JP2005329380A - Evaporation concentrator for aqueous waste liquid and aqueous cleaning device using the same - Google Patents

Evaporation concentrator for aqueous waste liquid and aqueous cleaning device using the same Download PDF

Info

Publication number
JP2005329380A
JP2005329380A JP2004174828A JP2004174828A JP2005329380A JP 2005329380 A JP2005329380 A JP 2005329380A JP 2004174828 A JP2004174828 A JP 2004174828A JP 2004174828 A JP2004174828 A JP 2004174828A JP 2005329380 A JP2005329380 A JP 2005329380A
Authority
JP
Japan
Prior art keywords
water
cooling water
cooling
waste liquid
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004174828A
Other languages
Japanese (ja)
Other versions
JP4264950B2 (en
Inventor
Seiji Nishimura
清司 西村
Noriyasu Hirokawa
載泰 広川
Kazuhiro Adachi
和弘 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takahashi Metal Industries Co Ltd
Original Assignee
Takahashi Metal Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahashi Metal Industries Co Ltd filed Critical Takahashi Metal Industries Co Ltd
Priority to JP2004174828A priority Critical patent/JP4264950B2/en
Publication of JP2005329380A publication Critical patent/JP2005329380A/en
Application granted granted Critical
Publication of JP4264950B2 publication Critical patent/JP4264950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems: when waste liquid contains volatile oil, oil is contaminated in distillation wastewater of the conventional evaporation concentrator, and heat energy added for waste liquid evaporation increases the temperature of cooling water to be finally discharged. <P>SOLUTION: In this evaporation concentrator, oil-water separation unit is installed in a circulation circuit of the distillation wastewater, the volatile oil is separated, cooling water stored in a cooling water tank is circulated to the evaporation concentrator, and the resultant water is used as a hot water source, thereby high efficient heat recovery is carried out. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水系廃液を減圧状態下で濃縮する蒸発濃縮装置と、この蒸発濃縮装置を使用して洗浄液の加熱を行い、又は、洗浄液を濃縮して処理する水系洗浄装置に関するものである。  The present invention relates to an evaporative concentration apparatus for concentrating an aqueous waste liquid under reduced pressure, and an aqueous cleaning apparatus for heating the cleaning liquid using the evaporative concentration apparatus or concentrating and processing the cleaning liquid.

環境問題への関心が高まる中で、水系廃液の処理に起因する環境への負荷を低減することが求められており、特に、世界的な脱フロン洗浄、脱有機溶剤洗浄の流れによって、水系洗浄が代替洗浄方法として注目されるに従い、その廃液の処理方法も課題となっている。
従来、水系廃液は産業廃棄物として処理を委託するか、排水処理施設を設けて放流可能な水質に処理することが一般的であった。しかし、処理委託では廃液量が多い場合にコスト負担が増加してしまうという問題があり、排水処理施設を使用する場合は設備の設置と運営・管理に大きな負担を要するという問題があった。
Amid increasing interest in environmental issues, there is a need to reduce the environmental burden caused by the treatment of aqueous waste liquids. However, as the alternative cleaning method is attracting attention, a method for treating the waste liquid has become a problem.
Conventionally, it has been common for water-based waste liquids to be treated as industrial waste or treated to a water quality that can be discharged by providing a wastewater treatment facility. However, there is a problem that the cost burden increases when the amount of waste liquid is large in the processing consignment, and there is a problem that a large burden is required for installation, operation and management of the equipment when using the wastewater treatment facility.

そのため、近年では小規模な廃液処理方法として、減圧した蒸発槽で廃液を濃縮し、廃液の量を削減する蒸発濃縮装置が提案されている。
例えば特許文献1においては、メッキ洗浄廃液を減圧状態の横置き円筒真空乾燥容器内で加熱し、蒸発した水分をコンデンサーで冷却して蒸留排水(留出水)とし、廃液は前記乾燥容器内で濃縮される。
また、特許文献2においては、写真処理廃液を減圧状態の蒸発濃縮カラムで加熱、蒸発させ、その上に設けた冷却凝縮部で凝縮液として回収される。また、液の加熱と蒸気の冷却にはヒートポンプが使用されている。
特開2003−211149号公報 特開平4−4085号公報
Therefore, in recent years, as a small-scale waste liquid treatment method, an evaporative concentration apparatus for concentrating waste liquid in a decompressed evaporation tank and reducing the amount of waste liquid has been proposed.
For example, in Patent Document 1, the plating cleaning waste liquid is heated in a horizontally-placed cylindrical vacuum drying container in a reduced pressure state, and the evaporated water is cooled by a condenser to be distilled waste water (distilled water). The waste liquid is stored in the drying container. Concentrated.
Moreover, in patent document 2, a photographic processing waste liquid is heated and evaporated by the evaporation concentration column of a pressure reduction state, and is collect | recovered as a condensate by the cooling condensing part provided on it. A heat pump is used for heating the liquid and cooling the steam.
Japanese Patent Laid-Open No. 2003-211149 Japanese Patent Laid-Open No. 4-4085

