1) and (2). Further, in the case of a structure having a plurality of adhesive layers, when the value of the elongation δ of the resin constituting each adhesive layer is different, a value obtained by calculating t C × δ for each adhesive layer and totaling them May be adopted as the value on the left side of equation (1).

板状繊維強化プラスチック材料としては、引張強さが2000MPa以上のものを使用することが特に効果的である。例えば、炭素繊維からなる長繊維束を熱硬化性樹脂組成物のバインダーにより平板化したプリプレグシートを素材として使用し、その熱硬化性樹脂を硬化させたものが好適な対象として挙げられる。板状繊維強化プラスチック材料は、繊維の配向によって強度特性に異方性を有する場合が多い。ここで「引張強さが2000MPa以上」とは、最も大きい引張強さが得られる方向に引張試験を行ったときの値が2000MPa以上であればよいことを意味する。   As the plate-like fiber reinforced plastic material, it is particularly effective to use a material having a tensile strength of 2000 MPa or more. For example, a prepreg sheet obtained by flattening a long fiber bundle made of carbon fibers with a binder of a thermosetting resin composition is used as a raw material, and the thermosetting resin is cured. In many cases, the plate-like fiber-reinforced plastic material has anisotropy in strength characteristics depending on the orientation of the fibers. Here, “the tensile strength is 2000 MPa or more” means that the value when the tensile test is performed in the direction in which the maximum tensile strength is obtained may be 2000 MPa or more.

当該複合材料の板厚に占める板状繊維強化プラスチック材料の平均厚さ(複数の板状繊維強化プラスチック材料の層を有する場合はその合計厚さの平均値)の比率が60〜80%、接着剤層の平均厚さ(複数の接着剤層を有する場合はその合計厚さの平均値)の比率が10%未満であることがより好ましい。   The ratio of the average thickness of the plate-like fiber reinforced plastic material occupying the plate thickness of the composite material (the average value of the total thickness in the case of having a plurality of layers of plate-like fiber reinforced plastic material) is 60 to 80%, adhesion It is more preferable that the ratio of the average thickness of the agent layer (in the case of having a plurality of adhesive layers, the average value of the total thickness) is less than 10%.

本発明によれば、板状金属材料と板状繊維強化プラスチック材料を接合した複合材料において、その本来の目的である高い比強度を確保しながら、低温・高温繰り返し環境での耐久性を顕著に改善したものが実現された。したがって、この複合材料はレーシングカー等の特殊な用途だけではなく、長期間の耐久性が要求される一般的な自動車(実用車)にも適用することができる。   According to the present invention, in a composite material obtained by joining a plate-like metal material and a plate-like fiber reinforced plastic material, the durability in a low-temperature / high-temperature repeat environment is remarkably ensured while ensuring the original specific high strength. An improvement was realized. Therefore, this composite material can be applied not only to special applications such as racing cars, but also to general automobiles (utility vehicles) that require long-term durability.

図1に、本発明の板状複合材料の断面構造を模式的に示す。板状金属材料1と板状繊維強化プラスチック材料2が接着剤層3を介して接合され、これらが一体化することにより板状複合材料10が形成されている。図1において接着剤層3の厚さは誇張して描いてある。ここでは板状金属材料1の片面に板状繊維強化プラスチック材料2を接合した板状複合材料10を例示したが、板状金属材料1の両面に板状繊維強化プラスチック材料2を接合したり、板状繊維強化プラスチック材料2の両面に板状金属材料1を接合したりするサンドイッチ構造の板状複合材料10を構築することもできる。また、板状金属材料1と板状繊維強化プラスチック材料2を交互に積層して接合しても構わない。   FIG. 1 schematically shows a cross-sectional structure of the plate-shaped composite material of the present invention. The plate-like metal material 1 and the plate-like fiber reinforced plastic material 2 are joined together via the adhesive layer 3, and they are integrated to form a plate-like composite material 10. In FIG. 1, the thickness of the adhesive layer 3 is exaggerated. Here, the plate-like composite material 10 in which the plate-like fiber reinforced plastic material 2 is joined to one side of the plate-like metal material 1 is illustrated, but the plate-like fiber reinforced plastic material 2 is joined to both sides of the plate-like metal material 1, A plate-like composite material 10 having a sandwich structure in which the plate-like metal material 1 is bonded to both surfaces of the plate-like fiber reinforced plastic material 2 can also be constructed. Further, the plate-like metal material 1 and the plate-like fiber reinforced plastic material 2 may be alternately laminated and joined.

〔板状金属材料〕
本発明の複合材料に用いる板状金属材料としては、用途に応じて鋼板、銅合金板、アルミニウム合金板など、種々の金属材料の適用が考えられる。鋼板としては、一般的な普通鋼板、高張力鋼板、これらの鋼板をめっき原板とする各種めっき鋼板、ステンレス鋼板などが挙げられる。
[Plate metal material]
As the plate-like metal material used for the composite material of the present invention, various metal materials such as a steel plate, a copper alloy plate, and an aluminum alloy plate can be considered depending on the application. Examples of the steel plate include general plain steel plates, high-tensile steel plates, various plated steel plates using these steel plates as plating base plates, and stainless steel plates.

なかでも、溶融Zn−Al−Mg系めっき鋼板は従来一般的な亜鉛めっき鋼板と比べて耐食性に優れ、厳しい腐食環境下でも腐食に起因した金属/繊維強化プラスチック間の剥離を抑制する効果が大きい。溶融Zn−Al−Mg系めっき鋼板のめっき層組成としては以下のものが例示できる。
(めっき層組成); 質量%でAl:3〜22%、Mg:0.5〜8%を含有し、さらにTi:0.1%以下、B:0.05%以下、Si:2%以下の1種以上を含有し、Ca、Sr、Na、Ni、Co、Sn、Cu、Cr、Mn、希土類元素、Y、Zrの合計含有量が1%以下(0%を含む)に制限され、Feの含有量が2.5%以下に制限され、残部Znおよび不可避的不純物からなるめっき層
この場合、めっき付着量は鋼板片面あたり20〜300g/m2程度とすることが効果的である。
Among them, the hot-dip Zn-Al-Mg-based steel sheet is superior in corrosion resistance compared to conventional galvanized steel sheets, and has a great effect of suppressing peeling between metal / fiber reinforced plastics caused by corrosion even in severe corrosive environments. . The following can be illustrated as a plating layer composition of a hot-dip Zn-Al-Mg based steel sheet.
(Plating layer composition); by mass: Al: 3-22%, Mg: 0.5-8%, Ti: 0.1% or less, B: 0.05% or less, Si: 2% or less And the total content of Ca, Sr, Na, Ni, Co, Sn, Cu, Cr, Mn, rare earth elements, Y, Zr is limited to 1% or less (including 0%), The content of Fe is limited to 2.5% or less, and the plating layer is composed of the balance Zn and inevitable impurities. In this case, it is effective that the coating adhesion amount is about 20 to 300 g / m 2 per one side of the steel sheet.

