JP2005331033A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2005331033A
JP2005331033A JP2004149583A JP2004149583A JP2005331033A JP 2005331033 A JP2005331033 A JP 2005331033A JP 2004149583 A JP2004149583 A JP 2004149583A JP 2004149583 A JP2004149583 A JP 2004149583A JP 2005331033 A JP2005331033 A JP 2005331033A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
thrust bearing
flange portion
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004149583A
Other languages
Japanese (ja)
Inventor
Katsuo Shibahara
克夫 柴原
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004149583A priority Critical patent/JP2005331033A/en
Priority to DE112005000722T priority patent/DE112005000722T5/en
Priority to PCT/JP2005/004772 priority patent/WO2005098250A1/en
Priority to US10/590,910 priority patent/US8506167B2/en
Priority to KR1020067020005A priority patent/KR101244271B1/en
Priority to CN2005800103030A priority patent/CN1938524B/en
Publication of JP2005331033A publication Critical patent/JP2005331033A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing device for improving abrasion resistance of a thrust bearing part. <P>SOLUTION: A flange part 2b of a shaft member 2 is formed of resin, and pressure is generated by the dynamic pressure action of fluid in thrust bearing clearance between its end surface 2b1 and a housing inner bottom surface 7c1, and the shaft member 2 is supported in a noncontact state in the thrust direction by this pressure. An inclined face 24 approaching the inner bottom surface 7c1 toward the outer diameter side, is formed in a part facing the thrust bearing clearance C of the end surface 2b1 of the flange part 2b. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、動圧軸受装置に関する。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、DVD−ROM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいは電気機器、例えば軸流ファンなどの小型モータ用として好適である。   The present invention relates to a hydrodynamic bearing device. This bearing device is a spindle motor, laser beam printer (LBP) such as information equipment, magnetic disk devices such as HDD and FDD, optical disk devices such as CD-ROM and DVD-ROM, magneto-optical disk devices such as MD and MO, etc. This is suitable for a polygon scanner motor or an electric device such as a small motor such as an axial fan.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧軸受装置の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine these required performances is a bearing that supports the spindle of the motor. In recent years, the use of a hydrodynamic bearing device having characteristics excellent in the required performance has been studied as this type of bearing. Or actually used.

この動圧軸受装置の一例として、特開2002−61641号公報(特許文献1)には、有底筒状のハウジングと、ハウジングの内周に固定された軸受部材と、軸受部材の内周面に挿入された軸部材と、軸部材と軸受スリーブの相対回転時に生じる動圧作用で軸部材を回転自在に非接触支持するラジアル軸受部およびスラスト軸受部を備えるものが開示されている。   As an example of the hydrodynamic bearing device, Japanese Patent Laid-Open No. 2002-61641 (Patent Document 1) discloses a bottomed cylindrical housing, a bearing member fixed to the inner periphery of the housing, and an inner peripheral surface of the bearing member. A shaft member inserted into the shaft, and a radial bearing portion and a thrust bearing portion that rotatably support the shaft member in a non-contact manner by a dynamic pressure effect generated when the shaft member and the bearing sleeve rotate relative to each other are disclosed.

ラジアル軸受部およびスラスト軸受部のうち、スラスト軸受部は、軸部材のフランジ部両端面とこれに対向するハウジング底面および軸受スリーブの端面との間のスラスト軸受隙間にそれぞれ油の動圧作用で圧力を発生させて、軸部材をスラスト方向に非接触支持するものである。
特開2002−61641号公報
Of the radial bearing portion and the thrust bearing portion, the thrust bearing portion is pressurized by the dynamic pressure action of oil in the thrust bearing gap between the flange member both end faces and the housing bottom face and the end face of the bearing sleeve facing each other. Is generated to support the shaft member in a non-contact manner in the thrust direction.
JP 2002-61641 A

ところで、この種の動圧軸受装置では、その起動・停止時に回転側の部材と固定側の部材とが高速で摺動することが避けられない。そのため、モータを頻繁に起動・停止させる情報機器、例えばHDD−DVDレコーダや携帯電話用の記憶装置をはじめとするコンシューマ機器に使用する動圧軸受装置においては、使用条件等によって繰返しの起動・停止による摺動面の摩耗が問題となる場合があり、耐摩耗性のさらなる向上が望まれる。特にフランジ部を樹脂で形成した場合には、金属同士を摺動させる場合に比べて摩耗が進行しやすく、摩耗粉の影響により軸受性能が短期間に低下するおそれがある。   By the way, in this type of hydrodynamic bearing device, it is inevitable that the rotation-side member and the stationary-side member slide at high speed when starting and stopping. For this reason, in dynamic pressure bearing devices used for information devices that frequently start and stop motors, for example, consumer devices such as HDD-DVD recorders and storage devices for mobile phones, repeated start and stop depending on usage conditions, etc. There is a case where the wear of the sliding surface due to is sometimes a problem, and further improvement of wear resistance is desired. In particular, when the flange portion is formed of a resin, wear tends to proceed more easily than when the metals are slid, and the bearing performance may be deteriorated in a short period of time due to the influence of wear powder.

そこで、本発明は、スラスト軸受部の摩耗を抑制することのできる動圧軸受装置の提供を目的とする。   Accordingly, an object of the present invention is to provide a dynamic pressure bearing device capable of suppressing wear of a thrust bearing portion.

上記目的の達成のため、本発明にかかる動圧軸受装置は、軸部およびフランジ部を有する軸部材と、フランジ部の端面とこれに対向する面との間のスラスト軸受隙間に流体の動圧作用により圧力を発生させ、この圧力で軸部材をスラスト方向に非接触支持するスラスト軸受部とを備える動圧軸受装置において、スラスト軸受隙間に面するフランジ部端面を樹脂で形成すると共に、当該端面の少なくともスラスト軸受隙間に面する部分を、外径側が対向面に接近する傾斜面とした。   In order to achieve the above object, a hydrodynamic bearing device according to the present invention provides a fluid dynamic pressure in a thrust bearing gap between a shaft member having a shaft portion and a flange portion, and an end surface of the flange portion and a surface facing the shaft member. In the hydrodynamic bearing device comprising a thrust bearing portion that generates pressure by the action and supports the shaft member in the thrust direction without contact with this pressure, the flange portion end surface facing the thrust bearing gap is made of resin, and the end surface At least a portion facing the thrust bearing gap is an inclined surface whose outer diameter side approaches the opposing surface.