しかしながら、特許文献1、特許文献2のどちらの場合においても、廃液中に揮発性油分(例えば、沸点が30〜40℃の揮発性炭化水素等)が含まれる場合には、蒸気を冷却して得られた蒸留排水に揮発性油分が混入し、蒸留排水の水質が排水基準に適しないという課題が発生している。
また、特許文献1の方法では、廃液を蒸発するために加えられた熱エネルギーは、最終的には冷却水の温度上昇となって排出されてしまい、熱エネルギーの有効利用の観点から問題がある。特に、蒸発濃縮方式による廃液濃縮装置においては、装置のエネルギー消費の大部分が、水の蒸発に要する熱エネルギーであるため、これを回収して再利用することが重要である。
However, in both cases of Patent Document 1 and Patent Document 2, when volatile oil (for example, volatile hydrocarbons having a boiling point of 30 to 40 ° C.) is contained in the waste liquid, the steam is cooled. Volatile oil is mixed into the obtained distilled effluent, and there is a problem that the quality of the distilled effluent is not suitable for drainage standards.
Moreover, in the method of patent document 1, the heat energy added in order to evaporate a waste liquid will eventually be discharged | emitted as the temperature rise of a cooling water, and has a problem from a viewpoint of the effective utilization of a heat energy. . In particular, in a waste liquid concentrating apparatus using an evaporation concentration method, most of the energy consumption of the apparatus is thermal energy required for water evaporation, and it is important to recover and reuse this.

一方、特許文献2の方法では、加熱手段と冷却手段にヒートポンプを用いているため、熱効率は改善されるが、ヒートポンプには通常フロンを冷媒として使用し、更にコンプレッサーやキャピラリ、熱交換器等を用いた機構を必要とするため装置が複雑になり、装置価格の上昇や複雑な制御を要するなどの問題点がある。
本発明は、蒸留排水に低温揮発性油分が混入しても、それを分離除去でき、しかも、廃液の加熱に使用される熱エネルギーを、ヒートポンプを使用せずに高効率で回収することができる蒸発濃縮装置と、それを利用した水系洗浄装置を提供することを目的としている。
On the other hand, in the method of Patent Document 2, the heat efficiency is improved because the heat pump is used for the heating means and the cooling means. However, the heat pump usually uses chlorofluorocarbon as a refrigerant, and further includes a compressor, a capillary, a heat exchanger, and the like. Since the mechanism used is required, the apparatus becomes complicated, and there are problems such as an increase in apparatus price and complicated control.
The present invention can separate and remove low-temperature volatile oil even if it is mixed in distilled wastewater, and can recover heat energy used for heating waste liquid with high efficiency without using a heat pump. An object of the present invention is to provide an evaporative concentration apparatus and an aqueous cleaning apparatus using the same.

上記目的を達成するために、本発明の発明者らは鋭意研究を重ねた結果、蒸留排水の循環回路に油水分離ユニットを設けることで揮発性油分を分離して、排水に適する水質にすることが可能であること、及び、冷却水タンクに貯水した冷却水を蒸発濃縮装置に循環しつつ、これを温水源として利用することで、高効率に熱回収が行えること等を見出し、発明を完成させた。  In order to achieve the above object, the inventors of the present invention have conducted intensive research, and as a result, an oil / water separation unit is provided in a circulation circuit for distilled waste water to separate volatile oil and make the water quality suitable for waste water. Found that it is possible, and that the cooling water stored in the cooling water tank is circulated to the evaporative concentrator and is used as a hot water source, so that heat can be recovered with high efficiency. I let you.

