JP5094325B2 - High strength composite metal material and manufacturing method thereof - Google Patents

High strength composite metal material and manufacturing method thereof Download PDF

Info

Publication number
JP5094325B2
JP5094325B2 JP2007268366A JP2007268366A JP5094325B2 JP 5094325 B2 JP5094325 B2 JP 5094325B2 JP 2007268366 A JP2007268366 A JP 2007268366A JP 2007268366 A JP2007268366 A JP 2007268366A JP 5094325 B2 JP5094325 B2 JP 5094325B2
Authority
JP
Japan
Prior art keywords
copper
steel
layer
thickness
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007268366A
Other languages
Japanese (ja)
Other versions
JP2009096023A (en
Inventor
聡 田頭
昇一 甲谷
恒年 洲▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2007268366A priority Critical patent/JP5094325B2/en
Publication of JP2009096023A publication Critical patent/JP2009096023A/en
Application granted granted Critical
Publication of JP5094325B2 publication Critical patent/JP5094325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、鋼層と銅系層が交互に積層して一体化した構造を有する積層方向の靭性に優れた高強度複合金属材料、およびその製造方法に関する。   The present invention relates to a high-strength composite metal material having a structure in which steel layers and copper-based layers are alternately stacked and integrated, and excellent in toughness in the stacking direction, and a method for manufacturing the same.

高強度金属材料において、一般に「強度(硬さ)」と「靭性」はトレードオフの関係にあり、それらを高いレベルで両立させることは非常に難しい。汎用的な高強度金属材料としては、焼入れ・焼戻し処理、あるいは高温変態処理を施して変態相(マルテンサイト相やベイナイト相など)を生成させた鋼材を挙げることができる。これらは硬さが300〜750HVレベルの高強度を呈することから、機械構造部材、工具、刃物など、多くの高強度用途で広く使用されている。しかしながら、常温での2mmVノッチ衝撃値は高々100J/cm2程度であり、この種の鋼材でそれ以上の靭性を安定的に具備させることは困難である。 In a high-strength metal material, “strength (hardness)” and “toughness” are generally in a trade-off relationship, and it is very difficult to make them compatible at a high level. Examples of general-purpose high-strength metal materials include steel materials that have been subjected to quenching / tempering treatment or high-temperature transformation treatment to produce a transformation phase (such as a martensite phase or a bainite phase). Since these have a high strength of 300 to 750 HV, they are widely used in many high-strength applications such as mechanical structural members, tools, and blades. However, the 2 mmV notch impact value at room temperature is about 100 J / cm 2 at most, and it is difficult to stably provide such a toughness with this type of steel material.

一方、靭性に特化した代表的な鋼材としてハットフィールド鋼(高Mnオーステナイト鋼)が挙げられる。この種の鋼材では常温での2mmVノッチ衝撃値が300J/cm2程度と極めて高い靱性を呈するものを得ることも可能である。しかし、その強度レベルは200HV程度にとどまる。また、この種の材料を冷間圧延すれば硬さが400HVを超える領域まで高強度化することはできるが、この場合、常温での2mmVノッチ衝撃値は200J/cm2を大きく下回るレベルまで低下してしまう。 On the other hand, as a typical steel material specialized in toughness, hatfield steel (high Mn austenitic steel) can be mentioned. With this type of steel material, it is possible to obtain a steel material exhibiting extremely high toughness with a 2 mmV notch impact value at room temperature of about 300 J / cm 2 . However, the intensity level is only about 200HV. In addition, if this kind of material is cold-rolled, the strength can be increased to a region where the hardness exceeds 400 HV, but in this case, the 2 mmV notch impact value at room temperature decreases to a level well below 200 J / cm 2. Resulting in.

非鉄金属材料においては析出強化などを利用して高強度化を図ったものが種々知られているが、一般に銅合金やアルミニウム合金などの一般的な非鉄金属材料で500〜750HVという強度レベルを実現することは容易でない。300〜500HVの強度レベルを実現する場合においては、同じ強度レベルの鋼材と比較するとコストが高くなり、また優れた靭性を具備させることは難しい。   Various non-ferrous metal materials are known that use precipitation strengthening to increase their strength, but in general, non-ferrous metal materials such as copper alloys and aluminum alloys achieve strength levels of 500 to 750 HV. It is not easy to do. In the case of realizing a strength level of 300 to 500 HV, the cost is higher than that of a steel material having the same strength level, and it is difficult to provide excellent toughness.

特開2004−082667号公報JP 2004-082667 A

本発明は、汎用的な素材を用いて、これまで困難とされていた高いレベルで「高強度」および一定方向における「高靭性」を両立させた金属材料を提供することを目的とする。   An object of the present invention is to provide a metal material that uses a general-purpose material to achieve both “high strength” and “high toughness” in a certain direction at a high level that has been considered difficult until now.

上記目的は、厚さ0.05〜2mmの鋼層と厚さ0.001〜0.2mmの銅系層が交互に積層して各層が接合してなる複合金属材料であって、鋼層は焼入れ・焼戻し処理または恒温変態処理を経た変態相が50体積%以上を占める鋼、銅系層は溶融した後冷却した銅または銅合金で構成され、下記(1)式で定義される相当硬さHが300HV以上である、高強度複合金属材料によって達成される。
H=(Σ[Ts×Hs]+Σ[Tc×Hc])/(ΣTs+ΣTc) ……(1)
ここで、
Σ[Ts×Hs]; 各鋼層の厚さTs(mm)と硬さHs(HV)の積を全鋼層について合計したもの
Σ[Tc×Hc]; 各銅系層の厚さTc(mm)と硬さHc(HV)の積を全銅系層について合計したもの
ΣTs; 全鋼層厚さ(mm)
ΣTc; 全銅系層厚さ(mm)
The above-mentioned object is a composite metal material in which a steel layer having a thickness of 0.05 to 2 mm and a copper-based layer having a thickness of 0.001 to 0.2 mm are alternately stacked and joined to each other, Steel and copper-based layers in which the transformation phase that has undergone quenching / tempering treatment or isothermal transformation treatment accounts for 50% by volume or more is composed of copper or copper alloy that has been melted and cooled, and has an equivalent hardness defined by the following formula (1) This is achieved by a high- strength composite metal material having H of 300 HV or higher.
H = (Σ [Ts × Hs] + Σ [Tc × Hc]) / (ΣTs + ΣTc) (1)
here,
Σ [Ts × Hs]; the sum of the product of thickness Ts (mm) and hardness Hs (HV) of each steel layer for all steel layers Σ [Tc × Hc]; thickness Tc of each copper-based layer ( mm) and the product of hardness Hc (HV) for all copper layers ΣTs; Total steel layer thickness (mm)
ΣTc: Total copper layer thickness (mm)