これにより、フランジ部の端面のうち、スラスト軸受隙間に面する部分の最外径部がスラスト軸受隙間の最小幅となる。この部分はスラスト軸受隙間のうちで最も周速が早い部分でもある。この場合、この最小幅部で動圧溝等の動圧発生手段によるポンピング機能が高まるので、モータの起動・停止時におけるスラスト軸受面とスラスト受け面の接触時間を短くすることができ、これによりスラスト軸受部での摩耗を抑制することが可能となる。傾斜面は、平坦なテーパ面とする他、曲面状であってもよい。   Thereby, the outermost diameter part of the part which faces a thrust bearing clearance among the end surfaces of a flange part becomes the minimum width of a thrust bearing clearance. This portion is also the portion with the fastest peripheral speed in the thrust bearing gap. In this case, since the pumping function by the dynamic pressure generating means such as the dynamic pressure groove is enhanced at the minimum width portion, the contact time between the thrust bearing surface and the thrust receiving surface at the time of starting / stopping the motor can be shortened. It is possible to suppress wear at the thrust bearing portion. The inclined surface may be a curved surface as well as a flat tapered surface.

フランジ部端面の傾斜面は、軸部材の樹脂部分が硬化する際に生じるヒケの差を利用して形成することもできる。例えばスラスト軸受隙間に面するフランジ部端面の内径側を厚肉の樹脂で形成すると共に、その外径側をこれよりも薄肉(厚肉・薄肉は軸方向の肉厚で区別する)の樹脂で形成した場合、樹脂の硬化時には、外径側に比べて内径側で軸方向のヒケ量が大きくなるため、このヒケ量の差によりフランジ部の端面に傾斜面を設けることができる。   The inclined surface of the end surface of the flange portion can also be formed by utilizing a difference in sink marks that occurs when the resin portion of the shaft member is cured. For example, the inner diameter side of the flange end face that faces the thrust bearing gap is made of a thick resin, and the outer diameter side is made of a thinner resin (thickness / thinness is distinguished by the axial thickness). When formed, since the amount of sink in the axial direction is larger on the inner diameter side than on the outer diameter side when the resin is cured, an inclined surface can be provided on the end surface of the flange portion due to the difference in the sink amount.

軸部材に、軸部の外周面を形成する外軸部と、外軸部の内周に配置された内軸部とを設け、外軸部を金属で形成すると共に、内軸部およびフランジ部を樹脂で一体に形成すれば、フランジ部の内径側は、外径側に比べて内軸部が存在する分だけ厚肉の樹脂で形成されることになる。従って、フランジ部の内径側と外径側でヒケ量の差を生じさせ、これによりフランジ部の端面に傾斜面を形成することができる。   The shaft member is provided with an outer shaft portion that forms an outer peripheral surface of the shaft portion and an inner shaft portion that is disposed on the inner periphery of the outer shaft portion, and the outer shaft portion is formed of metal, and the inner shaft portion and the flange portion Are integrally formed of resin, the inner diameter side of the flange portion is formed of a thicker resin than the outer diameter side because the inner shaft portion exists. Therefore, a difference in sink amount is produced between the inner diameter side and the outer diameter side of the flange portion, and thereby an inclined surface can be formed on the end surface of the flange portion.

傾斜面の傾斜角θはθ≦0.6°、望ましくはθ≦0.3°に設定するのがよい。これは、本発明者らの検証により、この上限値を越える傾斜角では、接触回転速度が過大となり、却って動圧効果の低下を招くことが判明したからである。   The inclination angle θ of the inclined surface is set to θ ≦ 0.6 °, preferably θ ≦ 0.3 °. This is because, as a result of verification by the present inventors, it has been found that, at an inclination angle exceeding this upper limit value, the contact rotational speed becomes excessive, leading to a decrease in the dynamic pressure effect.

以上に述べた動圧軸受装置と、ロータマグネットと、ステータコイルとを有するモータは、高回転精度でありながらも高い耐久性を有し、情報機器用のモータとして好適なものとなる。   The motor having the hydrodynamic bearing device, the rotor magnet, and the stator coil described above has high durability while having high rotational accuracy, and is suitable as a motor for information equipment.

本発明によれば、スラスト軸受部における摩耗を抑制することができるので、動圧軸受装置の軸受性能を長期間安定して保持することができる。   According to the present invention, since wear in the thrust bearing portion can be suppressed, the bearing performance of the hydrodynamic bearing device can be stably maintained for a long period of time.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図2は、動圧軸受装置1を組込んだ情報機器用スピンドルモータの一例として、HDD等のディスク駆動装置に用いられるスピンドルモータを示している。このモータは、動圧軸受装置1と、動圧軸受装置1の軸部材2に取り付けられた回転部材3(ディスクハブ)と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられている。ディスクハブ3は、その外周に磁気ディスク等のディスクDを一枚または複数枚保持する。ブラケット6の内周に動圧軸受装置1のハウジング7が装着されている。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、それに伴ってディスクハブ3、さらには軸部材2が回転する。   FIG. 2 shows a spindle motor used in a disk drive device such as an HDD as an example of an information equipment spindle motor incorporating the fluid dynamic bearing device 1. This motor includes a dynamic pressure bearing device 1, a rotating member 3 (disk hub) attached to a shaft member 2 of the dynamic pressure bearing device 1, a stator coil 4 and a rotor magnet that are opposed to each other with a radial gap, for example. 5 and a bracket 6. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or more disks D such as magnetic disks on the outer periphery thereof. A housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 6. When the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and the disk hub 3 and the shaft member 2 are rotated accordingly.