本発明の第1は、水系廃液の蒸発濃縮装置(以下単に「蒸発濃縮装置」ともいう。)において、水系廃液の加熱手段としてのヒーターと、このヒーターを組み込み水系廃液を蒸発濃縮するための濃縮室と、濃縮室で発生した蒸気を冷却し液化するために冷却水を通水する冷却管と、この冷却管を収納する冷却室と、濃縮室と冷却室を減圧するためのエジェクタと、エジェクタに通水する循環水を送水する循環ポンプと、循環水を貯水する循環タンクと、循環水に含まれる油分を分離・除去・吸着するための油水分離ユニットより構成されることを特徴とする水系廃液の蒸発濃縮装置である。  A first aspect of the present invention is an aqueous waste liquid evaporating and concentrating apparatus (hereinafter also simply referred to as “evaporating and concentrating apparatus”), a heater as a heating means for the aqueous waste liquid, and a concentration for incorporating the heater and evaporating and concentrating the aqueous waste liquid. A cooling pipe for passing cooling water to cool and liquefy the steam generated in the concentrating chamber, a cooling chamber for storing the cooling pipe, an ejector for decompressing the concentrating chamber and the cooling chamber, and an ejector A water system comprising: a circulating pump for supplying circulating water to the water, a circulating tank for storing the circulating water, and an oil / water separation unit for separating, removing and adsorbing oil contained in the circulating water It is a waste liquid evaporation concentrator.

本発明の第2は、第1の発明の油水分離ユニットに、親油性不織布からなるコアレッサ−、または/及び分画分子量が5,000〜300,000の限外ろ過膜を使用することを特徴とする水系廃液の蒸発濃縮装置である。  A second aspect of the present invention is characterized in that a coalescer made of a lipophilic nonwoven fabric and / or an ultrafiltration membrane having a molecular weight cut-off of 5,000 to 300,000 is used in the oil-water separation unit of the first aspect. The water-based waste liquid evaporative concentration apparatus.

本発明の第3は、第1乃至第2の発明に冷却水を貯蔵する冷却水タンクと、冷却水を冷却管に送水する冷却水ポンプと、加熱された冷却水を再び冷却水タンクに戻す冷却水戻り配管と、更に、冷却水タンクには、冷却管に送水するための冷却水を吸引する吸引口と、加熱された冷却水を冷却水タンクに戻す戻り口と、冷却水を補給する補給口と、冷却水を取り出す取出口を有し、吸引口位置と補給口位置が戻り口位置と取出口位置よりも下に配置され、冷却水タンクの冷却水を取出口から取り出し、冷却水を温水供給源として使用することができることを特徴とする水系廃液の蒸発濃縮装置である。  According to a third aspect of the present invention, the cooling water tank for storing the cooling water in the first to second inventions, the cooling water pump for feeding the cooling water to the cooling pipe, and returning the heated cooling water to the cooling water tank again. The cooling water return pipe and the cooling water tank are replenished with a suction port for sucking cooling water to be sent to the cooling pipe, a return port for returning the heated cooling water to the cooling water tank, and the cooling water. It has a replenishment port and an outlet for taking out the cooling water, the suction port position and the supply port position are arranged below the return port position and the outlet position, and the cooling water in the cooling water tank is taken out from the outlet, Can be used as a hot water supply source.

本発明の第4は、第1乃至第3の発明の冷却水が全硬度10mg/L以下(炭酸カルシウム相当)の軟水または/及びpH8.0〜12.0の電解アルカリ性水であることを特徴とする水系廃液の蒸発濃縮装置である。  According to a fourth aspect of the present invention, the cooling water of the first to third aspects is soft water having a total hardness of 10 mg / L or less (equivalent to calcium carbonate) or / and electrolytic alkaline water having a pH of 8.0 to 12.0. The water-based waste liquid evaporative concentration apparatus.

本発明の第5は、水系洗浄装置において、洗浄に使用する前の洗浄水を第1乃至第4の発明における蒸発濃縮装置の冷却水として使用し、蒸発濃縮装置で加熱された冷却水を水系洗浄装置の洗浄水として使用することを特徴とする水系洗浄装置である。  According to a fifth aspect of the present invention, in the water-based cleaning apparatus, the cleaning water before being used for cleaning is used as cooling water for the evaporative concentration apparatus in the first to fourth aspects, and the cooling water heated by the evaporative concentration apparatus is The water-based cleaning device is used as cleaning water for a cleaning device.