ステンレス鋼板としては、例えばJIS G4305:2005に規定される鋼種に相当する組成を有する既存鋼種を採用することができる。具体的には、オーステナイト系の汎用鋼種であるSUS304系、フェライト系の汎用鋼種であるSUS430系などが挙げられる。また、JISに該当しない鋼種としては、例えばオーステナイト系の場合、JIS G4305:2005の表2に記載されるオーステナイト系鋼種において、当該表2に規定される成分含有量を満たし、質量%でさらにB:0.05%以下、V:0.5%以下、Zr:0.5%以下、Al:0.5%以下、Cu:3%以下、N:0.5%以下の1種以上を含有し、Ca、Mg、Y、REMの合計含有量が0〜0.01%であり、残部がFeおよび不可避的不純物である鋼種が挙げられる。フェライト系の場合、JIS G4305:2005の表4に記載されるフェライト系鋼種において、当該表4に規定される成分含有量を満たし、質量%でさらにB:0.05%以下、V:0.5%以下、Al:0.5%以下、Cu:1%以下の1種以上を含有し、Ca、Mg、Y、REMの合計含有量が0〜0.01%であり、残部がFeおよび不可避的不純物である鋼種が挙げられる。   As the stainless steel plate, for example, an existing steel type having a composition corresponding to a steel type specified in JIS G4305: 2005 can be adopted. Specifically, SUS304 type which is an austenitic general-purpose steel type, SUS430 type which is a ferritic general-purpose steel type, and the like can be mentioned. In addition, as a steel type not corresponding to JIS, for example, in the case of austenite, in the austenitic steel type described in Table 2 of JIS G4305: 2005, the content of the components specified in Table 2 is satisfied, and B : One or more of 0.05% or less, V: 0.5% or less, Zr: 0.5% or less, Al: 0.5% or less, Cu: 3% or less, N: 0.5% or less And a steel type in which the total content of Ca, Mg, Y and REM is 0 to 0.01%, and the balance is Fe and inevitable impurities. In the case of a ferrite type, in the ferritic steel types described in Table 4 of JIS G4305: 2005, the content of the components specified in Table 4 is satisfied, and further B: 0.05% or less and V: 0.00% in mass%. 5% or less, Al: 0.5% or less, Cu: 1% or less, the total content of Ca, Mg, Y, REM is 0 to 0.01%, the balance is Fe and The steel grade which is an unavoidable impurity is mentioned.

また、板状金属材料に化成処理を施すことにより接着剤との密着性が向上し、より高強度な複合材料となりうる。特に鋼板の場合、耐食性向上による金属板と長繊維強化プラスチック板の剥離抑制効果も期待される。化成処理皮膜は、ウレタンやアクリル樹脂にクロム酸塩、チタン塩、リン酸塩などの無機系防錆剤、シランカップリング剤やシリカゾルなどの添加剤を配合した有機系の皮膜、クロム酸塩、チタン塩、リン酸塩などの無機成分にシランカップリング剤やシリカゾルなどの添加剤を配合した無機系の化成処理皮膜などが適用できる。特にバルブメタルを含むチタン塩などの化成処理皮膜は鋼板の耐食性向上に極めて有効であり、複合材料においても良好な耐食性が発揮される。   Further, by subjecting the plate-shaped metal material to a chemical conversion treatment, the adhesiveness with the adhesive is improved, and a higher strength composite material can be obtained. In particular, in the case of a steel plate, an effect of suppressing peeling between the metal plate and the long fiber reinforced plastic plate due to improved corrosion resistance is also expected. Chemical conversion coatings include organic coatings, chromates, urethane and acrylic resins containing inorganic rust inhibitors such as chromates, titanium salts, phosphates, silane coupling agents and silica sols, An inorganic chemical conversion treatment film in which an additive such as a silane coupling agent or silica sol is blended with an inorganic component such as titanium salt or phosphate can be applied. In particular, a chemical conversion coating such as titanium salt containing valve metal is extremely effective in improving the corrosion resistance of a steel sheet, and good corrosion resistance is exhibited even in a composite material.

〔板状繊維強化プラスチック材料〕
上記の板状金属材料と接合する板状繊維強化プラスチック材料としては、長さ10mm以上の短繊維または長繊維を熱硬化性樹脂中に含有するものが適用対象となる。ここで「長繊維」とは、板状金属材料と貼り合わせる個々の板状繊維強化プラスチック材料において、その一端部から他端部まで連続的につながっている繊維である。これに対し「短繊維」は板状繊維強化プラスチック材料の内部に終端部を有している繊維である。繊維長が10mm未満である短繊維のみからなる繊維強化プラスチック材料は、金属材料の比強度を顕著に向上させる目的においては強度不足となりやすく、本発明には適さない。
[Plate fiber reinforced plastic material]
As the plate-like fiber reinforced plastic material to be joined to the plate-like metal material, a short fiber having a length of 10 mm or more or a material containing a long fiber in a thermosetting resin is applied. Here, the “long fiber” is a fiber continuously connected from one end to the other end of each plate-like fiber reinforced plastic material to be bonded to the plate-like metal material. On the other hand, “short fiber” is a fiber having a terminal portion inside a plate-like fiber reinforced plastic material. A fiber reinforced plastic material consisting only of short fibers having a fiber length of less than 10 mm tends to be insufficient for the purpose of remarkably improving the specific strength of the metal material, and is not suitable for the present invention.

