JP2005330169A - 変成炉及び変成炉の加熱方法 - Google Patents

変成炉及び変成炉の加熱方法 Download PDF

Info

Publication number
JP2005330169A
JP2005330169A JP2004152363A JP2004152363A JP2005330169A JP 2005330169 A JP2005330169 A JP 2005330169A JP 2004152363 A JP2004152363 A JP 2004152363A JP 2004152363 A JP2004152363 A JP 2004152363A JP 2005330169 A JP2005330169 A JP 2005330169A
Authority
JP
Japan
Prior art keywords
retort
hot air
furnace
burner
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004152363A
Other languages
English (en)
Other versions
JP4613332B2 (ja
Inventor
Toshiaki Ohashi
俊明 大橋
Hiroyoshi Suzuki
広良 鈴木
Toshihiro Kobayashi
俊弘 小林
Koji Nakano
康治 中野
Shinpei Miura
新平 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd, Dowa Mining Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2004152363A priority Critical patent/JP4613332B2/ja
Publication of JP2005330169A publication Critical patent/JP2005330169A/ja
Application granted granted Critical
Publication of JP4613332B2 publication Critical patent/JP4613332B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】低コストで,炉内を好適に加熱することができる変成炉及び変成炉の加熱方法を提供する。
【解決手段】炉体10の内部に配置されたレトルト12で変成ガスを生成する変成炉2において,炉体10の内側面とレトルト12の外側面との間に筒状の隙間Sが形成され,炉体10の内部に熱風を噴射するバーナ13Aと,炉体10の内部から熱風を排気する排気口60を備え,前記バーナ13Aから熱風が噴射される方向と,前記排気口60から熱風が排気される方向は,レトルト12を中心として同じ回転方向CCWに向かうこととした。
【選択図】 図8