本発明の第6は、第5の発明において水系洗浄装置の洗浄液を蒸発濃縮装置で濃縮処理しながら、濃縮処理により減少した洗浄液を補う量の新しい洗浄液を洗浄装置に補給することを特徴とする水系洗浄装置である。  According to a sixth aspect of the present invention, in the fifth aspect of the invention, the cleaning liquid of the aqueous cleaning apparatus is concentrated by the evaporation concentrating apparatus, and the cleaning apparatus is replenished with a new cleaning liquid to compensate for the cleaning liquid reduced by the concentration process. It is an aqueous cleaning device.

本発明の請求項1では、水系廃液の蒸発濃縮装置においてヒートポンプを使用せずに濃縮処理を行うことが可能となり、装置を簡素化することができ、装置コストを低減することができる。また、循環水系に油水分離ユニットを設けることにより、蒸留排水に含まれる揮発性油分を除去することが可能となり、排水水質を従来よりも向上することができる。  According to the first aspect of the present invention, it is possible to perform the concentration process without using a heat pump in the aqueous waste liquid evaporation concentration apparatus, the apparatus can be simplified, and the apparatus cost can be reduced. Moreover, by providing an oil-water separation unit in the circulating water system, it becomes possible to remove volatile oil contained in distilled waste water, and the quality of waste water can be improved as compared with the conventional case.

本発明の請求項2では、水中に乳化した油分を効率的に分離・除去することができるコアレッサーあるいは限外ろ過膜を使用ことにより、排水中に含まれる揮発性油分を更に除去し排水水質を向上することができる。  According to claim 2 of the present invention, by using a coalescer or an ultrafiltration membrane that can efficiently separate and remove oil emulsified in water, volatile oil contained in the wastewater is further removed, and the quality of the wastewater Can be improved.

本発明の請求項3では、従来、冷却水の温度上昇として排出されてしまっていた熱エネルギーを有効利用することが可能となり、システム全体の熱エネルギー効率を向上することができる。また、この熱エネルギー回収はヒートポンプを使用せずに行っているために、装置を簡略化し、装置コストを低減することができる。  According to the third aspect of the present invention, it is possible to effectively use the thermal energy that has been conventionally discharged as the temperature rise of the cooling water, and the thermal energy efficiency of the entire system can be improved. Moreover, since this thermal energy recovery is performed without using a heat pump, the apparatus can be simplified and the apparatus cost can be reduced.

本発明の請求項4では、蒸発濃縮装置の冷却管の内面にカルシウム等のスケール付着を防止できるために熱回収の効率を高い状態に維持することができる。また、金属製冷却管の腐食を防止することができる。  According to the fourth aspect of the present invention, the scale of calcium or the like can be prevented from adhering to the inner surface of the cooling pipe of the evaporative concentration apparatus, so that the efficiency of heat recovery can be maintained at a high level. Further, corrosion of the metal cooling pipe can be prevented.

本発明の請求項5では、蒸発濃縮装置から回収した熱エネルギーを水系洗浄装置の洗浄液の加熱に利用できるため、水系洗浄装置に使用するヒーターの熱エネルギーを削減できる。このことにより、ヒートポンプを使用しないシステムでありながらエネルギー効率を改善することができる。  According to the fifth aspect of the present invention, since the heat energy recovered from the evaporative concentration apparatus can be used for heating the cleaning liquid of the aqueous cleaning apparatus, the thermal energy of the heater used in the aqueous cleaning apparatus can be reduced. As a result, energy efficiency can be improved while the system does not use a heat pump.

本発明の請求項6では、請求項5の効果に加えて、水系洗浄装置の洗浄廃液を蒸発濃縮処理することができるため、洗浄廃液の処理費用および処理時間を削減することができる。  In the sixth aspect of the present invention, in addition to the effect of the fifth aspect, the cleaning waste liquid of the aqueous cleaning apparatus can be evaporated and concentrated, so that the processing cost and processing time of the cleaning waste liquid can be reduced.

本発明を実施するための最良の形態を図1に従って説明する。ただし、本発明はこれらの実施の形態に限定されるものではない。  The best mode for carrying out the present invention will be described with reference to FIG. However, the present invention is not limited to these embodiments.