繊維の種類としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、ボロン繊維、ガラス繊維などの無機繊維や、アラミド繊維、超高分子量ポリエチレン繊維、高強力ポリアクリレート繊維などの有機繊維が挙げられる。   Examples of fiber types include inorganic fibers such as carbon fibers, graphite fibers, silicon carbide fibers, alumina fibers, boron fibers, and glass fibers, and organic fibers such as aramid fibers, ultrahigh molecular weight polyethylene fibers, and high-strength polyacrylate fibers. It is done.

プラスチックの種類としては、熱硬化性樹脂が採用される。エポキシ、メラミン、フェノールなどの樹脂、あるいはこれらの共重合体などが挙げられる。熱「可塑性」樹脂を用いた繊維強化プラスチックでは、高温下で衝撃が加わった際、樹脂が軟化しているため繊維の固定が不十分となり、十分な強度が得られない。このため本発明では熱硬化性樹脂によって繊維を固定した繊維強化プラスチック材料を使用する必要がある。   A thermosetting resin is employed as the type of plastic. Examples thereof include resins such as epoxy, melamine, phenol, and copolymers thereof. In a fiber reinforced plastic using a thermal “plastic” resin, when an impact is applied at a high temperature, the resin is softened, so that the fiber is not sufficiently fixed and sufficient strength cannot be obtained. For this reason, in this invention, it is necessary to use the fiber reinforced plastic material which fixed the fiber with the thermosetting resin.

短繊維を使用する場合は、樹脂組成物中に短繊維を分散させた後、シート状に成形し、加熱処理により硬化させる方法で板状繊維強化プラスチック材料を得ることができる。長繊維を使用する場合は、長繊維束を予め熱硬化性樹脂組成物のバインダーにより平板化した「プリプレグシート」を使用することが好適である。なかでも炭素繊維の長繊維束に熱硬化性樹脂組成物の液を含浸させて平板化したプリプレグシートが好適である。この場合、炭素長繊維の配向は一方向であってもよいし、経方向および緯方向に繊維を配向させた織物状であってもよい。   When short fibers are used, a plate-like fiber-reinforced plastic material can be obtained by a method in which short fibers are dispersed in a resin composition, then formed into a sheet and cured by heat treatment. When long fibers are used, it is preferable to use a “prepreg sheet” in which a long fiber bundle is previously flattened with a binder of a thermosetting resin composition. Among them, a prepreg sheet obtained by flattening a long fiber bundle of carbon fibers by impregnating with a liquid of a thermosetting resin composition is preferable. In this case, the carbon long fibers may be oriented in one direction, or may be a woven fabric in which the fibers are oriented in the warp direction and the weft direction.

プリプレグシートを使用した板状繊維強化プラスチック材料の作製は比較的簡便である。すなわち、プリプレグシートに含浸させてある熱硬化性樹脂組成物を加熱により硬化させると、直ちに板状繊維強化プラスチック材料が出来る。1枚のプリプレグシートをそのまま使用しても良いし、複数枚のプリプレグシートを積層状態としたものをホットプレスすることにより一体化させてもよい。必要に応じて硬化処理前に熱硬化性樹脂組成物を加えることで、熱硬化性樹脂と繊維の量比を調整することができる。   Production of a plate-like fiber reinforced plastic material using a prepreg sheet is relatively simple. That is, when the thermosetting resin composition impregnated in the prepreg sheet is cured by heating, a plate-like fiber reinforced plastic material can be immediately formed. One prepreg sheet may be used as it is, or a plurality of prepreg sheets laminated may be integrated by hot pressing. If necessary, the amount ratio of the thermosetting resin to the fiber can be adjusted by adding the thermosetting resin composition before the curing treatment.

板状繊維強化プラスチック材料は、接合相手である金属材料の比強度を向上させるに足る高強度を有しているものが適用対象となる。種々検討の結果、ある方向において2000MPa以上の引張強さを呈するものが好ましい。少なくとも1方向について極めて高い引張強さを有していれば、外部から衝撃を受けた際の変形が抑制され、例えば自動車のボディー用途ではへこみ疵に対する抵抗力が顕著に増大する。板状繊維強化プラスチック材料の強度は主として繊維の配向方向および樹脂中に占める繊維の割合によってコントロールすることができる。板状繊維強化プラスチック材料の平均厚さは、例えば0.1〜10mm程度の範囲で調整することができる。   As the plate-like fiber reinforced plastic material, a material having a high strength sufficient to improve the specific strength of the metal material that is a bonding partner is applied. As a result of various studies, those exhibiting a tensile strength of 2000 MPa or more in a certain direction are preferable. If it has an extremely high tensile strength in at least one direction, deformation when subjected to an impact from the outside is suppressed, and for example, in a body use of an automobile, the resistance to dents is significantly increased. The strength of the plate-like fiber reinforced plastic material can be controlled mainly by the orientation direction of the fibers and the ratio of the fibers in the resin. The average thickness of the plate-like fiber reinforced plastic material can be adjusted within a range of about 0.1 to 10 mm, for example.

〔接着剤層〕
板状金属材料と板状繊維強化プラスチック材料との接合には、熱可塑性樹脂からなる接着剤が適用される。樹脂の種類としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート、ポリ酢酸ビニル、アクリル、ポリフェニレンサルファイドポリカーボネート、ポリエーテルスルホン、ポリアミド、ポリブチレンテレフタレートや、これらの共重合体などが挙げられる。なかでも、骨格内にヒドロキシ基、カルボキシル基などの極性基を持つエチレンビニルアルコール−酢酸ビニル共重合体など、また、多価カルボン酸とポリアルコールとの縮合体であるポリエチレンテレフタレート、ポリブチレンテレフタレートなどが金属およびプラスチックとの密着性において特に優れている。
[Adhesive layer]
An adhesive made of a thermoplastic resin is applied to join the plate-like metal material and the plate-like fiber reinforced plastic material. Examples of the resin include polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyvinyl acetate, acrylic, polyphenylene sulfide polycarbonate, polyethersulfone, polyamide, polybutylene terephthalate, and copolymers thereof. Among them, ethylene vinyl alcohol-vinyl acetate copolymers having a polar group such as a hydroxy group and a carboxyl group in the skeleton, and polyethylene terephthalate and polybutylene terephthalate which are condensates of polyvalent carboxylic acids and polyalcohols. Is particularly excellent in adhesion to metals and plastics.