本明細書では、この複合金属材料(積層体)において、各層の厚さ方向を「積層方向」と呼んでいる。鋼層の積層数は例えば5以上とすることが好ましい。各鋼層は同一鋼種で構成してもよいし異種の鋼種を混ぜて構成してもよい。各鋼層の厚さは同一であってもよいし異なっていても構わない。各銅系層についても同一種類の材料で構成してもよいし異種の材料で構成してもよい。また、各銅系層の厚さは同一であってもよいし異なっていても構わない。   In the present specification, in the composite metal material (laminated body), the thickness direction of each layer is referred to as “lamination direction”. The number of steel layers is preferably 5 or more, for example. Each steel layer may be composed of the same steel type or a mixture of different steel types. The thickness of each steel layer may be the same or different. Each copper-based layer may also be composed of the same material or different materials. Moreover, the thickness of each copper-type layer may be the same, and may differ.

各鋼層の厚さTs(mm)および各銅系層の厚さTc(mm)は、当該複合金属材料の積層方向に平行な断面についての顕微鏡観察を実施して定めることができる。各鋼層の硬さHs(HV)および各銅系層の硬さHc(HV)は、一般には上記断面についてマイクロビッカース硬度計を用いた硬度測定を行うことにより求めることができる。ただし、薄いために精度よく測定できない場合は、同一組成の材料について同一の熱履歴を付与する処理を行ったサンプルを用いた測定値で代用しても構わない。銅系層が特に電気めっきに由来する銅で構成され、薄いために断面硬さが測定困難な場合は、Hc=85HVの値を使用して差し支えない。   The thickness Ts (mm) of each steel layer and the thickness Tc (mm) of each copper-based layer can be determined by performing microscopic observation on a cross section parallel to the lamination direction of the composite metal material. The hardness Hs (HV) of each steel layer and the hardness Hc (HV) of each copper-based layer can be generally determined by performing hardness measurement using a micro Vickers hardness meter on the cross section. However, in the case where measurement is not possible because of the thinness, a measurement value using a sample that has been subjected to a process for imparting the same thermal history to a material having the same composition may be substituted. If the copper-based layer is made of copper derived from electroplating and is difficult to measure because of its thin cross-sectional hardness, a value of Hc = 85 HV may be used.

また本発明では、厚さ0.05〜2mmの鋼層と厚さ0.001〜0.2mmの銅系層が交互に積層して各層が接合してなる複合金属材料であって、鋼層は焼入れ・焼戻し処理または恒温変態処理を経た変態相が50体積%以上を占める鋼、銅系層は銅または銅合金で構成され、前記(1)式で定義される相当硬さHが300HV以上であり、積層方向の厚さ(ΣTs+ΣTc)が10mm以上であり、Vノッチの深さ方向が積層方向に一致する衝撃試験片によって評価される常温(20℃)での2mmVノッチ衝撃値I(J/cm2)と前記相当硬さH(HV)の積I×Hが75000以上である高強度複合金属材料が提供される Further, in the present invention, a composite metal material in which a steel layer having a thickness of 0.05 to 2 mm and a copper-based layer having a thickness of 0.001 to 0.2 mm are alternately laminated and bonded to each other, Is steel in which the transformation phase that has undergone quenching / tempering treatment or isothermal transformation treatment occupies 50 volume% or more, the copper-based layer is made of copper or a copper alloy, and the equivalent hardness H defined by the above formula (1) is 300 HV or more The thickness (ΣTs + ΣTc) in the stacking direction is 10 mm or more, and the 2 mmV notch impact value I (J) at normal temperature (20 ° C.) evaluated by an impact test piece in which the depth direction of the V notch coincides with the stacking direction. / Cm 2 ) and the equivalent hardness H (HV) is provided as a high-strength composite metal material having a product I × H of 75,000 or more.

また、上記の複合金属材料の製造方法として、本発明では、焼入れ・焼戻し処理または恒温変態処理により硬さ350HV以上となる化学組成を有する厚さ0.05〜2mmの鋼板をめっき原板とした銅めっき鋼板を、複数層に積層して、積層方向に荷重を付与しながら銅の融点以上1200℃以下の温度に保持し、銅が溶融した後冷却することにより、厚さ0.001〜0.2mmの銅層を介して鋼層が接合した積層体を得る工程、
その積層体を、鋼層の硬さが350HV以上となる条件の前記焼入れ・焼戻し処理または恒温変態処理に相当するヒートパターンの熱処理に供する工程、
を有する積層方向の靭性に優れた高強度複合金属材料の製造方法が提供される。
Moreover, as a manufacturing method of said composite metal material, in this invention, the copper which used as the plating original plate the steel plate with a thickness of 0.05-2 mm which has a chemical composition which becomes 350 or more hardness by hardening / tempering process or a constant temperature transformation process. A thickness of 0.001 to 0.00 is obtained by laminating a plated steel sheet in a plurality of layers, maintaining a temperature not lower than the melting point of copper and not higher than 1200 ° C. while applying a load in the laminating direction, and cooling after the copper is melted. A step of obtaining a laminate in which a steel layer is bonded via a copper layer of 2 mm,
A step of subjecting the laminate to a heat treatment of a heat pattern corresponding to the quenching / tempering treatment or isothermal transformation treatment under a condition that the hardness of the steel layer is 350 HV or higher;
A method for producing a high-strength composite metal material having excellent toughness in the stacking direction is provided.

本発明によれば、比較的安価な汎用素材を用いて「高強度」および一定方向における「高靭性」を高いレベルで両立させた複合金属材料が実現された。その靭性は、当該複合金属材料を構成する元の素材からは考えられないほど飛躍的な向上している。   According to the present invention, a composite metal material that achieves both “high strength” and “high toughness” in a certain direction at a high level using a relatively inexpensive general-purpose material has been realized. Its toughness is dramatically improved so that it cannot be considered from the original material constituting the composite metal material.

本発明の複合金属材料は、高強度と高靭性を有する金属材料の適用が望まれる種々の用途において、部材の薄肉化、構造の単純化、性能向上などに寄与しうると考えられる。そのような用途としては、例えば自動車や輸送機器の衝撃吸収部材、免震構造部材、防弾部材などが挙げられる他、様々な用途展開が期待される。また、市販の銅めっき鋼板を用いて製造することもできるため、素材コストは低く抑えられ、製造も比較的容易である。   It is considered that the composite metal material of the present invention can contribute to the thinning of the member, the simplification of the structure, the performance improvement, and the like in various uses where it is desired to apply a metal material having high strength and high toughness. Such applications include, for example, impact absorbing members for automobiles and transportation equipment, seismic isolation members, bulletproof members, and the like, and various application developments are expected. Moreover, since it can also manufacture using a commercially available copper plating steel plate, raw material cost is restrained low and manufacture is also comparatively easy.