水系廃液の蒸発濃縮を行う濃縮室1は密閉構造で、減圧に耐える構造になっており、水系廃液の加熱手段としてヒーター2が組み込まれている。ヒーターは電気式、蒸気式、温水式、加熱油式等を使用することができる。濃縮室1には水系廃液W0を貯留することができ、濃縮室1の下部には濃縮廃液W1を取り出すためのドレンバルブ3が設けられている。また、水系廃液W0を給水する水系廃液供給管4があり、これには廃液供給弁5が設置されている。更に、濃縮室1の減圧状態を解除するための減圧解除弁6が濃縮室1の上面に接続されている。  The concentration chamber 1 for evaporating and concentrating the aqueous waste liquid has a sealed structure and a structure that can withstand pressure reduction, and a heater 2 is incorporated as a heating means for the aqueous waste liquid. As the heater, an electric type, a steam type, a hot water type, a heating oil type, or the like can be used. An aqueous waste liquid W0 can be stored in the concentration chamber 1, and a drain valve 3 for taking out the concentrated waste liquid W1 is provided in the lower part of the concentration chamber 1. Further, there is an aqueous waste liquid supply pipe 4 for supplying the aqueous waste liquid W0, and a waste liquid supply valve 5 is installed in this. Further, a decompression release valve 6 for releasing the decompression state of the concentration chamber 1 is connected to the upper surface of the concentration chamber 1.

濃縮室1には、水系廃液W0の液量制御用として、液量センサ7を設置している。これは4点制御であり、上から、上限異常用、給水停止用、給水開始用、ヒーター保護用として使用する。これらは液面高さを検知できるものであれば検知方式や構造を限定するものではなく、フロート式、電極式、超音波式、光学式等の液量センサを使用することも可能である。  The concentration chamber 1 is provided with a liquid amount sensor 7 for controlling the amount of the aqueous waste liquid W0. This is a four-point control, which is used for upper limit abnormality, water supply stop, water supply start, and heater protection from the top. As long as they can detect the liquid level, the detection method and the structure are not limited, and a liquid type sensor such as a float type, an electrode type, an ultrasonic type, and an optical type can also be used.

冷却室8の内部には、コイル状の冷却管9が組み込まれている。材質は耐食性が高く熱伝導率の高い金属が好ましく、銅製パイプが適しているが、耐食性の点からステンレス製パイプを選択することも可能である。冷却管9は冷却管入口9INから冷却水WCLを通水し、冷却管出口9OUTから排出する。濃縮室1から冷却室8につながる部分には濃縮した水系廃液WOの飛沫が冷却室8に混入することを防止するためのミストセパレータ10を設ける。ミストセパレータ10には、好ましくは耐熱耐薬品樹脂製不織布或いは金属製メッシュ状フィルター等が適している。  A coiled cooling tube 9 is incorporated in the cooling chamber 8. The material is preferably a metal with high corrosion resistance and high thermal conductivity, and a copper pipe is suitable, but a stainless steel pipe can also be selected from the viewpoint of corrosion resistance. The cooling pipe 9 passes cooling water WCL from the cooling pipe inlet 9IN and discharges it from the cooling pipe outlet 9OUT. A mist separator 10 for preventing the droplets of the concentrated aqueous waste liquid WO from being mixed into the cooling chamber 8 is provided at a portion connected from the concentration chamber 1 to the cooling chamber 8. The mist separator 10 is preferably a heat-resistant / chemical-resistant resin nonwoven fabric or a metal mesh filter.