図3に上記動圧軸受装置1の一例を示す。この動圧軸受装置1は、軸部材2をラジアル方向で支持するラジアル軸受部R1・R2と、軸部材2をスラスト方向で支持するスラスト軸受部T1・T2とを具備しており、ラジアル軸受部R1・R2、およびスラスト軸受部T・T2の何れも動圧軸受で構成されている。動圧軸受は、回転側部材と固定側部材の何れか一方に動圧溝を有する軸受面を形成すると共に、他方に軸受面と対向させて平滑な受け面を形成し、回転側部材の回転時に軸受面と受け面との間の軸受隙間に流体の動圧作用で圧力を発生させ、回転側部材を非接触状態で回転自在に支持する。   FIG. 3 shows an example of the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes radial bearing portions R1 and R2 that support the shaft member 2 in the radial direction, and thrust bearing portions T1 and T2 that support the shaft member 2 in the thrust direction. Both R1 and R2 and the thrust bearing portions T and T2 are configured by dynamic pressure bearings. The dynamic pressure bearing forms a bearing surface having a dynamic pressure groove on one of the rotation side member and the fixed side member, and forms a smooth receiving surface opposite to the bearing surface on the other side to rotate the rotation side member. Occasionally, pressure is generated in the bearing gap between the bearing surface and the receiving surface by the hydrodynamic action of the fluid, and the rotating side member is rotatably supported in a non-contact state.

以下、この動圧軸受装置1の具体的構成を説明する。   Hereinafter, a specific configuration of the fluid dynamic bearing device 1 will be described.

図3に示すように、本実施形態にかかる動圧軸受装置1は、一端に開口部7aを有する有底円筒状のハウジング7と、ハウジング7の内周面に固定された円筒状の軸受スリーブ8と、軸部材2と、ハウジング7の開口部7aに固定されたシール部材10とを主要な軸受構成部材として含む。なお、以下では、説明の便宜上、ハウジング7の開口側を上側、これと軸方向反対側を下側として説明を進める。   As shown in FIG. 3, the hydrodynamic bearing device 1 according to the present embodiment includes a bottomed cylindrical housing 7 having an opening 7 a at one end, and a cylindrical bearing sleeve fixed to the inner peripheral surface of the housing 7. 8, the shaft member 2, and a seal member 10 fixed to the opening 7 a of the housing 7 are included as main bearing constituent members. In the following description, for convenience of explanation, the description will proceed with the opening side of the housing 7 as the upper side and the opposite side in the axial direction as the lower side.

ハウジング7は、円筒状の側部7bと底部7cとを備える有底円筒状に形成される。この実施形態において、底部7cは、側部7bとは別部材の薄肉円盤状のスラストプレートで構成される。このスラストプレート7cを側部7bの下側開口部に接着・圧入またはこれらを併用して取り付けることにより、一方の端部を封口したハウジング7が形成される。ハウジング7の底部7cは側部7bと一体化してもよい。ハウジング7の側部7bおよび底部7cは、金属材料および樹脂材料の何れでも形成することができる。   The housing 7 is formed in a bottomed cylindrical shape including a cylindrical side portion 7b and a bottom portion 7c. In this embodiment, the bottom 7c is formed of a thin disk-shaped thrust plate that is a separate member from the side 7b. The thrust plate 7c is attached to the lower opening of the side portion 7b by adhesion, press-fitting, or a combination thereof, so that the housing 7 with one end sealed is formed. The bottom 7c of the housing 7 may be integrated with the side 7b. The side portion 7b and the bottom portion 7c of the housing 7 can be formed of either a metal material or a resin material.

軸部材2は、後述するように樹脂と金属の複合品で、軸部2aと軸部2aの下端で外径側に張り出したフランジ部2bとを有するものである。フランジ部2bの下端面2b1は、スラストプレート7cの上端面7c1と対向し、フランジ部2bの上端面2b2は、軸受スリーブ8の下端面8cと対向している。   As will be described later, the shaft member 2 is a composite product of resin and metal, and includes a shaft portion 2a and a flange portion 2b projecting to the outer diameter side at the lower end of the shaft portion 2a. The lower end surface 2b1 of the flange portion 2b is opposed to the upper end surface 7c1 of the thrust plate 7c, and the upper end surface 2b2 of the flange portion 2b is opposed to the lower end surface 8c of the bearing sleeve 8.

本実施形態において、スラストプレート7cの上端面7c1のうち、フランジ部2bの下端面2b1との対向部分が下側のスラスト軸受部T1のスラスト軸受面となる。このスラスト軸受面の一部領域、例えば半径方向の中央部付近には、図4に示すように、複数の動圧溝P1と、動圧溝P1間で丘を形成する背部P2とをスパイラル状に配列した環状の動圧溝領域Pが形成される。なお、この動圧溝領域Pの動圧溝形状は、動圧を発生するものである限り任意で、例えばへリングボーン形状とすることもできる。   In the present embodiment, the portion of the upper end surface 7c1 of the thrust plate 7c that faces the lower end surface 2b1 of the flange portion 2b becomes the thrust bearing surface of the lower thrust bearing portion T1. As shown in FIG. 4, in a partial region of this thrust bearing surface, for example, near the central portion in the radial direction, a plurality of dynamic pressure grooves P1 and a back portion P2 forming a hill between the dynamic pressure grooves P1 are spirally formed. An annular dynamic pressure groove region P arranged in the above is formed. The dynamic pressure groove shape of the dynamic pressure groove region P is arbitrary as long as it generates dynamic pressure, and may be a herringbone shape, for example.