図1に、本発明の複合金属材料の断面構造を模式的に示す。鋼層と銅系層が交互に積層している。隣り合う層どうしはタイトに接合している。その接合強さはロウ付けに匹敵する。銅系層は銅または銅合金の層である。銅系層が銅である場合は特に「銅層」と呼ぶこともある。積層数は、鋼層の数が少なくとも2以上であることが必要であるが、5以上のものが好適な対象となり、10以上とすることがより好ましい。図1には便宜状、鋼層の数が3のものを示してある。積層方向の端部は用途に応じて鋼層、銅系層のいずれかが選択される。一端部を鋼層、他の端部を銅系層としてもよい。鋼層の積層数がiである場合、銅系層の積層数はi−1、i、i+1のいずれかになる(ただしiは2以上の整数)。   FIG. 1 schematically shows a cross-sectional structure of the composite metal material of the present invention. Steel layers and copper-based layers are laminated alternately. Adjacent layers are tightly joined. Its bonding strength is comparable to brazing. The copper-based layer is a copper or copper alloy layer. When the copper-based layer is copper, it is sometimes called a “copper layer”. As for the number of laminated layers, the number of steel layers is required to be at least 2 or more, but 5 or more is a suitable target, and more preferably 10 or more. In FIG. 1, for convenience, the number of steel layers is three. As the end in the stacking direction, either a steel layer or a copper-based layer is selected according to the application. One end may be a steel layer and the other end may be a copper-based layer. When the number of steel layers is i, the number of copper layers is i-1, i, i + 1 (where i is an integer of 2 or more).

本発明の複合金属材料は、積層方向の靭性が極めて高いことに大きな特徴がある。図2に、Vノッチ衝撃試験片の採取方向を模式的に示す。衝撃試験においてハンマーにより付与される衝撃方向が積層方向となる場合(図2(a))をフラットワイズ(Flat-wise)と呼び、それと直角方向となる場合(図2(b))をエッジワイズ(Edge-wise)と呼ぶ。積層方向の靭性はフラットワイズの衝撃試験で評価される。   The composite metal material of the present invention is greatly characterized by extremely high toughness in the stacking direction. FIG. 2 schematically shows the sampling direction of the V-notch impact test piece. When the impact direction applied by the hammer in the impact test is the stacking direction (FIG. 2 (a)) is called flat-wise, and when it is perpendicular (FIG. 2 (b)), it is edgewise. (Edge-wise). The toughness in the stacking direction is evaluated by a flat-wise impact test.

図3に、本発明の複合金属材料から切り出した2mmVノッチ衝撃試験片についてフラットワイズの衝撃試験に供した後の外観(図面代用写真)を例示する。これは後述実施例の本発明例No.3に該当するものである。この例では、各鋼層は同一の鋼種S55Cで構成されており、銅系層は銅である。両層のトータルの厚さ比率ΣTs/ΣTcは25程度であり、大部分が鋼層で占められている。通常のS55C鋼材(バルク材)の場合、この複合金属材料を作製したときの熱処理条件(焼入れ・焼戻し)では、硬さ450HV程度、2mmVノッチ衝撃値15J/cm2程度となる。ところがこの複合金属材料は、相当硬さ426HV程度を維持しながら、積層方向の2mmVノッチ衝撃値は229J/cm2という極めて高い値を示すようになる。これと同様の構造を有する積層体にオーステンパー処理を施した場合には、相当硬さ470HV、積層方向の2mmVノッチ衝撃値337J/cm2という驚異的な強靱性を呈する複合金属材料が得られる(後述実施例の本発明例No.1)。 FIG. 3 illustrates an appearance (photograph substituted for drawing) of a 2 mm V notch impact test piece cut out from the composite metal material of the present invention after being subjected to a flat-wise impact test. This corresponds to Example No. 3 of the present invention described later. In this example, each steel layer is composed of the same steel type S55C, and the copper-based layer is copper. The total thickness ratio ΣTs / ΣTc of both layers is about 25, and the majority is occupied by the steel layer. In the case of a normal S55C steel material (bulk material), the heat treatment conditions (quenching / tempering) when this composite metal material is produced have a hardness of about 450 HV and a 2 mmV notch impact value of about 15 J / cm 2 . However, this composite metal material maintains an equivalent hardness of about 426 HV, and the 2 mmV notch impact value in the stacking direction shows an extremely high value of 229 J / cm 2 . When an austempering treatment is applied to a laminate having the same structure as this, a composite metal material exhibiting an amazing toughness with an equivalent hardness of 470 HV and a 2 mmV notch impact value of 337 J / cm 2 in the lamination direction can be obtained. (Invention example No. 1 in Examples described later).

このように、本発明の複合金属材料においては、鋼層および銅系層を構成する各材料の靱性からは考えられないほど顕著に積層方向の靱性が向上する。そのメカニズムに関しては現時点で十分に解明されていないが、試験後の衝撃試験片の観察から、靱性の低い鋼層で生じた亀裂が銅系層の存在によって隣の鋼層に伝播しにくい状態となっているものと推察される。このことは、エッジワイズの試験片による衝撃値はバルクの鋼材と同等の値となり、フラットワイズのような靱性向上が認められないことからも肯定される。なお、鋼層に同じ鋼種を用いた場合でも、焼入れ後に適切な焼戻しを行っていない場合(すなわち、焼入れ・焼戻し処理を経たとは言えない場合)には、フラットワイズであっても上記のような顕著な靱性向上は見られない。   Thus, in the composite metal material of the present invention, the toughness in the stacking direction is remarkably improved so as not to be considered from the toughness of each material constituting the steel layer and the copper-based layer. Although the mechanism has not been fully elucidated at the present time, the observation of the impact specimen after the test shows that cracks generated in the steel layer with low toughness are difficult to propagate to the adjacent steel layer due to the presence of the copper-based layer. It is inferred that This is also affirmed because the impact value by the edgewise test piece is the same value as that of the bulk steel material and no improvement in toughness like flatwise is observed. Even when the same steel type is used for the steel layer, if appropriate tempering is not performed after quenching (that is, it cannot be said that the steel layer has undergone quenching / tempering treatment), even if flatwise, as described above No significant improvement in toughness is observed.