冷却室8の下部からは吸引管21がエジェクタ11の吸引口に接続されている。この吸引管21によって冷却室8及び濃縮室1内の気体を吸引し内部を減圧状態にする。また、冷却室8で水蒸気は凝縮して凝縮水WCNとなり、冷却室8内の気体(空気、水蒸気等)と伴にエジェクタ11に吸引される。循環タンク12の循環水14は、循環ポンプ13を使用してエジェクタ11に送水され循環タンク12に戻る循環系をなし、エジェクタ11に減圧作用を生じさせる。また、循環タンク12には循環ポンプ13の空運転防止用に液量センサ15を設置することが好ましい。
循環タンク12には、液面と同じ高さに循環水オーバーフロー口16を設け、循環水14をオーバーフローして蒸留排水W2とする。
更に、循環タンク12の循環水14は別に設ける油水分離ポンプ17を用いて油水分離ユニット18に送水し、ここで油水分離を行い油分除去された循環水14を循環タンク12に戻す。このとき、油水分離した循環水14は循環タンク12の液面よりも上の位置から循環タンク12に戻し、更に、循環タンク12には液面から50mm〜100mm下のところに仕切板19を設けることが好ましい。仕切板19は循環タンク12を完全に分離するのではなく、一部に通水口20を設けて上から下に水が流れるようにしておく。また、エジェクタ11からの戻り水は仕切板19よりも下に戻るようにする。こうすることで、エジェクタ11から戻った循環水14に油分が含まれていても、直接オーバーフローすることはなく、必ず油水分離ユニット18を通過した後でオーバーフローとして排出されることになる。
A suction pipe 21 is connected to the suction port of the ejector 11 from the lower part of the cooling chamber 8. The suction pipe 21 sucks the gas in the cooling chamber 8 and the concentration chamber 1 to bring the inside into a reduced pressure state. Further, the water vapor is condensed in the cooling chamber 8 to become condensed water WCN, and is sucked into the ejector 11 together with the gas (air, water vapor, etc.) in the cooling chamber 8. Circulating water 14 in the circulation tank 12 is supplied to the ejector 11 using the circulation pump 13 and returns to the circulation tank 12, thereby causing the ejector 11 to be decompressed. In addition, it is preferable to install a liquid amount sensor 15 in the circulation tank 12 for preventing the circulation pump 13 from running idle.
The circulation tank 12 is provided with a circulating water overflow port 16 at the same height as the liquid level, and overflows the circulating water 14 to form distilled waste water W2.
Further, the circulating water 14 in the circulation tank 12 is sent to an oil / water separation unit 18 by using an oil / water separation pump 17 provided separately, where the oil / water separation is performed, and the circulating water 14 from which oil has been removed is returned to the circulation tank 12. At this time, the circulating water 14 separated from the oil and water is returned to the circulating tank 12 from a position above the liquid level of the circulating tank 12, and a partition plate 19 is provided in the circulating tank 12 50 to 100 mm below the liquid level. It is preferable. The partition plate 19 does not completely separate the circulation tank 12 but is provided with a water passage 20 in a part so that water flows from top to bottom. Further, the return water from the ejector 11 is returned below the partition plate 19. By doing so, even if the circulating water 14 returned from the ejector 11 contains oil, it does not overflow directly, but is always discharged as an overflow after passing through the oil-water separation unit 18.

油水分離ユニットは、油水分離タンク100と油水分離フィルター101から構成される。油水分離フィルター101には、親油性繊維を原料として製造されたフィルターからなるコアレッサ−101aを使用することができる。(図1では油水分離フィルター101とコアレッサー101aは同じである)また、図1には図示していないが、分画分子量が5,000〜300,000の限外ろ過膜101bを油水分離フィルターとして使用することも可能であり、これら2つのフィルターを組み合わせて使用することも可能である。  The oil / water separation unit includes an oil / water separation tank 100 and an oil / water separation filter 101. As the oil / water separation filter 101, a coalescer 101a made of a filter manufactured using lipophilic fibers as a raw material can be used. (In FIG. 1, the oil-water separation filter 101 and the coalescer 101a are the same.) Although not shown in FIG. 1, an ultrafiltration membrane 101b having a molecular weight cutoff of 5,000 to 300,000 is used as an oil-water separation filter. These two filters can also be used in combination.

図1では、油水分離フィルター101としてコアレッサ−101aを用いた例を示している。循環タンク12から油水分離ポンプ17によって吸引された循環水14は油水分離タンク100内に設置されたコアレッサー101aの内側に給水される。コアレッサー101aのフィルター繊維には親油性が高い材料が選択されているため、循環水14に含まれる微細な油分がコアレッサー101aの繊維に吸着し、油分が除去された循環水14はコアレッサー101aの側面から油水分離タンク100に流出する。油水分離タンク100の循環水14は、油水分離タンク100の下の方から通水路105を通り、オーバーフローして循環水タンク12に流れ出るようにオーバーフロー管102を設ける。コアレッサ−101aに吸着した油分は徐々にコアレッサ−101a内部に蓄積し、蓄積する限界を超えると油滴となって油水分離タンク100の液面に浮上油OSとなる。これは、油水分離タンク100の液面高さの位置に設置する浮上油回収口103から油水分離タンク100外へ排出する。  In FIG. 1, the example using the coalescer 101a as the oil-water separation filter 101 is shown. The circulating water 14 sucked by the oil / water separation pump 17 from the circulation tank 12 is supplied to the inside of the coalescer 101 a installed in the oil / water separation tank 100. Since a highly lipophilic material is selected for the filter fiber of the coalescer 101a, the fine oil contained in the circulating water 14 is adsorbed on the fiber of the coalescer 101a, and the circulating water 14 from which the oil has been removed is the coalescer. It flows out to the oil-water separation tank 100 from the side surface of 101a. The circulating water 14 in the oil / water separation tank 100 is provided with an overflow pipe 102 so as to overflow from the lower side of the oil / water separation tank 100 through the water passage 105 and flow out to the circulating water tank 12. The oil adsorbed on the coalescer 101a gradually accumulates inside the coalescer 101a, and when it exceeds the accumulation limit, it becomes oil droplets and becomes floating oil OS on the liquid surface of the oil-water separation tank 100. This is discharged out of the oil / water separation tank 100 from the floating oil recovery port 103 installed at the level of the liquid level of the oil / water separation tank 100.