Description

本発明は,変成ガスを発生させる変成炉及び変成炉の加熱方法に関するものであり,特には,鋼のガス浸炭処理に用いる変成ガスを発生させる変成炉及び変成炉の加熱方法に関するものである。
変成炉とは,炭化水素ガスと酸化性ガスとを炉内に導入し,加熱しながら,触媒等を介してそれらのガスの反応を促進させ,一酸化炭素(CO)と水素(H)とを含む変成ガス(エンドサーミックガス)を生成する炉であり,ガス浸炭炉等に供給する浸炭性雰囲気ガスの生成炉として専ら使用される。ガス浸炭炉とは,鋼の浸炭処理を行う炉であり,雰囲気ガスとして供給された変成ガスに含まれる炭素が鋼の表面に浸透し,鋼の浸炭処理が施されるようになっている。
一般に,変成ガスを生成する装置は,ニッケル(Ni)触媒等が充填された筒状のレトルトと,レトルトを加熱するヒータ等の加熱手段を備えている(例えば,特許文献1,2,3参照。)。従来提案されている変成炉としては,都市ガス,空気及び二酸化炭素を混合させた原料ガスをレトルトの上部から供給し,レトルトの中央部を貫通する導出管から変成ガスを導出させるものがある(例えば,特許文献1参照)。また,バーナによってブタンガスと酸素との混合ガスを燃焼させて二酸化炭素と水蒸気を発生させ,ブタンガスを追加して混合させた後,レトルトに通過させ,変成ガスを生成する構成が提案されている(例えば,特許文献2参照)。さらに,浸炭を行う処理炉の炉床に備え,処理炉の熱を利用して触媒を加熱する装置が提案されている(例えば,特許文献3参照)。
特開2002−356763号公報 特開2003−147505号公報 特開2003−246604号公報
また,変成炉内での原料ガスの反応は,急激な吸熱を伴うが,触媒の温度が所定の温度より低下すると,変成ガスの組成が不安定になる。そのため,加熱手段によって触媒の温度を調節する必要がある。
しかしながら,従来の変成炉にあっては,加熱に要するコストが高い問題があった。特に電気ヒータによる加熱では,多くの電力を必要とし,また,温度調節が遅いため触媒の温度変化への対応が遅れ,変成ガスの組成が不安定になる問題があった。また,浸炭処理の効率を向上させるため,CO濃度が高い変成ガスの利用が要求されているが,変成ガスの生成に要するコストが高くなるので,浸炭処理全体の経済性を向上させることが難しかった。即ち,CO濃度を向上させるべく原料ガス中の炭酸ガスの濃度を増加させて反応させると,反応に伴う吸熱熱量が多くなるので,加熱手段による供給熱量を増加させる必要があり,加熱に要するコストの増大を招く。そのため,加熱に要するコストを低減することが要求されていた。
また,従来の変成炉にあっては,触媒の温度分布のばらつきが大きい問題があった。原料ガスが触媒に導入された直後は,未反応のガスが多く反応が活発で,吸熱熱量が多いため,触媒の温度が部分的に低下し,変成ガスの組成が不安定になるおそれがある。そのため,反応が活発な場所を集中的に加熱する加熱手段を追加して設け,触媒の部分的な温度低下を防止することが考えられるが,装置が複雑化する問題があった。あるいは,加熱手段の温度を上昇させ,触媒全体の温度を上昇させることで,触媒の部分的な温度低下を抑制することが考えられるが,高温により装置の劣化が促進される懸念があった。
本発明の目的は,低コストで,炉内を好適に加熱することができる変成炉及び変成炉の加熱方法を提供することにある。
上記課題を解決するために,本発明によれば,炉体の内部に配置されたレトルトで変成ガスを生成する変成炉であって,炉体の内側面とレトルトの外側面との間に筒状の隙間が形成され,炉体の内部に熱風を噴射するバーナと,炉体の内部から熱風を排気する排気口を備え,前記バーナから熱風が噴射される方向と,前記排気口から熱風が排気される方向は,レトルトを中心として同じ回転方向に向かうことを特徴とする,変成炉が提供される。かかる変成炉によれば,加熱に要するコストを,電気を利用して発熱させるヒータによって加熱する場合よりも,安価にすることができる。
この変成炉にあっては,前記炉体及びレトルトは円筒状に形成され,かつ,前記炉体の内径がレトルトの外径より大きいことにより,前記隙間が円筒状に形成されることが好ましい。前記バーナは,レトルトの外側面に沿った方向に熱風を噴射することが好ましい。また,前記熱風は,レトルトの外側面に沿って螺旋状に流れる構成とすることが好ましい。さらに,前記バーナと前記排気口をレトルトの中心軸方向において互いに離隔した位置に備えることが好ましい。
前記バーナはリジェネバーナであることが好ましい。この場合,リジェネバーナの蓄熱を利用した省エネルギ効果により,加熱に要するコストをさらに安価にすることができる。前記排気口は,リジェネバーナに備えた排気口であることが好ましい。
さらに,本発明によれば,変成炉の炉体の内部に備えたレトルトを加熱する方法であって,レトルトの外側面に沿って螺旋状に流れるように熱風を供給することを特徴とする,変成炉の加熱方法が提供される。
この変成炉の加熱方法にあっては,前記熱風をレトルトの一端側から噴射し,レトルトの他端側において排出する方法と,前記熱風を前記レトルトの他端側から噴射し,前記レトルトの一端側において排出する方法とを交互に行うことが好ましい。これにより,触媒の温度分布のばらつきを少なくすることができる。
本発明によれば,加熱に要するコストを低減することができる。触媒の温度分布のばらつきを少なくして,変成ガスの生成を好適に行うことができる。CO濃度が高い変成ガスを,低コストで安定して生成することが可能になり,浸炭処理における浸炭効率の向上を図ることができる。
以下,本発明の好ましい実施の形態を説明する。図1に示すように,変成ガス生成システム1は,本発明にかかる変成炉2を備えている。さらに,変成炉2に炭化水素系のガスと空気とを混合した原料ガスを供給する原料ガス供給路3と,変成炉2において生成された変成ガスを変成炉2から導出する変成ガス導出路5を備えている。