鋼層の厚さは0.05〜2mm、銅系層の厚さは0.001〜0.2mm程度の範囲とすればよい。ただし、鋼層による高強度を十分に発揮させるためには、両層のトータルの厚さ比率ΣTs/ΣTcを4以上とすることが好ましい。一方、積層方向の靱性を顕著に向上させるにはΣTs/ΣTcを50以下とすることが効果的であり、30以下とすることがより好ましい。また、特性の均質化を図るためには、各鋼層および各銅系層をそれぞれ同種類の材料で構成した上で、各鋼層の厚さTsおよび各銅系層厚さTcはそれぞれ、Tsの平均値およびTcの平均値に対して±50%の範囲にあることが望ましく、±30%の範囲にあることがより好ましい。後述のように銅めっき鋼板を用いて積層体を形成させる場合には、各鋼層厚さは例えば0.1〜1mm、各銅層厚さは例えば5〜50μm程度の範囲に調整することが効率的である。   The thickness of the steel layer may be in the range of about 0.05 to 2 mm, and the thickness of the copper-based layer may be in the range of about 0.001 to 0.2 mm. However, it is preferable that the total thickness ratio ΣTs / ΣTc of both layers is 4 or more in order to sufficiently exhibit the high strength of the steel layer. On the other hand, in order to significantly improve the toughness in the stacking direction, it is effective to set ΣTs / ΣTc to 50 or less, and more preferably 30 or less. Further, in order to homogenize the characteristics, after each steel layer and each copper-based layer are made of the same material, the thickness Ts of each steel layer and each copper-based layer thickness Tc are respectively The average value of Ts and the average value of Tc are desirably in the range of ± 50%, and more preferably in the range of ± 30%. When a laminated body is formed using a copper-plated steel sheet as will be described later, the thickness of each steel layer can be adjusted to, for example, 0.1 to 1 mm, and the thickness of each copper layer can be adjusted to a range of, for example, about 5 to 50 μm. Efficient.

本発明の複合金属材料は、鋼層に高強度鋼を採用する。これによって高強度と積層方向の高靭性を兼ね備えたものが得られる。高強度鋼としては焼入れ・焼戻し処理または恒温変態処理によって高強度化されるタイプの鋼種を採用する。このタイプのものは、銅系層と接合する際の高温の熱処理を経た後に、所定の焼入れ・焼戻し処理または恒温変態処理を付与することによって「変態相」を生成させることができ、それによって高強度化される。「変態相」は鋼材を焼入れ・焼戻し処理または恒温変態処理に供することによってA1変態点より低い温度で生成する相である。焼入れ・焼戻し処理によって得られる変態相は代表的にはマルテンサイト相(焼戻しにより微細化したものを含む)である。恒温変態処理としては例えばオーステンパーが挙げられ、それによって得られる変態相は代表的にはベイナイト相である。処理によっては種類の異なる変態相が共存することもある。変態相の残部には通常、炭化物が存在するが、その他、残留オーステナイト相、初析フェライト相などが存在していても構わない。変態相は50体積%以上存在することが、高強度化にとって有利である。相当硬さ300HV以上(後述)を安定して実現するためには、焼入れ・焼戻し処理または恒温変態処理により硬さ350HV以上となる化学組成を有するものを使用することが好ましい。 The composite metal material of the present invention employs high strength steel for the steel layer. As a result, a material having both high strength and high toughness in the stacking direction can be obtained. As the high-strength steel, a steel type that is strengthened by quenching / tempering treatment or isothermal transformation treatment is adopted. This type can generate a “transformation phase” by applying a predetermined quenching / tempering treatment or isothermal transformation treatment after a high-temperature heat treatment when joining with a copper-based layer, thereby increasing the Strengthened. The “transformation phase” is a phase generated at a temperature lower than the A 1 transformation point by subjecting the steel material to quenching / tempering treatment or isothermal transformation treatment. The transformation phase obtained by quenching / tempering treatment is typically a martensite phase (including those refined by tempering). Examples of the isothermal transformation treatment include austemper, and the transformation phase obtained thereby is typically a bainite phase. Depending on the treatment, different types of transformation phases may coexist. Normally, carbides are present in the remainder of the transformation phase, but other residual austenite phase, pro-eutectoid ferrite phase and the like may also exist. It is advantageous for increasing the strength that the transformation phase is present in an amount of 50% by volume or more. In order to stably realize an equivalent hardness of 300 HV or higher (described later), it is preferable to use a material having a chemical composition that has a hardness of 350 HV or higher by quenching / tempering treatment or isothermal transformation treatment.

鋼層を構成する具体的な鋼種として、JISなどの規格鋼種を例示すれば、S10C,S35C,S55C,SCM435,SUP6,SK85,SK100,SK120,SUJ2,SUS420J2などが挙げられる。1つの積層体に複数の鋼種を混ぜて使用する場合は、同一の熱処理が採用できる鋼種を組み合わせる。   As a specific steel type constituting the steel layer, S10C, S35C, S55C, SCM435, SUP6, SK85, SK100, SK120, SUJ2, SUS420J2 and the like can be cited as examples. When a plurality of steel types are mixed and used in one laminate, steel types that can adopt the same heat treatment are combined.

具体的な化学組成として以下のものが例示できる。
[1]質量%で、C:0.1〜1.5%、Mn:0.2〜2%、P:0.03%以下、S:0.03%以下、残部Feおよび不可避的不純物
[2]上記[1]において、さらにSi:2.5%以下を含有するもの
[3]上記[1]または[2]において、Cr:2%以下、Ni:2%以下、Mo:2%以下、Ti:0.5%以下、Nb:0.5%以下、V:0.5%以下、B:0.02%以下の1種以上を含有するもの
Specific examples of the chemical composition include the following.
[1] By mass%, C: 0.1 to 1.5%, Mn: 0.2 to 2%, P: 0.03% or less, S: 0.03% or less, balance Fe and inevitable impurities [ 2] In the above [1], further containing Si: 2.5% or less [3] In the above [1] or [2], Cr: 2% or less, Ni: 2% or less, Mo: 2% or less , Ti: 0.5% or less, Nb: 0.5% or less, V: 0.5% or less, B: 0.02% or less

銅系層は、銅または銅合金で構成される。ここでいう銅合金は銅含有量が50質量%以上のものである。合金元素の添加によって融点が上昇する銅合金(例えばCu−Ni系)では、融点が概ね1150℃以下の組成範囲を採用する。銅系層は、積層体を形成した後に鋼層と一緒に焼入れ・焼戻し処理または恒温変態処理に供されるので、銅合金で構成する場合はそのような熱履歴を受けたときに脆い相が生成しない合金系であることが望ましい。好適な例としては純度90%以上の銅が挙げられ、電気銅めっきに由来する銅はこれに該当する。   The copper-based layer is made of copper or a copper alloy. The copper alloy here has a copper content of 50% by mass or more. In the case of a copper alloy (for example, Cu—Ni series) whose melting point rises by addition of an alloy element, a composition range having a melting point of approximately 1150 ° C. or less is employed. Since the copper-based layer is subjected to quenching / tempering treatment or isothermal transformation treatment together with the steel layer after forming the laminated body, when it is composed of a copper alloy, a brittle phase is present when subjected to such a thermal history. An alloy system that does not form is desirable. Suitable examples include copper having a purity of 90% or more, and copper derived from electrolytic copper plating corresponds to this.