この接着剤によって構成される接着剤層は、板状金属材料と板状繊維強化プラスチック材料の接合を担うとともに、両者の熱膨張差に起因するひずみを吸収する役割を有する。プラスチックは金属材料と比較して熱膨張係数が大きい。接着剤層は、その熱膨張差によって生じる「板状金属材料/接着剤層間」の応力、および「板状繊維強化プラスチック材料/接着剤層間」の応力を十分に緩和するに足る厚さを確保する必要がある。その厚さは接着剤を構成する樹脂の伸び率にも依存する。すなわち、同じ応力緩和効果を得るためには、伸び率の大きい樹脂であれば接着剤層の厚さを薄くすることができ、逆に伸び率の小さい樹脂であれば接着剤層の厚さを厚くする必要がある。種々検討の結果、下記(1)式を満たすように樹脂の種類に応じて接着剤層の厚さを設定することが、金属材料と繊維強化プラスチック材料の間の熱膨張差に起因する応力を緩和するうえで極めて有効であることがわかった。
C×δ≧0.16 …(1)
ここで、tCは接着剤層の平均厚さ(mm)、δは接着剤層を構成する熱可塑性樹脂の伸びδ(%)である。伸びδは引張最大荷重時の引張伸びに相当するものであり、JIS K7161に準じて測定されたデータを採用することができる。
The adhesive layer composed of this adhesive serves to join the plate-like metal material and the plate-like fiber reinforced plastic material, and has a role of absorbing strain caused by the difference in thermal expansion between the two. Plastic has a larger coefficient of thermal expansion than metal materials. The adhesive layer has sufficient thickness to sufficiently relieve the stress between the “plate-like metal material / adhesive layer” caused by the difference in thermal expansion and the stress between the “plate-like fiber reinforced plastic material / adhesive layer”. There is a need to. The thickness also depends on the elongation percentage of the resin constituting the adhesive. That is, in order to obtain the same stress relaxation effect, the thickness of the adhesive layer can be reduced if the resin has a high elongation rate, and conversely, if the resin has a low elongation rate, the thickness of the adhesive layer can be reduced. It needs to be thick. As a result of various studies, setting the thickness of the adhesive layer according to the type of resin so as to satisfy the following formula (1) can reduce the stress caused by the difference in thermal expansion between the metal material and the fiber-reinforced plastic material. It was found to be extremely effective in mitigating.
t C × δ ≧ 0.16 (1)
Here, t C is the average thickness (mm) of the adhesive layer, and δ is the elongation δ (%) of the thermoplastic resin constituting the adhesive layer. The elongation δ corresponds to the tensile elongation at the maximum tensile load, and data measured according to JIS K7161 can be adopted.

一方、熱膨張差によって生じる「板状金属材料/接着剤層間」の応力、および「板状繊維強化プラスチック材料/接着剤層間」の応力によって、板状金属材料および板状繊維強化プラスチック材料自体も、昇温時の膨張や降温時の収縮による材料変形挙動に影響を受ける。発明者らの検討によれば、特に板状金属材料の厚さに応じて接着剤層の厚さを十分に確保することが、複合材料としての耐久性を向上させる上で有効であることを見出した。すなわち、板状金属材料は、その厚さが薄い場合には板状繊維強化プラスチック材料の変形に追随しやすく、接着剤層によって吸収すべきひずみ量は低減されるので、接着剤層の厚さは比較的薄くても構わない。逆に板状金属材料の厚さが厚くなるほど板状繊維強化プラスチック材料の変形に追随しにくくなり、その結果、接着剤層によって吸収すべきひずみ量は増大するので、接着剤層の厚さを大きくする必要がある。詳細な検討の結果、下記(2)式を満たすことが極めて効果的である。
C/tM≧0.01 …(2)
ここで、tMは板状金属材料の平均厚さ(mm)、tCは接着剤層の平均厚さ(mm)である
On the other hand, the plate-like metal material and the plate-like fiber reinforced plastic material itself are caused by the stress of the “plate-like metal material / adhesive layer” caused by the difference in thermal expansion and the stress of the “plate-like fiber reinforced plastic material / adhesive layer”. It is affected by material deformation behavior due to expansion during temperature rise and shrinkage during temperature fall. According to the study by the inventors, it is particularly effective to improve the durability as a composite material to ensure a sufficient thickness of the adhesive layer according to the thickness of the plate-like metal material. I found it. That is, when the thickness of the plate-like metal material is small, it easily follows the deformation of the plate-like fiber reinforced plastic material, and the amount of strain to be absorbed by the adhesive layer is reduced. May be relatively thin. Conversely, as the thickness of the plate-like metal material increases, it becomes more difficult to follow the deformation of the plate-like fiber reinforced plastic material.As a result, the amount of strain to be absorbed by the adhesive layer increases, so the thickness of the adhesive layer is reduced. It needs to be bigger. As a result of detailed examination, it is extremely effective to satisfy the following expression (2).
t C / t M ≧ 0.01 (2)
Here, t M is the average thickness (mm) of the sheet metal material, and t C is the average thickness (mm) of the adhesive layer.

上記の(1)式あるいは(2)式を満たさない場合は、板状金属材料と板状繊維強化プラスチック材料の熱膨張係数差に起因する両者の材料変形に接着剤層の変形が追随できない事態が生じやすくなり、接着剤層が凝集破壊し、十分な接合強度が確保できなくなる場合がある。   When the above formula (1) or (2) is not satisfied, the deformation of the adhesive layer cannot follow the deformation of the material due to the difference in thermal expansion coefficient between the plate-like metal material and the plate-like fiber reinforced plastic material. May occur, the adhesive layer may cohesively break, and sufficient bonding strength may not be ensured.