図2に示すように,変成炉2は,密閉構造の炉体10を備えている。炉体10の内側には,触媒11を内部に備えたレトルト12が設置されている。炉体10の内側面とレトルト12の外側面との間には,筒状の隙間Sが形成されている。炉体10の側壁10aには,触媒11を加熱するための熱風を噴射する2個のリジェネバーナ(蓄熱バーナ)13A,13Bが備えられている。リジェネバーナ13A,13Bは,炉体10の上下にそれぞれ配置されている。
炉体10の側壁10aは,レトルト12の側壁12aの外径より大きな内径を有する略円筒状に形成されている。即ち,図3に示すように,炉体10の内側面が断面略円形状になるように形成されている。また,側壁10aの中心軸が略鉛直方向に向かうように配置されている。図2に示すように,炉体10の底部10bには,レトルト12の下端を支持する支持部材15が設けられている。炉体10の天井部10cの中央部には,レトルト12の上部が挿入される略円形のレトルト挿入穴16が形成されている。なお,図示はしないが,炉体10は内壁と外壁からなる二重構造となっている。炉体10の内壁は,炉外との断熱機能を有する。炉体10の外壁は,炉体10の強度等を保持する機能を有する。炉体10の容積は,レトルト12の大きさに応じて設定される。
レトルト12は,略円筒状に形成された側壁12aと,略半球面状に形成された底部12bからなる容器である。即ち,図3に示すように,レトルト12の外周面は断面略円形状になっている。また,レトルト12は,レトルト12の中心軸が炉体10の内部空間の中心軸に重なるように,炉体10の中心部に略鉛直方向に向けて配置されている。また,底部12bを支持する支持部材15も,炉体10の中心部に配置されている。レトルト12の側壁12aと炉体10の側壁10aとの間に形成された隙間Sは,略円筒状に形成されている。即ち,側壁12aの外周面と側壁10aの内周面との間の半径方向における距離は,ほぼ一定になっている。このように,レトルト12を炉体10の中心に配置すると,リジェネバーナ13A,13Bによって供給される熱風が,レトルト12を中心として螺旋状に流れやすくなり,レトルト12の周囲全体に熱風が供給される。そのため,レトルト12内の触媒11を効率良く加熱できる。特に,炉体10を円筒状とし,レトルト12と炉体10との間の隙間Sを円筒状とすることにより,隙間Sに沿って熱風が螺旋状に円滑に流れやすくなり,隙間Sの周方向において熱風の流れがほぼ均等に形成される。また,炉体10を介して炉外に放熱される熱量も,隙間Sの周方向においてほぼ均等になる。従って,隙間Sの周方向において熱の拡散状態が均等になり,周方向において温度分布にばらつきが生じることを抑制して,レトルト12内の触媒11を好適に加熱できる。
図2に示すように,レトルト12の上部は,レトルト挿入穴16に挿入されている。レトルト12の上端部には,レトルト12を保持しレトルト挿入穴16を閉塞するための略円板状の蓋部材21が設けられている。蓋部材21は,レトルト挿入穴16の上方においてレトルト挿入穴16の周囲を覆うように配置されている。蓋部材21の下面と炉体10の上面との間には,環状に形成されたパッキン22が備えられている。パッキン22は,レトルト12の自重のため蓋部材21によって押さえられ,蓋部材21の下面と炉体10の上面とに密着させられる。これにより,炉体10の内部の雰囲気がレトルト挿入穴16を介して炉外に漏れることを防止している。さらに,パッキン22の外側において蓋部材21と炉体10の上面を複数のボルト23によって締結することで,蓋部材21を炉体10の上面に確実に固定するようになっている。
触媒11は,例えばニッケル(Ni)等の触媒層からなり,レトルト12の側壁12aの内側に形成されている。図2に示すように,触媒11は,レトルト12内の下端部に備えられた支持板26と,レトルト12内の上端部に備えられたレトルトプラグ27との間に充填されている。レトルトプラグ27の上方は,蓋部材21によって覆われている。また,支持板26の中央部,触媒11の中央部,及び,レトルトプラグ27の中央部,蓋部材21の中央部を上下に貫通するように,略円管状に形成された変成ガス導出管30が配設されている。変成ガス導出管30は,図1に示した変成ガス導出路5に接続されている。
支持板26は,略円板形状に形成されており,変成ガス導出管30の下端部の外周面とレトルト12の内周面との間を塞ぐように配置されている。支持板26には,上下に貫通する小孔32が複数形成されている。
レトルトプラグ27は,例えばアルミナセラミックス等で形成されており,触媒11の上方を塞ぐように設けられている。レトルトプラグ27には,上下に貫通する細管35が複数形成されている。このレトルトプラグ27は,原料ガス供給路3から供給された原料ガスを,流速を速くして触媒11に導入させる機能を有する。即ち,原料ガス供給路3の下流端が,蓋部材21を貫通するように設けられており,原料ガスが細管35に導入され,触媒11に導出されるようになっている。
原料ガス供給路3から供給された原料ガスは,レトルトプラグ27の細管35を通過して触媒11に上方から導入される。そして,触媒11中を下降する間に,リジェネバーナ13A,13Bから供給される熱風により加熱されながら反応して,一酸化炭素(CO)と水素(H)とを含む変成ガスになる。触媒11で生成された変成ガスは,支持板26の小孔32を通過して支持板26の下方に流入し,変成ガス導出管30によって支持板26の下方から導出され,レトルト12から変成ガス導出路5に導出されるようになっている。
図2に示すように,リジェネバーナ13A,13Bは,レトルト12の中心軸方向である略鉛直方向において上下に離隔した位置に備えられている。リジェネバーナ13Aは,炉体10の側壁10aの上部に配置され,レトルト12の上端部側から隙間Sに熱風を噴射するように設けられており,リジェネバーナ13Bは,炉体10の側壁10aの下部に配置され,レトルト12の底部12b側から隙間Sに熱風を噴射するように設けられている。各リジェネバーナ13A,13Bは,熱風の噴射と熱風の排気を切り換えて行うことができる構成になっており,リジェネバーナ13A,13Bのいずれか一方が熱風の噴射を行うとき,他方は熱風の排気を行うようになっている。リジェネバーナ13A,13Bの熱風の噴射と熱風の排気の切り換えは,図3に示す四方切換弁40の操作によって行うことができる。