図2は、油水分離ユニット18としてコアレッサー101aと限外ろ過膜101bを使用した例を示す。油水分離タンク100の循環水14の一部は、圧送ポンプ104を用いて限外ろ過膜101bに供給される。限外ろ過膜101bでは膜の分画分子量に応じて循環水14に含まれる油分が分離濃縮され、油分を除去した循環水14aは循環タンク12に戻し、油分を濃縮した循環水14bは油水分離ポンプ17の吸込配管22に接続し再度コアレッサー101aでの油水分離を行う。限外ろ過膜101bの分画分子量は、5,000〜300,000が使用できるが、好ましくは50,000〜100,000が適している。  FIG. 2 shows an example in which a coalescer 101 a and an ultrafiltration membrane 101 b are used as the oil / water separation unit 18. A part of the circulating water 14 in the oil / water separation tank 100 is supplied to the ultrafiltration membrane 101b by using a pressure pump 104. In the ultrafiltration membrane 101b, the oil contained in the circulating water 14 is separated and concentrated according to the molecular weight cut off of the membrane, the circulating water 14a from which the oil has been removed is returned to the circulation tank 12, and the circulating water 14b that has concentrated the oil is separated from the oil / water. It connects with the suction piping 22 of the pump 17, and performs oil-water separation in the coalescer 101a again. The molecular weight cut off of the ultrafiltration membrane 101b can be 5,000 to 300,000, preferably 50,000 to 100,000.

前述の図1に示す基本形態に基づき、実施例1を示す。実施例1は請求項1に対応するものである。  Example 1 is shown based on the basic form shown in FIG. The first embodiment corresponds to claim 1.

濃縮処理の対象となる水系廃液は、機械加工油を約0.1%含むアルカリ性洗浄液で、機械加工油は乳化しており白濁状態であった。
濃縮室1はステンレス製の円筒形状とし、水系廃液を20L貯留できる容量とし、ヒーター2には電気式ヒーターを用い、熱出力は10kWとした。
冷却管9には冷却水WCLとして水温15℃の水道水を5L/分通水した。
エジェクタ11に循環水14を循環することで、濃縮室1と冷却室8の内部圧力を大気圧(101kPa)から10〜15kPaまで減圧したところ、水系廃液WOは液温度35〜55℃で蒸発・沸騰した。また、油水分離ポンプ17を起動して循環水14の油分除去を行った。油水分離フィルターとしてのコアレッサ−101aには高橋金属株式会社製TKC100−25を使用した。
The aqueous waste liquid to be concentrated was an alkaline cleaning liquid containing about 0.1% of machining oil, and the machining oil was emulsified and in a cloudy state.
The concentrating chamber 1 has a cylindrical shape made of stainless steel, has a capacity capable of storing 20 L of aqueous waste liquid, an electric heater is used as the heater 2, and a heat output is 10 kW.
A tap water having a water temperature of 15 ° C. was passed through the cooling pipe 9 as cooling water WCL at a rate of 5 L / min.
By circulating the circulating water 14 through the ejector 11, the internal pressure of the concentrating chamber 1 and the cooling chamber 8 is reduced from atmospheric pressure (101 kPa) to 10 to 15 kPa. As a result, the aqueous waste liquid WO is evaporated at a liquid temperature of 35 to 55 ° C. It boiled. Moreover, the oil-water separation pump 17 was started and the oil content of the circulating water 14 was removed. TKC100-25 manufactured by Takahashi Metal Co., Ltd. was used as the coalescer 101a as the oil / water separation filter.