〔板状複合材料における各層の厚さ比率〕
板状複合材料の板厚に占める板状繊維強化プラスチック材料の平均厚さ(複数の板状繊維強化プラスチック材料の層を有する場合はその合計厚さの平均値)の比率は、60〜80%であることがより好ましい。板状繊維強化プラスチック材料の厚さ比率を60%以上にすれば金属材料単体の場合と比べ、高強度化と、金属材料を薄肉化できることによる軽量化によって、比強度の大幅な向上を実現しやすいことがわかった。ただし、この比率が過度に高くなるとコストメリットが低減するので、80%以下とすることが好ましい。
[Thickness ratio of each layer in plate-like composite material]
The ratio of the average thickness of the plate-like fiber reinforced plastic material occupying the plate thickness of the plate-like composite material (in the case of having a plurality of plate-like fiber reinforced plastic material layers) is 60 to 80% It is more preferable that If the thickness ratio of the plate-like fiber reinforced plastic material is set to 60% or more, the specific strength is greatly improved by increasing the strength and reducing the thickness of the metal material compared to the case of a single metal material. I found it easy. However, if this ratio becomes excessively high, the cost merit is reduced, so it is preferable to set the ratio to 80% or less.

また、板状複合材料の板厚に占める接着剤層の平均厚さ(複数の接着剤層を有する場合はその合計厚さの平均値)の比率は、10%未満であることがより好ましい。熱可塑性樹脂からなる接着剤層は板状複合材料の強度にほとんど寄与しないため、その厚さ比率が10%以上になると板状複合材料の強度レベル低下を招きやすい。   Moreover, it is more preferable that the ratio of the average thickness of the adhesive layer occupying the plate thickness of the plate-shaped composite material (the average value of the total thickness in the case of having a plurality of adhesive layers) is less than 10%. Since the adhesive layer made of a thermoplastic resin hardly contributes to the strength of the plate-shaped composite material, when the thickness ratio is 10% or more, the strength level of the plate-shaped composite material is likely to be lowered.

《板状複合材料の作製》
以下のようにして図1に示したタイプの板状複合材料を作製した。
<< Production of plate-like composite material >>
A plate-shaped composite material of the type shown in FIG. 1 was produced as follows.

〔板状金属材料〕
表1に示す金属板を用意した。表1中の「引張強さ」は、圧延方向における引張試験値であり、JIS Z2241に準じて測定した。金属板Aは下記「化成処理1」の条件で化成処理皮膜を形成したものである。それ以外の金属板には化成処理を施していない。
(化成処理条件1)
処理液; フッ化チタン酸アンモニウム50g/L、85%リン酸20g/L、リン酸マグネシウム10g/Lを含有する水溶液
処理方法; Ti金属換算付着量が40mg/m2となるように処理液をバーコーターで金属板表面に塗布したのち、板温120℃で乾燥
[Plate metal material]
The metal plate shown in Table 1 was prepared. “Tensile strength” in Table 1 is a tensile test value in the rolling direction, and was measured according to JIS Z2241. The metal plate A is obtained by forming a chemical conversion treatment film under the following conditions of “chemical conversion treatment 1”. The other metal plates are not subjected to chemical conversion treatment.
(Chemical conversion treatment condition 1)
Treatment solution; Aqueous solution containing ammonium fluoride titanate 50 g / L, 85% phosphoric acid 20 g / L, magnesium phosphate 10 g / L Treatment method: Treatment solution is adjusted so that the amount of Ti metal equivalent adhesion is 40 mg / m 2. After applying to the surface of the metal plate with a bar coater, it is dried at a plate temperature of 120 ° C.

Figure 2010143009
Figure 2010143009

〔接着剤〕
表2に示す接着剤を用意した。表2中の「引張伸び」は引張最大荷重時の伸びであり、接着剤を硬化させた後、JIS K7161に準じて測定されたデータを記載した。
〔adhesive〕
The adhesive shown in Table 2 was prepared. “Tensile elongation” in Table 2 is the elongation at the maximum tensile load, and the data measured according to JIS K7161 after the adhesive was cured.

Figure 2010143009
Figure 2010143009

〔板状繊維強化プラスチック材料〕
炭素繊維プリプレグシート(三菱レイヨン社製;パイロフィルTR350C100)を用意した。このシートは一方向に配向した炭素繊維の長繊維束に熱硬化性樹脂であるエポキシ樹脂組成物を含浸させて平板化したものである。表3に示す所定枚数のプリプレグシートを炭素長繊維の方向が同一方向となるように積層した状態とし、ホットプレスにより130℃、加圧力0.033MPa、120分の加熱処理を施すことにより、エポキシ樹脂を硬化させ、板状繊維強化プラスチック材料を得た。表3中に各板状繊維強化プラスチック材料の平均厚さおよび引張強さを示す。この「引張強さ」はJIS K7146に準じて測定した。この引張試験は、長繊維の長手方向に対応する方向について行った。
[Plate fiber reinforced plastic material]
A carbon fiber prepreg sheet (manufactured by Mitsubishi Rayon Co., Ltd .; Pyrofil TR350C100) was prepared. This sheet is obtained by impregnating a long fiber bundle of carbon fibers oriented in one direction with an epoxy resin composition, which is a thermosetting resin, and flattening the sheet. A predetermined number of prepreg sheets shown in Table 3 were laminated so that the directions of the long carbon fibers were in the same direction, and were subjected to a heat treatment at 130 ° C., a pressure of 0.033 MPa, for 120 minutes by hot pressing, to obtain an epoxy. The resin was cured to obtain a plate-like fiber reinforced plastic material. Table 3 shows the average thickness and tensile strength of each plate-like fiber reinforced plastic material. This “tensile strength” was measured according to JIS K7146. This tensile test was performed in a direction corresponding to the longitudinal direction of the long fibers.