本発明の複合金属材料は、前記(1)式で定義される相当硬さHが300HV以上であるものが対象となる。これより相当硬さが低い場合は上記のような鋼種と比較して強度不足となる場合がある。相当硬さHは350HV以上であることがより好ましく、400HV以上であるものが一層好ましい対象となる。相当硬さHは主として、鋼層と銅系層のトータルの厚さ比率ΣTs/ΣTc、および鋼層を構成する材料の硬さHs(HV)によってコントロールすることができる。本発明で規定される金属組織の鋼材を鋼層に使用する限り、鋼層の硬さHsと銅系層の硬さHcはHs>Hcの関係にあるので、(1)式から判るとおり、鋼層と銅系層のトータルの厚さ比率ΣTs/ΣTcを大きくすることによって相当硬さが増大する。   The composite metal material of the present invention is a material having an equivalent hardness H defined by the above formula (1) of 300 HV or more. If the equivalent hardness is lower than this, the strength may be insufficient as compared with the above steel types. The equivalent hardness H is more preferably 350 HV or more, and the equivalent hardness H is more preferably 400 HV or more. The equivalent hardness H can be controlled mainly by the total thickness ratio ΣTs / ΣTc of the steel layer and the copper-based layer and the hardness Hs (HV) of the material constituting the steel layer. As long as the steel material having a metallographic structure defined in the present invention is used for the steel layer, the hardness Hs of the steel layer and the hardness Hc of the copper-based layer are in a relationship of Hs> Hc. By increasing the total thickness ratio ΣTs / ΣTc of the steel layer and the copper-based layer, the corresponding hardness increases.

本発明の複合金属材料の積層方向の厚さ(ΣTs+ΣTc)は、1mm程度と薄くても積層方向の高靱性を享受することができるが、(ΣTs+ΣTc)が約10mm以上である場合には、フラットワイズの2mmVノッチ衝撃試験片を用いて、直接的に積層方向のVノッチ衝撃値を測定することができる。常温(20℃)での2mmVノッチ衝撃値I(J/cm2)と前記相当硬さH(HV)の積I×Hが75000以上であるものが本発明において特に好適な対象となる。単一鋼種からなるバルク材においてI×Hがこのように高い値を示す材料を実現することは極めて困難である。 The thickness (ΣTs + ΣTc) of the composite metal material of the present invention can enjoy high toughness in the stacking direction even if it is as thin as about 1 mm, but if (ΣTs + ΣTc) is about 10 mm or more, it is flat. Using the 2 mm V notch impact test piece of Wise, the V notch impact value in the stacking direction can be measured directly. A product having a product I × H of 2 mmV notch impact value I (J / cm 2 ) at normal temperature (20 ° C.) and the equivalent hardness H (HV) of 75,000 or more is particularly suitable in the present invention. It is extremely difficult to realize a material in which I × H shows such a high value in a bulk material made of a single steel type.

本発明の複合金属材料は、隣り合う鋼層と銅系層がタイトに接合していることに特徴がある。このような接合構造を得るための方法として、各銅系層を構成する銅または銅合金をロウ材として利用することが極めて効果的である。ロウ材として薄い銅または銅合金のシートを鋼材の間に挟んで、ロウ材の融点以上に加熱する方法が挙げられる。しかし、より効率的な手法として、本発明では銅めっき鋼板を使用する方法を提供する。   The composite metal material of the present invention is characterized in that adjacent steel layers and copper-based layers are tightly joined. As a method for obtaining such a joint structure, it is extremely effective to use copper or a copper alloy constituting each copper-based layer as a brazing material. There is a method in which a thin copper or copper alloy sheet is sandwiched between steel materials as the brazing material and heated to the melting point or higher of the brazing material. However, as a more efficient technique, the present invention provides a method using a copper-plated steel sheet.

この場合、めっき原板として前述のように焼入れ・焼戻し処理または恒温変態処理により高強度化される鋼種からなる厚さ0.05〜2mmの鋼板を用い、これに電気銅めっきを施した銅めっき鋼板を用意する。通常、電気銅めっきは鋼板の両面に施されるが、銅めっきの目付量は、銅めっき層がロウ材となって厚さ0.001〜0.2mmの銅層を形成するに足る厚さとする。電気銅めっき鋼板を複数層に積層して、積層方向にある程度の荷重を付与しながら銅の融点以上1200℃以下の温度に保持し、めっき層の銅を溶融させ、その後冷却する。銅の融点は純銅の場合で1083℃であるから、通常、1150℃程度の炉温に設定された炉中に装入することにより、短時間で各層の銅(ロウ材)を溶融させることができる。1200℃を超える温度に加熱することは経済性を損ない、また銅の蒸発による炉内の汚染も大きくなるので好ましくない。この加熱中に付与する積層方向の荷重によって、銅層の厚さTcを制御することもできる。すなわち、荷重を高めるほど、鋼板の間から溶融状態で排除される銅(ロウ材)の量が多くなり、銅層の厚さは薄くなる。ただし、排除する銅の量があまり過剰になると銅の歩留が悪くなるので好ましくない。   In this case, a steel plate having a thickness of 0.05 to 2 mm made of a steel type that is strengthened by quenching / tempering treatment or isothermal transformation treatment as described above is used, and a copper-plated steel plate obtained by applying electrolytic copper plating to the steel plate. Prepare. Usually, the copper electroplating is applied to both sides of the steel sheet, but the weight per unit area of the copper plating is sufficient to form a copper layer having a thickness of 0.001 to 0.2 mm by using the copper plating layer as a brazing material. To do. The electrolytic copper-plated steel sheet is laminated in a plurality of layers, maintained at a temperature not lower than the melting point of copper and not higher than 1200 ° C. while applying a certain amount of load in the stacking direction, to melt the copper in the plated layer, and then cooled. Since the melting point of copper is 1083 ° C. in the case of pure copper, the copper (brazing material) of each layer can be melted in a short time by charging in a furnace set at a furnace temperature of about 1150 ° C. it can. Heating to a temperature exceeding 1200 ° C. is not preferable because economical efficiency is impaired and contamination in the furnace due to evaporation of copper increases. The thickness Tc of the copper layer can also be controlled by the load in the stacking direction applied during the heating. That is, as the load is increased, the amount of copper (brazing material) removed in a molten state from between the steel plates increases, and the thickness of the copper layer becomes thinner. However, if the amount of copper to be excluded is excessive, it is not preferable because the copper yield deteriorates.