軸受スリーブ8は、例えば多孔質材、特に銅を主成分とする焼結金属に潤滑油(又は潤滑グリース)を含浸させた含油焼結金属で円筒状に形成される。軸受スリーブ8の内周面8aには、第一ラジアル軸受部R1と第二ラジアル軸受部R2のラジアル軸受面が軸方向に離隔して設けられ、この二つの領域には、例えばヘリングボーン形状の動圧溝がそれぞれ形成される。なお、動圧溝の形状として、スパイラル形状や軸方向溝形状等を採用しても良く、また、動圧溝を有するラジアル軸受面は、軸部材2の軸部2a外周面に形成してもよい。さらに軸受スリーブ8は、多孔質材以外にも、例えば真鍮や銅合金等の軟質金属で形成することもできる。軸受部材8の下端面8cには、複数の動圧溝をスパイラル形状に配列した環状の動圧溝領域(図示省略)が形成される。なお、この動圧溝領域においても動圧溝の形状は任意で、へリングボーン形状を採用しても良い。   The bearing sleeve 8 is formed in a cylindrical shape with an oil-containing sintered metal obtained by impregnating a porous material, in particular, a sintered metal mainly containing copper with a lubricating oil (or lubricating grease). On the inner peripheral surface 8a of the bearing sleeve 8, the radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart from each other in the axial direction. A dynamic pressure groove is formed. In addition, as the shape of the dynamic pressure groove, a spiral shape, an axial groove shape, or the like may be adopted, and the radial bearing surface having the dynamic pressure groove may be formed on the outer peripheral surface of the shaft portion 2a of the shaft member 2. Good. Further, the bearing sleeve 8 can be formed of a soft metal such as brass or copper alloy in addition to the porous material. An annular dynamic pressure groove region (not shown) in which a plurality of dynamic pressure grooves are arranged in a spiral shape is formed on the lower end surface 8 c of the bearing member 8. In this dynamic pressure groove region, the shape of the dynamic pressure groove is arbitrary, and a herringbone shape may be adopted.

図3に示すように、シール部材10は環状のもので、ハウジング7の開口部7aの内周面に圧入、接着等の手段で固定される。この実施形態において、シール部材10の内周面10aは円筒状に形成され、シール部材10の下端面は軸受部材8の上端面8bと当接している。   As shown in FIG. 3, the seal member 10 is annular, and is fixed to the inner peripheral surface of the opening 7 a of the housing 7 by means such as press-fitting and bonding. In this embodiment, the inner peripheral surface 10 a of the seal member 10 is formed in a cylindrical shape, and the lower end surface of the seal member 10 is in contact with the upper end surface 8 b of the bearing member 8.

軸部材2の軸部2aは軸受スリーブ8の内周面8aに挿入され、フランジ部2bは軸受部材8の下端面8cとスラストプレート7cの上端面7c1との間の空間部に収容される。軸部2aのテーパ面2a1はシール部材10の内周面10aと所定の隙間を介して対向し、これにより、両者の間に、ハウジング7の外部方向(同図で上方向)に向かって漸次拡大するテーパ形状のシール空間Sが形成される。軸部材2の回転時、軸部2aのテーパ面2a1は、いわゆる遠心力シールとしても機能する。シール部材10で密封されたハウジング7の内部空間(軸受スリーブ8の内部の気孔も含む)には潤滑油が充満され、その油面はシール空間S内にある。シール空間Sは、このようなテーパ状の空間とする他、軸方向で同径の円筒状の空間とすることもできる。   The shaft portion 2a of the shaft member 2 is inserted into the inner peripheral surface 8a of the bearing sleeve 8, and the flange portion 2b is accommodated in a space portion between the lower end surface 8c of the bearing member 8 and the upper end surface 7c1 of the thrust plate 7c. The tapered surface 2a1 of the shaft portion 2a is opposed to the inner peripheral surface 10a of the seal member 10 via a predetermined gap, thereby gradually moving toward the outside direction of the housing 7 (upward in the same figure) therebetween. An expanding tapered seal space S is formed. When the shaft member 2 rotates, the tapered surface 2a1 of the shaft portion 2a also functions as a so-called centrifugal force seal. The interior space of the housing 7 (including the pores inside the bearing sleeve 8) sealed with the seal member 10 is filled with lubricating oil, and the oil level is in the seal space S. The seal space S can be a cylindrical space having the same diameter in the axial direction in addition to such a tapered space.

以上の実施形態においては、モータの回転によって軸部材2が回転すると、ラジアル軸受部R1、R2において、軸受スリーブ8内周のラジアル軸受面と、これに対向する軸部2a外周面(ラジアル受け面)との間のラジアル軸受隙間に潤滑油の動圧作用によって圧力が発生し、軸部材2の軸部2aがラジアル方向に回転自在に非接触支持される。また、下側のスラスト軸受部T1において、スラストプレート7cの上端面7c1(スラスト軸受面)に形成した動圧溝領域Pと、これに対向するフランジ部2bの下端面2b1(スラスト受け面)との間のスラスト軸受隙間に潤滑油の動圧作用によって圧力が発生し、同時に上側のスラスト軸受部T2において、軸受スリーブ端面8c(スラスト軸受面)に形成した動圧溝領域(図示省略)と、これに対向するフランジ部2bの上側端面2b2(スラスト受け面)との間のスラスト軸受隙間に潤滑油の動圧作用によって圧力が発生するため、軸部材2のフランジ部2bがスラスト方向に回転自在に非接触支持される。   In the above embodiment, when the shaft member 2 is rotated by the rotation of the motor, in the radial bearing portions R1 and R2, the radial bearing surface of the inner periphery of the bearing sleeve 8 and the outer peripheral surface of the shaft portion 2a (radial receiving surface) opposed thereto. Pressure is generated in the radial bearing gap between the shaft member 2 and the shaft portion 2a of the shaft member 2 so that the shaft portion 2a of the shaft member 2 is rotatably supported in the radial direction. Further, in the lower thrust bearing portion T1, a dynamic pressure groove region P formed on the upper end surface 7c1 (thrust bearing surface) of the thrust plate 7c, and a lower end surface 2b1 (thrust receiving surface) of the flange portion 2b facing the same. Pressure is generated by the dynamic pressure action of the lubricating oil in the thrust bearing gap between them, and at the same time, in the upper thrust bearing portion T2, a dynamic pressure groove region (not shown) formed in the bearing sleeve end surface 8c (thrust bearing surface); Since pressure is generated by the dynamic pressure action of the lubricating oil in the thrust bearing gap between the upper end surface 2b2 (thrust receiving surface) of the flange portion 2b facing the flange portion 2b, the flange portion 2b of the shaft member 2 is rotatable in the thrust direction. Is supported in a non-contact manner.