Figure 2010143009
Figure 2010143009

〔板状複合材料〕
表1の板状金属材料と、表3の板状繊維強化プラスチック材料を、表2の接着剤を用いて接合し、図1に示したタイプの板状複合材料を作製した。板状金属材料、接着剤層、板状繊維強化プラスチック材料の組合せは表4中に記載してある。板状金属材料の圧延方向と、板状繊維強化プラスチック材料の繊維方向(表3に示した強度が得られた方向)とが一致するように両者を接合した。接着方法は、接着剤の種類に応じて以下のようにした。
[Plate-shaped composite material]
The plate-like metal material shown in Table 1 and the plate-like fiber reinforced plastic material shown in Table 3 were joined using the adhesive shown in Table 2 to produce a plate-like composite material of the type shown in FIG. The combinations of plate metal material, adhesive layer and plate fiber reinforced plastic material are listed in Table 4. Both were joined so that the rolling direction of the plate-like metal material and the fiber direction of the plate-like fiber-reinforced plastic material (the direction in which the strength shown in Table 3 was obtained) coincided. The bonding method was as follows according to the type of adhesive.

熱可塑性樹脂の接着剤(表2のエポキシ以外)を使用する場合は、接着剤を溶融温度+20℃の温度に加熱し、溶融した接着剤の液をバーコーターまたはゾルコーターで板状金属材料の表面に所定量塗布し、常温まで冷却し、その後、接着剤層の上に板状繊維強化プラスチック材料を載せ、ホットプレスにより接着剤溶融温度+20℃、加圧力0.033MPa、120秒の加熱処理を施すことにより、板状金属材料と板状繊維強化プラスチック材料とを接着剤を介して一体化させ、板状複合材料を得た。
エポキシ系接着剤を使用する場合は、硬化剤を添加した接着剤の液をバーコーターまたはゾルコーターで板状金属材料の表面に所定量塗布し、接着剤が硬化する前に接着剤塗布面に板状繊維強化プラスチック材料を載せ、加圧力0.033MPa、120分のプレスを施すことにより、板状金属材料と板状繊維強化プラスチック材料とを接着剤を介して一体化させ、板状複合材料を得た。
When using a thermoplastic resin adhesive (other than the epoxy in Table 2), heat the adhesive to a temperature of the melting temperature + 20 ° C., and use the bar coater or sol coater to remove the melted adhesive liquid. A predetermined amount is applied to the substrate, cooled to room temperature, and then a plate-like fiber reinforced plastic material is placed on the adhesive layer, followed by heat treatment with an adhesive melting temperature + 20 ° C. and a pressure of 0.033 MPa for 120 seconds by hot pressing. By applying, the plate-like metal material and the plate-like fiber reinforced plastic material were integrated through an adhesive to obtain a plate-like composite material.
When using an epoxy adhesive, apply a predetermined amount of adhesive solution with a curing agent to the surface of the plate-shaped metal material using a bar coater or sol coater, and then apply a plate on the adhesive application surface before the adhesive is cured. The plate-like metal reinforced plastic material is placed and pressed at a pressure of 0.033 MPa for 120 minutes to integrate the plate-like metal material and the plate-like fiber-reinforced plastic material via an adhesive, and the plate-like composite material is Obtained.

《板状複合材料の特性評価》
〔引張強さ〕
引張強さは、JIS K7146に準じて測定した。引張方向は板状金属材料の圧延方向とした。引張強さ950MPa以上のものを合格と判定した。特に1900MPa以上であるものは極めて強度特性に優れると評価される。
<Characteristic evaluation of plate-like composite material>
〔Tensile strength〕
The tensile strength was measured according to JIS K7146. The tensile direction was the rolling direction of the sheet metal material. Those having a tensile strength of 950 MPa or more were determined to be acceptable. In particular, those having a pressure of 1900 MPa or more are evaluated to be extremely excellent in strength characteristics.

〔比強度〕
上記の引張強さをkg/m2に換算した値を板状複合材料の比重で除することにより比強度を算出した。この比強度が16×106以上であれば、多くの用途において金属材料単体の場合よりも高強度化または軽量化に対する顕著な効果が期待されるので、比強度16×106以上のものを合格と判定した。
[Specific strength]
The specific strength was calculated by dividing the value obtained by converting the tensile strength into kg / m 2 by the specific gravity of the plate-like composite material. If this specific strength 16 × 10 6 or more, a number of so marked effect on increasing the strength or weight reduction can be expected than in the case of the metal material alone in applications, those specific strength 16 × 10 6 or more It was determined to pass.

〔耐熱変形性〕
各板状複合材料から200mm×150mmの試験片を切り出し、以下の2種類の試験に供した。
加温試験; 70℃のオーブン中に120分間保持
サイクル試験; 「70℃の熱水中に10分間浸漬 → 4℃の冷水中に10分間浸漬」の加熱冷却サイクルを50サイクル実施
[Heat-resistant deformation]
A test piece of 200 mm × 150 mm was cut out from each plate-shaped composite material and subjected to the following two types of tests.
Heating test; Hold in an oven at 70 ° C. for 120 minutes Cycle test; 50 cycles of heating / cooling cycle of “immersion in hot water at 70 ° C. for 10 minutes → immersion in cold water at 4 ° C. for 10 minutes”

上記各試験後の試験片を平坦な盤上に置き、板のそりを評価するために急峻度(=山高さ/試験片長さ200mm×100)を測定した。測定値を以下の基準で評価し、加温試験、サイクル試験とも○評価以上であれば多くの用途において問題なしと判断されることから、それぞれ○評価以上を合格と判定した。
◎:急峻度;0.2%未満
○:急峻度;0.2%以上1.0%未満
△:急峻度;1.0%以上1.5%未満
▲:急峻度;1.5%以上
×:板状金属材料と板状繊維強化プラスチック材料の剥離が生じた
The test piece after each test was placed on a flat board, and steepness (= mountain height / test piece length 200 mm × 100) was measured in order to evaluate the warpage of the plate. The measured values were evaluated according to the following criteria, and both the heating test and the cycle test were judged to have no problem in many applications if they were more than ○ evaluations.
◎: Steepness; less than 0.2% ○: Steepness; 0.2% or more and less than 1.0% △: Steepness; 1.0% or more and less than 1.5% ▲: Steepness; 1.5% or more X: Peeling of the plate metal material and the plate fiber reinforced plastic material occurred

以上の試験結果により、引張強さ、比強度、耐熱変形性のすべてが合格であったものを総合評価;合格と判定し、◎(優秀)、○(良好)とした。それ以外のものを総合評価;×とした。
結果を表4に示す。
Based on the above test results, all of the tensile strength, specific strength, and heat distortion resistance were accepted as a comprehensive evaluation; judged as acceptable and designated as ◎ (excellent) and ◯ (good). Other than that, comprehensive evaluation;
The results are shown in Table 4.