このようにして得られた積層体について、鋼層の鋼を強化するための熱処理、すなわち鋼種に応じた焼入れ・焼戻し処理または恒温変態処理に相当するヒートパターンの熱処理を施すことによって、積層方向の靭性が顕著に向上した本願発明の複合金属材料が得られる。   The laminated body thus obtained is subjected to a heat treatment for strengthening the steel of the steel layer, that is, a heat treatment corresponding to a quenching / tempering treatment or a constant temperature transformation treatment according to the steel type, in the laminating direction. A composite metal material of the present invention having significantly improved toughness can be obtained.

下記の化学組成を有する鋼(S55C)をめっき原板とする板厚0.27mmの電気銅めっき鋼板を用意した。この鋼板は厚さ0.25mmのめっき原板の表面に無光沢Cuめっきを片面あたり0.01mmの厚さで施したものである。
〔鋼組成〕
質量%で、C:0.55%、Si:0.20%、Mn:0.80%、P:0.012%、S:0.008%、Cr:0.13%、残部Feおよび不可避的不純物
An electrolytic copper-plated steel sheet having a thickness of 0.27 mm was prepared using steel (S55C) having the following chemical composition as a plating base sheet. This steel sheet is obtained by applying matte Cu plating to a surface of a 0.25 mm-thick plating original plate with a thickness of 0.01 mm per side.
[Steel composition]
By mass%, C: 0.55%, Si: 0.20%, Mn: 0.80%, P: 0.012%, S: 0.008%, Cr: 0.13%, remaining Fe and inevitable Impurities

この銅めっき鋼板から100×50mmの切り板を採取し、その切り板100枚を高温真空炉の中に積み重ねてセットした。図4にセットの仕方を模式的に示す。定盤の上に切り板100枚を積み重ねた。その際、ずれ止めの鋼製ブロックを四方に配置した。積み重ねた切り板の上部に重錘を乗せ、めっき鋼板間の平均面圧(上から50枚目と51枚目の間に作用する面圧)が約40gf/cm2となるようにした。この状態にセットして真空引き後にAr雰囲気とした後、以下の条件でロウ付け熱処理を施した。
〔ロウ付け熱処理〕
常温から1000℃まで約3時間で昇温→1000℃×10分保持→1150℃まで昇温→1150℃×10分保持→炉内で常温まで冷却
A cut plate of 100 × 50 mm was taken from the copper-plated steel plate, and 100 cut plates were stacked and set in a high-temperature vacuum furnace. FIG. 4 schematically shows how to set. 100 cut plates were stacked on the surface plate. At that time, non-slip steel blocks were arranged in all directions. A weight was placed on top of the stacked cut plates so that the average surface pressure between the plated steel plates (surface pressure acting between the 50th sheet and the 51st sheet from the top) was about 40 gf / cm 2 . After setting in this state and evacuation, an Ar atmosphere was set, and then brazing heat treatment was performed under the following conditions.
[Brazing heat treatment]
Temperature rise from room temperature to 1000 ° C in about 3 hours → 1000 ° C × 10 minutes hold → Temperature rise to 1150 ° C → 1150 ° C × 10 minutes hold → Cool to room temperature in the furnace

ロウ付け熱処理により得られた積層体から、フラットワイズおよびエッジワイズの2mmVノッチ衝撃試験片を作製した。フラットワイズでは、試験片中の積層数(鋼層の数)が40となるようにした。この試験片について、以下の2種類の条件で熱処理を施した。
〔熱処理A〕
オーステンパー処理(鋼層500HV狙い); 810℃×20分保持→300℃×30分保持→空冷
〔熱処理B〕
焼入れ・焼戻し処理(鋼層450HV狙い); 850℃×20分保持→油冷(60℃)→400℃×60分保持→空冷
From the laminate obtained by brazing heat treatment, 2 mmV notch impact test pieces of flat width and edge width were prepared. In Flatwise, the number of layers (number of steel layers) in the test piece was set to 40. About this test piece, it heat-processed on the following two types of conditions.
[Heat treatment A]
Austemper treatment (steel layer 500 HV target); 810 ° C. × 20 minutes hold → 300 ° C. × 30 minutes hold → air cooling [heat treatment B]
Quenching and tempering treatment (steel layer 450HV target); 850 ° C x 20 minutes hold → oil cooling (60 ° C) → 400 ° C x 60 minutes hold → air cooling

熱処理後の試験片について、鋼層および銅層の断面硬さをマイクロビッカース硬度計により測定した。また、銅層の平均厚さを測定した(鋼層の平均厚さは0.25mm一定)。これらの測定値を前記(1)式に代入することにより相当硬さを求めた。   About the test piece after heat processing, the cross-sectional hardness of the steel layer and the copper layer was measured with the micro Vickers hardness meter. Moreover, the average thickness of the copper layer was measured (the average thickness of the steel layer was 0.25 mm constant). The equivalent hardness was obtained by substituting these measured values into the equation (1).

また、熱処理後の2mmVノッチ衝撃試験片について、JIS Z2242に準拠した方法で20℃でのシャルピー衝撃試験を実施した。   Further, a Charpy impact test at 20 ° C. was performed on the 2 mm V notch impact test piece after the heat treatment by a method based on JIS Z2242.

結果を表1に示す。表1中には上記と同組成のS55Cバルク材に対して500HV狙いの焼入れ焼戻し処理を施した場合の2mmVノッチ衝撃値も併せて示す。図5には相当硬さと2mmVノッチ衝撃値の関係を示す。図5中には鋼材トップレベルの靭性を示す鋼種ハットフィールド鋼(高Mnオーステナイト鋼)バルク材のデータも併せて示す。
参考のため図6に上記ロウ付け熱処理後、および焼入れ・焼戻し(熱処理B)後の積層体について、断面の金属組織写真を示す。図6中の(b)は本発明例の複合金属材料である表1のNo.3に該当する。
The results are shown in Table 1. Table 1 also shows a 2 mmV notch impact value when the S55C bulk material having the same composition as described above is subjected to a quenching and tempering treatment for 500 HV. FIG. 5 shows the relationship between the equivalent hardness and the 2 mmV notch impact value. FIG. 5 also shows data of a steel grade hatfield steel (high Mn austenitic steel) bulk material showing the toughness at the top level of the steel material.
For reference, FIG. 6 shows a cross-sectional metal structure photograph of the laminate after the brazing heat treatment and after quenching and tempering (heat treatment B). (B) in FIG. 6 corresponds to No. 3 in Table 1, which is a composite metal material of the present invention.