各リジェネバーナ13A,13Bは,熱風を排気するとき,排気の熱を内部に蓄熱できるようになっている。また,熱風を噴射するとき,蓄熱を利用して熱風を生成することができる。従って,熱風を発生させるために燃焼させるガスの消費量を低減することができ,省コストを図ることができる。また,リジェネバーナ13A,13Bを用いると,電気ヒータによって触媒11の温度を調節する場合よりも,熱量の供給量を短時間で大きく変化させることができるので,触媒11の温度を迅速に調節することができる。リジェネバーナ13A,13Bの各先端部には,熱風の噴射と排気を行う噴射・排気口60が備えられている。
図4に示すように,リジェネバーナ13Aの噴射・排気口60は,上方からみたときにレトルト12を中心として反時計方向の回転方向CCWに沿った方向に熱風を噴射するように向けられている。また,図5に示すように,リジェネバーナ13Aの噴射・排気口60は,上方からみたときにレトルト12を中心として時計方向の回転方向CWに沿った方向に熱風を排気するように向けられている。一方,リジェネバーナ13Bの噴射・排気口60は,図5に示すように,回転方向CWに沿った方向に熱風を噴射するように向けられている。また,図4に示すように,リジェネバーナ13Bの噴射・排気口60は,回転方向CCWに沿った方向に熱風を排気するように向けられている。リジェネバーナ13A,13Bをこのような配置にすると,熱風の流れがレトルト12の外側面に沿った螺旋状に,円滑に形成される。リジェネバーナ13Aから熱風を噴射すると,熱風は隙間Sの形状に沿って,図6に示すように回転方向CCWに回転しながら螺旋状に下降し,リジェネバーナ13Bによって回転方向CCWに沿って排気される。一方,リジェネバーナ13Bから熱風を噴射すると,熱風は隙間Sの形状に沿って,図7に示すように回転方向CWに回転しながら螺旋状に上昇し,リジェネバーナ13Aによって回転方向CWに沿って排気される。リジェネバーナ13Aとリジェネバーナ13Bとは,レトルト12の中心軸方向において互いに上下に離隔した位置に設けられているので,熱風の流れがレトルト12の上端部から下端部まで形成され,触媒11全体を加熱することができる。
さらに,リジェネバーナ13A,13Bは,図3に示すように,レトルト12の側壁12aの外側面に沿った接線方向に熱風を噴射することが好ましい。このようにすると,リジェネバーナ13A,13Bから噴射された熱風がレトルト12に直に突き当たらず,熱風の流れが良好に形成される。従って,レトルト12の周囲全体に熱風を供給することができ,レトルト12内の触媒11を周方向において均一に加熱することができる。また,リジェネバーナ13A,13Bが熱風を噴射する方向は,略水平であることが好ましい。これにより,レトルト12の周囲全体に熱風を確実に供給することができ,レトルト12内の触媒11を周方向においてより均一に加熱することができる。
さらに,リジェネバーナ13Aが熱風を噴射する方向と,リジェネバーナ13Bが熱風を排気する方向とは,互いに直交する関係とすることが好ましい。リジェネバーナ13Bが熱風を噴射する方向と,リジェネバーナ13Aが熱風を排気する方向とは,互いに直交する関係とすることが好ましい。また,リジェネバーナ13Aとリジェネバーナ13Bは,炉体10の内側面の周方向において互いに近接した位置に設けることが好ましい。このようにすると,リジェネバーナ13Aから噴射した熱風が,レトルト12の周りを少なくとも一周以上廻ってから,リジェネバーナ13Bから排気されるようになる。また,リジェネバーナ13Bから熱風を噴射するときも,リジェネバーナ13Bから噴射した熱風が,レトルト12の周りを少なくとも一周以上廻ってから,リジェネバーナ13Aから排気されるようになる。従って,レトルト12の周りに熱風を確実に拡散させ,触媒11を確実に加熱することができる。また,リジェネバーナ13Aとリジェネバーナ13Bを炉体10の周方向において近接した位置に設けると,メンテナンス性が良好になる。
また,図2に示すように,リジェネバーナ13Aは,レトルトプラグ27の下端部より上方に設けることが好ましい。このようにすると,リジェネバーナ13Aから噴射された熱風が,レトルトプラグ27の下部の周囲にも供給され,レトルトプラグ27の下部も良好に加熱することができる。従って,レトルトプラグ27に導入された原料ガスを,レトルトプラグ27の下部において予備加熱した後,触媒11に導入させることができる。こうすると,触媒11における原料ガスの反応を好適に行うことができる。
図2に示すように,リジェネバーナ13Bは,レトルト12の底部12bとほぼ同じ高さに配置して,レトルト12の底部12bの周囲にも熱風が供給され,底部12bも加熱されるようにすることが好ましい。
図1に示すように,原料ガス供給路3には,主にブタンガス(C10)等を含有する炭化水素ガスを供給する炭化水素ガス供給路81と,酸化性ガスとして空気を供給するエア供給路82とが,ガス混合器83を介して接続されている。炭化水素ガス供給路81から供給された炭化水素ガスと,エア供給路82から供給された空気は,ガス混合器83において混合されて原料ガスとなり,原料ガス供給路3によって変成炉2に送られるようになっている。原料ガス供給路3の下流端は,蓋部材21を貫通してレトルトプラグ27に接続されている。
炭化水素ガス供給路81には,減圧弁90,ガス圧力計91,開閉弁92,水銀スイッチ93,94,ガス安全弁95,ガス流量計96,バランシングレギュレータ97が上流側から順に介設されている。また,開閉弁92と水銀スイッチ93との間から,ガス供給路98が分岐して設けられている。リジェネバーナ13A,13Bには,炭化水素ガス供給路81からガス供給路98を介して熱風生成用の炭化水素ガスが供給されるようになっている。エア供給路82には,エアクリーナ101,空気流量計102が介設されている。原料ガス供給路3には,ブロワー(コンプレッサ)105,開閉弁106,レギュレータ107,圧力計108,逆火防止弁109がガス混合器83側から順に介設されている。