Figure 2010143009
Figure 2010143009

表4からわかるように、本発明例のものはいずれも上記各特性に優れ、総合評価は合格と判定された。なかでも板厚に占める板状繊維強化プラスチック材料の厚さ比率が0.6〜0.8、接着剤層の厚さ比率が0.1未満であるもの(試料No.2、5、8、9、10、11、16)は、極めて強度特性に優れる。なお、試料No.18、19は板状繊維強化プラスチック材料の厚さ比率が0.8を超えるものであり、用途によってはコスト高となる。   As can be seen from Table 4, all of the examples of the present invention were excellent in the above characteristics, and the overall evaluation was determined to be acceptable. Among them, the thickness ratio of the plate-like fiber reinforced plastic material occupying the plate thickness is 0.6 to 0.8, and the thickness ratio of the adhesive layer is less than 0.1 (Sample Nos. 2, 5, 8, 9, 10, 11, 16) are extremely excellent in strength characteristics. In Sample Nos. 18 and 19, the thickness ratio of the plate-like fiber reinforced plastic material exceeds 0.8, which increases the cost depending on the application.

これに対し、比較例である試料No.1、3、4、12は(1)式または(2)式を満たさないもの、試料No.13、15は接着剤層に熱硬化性樹脂を使用したものであり、これらはいずれも耐熱変形性に劣った。   In contrast, sample Nos. 1, 3, 4, and 12 which are comparative examples do not satisfy the formula (1) or (2), and sample Nos. 13 and 15 use a thermosetting resin for the adhesive layer. These were all inferior in heat distortion resistance.

本発明の板状複合材料の断面構造を模式的に例示した図。The figure which illustrated typically the cross-sectional structure of the plate-shaped composite material of this invention.

符号の説明Explanation of symbols

1 板状金属材料
2 板状繊維強化プラスチック材料
3 接着剤層
10 板状複合材料
DESCRIPTION OF SYMBOLS 1 Plate-shaped metal material 2 Plate-shaped fiber reinforced plastic material 3 Adhesive layer 10 Plate-shaped composite material

Claims (4)

板状金属材料の表面に、熱可塑性樹脂の接着剤層を介して、長さ10mm以上の繊維を熱硬化性樹脂中に含有する板状繊維強化プラスチック材料が接合されている複合材料であって、板状金属材料の平均厚さをtM(mm)、接着剤層の平均厚さをtC(mm)、接着剤層を構成する熱可塑性樹脂の伸びをδ(%)とするとき、下記(1)式および(2)式を満たす板状複合材料。
C×δ≧0.16 …(1)
C/tM≧0.01 …(2)
A composite material in which a plate-like fiber reinforced plastic material containing a fiber having a length of 10 mm or more in a thermosetting resin is bonded to the surface of a plate-like metal material via a thermoplastic resin adhesive layer. When the average thickness of the sheet metal material is t M (mm), the average thickness of the adhesive layer is t C (mm), and the elongation of the thermoplastic resin constituting the adhesive layer is δ (%), A plate-shaped composite material satisfying the following formulas (1) and (2).
t C × δ ≧ 0.16 (1)
t C / t M ≧ 0.01 (2)
板状繊維強化プラスチック材料は、引張強さが2000MPa以上のものである請求項1に記載の板状複合材料。   The plate-like composite material according to claim 1, wherein the plate-like fiber reinforced plastic material has a tensile strength of 2000 MPa or more. 板状繊維強化プラスチック材料は、炭素繊維からなる長繊維束を熱硬化性樹脂組成物のバインダーにより平板化したプリプレグシートを素材として使用し、その熱硬化性樹脂を硬化させたものである請求項1または2に記載の板状複合材料。   The plate-like fiber reinforced plastic material is obtained by using a prepreg sheet obtained by flattening a long fiber bundle made of carbon fibers with a binder of a thermosetting resin composition as a material, and curing the thermosetting resin. The plate-like composite material according to 1 or 2. 板厚に占める板状繊維強化プラスチック材料の厚さ比率が60〜80%、接着剤層の厚さ比率が10%未満である請求項1〜3のいずれかに記載の板状複合材料。   The plate-like composite material according to any one of claims 1 to 3, wherein the thickness ratio of the plate-like fiber reinforced plastic material occupying the plate thickness is 60 to 80%, and the thickness ratio of the adhesive layer is less than 10%.
JP2008320968A 2008-12-17 2008-12-17 Plate-like composite material Pending JP2010143009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320968A JP2010143009A (en) 2008-12-17 2008-12-17 Plate-like composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320968A JP2010143009A (en) 2008-12-17 2008-12-17 Plate-like composite material

Publications (1)

Publication Number Publication Date
JP2010143009A true JP2010143009A (en) 2010-07-01

Family

ID=42563947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320968A Pending JP2010143009A (en) 2008-12-17 2008-12-17 Plate-like composite material

Country Status (1)