動圧溝領域Pは、以上に述べたようにスラストプレート7cの上端面7c1や軸受スリーブ8の下端面8cに形成する他、フランジ部2bの両端面2b1、2b2の何れか一方、または双方に形成することもできる。この場合、スラストプレート7cの上端面7c1、あるいは軸受スリーブ8の下端面8cが動圧溝のないスラスト受け面として機能する。   As described above, the dynamic pressure groove region P is formed on the upper end surface 7c1 of the thrust plate 7c and the lower end surface 8c of the bearing sleeve 8, and on either one or both of the both end surfaces 2b1, 2b2 of the flange portion 2b. It can also be formed. In this case, the upper end surface 7c1 of the thrust plate 7c or the lower end surface 8c of the bearing sleeve 8 functions as a thrust receiving surface without a dynamic pressure groove.

図1に示すように、軸部材2は樹脂と金属の複合構造をなす。樹脂部分は、軸方向に延びる内軸部22と、内軸部22の外径側に張り出したフランジ部2bとを一体成形した構成を有する。内軸部22の外周を被覆する外軸部22が中空円筒状の金属材、例えば耐摩耗性に優れるステンレス鋼で形成されている。樹脂材には、PEEK、PPS、LCP、9Tナイロン等を用いることが可能であり、必要に応じてこれらベース樹脂にガラス繊維、カーボン繊維、導電化剤等の充填材が配合される。特にカーボン繊維を使用する場合には、PAN系のカーボン繊維であって、平均繊維径が1〜12μm、平均繊維長が100〜500μmのものを、配合量5〜30vol%の割合でベース樹脂に配合して用いるのが好ましい。   As shown in FIG. 1, the shaft member 2 has a composite structure of resin and metal. The resin portion has a configuration in which an inner shaft portion 22 extending in the axial direction and a flange portion 2b projecting to the outer diameter side of the inner shaft portion 22 are integrally formed. The outer shaft portion 22 that covers the outer periphery of the inner shaft portion 22 is formed of a hollow cylindrical metal material, for example, stainless steel having excellent wear resistance. As the resin material, PEEK, PPS, LCP, 9T nylon or the like can be used, and a filler such as glass fiber, carbon fiber, or conductive agent is blended with the base resin as necessary. In particular, when carbon fiber is used, a PAN-based carbon fiber having an average fiber diameter of 1 to 12 μm and an average fiber length of 100 to 500 μm is used as a base resin in a proportion of 5 to 30 vol%. It is preferable to mix and use.

金属材で形成された外軸部21と、樹脂材で形成された内軸部22およびフランジ部2bとの分離防止のため、外軸部21の下端では、その端部21aがフランジ部2bに埋め込まれ、外軸部21の上端では、内軸部22と例えばテーパ面等からなる係合部を介して軸方向で係合状態にある。外軸部21の回り止めのため、例えば外軸部21の内周面やフランジ部2bに埋め込まれた外軸部21の外周面に、内軸部22やフランジ部2bと円周方向で係合可能の凹凸を設けるのが望ましい。   In order to prevent separation between the outer shaft portion 21 formed of a metal material and the inner shaft portion 22 and the flange portion 2b formed of a resin material, at the lower end of the outer shaft portion 21, the end portion 21a is connected to the flange portion 2b. The upper end of the outer shaft portion 21 is embedded and is engaged with the inner shaft portion 22 in the axial direction via an engaging portion made of, for example, a tapered surface. In order to prevent the outer shaft portion 21 from rotating, for example, the outer shaft portion 21 is engaged with the inner shaft portion 22 or the flange portion 2b in the circumferential direction on the inner peripheral surface of the outer shaft portion 21 or the outer peripheral surface of the outer shaft portion 21 embedded in the flange portion 2b. It is desirable to provide unevenness that can be combined.

本発明においては、図1に拡大して示すように、フランジ部の2bの下端面2b1に、外径側ほどその対向面(本実施形態ではスラストプレート7cの上端面7c1)に接近させた曲面状の傾斜面24が形成される。このように傾斜面24を形成することにより、動圧溝領域Pと傾斜面24との間のスラスト軸受隙間Cは、その軸方向幅(隙間幅)が外径側ほど縮小し、その最外径部がスラスト軸受隙間Cの最小幅部Wminとなる。軸部材2の回転中、スラスト軸受隙間Cでは、この最小幅部の周速が最も大きくなることから、動圧溝領域Pで生じるポンピング能力が増大し、従って、低回転速度でも十分な動圧作用を得ることが可能となる。これにより、軸受装置1の接触開始回転速度を低く抑えることができ、フランジ部2bの端面2b1とスラストプレート7cの上端面7c1との摺動接触によるスラスト軸受部T1での摩耗を抑制することが可能となる。従って、モータの起動・停止頻度が頻繁に行われる用途でも高い耐久性を確保することができる。   In the present invention, as shown in an enlarged view in FIG. 1, a curved surface that is closer to the opposite surface (the upper end surface 7c1 of the thrust plate 7c in this embodiment) on the lower end surface 2b1 of the flange portion 2b toward the outer diameter side. A slanted surface 24 is formed. By forming the inclined surface 24 in this manner, the axial bearing width (gap width) of the thrust bearing gap C between the dynamic pressure groove region P and the inclined surface 24 is reduced toward the outer diameter side, and the outermost side thereof is reduced. The diameter portion is the minimum width portion Wmin of the thrust bearing gap C. During the rotation of the shaft member 2, in the thrust bearing gap C, the peripheral speed of the minimum width portion is the largest, so that the pumping capacity generated in the dynamic pressure groove region P increases, and therefore sufficient dynamic pressure is achieved even at a low rotational speed. An effect can be obtained. Thereby, the contact start rotation speed of the bearing device 1 can be kept low, and the wear at the thrust bearing portion T1 due to the sliding contact between the end surface 2b1 of the flange portion 2b and the upper end surface 7c1 of the thrust plate 7c can be suppressed. It becomes possible. Therefore, high durability can be ensured even in applications where the motor is frequently started and stopped.