変成ガス導出路5は,変成炉2の変成ガス導出管30に接続されている。変成ガス導出路5には,一次クーラー115,二次クーラー116,開閉弁117,圧力計118が変成炉2側から順に介設されている。変成ガス導出管30によって変成炉2から導出された変成ガスは,一次クーラー115と二次クーラー116によって冷却され,変成ガス導出路5によって図示しないガス浸炭炉に供給される。
次に,この変成ガス生成システム1を用いた変成ガスの生成方法を説明する。図1に示したガス混合器83に,炭化水素ガス供給路81,エア供給路82からそれぞれ炭化水素ガス又は空気を供給し,ガス混合器83において所定の混合比で混合された炭化水素ガスと空気からなる原料ガスを,原料ガス供給路3に供給する。原料ガスは,原料ガス供給路3から変成炉2のレトルトプラグ27に導入され,細管35を通過して触媒11に導入される。
変成炉2においては,リジェネバーナ13A,13Bから供給される熱風により炉体10内を加熱し,レトルトプラグ27の下部,レトルト12,触媒11を加熱する。原料ガスは,レトルトプラグ27の下部を通過するときに予備加熱される。レトルトプラグ27の下部においては,原料ガスを反応させず,原料ガスの昇温のみが行われるようにする。触媒11に原料ガスが導入されると,触媒の作用によって原料ガスの反応が始まる。原料ガスは,触媒11を通過する間に,リジェネバーナ13A,13Bから供給される熱風によって加熱され,触媒11によって反応が促進される。こうして,原料ガスの反応により変成ガスが生成される。
触媒11では,レトルトプラグ27に近い上側ほど未反応の原料ガスが多く存在するので,上側ほど反応が活発に行われる。原料ガスの反応は吸熱反応であるため,触媒11の上側ほど原料ガスの反応による吸熱が激しく行われる。そのため,リジェネバーナ13A,13Bによる熱風の供給を制御することにより,触媒11の温度を調節して,触媒11の上側の温度が部分的に著しく低下することを防止する。そこで,以下に示すようにリジェネバーナ13A,13Bによる熱風の供給と排出を行って,炉体10の内部を加熱する。触媒11の温度は,例えば約1050℃程度に維持されるように調節することが好ましい。
図4に示すように,リジェネバーナ13Bを排気可能な状態とし,リジェネバーナ13Aから熱風を噴射させると,熱風はレトルト12の側壁12aと炉体10の側壁10aとの間を直進した後,炉体10の側壁10aに沿って湾曲するように誘導される。また,リジェネバーナ13Bの噴射・排気口60がある下方に熱風が引っ張られる。従って,図6に示すように,熱風がレトルト12を中心として回転方向CCWに回転して,レトルト12の外側面に沿って下方に向かう螺旋状に流れる。そして,リジェネバーナ13Bの噴射・排気口60によって熱風が排出される。こうして,隙間Sにおいてレトルト12の周囲全体に熱風が供給され,触媒11が周方向において均一に加熱される。また,熱風がリジェネバーナ13Bから排気されるとき,熱風の熱がリジェネバーナ13B内に蓄熱される。この蓄熱は,リジェネバーナ13Bによって熱風を噴射するとき熱風の生成に利用される。
また,図5に示すように,リジェネバーナ13Aを排気可能な状態とし,リジェネバーナ13Bによって熱風を噴射すると,熱風はレトルト12の側壁12aと炉体10の側壁10aとの間を直進した後,炉体10の側壁10aに沿って湾曲するように誘導される。また,リジェネバーナ13Aの噴射・排気口60がある上方に熱風が引っ張られる。従って,図7に示すように,熱風がレトルト12を中心として回転方向CCWに回転して,レトルト12の外側面に沿って下方に向かう螺旋状に流れる。そして,リジェネバーナ13Aの噴射・排気口60によって熱風が排出される。こうして,隙間Sにおいてレトルト12の周囲全体に熱風が供給され,触媒11が周方向において均一に加熱される。また,熱風がリジェネバーナ13Aから排気されるとき,熱風の熱がリジェネバーナ13A内に蓄熱される。この蓄熱は,リジェネバーナ13Aによって熱風を噴射するとき熱風の生成に利用される。
以上のような,熱風をリジェネバーナ13Aによってレトルト12の上端部付近から噴射し,リジェネバーナ13Bによってレトルト12の下端部付近から排出する加熱方法と,熱風をリジェネバーナ13Bによってレトルト12の上端部付近から噴射し,リジェネバーナ13Aによってレトルト12の下端部付近から排出する加熱方法と,を適宜切り換えて行うことにより,触媒11の温度を好適に調節することができる。前者の熱風をレトルト12の上端部付近から噴射する加熱方法では,触媒11の上側ほど高温の熱風で加熱される。従って,吸熱反応による触媒11の部分的な温度低下を抑制することができる。しかしながら,下方に流れるに従い熱風が低温になるので,触媒11の下部が所望の温度より低くなるおそれがある。また,触媒11の温度が高すぎると,原料ガスが異常反応を起こすおそれがある。さらに,炉内10の上部が部分的に高温になることにより,変成炉2に加えられる負担が大きくなり劣化が促進されるおそれがある。一方,後者の加熱方法,即ち,熱風をレトルト12の下端部付近から噴射する加熱方法では,触媒11の下側ほど高温の熱風で加熱される。従って,触媒11の下部が所望の温度より低くなることを抑制できる。さらに,触媒11の上部の温度を所望の温度に低下させることで,原料ガスの異常反応を防止でき,また,変成炉2の負担が過大になることを防止できる。従って,リジェネバーナ13Aから熱風を噴射させる加熱方法と,リジェネバーナ13Bから熱風を噴射させる加熱方法とを交互に切り換えることにより,触媒11の上下方向における温度のばらつきが少なくなり,上下方向において均一な温度分布を得ることができる。これにより,触媒11における原料ガスの反応を好適に行うことができ,変成ガスを安定して発生させることができる。特に,激しい吸熱反応を伴うCO濃度が高い変成ガス(例えば,CO濃度が約30〜60%程度の変性ガス)の生成も,安定して行うことが可能となる。