Country Link
JP (1) JP2010143009A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245356A (en) * 2012-05-23 2013-12-09 Denka Himaku Inc Joined body, corrosion protection method for metal and metal matrix
JP2014224241A (en) * 2013-04-26 2014-12-04 本田技研工業株式会社 Joining method of dissimilar material junction and dissimilar material
JP2018161800A (en) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 Hybrid structural member of fiber-reinforced resin molded article and metal
US10137940B2 (en) * 2015-05-27 2018-11-27 Toyota Jidosha Kabushiki Kaisha Vehicle member joining structure and vehicle member joining method
US10486391B2 (en) * 2016-12-26 2019-11-26 Honda Motor Co., Ltd. Bonded structure and method for manufacturing the same
WO2020067447A1 (en) * 2018-09-28 2020-04-02 日本製鉄株式会社 Bonded/joined structure and component for automobiles
WO2020202457A1 (en) * 2019-04-02 2020-10-08 日本製鉄株式会社 Metal-carbon fiber reinforced resin material composite
US10899897B2 (en) 2015-08-11 2021-01-26 Showa Denko K.K. Resin composition, cured product thereof, and friction stir welding method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010168A1 (en) * 1997-08-21 1999-03-04 Toray Industries, Inc. Light metal/cfrp structural member
JP2005337394A (en) * 2004-05-27 2005-12-08 Nippon Oil Corp Fiber-reinforced pressure vessel, and its manufacturing method
JP2006213312A (en) * 2005-01-06 2006-08-17 Nissan Motor Co Ltd Vehicular energy absorbing member and door guard beam therewith
JP2006341243A (en) * 2005-05-09 2006-12-21 Aisin Chem Co Ltd Coat-type steel plate reinforcing material
JP2007305963A (en) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd Substrate for mounting semiconductor element with stress relaxation layer and its manufacturing method
WO2008114669A1 (en) * 2007-03-12 2008-09-25 Taisei Plas Co., Ltd. Aluminum alloy composite and method of bonding therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010168A1 (en) * 1997-08-21 1999-03-04 Toray Industries, Inc. Light metal/cfrp structural member
JP2005337394A (en) * 2004-05-27 2005-12-08 Nippon Oil Corp Fiber-reinforced pressure vessel, and its manufacturing method
JP2006213312A (en) * 2005-01-06 2006-08-17 Nissan Motor Co Ltd Vehicular energy absorbing member and door guard beam therewith
JP2006341243A (en) * 2005-05-09 2006-12-21 Aisin Chem Co Ltd Coat-type steel plate reinforcing material
JP2007305963A (en) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd Substrate for mounting semiconductor element with stress relaxation layer and its manufacturing method
WO2008114669A1 (en) * 2007-03-12 2008-09-25 Taisei Plas Co., Ltd. Aluminum alloy composite and method of bonding therefor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245356A (en) * 2012-05-23 2013-12-09 Denka Himaku Inc Joined body, corrosion protection method for metal and metal matrix
JP2014224241A (en) * 2013-04-26 2014-12-04 本田技研工業株式会社 Joining method of dissimilar material junction and dissimilar material
US10137940B2 (en) * 2015-05-27 2018-11-27 Toyota Jidosha Kabushiki Kaisha Vehicle member joining structure and vehicle member joining method
US10899897B2 (en) 2015-08-11 2021-01-26 Showa Denko K.K. Resin composition, cured product thereof, and friction stir welding method
US10486391B2 (en) * 2016-12-26 2019-11-26 Honda Motor Co., Ltd. Bonded structure and method for manufacturing the same
JP2018161800A (en) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 Hybrid structural member of fiber-reinforced resin molded article and metal
JP7005917B2 (en) 2017-03-27 2022-02-10 三菱ケミカル株式会社 Hybrid structural member of fiber reinforced plastic molded product and metal
JP2021142757A (en) * 2017-03-27 2021-09-24 三菱ケミカル株式会社 Hybrid structural member of fiber-reinforced resin molded article and metal
JPWO2020067447A1 (en) * 2018-09-28 2021-09-24 日本製鉄株式会社 Adhesive joint structures and automotive parts
CN112770904A (en) * 2018-09-28 2021-05-07 日本制铁株式会社 Adhesive bonded structure and automobile component
WO2020067447A1 (en) * 2018-09-28 2020-04-02 日本製鉄株式会社 Bonded/joined structure and component for automobiles
CN112770904B (en) * 2018-09-28 2022-08-23 日本制铁株式会社 Adhesive bonding structure and automobile component
JPWO2020202457A1 (en) * 2019-04-02 2020-10-08
CN113646164A (en) * 2019-04-02 2021-11-12 日本制铁株式会社 Metal-carbon fiber reinforced resin material composite
WO2020202457A1 (en) * 2019-04-02 2020-10-08 日本製鉄株式会社 Metal-carbon fiber reinforced resin material composite
EP3950317A4 (en) * 2019-04-02 2022-11-09 Nippon Steel Corporation Metal-carbon fiber reinforced resin material composite
JP7260815B2 (en) 2019-04-02 2023-04-19 日本製鉄株式会社 Metal-carbon fiber reinforced resin material composite
CN113646164B (en) * 2019-04-02 2023-06-06 日本制铁株式会社 Metal-carbon fiber reinforced resin material composite

Similar Documents

Publication Publication Date Title
JP2010143009A (en) Plate-like composite material
EP2460652B1 (en) Laminated steel plate
KR101439559B1 (en) Aluminium composite sheet material
CN107771114B (en) Weldable laminated structure and welding method
US10022822B2 (en) Multi-layered aluminium brazing sheet material
US20180345420A1 (en) Multi-layered aluminium brazing sheet material
Reyes et al. Manufacturing and mechanical properties of thermoplastic hybrid laminates based on DP500 steel
WO2012074394A1 (en) Metal sheet-fiber reinforced composite laminate
CA2827457A1 (en) Formable light weight composite material systems and methods
CN107107273B (en) Multi-layer aluminum brazing sheet material
Liu et al. Effect of heat treatment on the mechanical properties of copper clad steel plates
JP4964855B2 (en) Plate-like composite material and long fiber knitted sheet
JP6609672B2 (en) Aluminum composite material, composite structure and manufacturing method thereof
Logesh et al. Formability analysis for enhancing forming parameters in AA8011/PP/AA1100 sandwich materials
JP5094325B2 (en) High strength composite metal material and manufacturing method thereof
Ramasamy et al. Interfacial performance of treated aluminum and Kevlar fibre on fibre metal laminated composites
WO2021112077A1 (en) Layered composite
KR102141457B1 (en) High specific strength laminated plate material with excellent weldability and workability
Kuteneva et al. Adhesive and impact strength of hybrid layered metal-polymer composites reinforced by basalt fiber
KR20180094025A (en) Composite steel
US12017704B2 (en) Reinforcing steel member for motor vehicle
Ramdani et al. Processing, properties, and uses of lightweight glass fiber/aluminum hybrid structures
EP3904185B1 (en) Reinforcing steel member for motor vehicle
JP2013006293A (en) Laminate
JP5077731B2 (en) Energy absorbing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101206

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120330

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120626

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121106

Free format text: JAPANESE INTERMEDIATE CODE: A02