ここで、接触開始回転速度とは、それよりも小さい速度ではフランジ部2bの端面2b1とこれに対向する面7c1とが接触し、それよりも大きい速度では両面2b1、7c1が非接触となる回転速度をいう。接触開始回転速度が低くなれば、モータの起動直後あるいは停止直前の両面2b1、7c1の接触時間が短くなるので、スラスト軸受部T1での摩耗を抑制することができる。   Here, the contact start rotation speed is a rotation at which the end surface 2b1 of the flange portion 2b and the surface 7c1 facing the flange 2b are in contact with each other at a lower speed, and the both surfaces 2b1 and 7c1 are not in contact with each other at a higher speed. Say speed. If the contact start rotation speed is lowered, the contact time between the two surfaces 2b1 and 7c1 immediately after the start of the motor or immediately before the stop is shortened, so that wear at the thrust bearing portion T1 can be suppressed.

なお、図1の拡大図では、スラストプレート7cの上端面7c1に動圧溝領域Pを形成した場合を示しているが、動圧溝領域Pをフランジ部2bの下端面2b1に形成した場合も、下端面2b1に傾斜面24を形成することにより同様の効果が得られる。   1 shows the case where the dynamic pressure groove region P is formed on the upper end surface 7c1 of the thrust plate 7c, but the case where the dynamic pressure groove region P is formed on the lower end surface 2b1 of the flange portion 2b is also shown. The same effect can be obtained by forming the inclined surface 24 on the lower end surface 2b1.

傾斜面24の形成方法は任意であり、研摩等の後加工で傾斜面24を形成する他、樹脂部分を成形するための金型の成形面に、傾斜面形状に対応した傾斜部を設けることにより、フランジ部2bや内軸部22等の樹脂部分の射出成形と同時に傾斜面24を形成することもできる。   The method of forming the inclined surface 24 is arbitrary. In addition to forming the inclined surface 24 by post-processing such as polishing, an inclined portion corresponding to the inclined surface shape is provided on the molding surface of the mold for molding the resin portion. Thus, the inclined surface 24 can be formed simultaneously with the injection molding of the resin portions such as the flange portion 2b and the inner shaft portion 22.

特に本実施形態のように、軸部2aの軸芯部に樹脂を配し、これをフランジ部2bの樹脂と一体化させた場合、フランジ部2bの下端面2b1の内径側では、その外径側に比べて内軸部22の樹脂分だけ軸方向の樹脂厚さが大きくなる。そのため、樹脂が硬化する際の軸方向のヒケは、下端面2b1の内径側で大きく、外径側でこれよりも小さくなる。従って、このヒケ量の差から樹脂の硬化と同時に傾斜面24を形成することができ、この場合、上述の後加工や金型成形面の加工が不要となるので、さらに低コスト化を図ることができる。かかる効果は、少なくとも下端面2b1の内径側の樹脂厚さが外径側よりも大きい場合に得られる。従って、図示例のように軸部2aの全長にわたって樹脂製の内軸部22を形成する他、内軸部22を軸部2aの下側に限定して形成する場合にも同様の効果が期待できる。   In particular, as in the present embodiment, when resin is disposed on the shaft core portion of the shaft portion 2a and integrated with the resin of the flange portion 2b, the outer diameter of the lower end surface 2b1 of the flange portion 2b is the outer diameter. Compared to the side, the resin thickness in the axial direction is increased by the amount of resin in the inner shaft portion 22. Therefore, the axial sink when the resin hardens is larger on the inner diameter side of the lower end surface 2b1 and smaller on the outer diameter side. Therefore, the inclined surface 24 can be formed simultaneously with the curing of the resin due to the difference in the amount of sink, and in this case, the post-processing and the processing of the mold forming surface described above are not necessary, so that the cost can be further reduced. Can do. Such an effect is obtained when the resin thickness on at least the inner diameter side of the lower end surface 2b1 is larger than that on the outer diameter side. Therefore, in the case where the inner shaft portion 22 made of resin is formed over the entire length of the shaft portion 2a as in the illustrated example, the same effect is expected when the inner shaft portion 22 is formed limited to the lower side of the shaft portion 2a. it can.

図1の拡大図では、フランジ部2bの下端面2b1の全体を傾斜面24とした場合を例示しているが、傾斜面24は少なくとも動圧作用を生じるスラスト軸受隙間に面する部分(動圧溝領域Pと対向する部分)に形成されていれば足り、これ以外の部分を例えば傾斜のない平坦面とすることもできる。また、この拡大図では傾斜面24を曲面状としているが、断面がストレートなテーパ面状に形成してもよい。曲面状の傾斜面24は、単一の曲率で形成する他、二以上の曲率を有する複合曲面であってもよい。   The enlarged view of FIG. 1 illustrates the case where the entire lower end surface 2b1 of the flange portion 2b is an inclined surface 24. However, the inclined surface 24 is at least a portion facing a thrust bearing gap (dynamic pressure) that generates a dynamic pressure action. It is sufficient if it is formed in a portion facing the groove region P), and other portions can be flat surfaces having no inclination, for example. In this enlarged view, the inclined surface 24 is curved, but it may be formed in a tapered surface with a straight section. The curved inclined surface 24 may be a complex curved surface having two or more curvatures in addition to being formed with a single curvature.