また,リジェネバーナ13Aから噴射された熱風が,レトルト12の外側面に沿った方向に向かうようになっているので,リジェネバーナ13Aから噴射された熱風は,レトルト12に直に突き当たって妨げられることなく,レトルト12の側壁12aと炉体10の側壁10aとの間を略水平方向に直進した後,炉体10の側壁10aに沿って湾曲するように誘導され,レトルト12を中心として隙間S内を螺旋状に下方に向かって流れる。また,リジェネバーナ13Bから噴射された熱風が,レトルト12の外側面に沿った方向に向かうようになっているので,リジェネバーナ13Bから噴射された熱風は,レトルト12に直に突き当たって妨げられることなく,レトルト12の側壁12aと炉体10の側壁10aとの間を略水平方向に直進した後,炉体10の側壁10aに沿って湾曲するように誘導され,レトルト12を中心として隙間S内を螺旋状に上方に向かって流れる。このように,熱風の流れが円滑に形成され,レトルト12の周囲全体に熱風を供給することができ,触媒11を周方向においてより均一に加熱しやすくなる。
さらに,触媒11の温度調節においては,リジェネバーナ13A,13Bの熱風の噴射量を調節することで,熱量の供給量を増減させ,触媒11の温度を迅速に調節することができる。この場合,電気ヒータによって温度を調節する場合よりも,熱量の供給量を短時間で大きく変化させることができ,触媒11の温度を迅速に調節することができる。従って,原料ガスの供給量や,原料ガス中の炭化水素ガスの濃度に応じて,供給熱量を迅速に調節することができるので,変成ガスの生成を安定して行うことができる。
触媒11で生成された変成ガスは,支持板26の小孔32を通過して支持板26の下方に流入し,変成ガス導出管30によって支持板26の下方から導出されて上昇し,変成ガス導出路5に導入される。そして,一次クーラー115と二次クーラー116によって冷却され,変成ガス導出路5によって図示しないガス浸炭炉に供給される。
かかる変成炉2によれば,電気ヒータによって温度を調節する場合よりも,加熱に要するコストを安価にすることができる。特に,リジェネバーナ13A,13Bを用いることにより,熱風生成用のガスの消費量を削減することができ,加熱に要するコストを大幅に低減することができる。従って,変成ガスを低コストで生成することができる。
また,リジェネバーナ13Aによる熱風の供給及びリジェネバーナ13Bによる熱風の排出による加熱方法と,リジェネバーナ13Bによる熱風の供給及びリジェネバーナ13Aによる熱風の排出による加熱方法と,を適宜切り換えて行うことにより,触媒11の温度のばらつきを少なくすることができる。従って,原料ガスの異常反応を防止することができ,変成ガスの組成が安定する。
さらに,CO濃度が高い変成ガスの生成も,低コストで安定して行うことが可能となる。ひいては,浸炭処理における浸炭効率の向上や,新たな材料に対する浸炭処理の応用等の可能性があり,浸炭処理に関連する分野における多大な影響が期待される。
以上,本発明の好適な実施の形態の一例を示したが,本発明はここで説明した形態に限定されない。例えば,本実施の形態においては,炉体10の内側面を断面円形状に形成し,レトルト12の外側面を断面円形状に形成し,レトルト12を炉体10の中心に配置することとしたが,炉体10の形状,レトルト12の形状は,かかるものに限定されない。例えば,炉体10の内側面を断面正方形状に形成しても良い。この場合も,レトルト12を中心として,熱風の流れを螺旋状に形成することができる。
本実施の形態においては,バーナは蓄熱を行うリジェネバーナとしたが,かかるものに限定されず,蓄熱をしない通常のガスバーナであっても良い。この場合は,熱風を排気する排気口を炉体10の側壁10aに備えれば良い。例えば図8及び図9に示すように,熱風を排気する排気口130を炉体10の側壁10aに備えれば良い。図8において,バーナ131Aは,炉体10の側壁10aの上部に設けられており,バーナ131Bは,炉体10の側壁10aの下部に設けられている。また,図9に示すように,バーナ131A,131Bは,上方からみたときにレトルト12を中心として時計方向の回転方向CCWに沿った方向に熱風を噴射するように向けられている。排気口130は,炉体10の側壁10aの中央の高さに設けられており,図9に示すように,上方からみたときにレトルト12を中心として回転方向CCWに沿った方向に熱風を排気するように向けられている。バーナ131Aから噴射された熱風は,回転方向CCWに沿って螺旋状に回転しながら下降し,排気口130によって排気される。バーナ131Bから噴射された熱風は,回転方向CCWに沿って螺旋状に回転しながら上昇し,排気口130によって排気される。このようにしても,触媒11を効率良く加熱できる。また,バーナ131A,131Bの熱風の供給量をそれぞれ調節することにより,触媒11の上部と下部の温度を個別に調節することができ,触媒11の温度のばらつきを抑制することができる。なお,バーナ,排気口の位置や向きは,かかるものに限定されず,望ましい熱分布を得られるように適宜設定される。
変成ガス生成システムの概略を示す説明図である。 変成炉の縦断面図である。 変成炉の横断面図である。 熱風を炉体の上方から噴射して下方において排出する状態を説明する横断面図である。 熱風を炉体の下方から噴射して上方において排出する状態を説明する横断面図である。 熱風を炉体の上方から噴射して下方において排出する状態を説明する縦断面図である。 熱風を炉体の下方から噴射して上方において排出する状態を説明する縦断面図である。 別の実施の形態にかかる変成炉の縦断面図である。 別の実施の形態にかかる変成炉の横断面図である。
符号の説明
1 変成ガス生成システム
2 変成炉
10 炉体
11 触媒
12 レトルト
13A,13B リジェネバーナ
60 噴射・排気口