本発明の複合金属材料は、その鋼層を構成するS55Cのバルク材と比べ、積層方向の靭性(衝撃値)が極めて高い。特に熱処理Aのオーステンパー処理を施したものは、相当硬さ470HVを有しながら鋼種IRS2水靭材を上回る積層方向の靭性を呈する。エッジワイズの衝撃試験ではバルク材と同等の靭性を呈した。   The composite metal material of the present invention has extremely high toughness (impact value) in the stacking direction as compared with the bulk material of S55C constituting the steel layer. In particular, the material subjected to the heat treatment A austempering treatment exhibits toughness in the stacking direction that exceeds the steel type IRS2 water tough material while having an equivalent hardness of 470 HV. The edgewise impact test showed toughness equivalent to that of the bulk material.

本発明の複合金属材料の断面構造を模式的に示した図。The figure which showed typically the cross-section of the composite metal material of this invention. Vノッチ衝撃試験片の採取方向を模式的に示した図。The figure which showed typically the extraction direction of the V notch impact test piece. 本発明の複合金属材料から切り出した2mmVノッチ衝撃試験片についてフラットワイズの衝撃試験に供した後の外観を例示した図面代用写真。The drawing substitute photograph which illustrated the external appearance after using for the flatwise impact test about the 2mmV notch impact test piece cut out from the composite metal material of this invention. ロウ付け熱処理での試料のセットの仕方を模式的に示した図。The figure which showed typically how to set the sample in brazing heat processing. 相当硬さと2mmVノッチ衝撃値の関係を示したグラフ。The graph which showed the relationship between equivalent hardness and a 2 mmV notch impact value. ロウ付け熱処理後および焼入れ・焼戻し(熱処理B)後の積層体断面の金属組織写真。The metal structure photograph of the cross section of the laminate after brazing heat treatment and after quenching and tempering (heat treatment B).

Claims (4)

厚さ0.05〜2mmの鋼層と厚さ0.001〜0.2mmの銅系層が交互に積層して各層が接合してなる複合金属材料であって、鋼層は焼入れ・焼戻し処理または恒温変態処理を経た変態相が50体積%以上を占める鋼、銅系層は溶融した後冷却した銅または銅合金で構成され、下記(1)式で定義される相当硬さHが300HV以上である、高強度複合金属材料。
H=(Σ[Ts×Hs]+Σ[Tc×Hc])/(ΣTs+ΣTc) ……(1)
ここで、
Σ[Ts×Hs]; 各鋼層の厚さTs(mm)と硬さHs(HV)の積を全鋼層について合計したもの
Σ[Tc×Hc]; 各銅系層の厚さTc(mm)と硬さHc(HV)の積を全銅系層について合計したもの
ΣTs; 全鋼層厚さ(mm)
ΣTc; 全銅系層厚さ(mm)
A composite metal material in which a steel layer having a thickness of 0.05 to 2 mm and a copper-based layer having a thickness of 0.001 to 0.2 mm are alternately laminated and joined to each other, and the steel layer is quenched and tempered. Alternatively, a steel or copper-based layer in which the transformation phase that has undergone the isothermal transformation treatment accounts for 50% by volume or more is composed of copper or a copper alloy that is cooled after being melted, and an equivalent hardness H defined by the following formula (1) is 300 HV or more. High strength composite metal material.
H = (Σ [Ts × Hs] + Σ [Tc × Hc]) / (ΣTs + ΣTc) (1)
here,
Σ [Ts × Hs]; the sum of the product of thickness Ts (mm) and hardness Hs (HV) of each steel layer for all steel layers Σ [Tc × Hc]; thickness Tc of each copper-based layer ( mm) and the product of hardness Hc (HV) for all copper layers ΣTs; Total steel layer thickness (mm)
ΣTc: Total copper layer thickness (mm)
厚さ0.05〜2mmの鋼層と厚さ0.001〜0.2mmの銅系層が交互に積層して各層が接合してなる複合金属材料であって、鋼層は焼入れ・焼戻し処理または恒温変態処理を経た変態相が50体積%以上を占める鋼、銅系層は銅または銅合金で構成され、下記(1)式で定義される相当硬さHが300HV以上であり、積層方向の厚さ(ΣTs+ΣTc)が10mm以上であり、Vノッチの深さ方向が積層方向に一致する衝撃試験片による常温での2mmVノッチ衝撃値I(J/cm 2 )と前記相当硬さH(HV)の積I×Hが75000以上である高強度複合金属材料。
H=(Σ[Ts×Hs]+Σ[Tc×Hc])/(ΣTs+ΣTc) ……(1)
ここで、
Σ[Ts×Hs]; 各鋼層の厚さTs(mm)と硬さHs(HV)の積を全鋼層について合計したもの
Σ[Tc×Hc]; 各銅系層の厚さTc(mm)と硬さHc(HV)の積を全銅系層について合計したもの
ΣTs; 全鋼層厚さ(mm)
ΣTc; 全銅系層厚さ(mm)
A composite metal material in which a steel layer having a thickness of 0.05 to 2 mm and a copper-based layer having a thickness of 0.001 to 0.2 mm are alternately laminated and joined to each other, and the steel layer is quenched and tempered. Or the steel in which the transformation phase which passed through the isothermal transformation process occupies 50 volume% or more, a copper-type layer is comprised with copper or a copper alloy, the equivalent hardness H defined by the following (1) formula is 300HV or more, and a lamination direction Thickness (ΣTs + ΣTc) is 10 mm or more, and a 2 mm V notch impact value I (J / cm 2 ) at room temperature and an equivalent hardness H (HV) by an impact test piece in which the depth direction of the V notch coincides with the stacking direction. ) Product I × H is 75000 or more .
H = (Σ [Ts × Hs] + Σ [Tc × Hc]) / (ΣTs + ΣTc) (1)
here,
Σ [Ts × Hs]; the sum of the product of thickness Ts (mm) and hardness Hs (HV) of each steel layer for all steel layers Σ [Tc × Hc]; thickness Tc of each copper-based layer ( mm) and the product of hardness Hc (HV) for all copper layers ΣTs; Total steel layer thickness (mm)
ΣTc: Total copper layer thickness (mm)
鋼層の積層数が5以上である請求項1または2に記載の高強度複合金属材料。 The high-strength composite metal material according to claim 1 or 2, wherein the number of steel layers is 5 or more. 焼入れ・焼戻し処理または恒温変態処理により硬さ350HV以上となる化学組成を有する厚さ0.05〜2mmの鋼板をめっき原板とした銅めっき鋼板を、複数層に積層して、積層方向に荷重を付与しながら銅の融点以上1200℃以下の温度に保持し、銅が溶融した後冷却することにより、厚さ0.001〜0.2mmの銅層を介して鋼層が接合した積層体を得る工程、
その積層体を、鋼層の硬さが350HV以上となる条件の前記焼入れ・焼戻し処理または恒温変態処理に相当するヒートパターンの熱処理に供する工程、
を有する高強度複合金属材料の製造方法。
A copper-plated steel sheet having a thickness of 0.05 to 2 mm and having a chemical composition with a hardness of 350 HV or higher by quenching / tempering treatment or isothermal transformation treatment is laminated in multiple layers, and a load is applied in the lamination direction. While being applied, the temperature is maintained at a temperature not lower than the melting point of copper and not higher than 1200 ° C., and after cooling, the copper is melted to obtain a laminate in which the steel layers are joined via the copper layer having a thickness of 0.001 to 0.2 mm. Process,
A step of subjecting the laminate to a heat treatment of a heat pattern corresponding to the quenching / tempering treatment or isothermal transformation treatment under a condition that the hardness of the steel layer is 350 HV or higher;
High intensity method of producing a composite metal material that have a.
JP2007268366A 2007-10-15 2007-10-15 High strength composite metal material and manufacturing method thereof Active JP5094325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268366A JP5094325B2 (en) 2007-10-15 2007-10-15 High strength composite metal material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268366A JP5094325B2 (en) 2007-10-15 2007-10-15 High strength composite metal material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009096023A JP2009096023A (en) 2009-05-07
JP5094325B2 true JP5094325B2 (en) 2012-12-12