また、図1は、フランジ部2bの下端面2b1に傾斜面24を設けた場合を図示しているが、上側のスラスト軸受部T2を構成する上端面2b2に外径側ほどスラスト軸受隙間の軸方向幅が縮小する同様の傾斜面を形成してもよい。フランジ部2bの下端面2b1および上端面2b2の双方に傾斜面を形成することもできる。   Further, FIG. 1 shows a case where the inclined surface 24 is provided on the lower end surface 2b1 of the flange portion 2b. However, the shaft of the thrust bearing gap is disposed on the upper end surface 2b2 constituting the upper thrust bearing portion T2 toward the outer diameter side. A similar inclined surface whose direction width is reduced may be formed. An inclined surface can be formed on both the lower end surface 2b1 and the upper end surface 2b2 of the flange portion 2b.

以上の効果を確認するため、本発明品について、接触開始回転速度の理論計算を行った。   In order to confirm the above effect, the theoretical calculation of the contact start rotation speed was performed on the product of the present invention.

理論計算は以下の文献を参考に行った。
Jiasheng Zhu and Kyosuke Ono, 1999, "A Comparison Study on the Performance of Four Types of oil Lubricated Hydrodynamic Thrust Bearings for Hard Disk Spindles," Transactions of the ASME, Vol.121,JANUARY 1999, pp. 114-120
The theoretical calculation was performed with reference to the following documents.
Jiasheng Zhu and Kyosuke Ono, 1999, "A Comparison Study on the Performance of Four Types of oil Lubricated Hydrodynamic Thrust Bearings for Hard Disk Spindles," Transactions of the ASME, Vol. 121, JANUARY 1999, pp. 114-120

また、この理論計算で使用した計算条件(DF法、Sommerfeldの境界条件)は以下のとおりである。   The calculation conditions (DF method, Sommerfeld boundary conditions) used in this theoretical calculation are as follows.

回転部質量W 6.5g
スラスト軸受部外径Do 6.5mm
スラスト軸受部内径Di 2.5mm
溝深さho 7μm
溝本数k 16
溝角度α 30°
丘溝比γ 1
潤滑油粘度η 5.97mPa・S
但し、スラスト軸受隙間の最小幅Wminは0.05μmとした。
Rotating part mass W 6.5g
Thrust bearing outer diameter Do 6.5mm
Thrust bearing inner diameter Di 2.5mm
Groove depth ho 7μm
Number of grooves k 16
Groove angle α 30 °
Hill groove ratio γ 1
Lubricating oil viscosity η 5.97 mPa · S
However, the minimum width Wmin of the thrust bearing gap was set to 0.05 μm.

以上の条件に基く理論計算を行った結果、傾斜面24の傾斜角(軸方向と直交する平面に対する傾斜角)θが小さくなるほど、接触開始回転速度が低下し、θが0.6°を越えると、接触開始回転速度が過度に大きくなることが判明した。従って、傾斜面24の傾斜角度θは0.6°以下、望ましくは0.3°以下に設定するのがよい。   As a result of theoretical calculation based on the above conditions, as the inclination angle of the inclined surface 24 (inclination angle with respect to the plane orthogonal to the axial direction) θ decreases, the contact start rotational speed decreases and θ exceeds 0.6 °. It was found that the contact start rotation speed was excessively increased. Therefore, the inclination angle θ of the inclined surface 24 is set to 0.6 ° or less, preferably 0.3 ° or less.

本発明は、以上に述べた、フランジ部2bの下側端面2b1とハウジング7の底部7cとの間にスラスト軸受部T1を有する動圧軸受装置1に限らず、スラスト軸受部を動圧軸受で構成した動圧軸受装置一般に広く適用することができる。例えば、スラスト軸受部のスラスト軸受隙間をハウジング7の開口側端面とこれに対向する回転部材(例えばディスクハブ3)の端面に形成した動圧軸受装置(図示省略)にも同様に本発明を適用することができる。   The present invention is not limited to the hydrodynamic bearing device 1 having the thrust bearing portion T1 between the lower end surface 2b1 of the flange portion 2b and the bottom portion 7c of the housing 7, and the thrust bearing portion is a hydrodynamic bearing. The constructed hydrodynamic bearing device can be widely applied in general. For example, the present invention is similarly applied to a hydrodynamic bearing device (not shown) in which the thrust bearing gap of the thrust bearing portion is formed on the opening-side end surface of the housing 7 and the end surface of the rotating member (for example, the disk hub 3) opposed thereto. can do.

また、ラジアル軸受部R1、R2として、動圧溝を有する動圧軸受を使用した場合を説明したが、ラジアル軸受部R1、R2としては、ラジアル軸受隙間に形成した潤滑油の油膜で軸部材2をラジアル方向に非接触支持するものであれば使用可能であり、例えばラジアル軸受面となる領域が複数の円弧で構成された軸受(円弧軸受)、ステップ軸受の他、ラジアル軸受面となる領域が、動圧溝を有しない断面真円状である軸受(真円軸受)を使用することもできる。   Moreover, although the case where the dynamic pressure bearing which has a dynamic pressure groove was used as radial bearing part R1, R2 was demonstrated, as radial bearing part R1, R2, it is a shaft member 2 with the oil film of the lubricating oil formed in the radial bearing clearance. Can be used as long as the bearing is supported in the radial direction in a non-contact manner. For example, a bearing (arc bearing) in which a region serving as a radial bearing surface is configured by a plurality of arcs, a step bearing, and a region serving as a radial bearing surface are provided. Also, a bearing having a perfect circular cross section without a dynamic pressure groove (a perfect circular bearing) can be used.