Claims (9)

  1. 炉体の内部に配置されたレトルトで変成ガスを生成する変成炉であって,
    炉体の内側面とレトルトの外側面との間に筒状の隙間が形成され,
    炉体の内部に熱風を噴射するバーナと,炉体の内部から熱風を排気する排気口を備え,
    前記バーナから熱風が噴射される方向と,前記排気口から熱風が排気される方向は,レトルトを中心として同じ回転方向に向かうことを特徴とする,変成炉。
  2. 前記炉体及びレトルトは円筒状に形成され,かつ,前記炉体の内径がレトルトの外径より大きいことにより,前記隙間が円筒状に形成されたことを特徴とする,請求項1に記載の変成炉。
  3. 前記バーナは,レトルトの外側面に沿った方向に熱風を噴射することを特徴とする,請求項1又は2に記載の変成炉。
  4. 前記熱風は,レトルトの外側面に沿って螺旋状に流れる構成としたことを特徴とする,請求項1,2又は3に記載の変成炉。
  5. 前記バーナと前記排気口をレトルトの中心軸方向において互いに離隔した位置に備えたことを特徴とする,請求項1〜4のいずれかに記載の変成炉。
  6. 前記バーナはリジェネバーナであることを特徴とする,請求項1〜5のいずれかに記載の変成炉。
  7. 前記排気口は,リジェネバーナに備えた排気口であることを特徴とする,請求項6に記載の変成炉。
  8. 変成炉の炉体の内部に備えたレトルトを加熱する方法であって,
    レトルトの外側面に沿って螺旋状に流れるように熱風を供給することを特徴とする,変成炉の加熱方法。
  9. 前記熱風をレトルトの一端側から噴射し,レトルトの他端側において排出する方法と,
    前記熱風を前記レトルトの他端側から噴射し,前記レトルトの一端側において排出する方法とを交互に行うことを特徴とする,請求項8に記載の変成炉の加熱方法。
JP2004152363A 2004-05-21 2004-05-21 変成炉及び変成炉の加熱方法 Active JP4613332B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152363A JP4613332B2 (ja) 2004-05-21 2004-05-21 変成炉及び変成炉の加熱方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004152363A JP4613332B2 (ja) 2004-05-21 2004-05-21 変成炉及び変成炉の加熱方法