Family

ID=40699492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268366A Active JP5094325B2 (en) 2007-10-15 2007-10-15 High strength composite metal material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5094325B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570133B2 (en) * 2009-03-24 2014-08-13 日新製鋼株式会社 Steel / copper composite material and manufacturing method thereof
JP5473711B2 (en) * 2010-03-26 2014-04-16 日新製鋼株式会社 Laminated mold for resin molding and method for producing the same
JP2011212226A (en) * 2010-03-31 2011-10-27 Nisshin Steel Co Ltd Cutter, cutter material excellent in antibacterial property, and method of manufacturing the same
JP5355475B2 (en) * 2010-03-31 2013-11-27 日新製鋼株式会社 Metal slider
JP5618659B2 (en) * 2010-07-09 2014-11-05 日新製鋼株式会社 Anisotropic heat transfer body and manufacturing method thereof
JP5892834B2 (en) * 2012-03-30 2016-03-23 日新製鋼株式会社 Press working prototype material and thickness strain measurement method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114416A (en) * 1984-11-08 1986-06-02 日立電線株式会社 Clad spring for electric conduction and manufacture thereof
JPS61255780A (en) * 1985-05-09 1986-11-13 Nachi Fujikoshi Corp Production of vibration-proof base plate
JP2853133B2 (en) * 1988-11-11 1999-02-03 三菱マテリアル株式会社 Cladding plate for structural members of nuclear fuel containers with excellent heat dissipation
JP3267565B2 (en) * 1998-08-27 2002-03-18 日本金属工業株式会社 Method for producing metal sheet having fine composite structure by multi-layer hot rolling bonding of multiple materials
JP2003105500A (en) * 2001-09-26 2003-04-09 Nippon Metal Ind Co Ltd Stainless steel/copper clad, and manufacturing method therefor
JP2005225063A (en) * 2004-02-12 2005-08-25 Furukawa Electric Co Ltd:The Metal multilayered material and its manufacturing method

Also Published As

Publication number Publication date
JP2009096023A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5221348B2 (en) Multi-layer steel and method for producing multi-layer steel
KR101216820B1 (en) Method of producing an aluminium alloy brazing sheet and light brazed heat exchanger assemblies
JP5094325B2 (en) High strength composite metal material and manufacturing method thereof
KR101907759B1 (en) Austenitic stainless steel clad steel plate and process for manufacturing same
KR101967678B1 (en) Nickel-base alloy-clad steel plate and method for producing the same
AU2019388670A1 (en) Clad steel plate of super duplex stainless steel and manufacturing method thereof
JP6477735B2 (en) Duplex stainless steel clad steel and manufacturing method thereof
KR20080048441A (en) Steel compositions, methods of forming the same, and articles formed therefrom
JP5352766B2 (en) Multi-layer steel and manufacturing method thereof
JP4960289B2 (en) Double layer steel
US9777357B2 (en) Stainless steel foil
JP6229181B1 (en) Metastable austenitic stainless steel strip or steel plate and method for producing the same
KR20170109158A (en) High entropy alloy having interstitial solid solution hardening and method for manufacturing the same
CN105849305A (en) Steel sheet for hot press forming with excellent corrosion resistance and weldability, forming member, and manufacturing method therefor
El-Shennawy et al. Effect of boron content on metallurgical and mechanical characteristics of low carbon steel
US20120270070A1 (en) Hybrid copper alloy realizing simultaneously high strength, high elastic modulus, high corrosion-resistance, wear resistance, and high conductivity and manufacturing method thereof
JP5454723B2 (en) Laminated stainless steel clad sheet excellent in seawater corrosion resistance, stainless clad steel sheet using the same, and method for producing the same
JP6079611B2 (en) Ni alloy clad steel plate excellent in low temperature toughness and HAZ toughness of base metal and corrosion resistance of laminated material, and method for producing the same
WO2019189707A1 (en) Two-phase stainless-clad steel sheet and method for manufacturing same
JP6390567B2 (en) Manufacturing method of stainless clad steel plate
JP5570133B2 (en) Steel / copper composite material and manufacturing method thereof
WO2003028939A1 (en) Stainless steel-copper clad and method for production thereof
Zhang et al. A novel laminated metal composite with superior interfacial bonding composed of ultrahigh-strength maraging steel and 316L stainless steel
CN114430779B (en) Clad steel sheet and method for manufacturing same
JPH0716792B2 (en) Clad steel plate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350