本発明にかかる動圧軸受装置に使用される軸部材の断面図、およびその要部拡大図である。It is sectional drawing of the shaft member used for the hydrodynamic bearing apparatus concerning this invention, and its principal part enlarged view. 動圧軸受装置を使用したスピンドルモータの断面図である。It is sectional drawing of the spindle motor which uses a dynamic-pressure bearing apparatus. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. スラストプレートの内底面の平面図である。It is a top view of the inner bottom face of a thrust plate.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
2b1 下端面
2b2 上端面
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
7 ハウジング
7c 底部(スラストプレート)
7c1 上端面(対向する面)
8 軸受スリーブ
8a 内周面
8c 端面
10 シール部材
10a 内周面
21 内軸部
22 外軸部
24 傾斜面
C スラスト軸受隙間
P 動圧溝領域
R1 第一ラジアル軸受部
R2 第二ラジアル軸受部
T1 第一スラスト軸受部
T2 第二スラスト軸受部
θ 傾斜角
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 2b1 Lower end surface 2b2 Upper end surface 3 Disc hub 4 Stator coil 5 Rotor magnet 7 Housing 7c Bottom part (thrust plate)
7c1 Top surface (opposite surface)
8 Bearing sleeve 8a Inner peripheral surface 8c End surface 10 Seal member 10a Inner peripheral surface 21 Inner shaft portion 22 Outer shaft portion 24 Inclined surface C Thrust bearing gap P Dynamic pressure groove region R1 First radial bearing portion R2 Second radial bearing portion T1 First One thrust bearing part T2 Second thrust bearing part θ Inclination angle

Claims (5)

軸部およびフランジ部を有する軸部材と、フランジ部の端面とこれに対向する面との間のスラスト軸受隙間に流体の動圧作用により圧力を発生させ、この圧力で軸部材をスラスト方向に非接触支持するスラスト軸受部とを備える動圧軸受装置において、
スラスト軸受隙間に面するフランジ部端面が樹脂で形成されると共に、当該端面の少なくともスラスト軸受隙間に面する部分が外径側を対向面に接近させた傾斜面であることを特徴とする動圧軸受装置。
Pressure is generated by a fluid dynamic pressure action in a thrust bearing gap between a shaft member having a shaft portion and a flange portion, and an end surface of the flange portion and a surface facing the flange portion. In a hydrodynamic bearing device comprising a thrust bearing portion for contact support,
The dynamic pressure is characterized in that the end face of the flange portion facing the thrust bearing gap is made of resin, and at least the portion of the end face facing the thrust bearing gap is an inclined surface with the outer diameter side approaching the opposing face Bearing device.
スラスト軸受隙間に面するフランジ部端面の内径側を厚肉の樹脂で形成すると共に、その外径側をこれよりも薄肉の樹脂で形成した請求項1記載の動圧軸受装置。 2. The hydrodynamic bearing device according to claim 1, wherein an inner diameter side of the end face of the flange portion facing the thrust bearing gap is formed of a thick resin, and an outer diameter side thereof is formed of a thinner resin. 軸部材が、軸部の外周面を形成する外軸部と、外軸部の内周に配置された内軸部とを備え、外軸部が金属製であると共に、内軸部およびフランジ部が樹脂で一体に形成されている請求項1記載の動圧軸受装置。 The shaft member includes an outer shaft portion that forms an outer peripheral surface of the shaft portion, and an inner shaft portion that is disposed on the inner periphery of the outer shaft portion. The outer shaft portion is made of metal, and the inner shaft portion and the flange portion. The hydrodynamic bearing device according to claim 1, wherein is integrally formed of resin. フランジ部端面に形成された前記傾斜面の傾斜角θがθ≦0.6°である請求項1記載の動圧軸受装置。 2. The hydrodynamic bearing device according to claim 1, wherein an inclination angle θ of the inclined surface formed on the end surface of the flange portion is θ ≦ 0.6 °. 請求項1〜4の何れかに記載した動圧軸受装置と、ロータマグネットと、ステータコイルとを有するモータ。 A motor comprising the fluid dynamic bearing device according to claim 1, a rotor magnet, and a stator coil.
JP2004149583A 2004-03-30 2004-05-19 Dynamic pressure bearing device Withdrawn JP2005331033A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004149583A JP2005331033A (en) 2004-05-19 2004-05-19 Dynamic pressure bearing device
DE112005000722T DE112005000722T5 (en) 2004-03-30 2005-03-17 Dynamic storage device
PCT/JP2005/004772 WO2005098250A1 (en) 2004-03-30 2005-03-17 Dynamic pressure bearing device
US10/590,910 US8506167B2 (en) 2004-03-30 2005-03-17 Dynamic bearing device having a thrust bearing portion
KR1020067020005A KR101244271B1 (en) 2004-03-30 2005-03-17 Dynamic pressure bearing device
CN2005800103030A CN1938524B (en) 2004-03-30 2005-03-17 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149583A JP2005331033A (en) 2004-05-19 2004-05-19 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2005331033A true JP2005331033A (en) 2005-12-02

Family

ID=35485836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149583A Withdrawn JP2005331033A (en) 2004-03-30 2004-05-19 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2005331033A (en)

Similar Documents

Publication Publication Date Title
US8356938B2 (en) Fluid dynamic bearing apparatus
KR20100089073A (en) Fluid dynamic-pressure bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP3774080B2 (en) Hydrodynamic bearing unit
US7608957B2 (en) Spindle motor with oil impregnated bearings and a shaft with a groove
KR101244271B1 (en) Dynamic pressure bearing device
JP2005282779A (en) Fluid bearing device
JP2005121052A (en) Dynamic pressure bearing device
KR101141332B1 (en) Fluid dynamic bearing assembly
JP2002061637A (en) Dynamic pressure type bearing device
JP4689283B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2006304565A (en) Brushless electric motor and its manufacturing method
JP2005114164A (en) Dynamic pressure bearing device
JP3865569B2 (en) Spindle motor
JP5726687B2 (en) Fluid dynamic bearing device
JP2005331033A (en) Dynamic pressure bearing device
JP2020165533A (en) Fluid dynamic pressure bearing device
JP2006194383A (en) Dynamic pressure bearing device
JP4030517B2 (en) Hydrodynamic bearing device
JP2006200666A (en) Dynamic-pressure bearing device
JP4579013B2 (en) Hydrodynamic bearing device
JP2007250095A (en) Dynamic pressure bearing arrangement
JP3782918B2 (en) Hydrodynamic bearing unit
JP2004116623A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807