Publications (2)

Publication Number Publication Date
JP2005330169A true JP2005330169A (ja) 2005-12-02
JP4613332B2 JP4613332B2 (ja) 2011-01-19

Family

ID=35485079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152363A Active JP4613332B2 (ja) 2004-05-21 2004-05-21 変成炉及び変成炉の加熱方法

Country Status (1)

Country Link
JP (1) JP4613332B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063198A (ja) * 2007-09-05 2009-03-26 Dowa Thermotech Kk バーナ炉及びバーナ炉の加熱方法
JP2010260769A (ja) * 2009-05-08 2010-11-18 Dowa Thermotech Kk 変成炉の加熱方法及び変成炉
CN109338276A (zh) * 2018-11-29 2019-02-15 邢明 一种钢材渗碳工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824605B1 (ja) * 1969-09-15 1973-07-23
JPS4913124B1 (ja) * 1970-11-28 1974-03-29
JPS5170241U (ja) * 1975-09-03 1976-06-03
JPH07101702A (ja) * 1993-10-01 1995-04-18 Akiyoshi Asaki 中圧連続式ガス化装置
JPH11323355A (ja) * 1998-05-12 1999-11-26 Nippon Furnace Kogyo Kaisha Ltd 水蒸気改質方法及び水蒸気改質装置
JP2001082736A (ja) * 1999-09-16 2001-03-30 Daido Steel Co Ltd 蓄熱型バーナ燃焼装置
JP2001153348A (ja) * 1999-11-25 2001-06-08 Chiyoda Corp 反応炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824605B1 (ja) * 1969-09-15 1973-07-23
JPS4913124B1 (ja) * 1970-11-28 1974-03-29
JPS5170241U (ja) * 1975-09-03 1976-06-03
JPH07101702A (ja) * 1993-10-01 1995-04-18 Akiyoshi Asaki 中圧連続式ガス化装置
JPH11323355A (ja) * 1998-05-12 1999-11-26 Nippon Furnace Kogyo Kaisha Ltd 水蒸気改質方法及び水蒸気改質装置
JP2001082736A (ja) * 1999-09-16 2001-03-30 Daido Steel Co Ltd 蓄熱型バーナ燃焼装置
JP2001153348A (ja) * 1999-11-25 2001-06-08 Chiyoda Corp 反応炉

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063198A (ja) * 2007-09-05 2009-03-26 Dowa Thermotech Kk バーナ炉及びバーナ炉の加熱方法
JP2010260769A (ja) * 2009-05-08 2010-11-18 Dowa Thermotech Kk 変成炉の加熱方法及び変成炉
CN109338276A (zh) * 2018-11-29 2019-02-15 邢明 一种钢材渗碳工艺

Also Published As

Publication number Publication date
JP4613332B2 (ja) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4299868B2 (ja) 水素燃焼装置
KR101978862B1 (ko) 용광로 내에 대체 환원제를 주입하기 위한 방법
JP5057938B2 (ja) 水素生成装置、およびこれを備えた燃料電池システム
JP4613332B2 (ja) 変成炉及び変成炉の加熱方法
KR101240688B1 (ko) 개질 장치
JP2006286279A (ja) 燃焼装置
US9162887B2 (en) Reformer reactor and method for converting hydrocarbon fuels into hydrogen rich gas
EP3774645B1 (en) Oxygen injection system for a direct reduction process
JP4852295B2 (ja) 改質器及び燃料電池システム
KR101636872B1 (ko) 합성 가스 생산을 위한 아크 플라즈마 장치.
JP4664767B2 (ja) 改質器
KR101897802B1 (ko) 아산화질소 함유 기체화합물의 고주파 유도 열분해 장치
JP5648090B1 (ja) 浸炭方法
JP2010202953A (ja) 冶金炉排ガスの改質装置
JP4187710B2 (ja) バーナおよび燃料電池システム
JP2009063198A (ja) バーナ炉及びバーナ炉の加熱方法
JPH06206702A (ja) 炭化水素反応器
JP2016006236A (ja) 浸炭用雰囲気ガスの生成方法
JP2003286004A (ja) 改質器および改質方法
JP5882258B2 (ja) 浸炭装置
EP3258525B1 (en) Fuel processing apparatus for fuel cell, and fuel cell system
US3804580A (en) Apparatus and method for generating protective atmospheres
JP2015004109A (ja) 浸炭用雰囲気ガス生成装置
JPH07172802A (ja) 燃料改質システム
JP5630987B2 (ja) 浸炭用ガス供給装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100716

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100928

R150 Certificate of patent or registration of utility model

Ref document number: 4613332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250