蒸発した水蒸気は冷却室8で冷却され凝縮水WCNとなってエジェクタ11に吸引され循環水14と合流して循環タンク12に流入する。このときにオーバーフローした蒸留排水W2の流量は13〜16L/時間であった。これは凝縮水WCNの量と等しく、また、蒸発した水系廃水WOの量と等しい。冷却水WCLの出口温度は41℃であった。  The evaporated water vapor is cooled in the cooling chamber 8, becomes condensed water WCN, is sucked into the ejector 11, merges with the circulating water 14, and flows into the circulation tank 12. The flow rate of the distilled waste water W2 overflowed at this time was 13 to 16 L / hour. This is equal to the amount of condensed water WCN and equal to the amount of evaporated water wastewater WO. The outlet temperature of the cooling water WCL was 41 ° C.

この状態で濃縮処理を続け、濃縮室1の水系廃液WOの液量が約10Lに減少したところで、廃液供給弁5を開いて外部から水系廃液を吸引し、濃縮室1の水系廃液WOの液量が20Lになったところで廃液供給弁5を閉じ、濃縮処理を再開・継続した。これを繰り返して、400Lの水系廃液を20Lの濃縮廃液とすることができた。濃縮倍率は20倍である。  Concentration treatment is continued in this state, and when the amount of the aqueous waste liquid WO in the concentration chamber 1 decreases to about 10 L, the waste liquid supply valve 5 is opened to suck the aqueous waste liquid from the outside, and the aqueous waste liquid WO liquid in the concentration chamber 1 is sucked. When the amount reached 20 L, the waste liquid supply valve 5 was closed, and the concentration process was resumed and continued. By repeating this, 400 L of aqueous waste liquid could be converted to 20 L of concentrated waste liquid. The concentration factor is 20 times.

実施例2として、実施例1の油水分離フィルターに限外ろ過膜を使用した例を示す。(図2参照)限外ろ過膜101bには、再生セルロース製スパイラル膜を使用した。分画分子量は100,000の膜を使用した。実施例2は請求項2に対応するものである。
その他の条件は実施例1と同じである。
As Example 2, the example which used the ultrafiltration membrane for the oil-water separation filter of Example 1 is shown. (See FIG. 2) A regenerated cellulose spiral membrane was used for the ultrafiltration membrane 101b. A membrane with a molecular weight cut-off of 100,000 was used. The second embodiment corresponds to the second aspect.
Other conditions are the same as those in the first embodiment.

比較例1Comparative Example 1

比較例1として、油水分離ポンプ17を停止して濃縮処理を行った。他の処理条件は実施例1と同じである。
実施例1、実施例2、比較例1の処理条件と蒸留排水W2の水質を表1に示す。
As Comparative Example 1, the oil / water separation pump 17 was stopped and the concentration treatment was performed. Other processing conditions are the same as those in the first embodiment.
Table 1 shows the processing conditions of Example 1, Example 2, and Comparative Example 1 and the water quality of the distilled waste water W2.

Figure 2005329380
Figure 2005329380

実施例1の蒸留排水は濁度、n−ヘキサン抽出物ともに、比較例1より低くなっており、蒸留排水の水質が改善した。実施例2は実施例1よりも更に濁度、n−ヘキサン抽出物が低くなった。  The distilled waste water of Example 1 was lower than Comparative Example 1 in both turbidity and n-hexane extract, and the water quality of the distilled waste water was improved. In Example 2, the turbidity and n-hexane extract were lower than in Example 1.

実施例3について図3を用いて説明する。実施例3は請求項3と対応し、冷却水タンク200を使用することで、蒸発濃縮装置の濃縮液加熱に使用する熱エネルギーを回収し、エネルギー効率を改善する事例である。
図3において、蒸発濃縮装置の濃縮部、冷却部、循環水部、油水分離ユニット部は図1、または、図2と同じである。これらの部分は図3では、蒸発濃縮装置本体VEとして表現している。
Example 3 will be described with reference to FIG. Example 3 corresponds to claim 3 and is an example in which the cooling water tank 200 is used to recover the thermal energy used for heating the concentrated liquid in the evaporating and concentrating device, thereby improving the energy efficiency.
In FIG. 3, the concentrating part, the cooling part, the circulating water part, and the oil / water separation unit part of the evaporative concentration apparatus are the same as those in FIG. 1 or FIG. In FIG. 3, these parts are expressed as an evaporation concentrator main body VE.

冷却水タンク200には蒸発濃縮装置本体VEの冷却管9に循環する冷却水WCLを貯蔵している。冷却水タンク200の下部には吸引口201があり、ここから冷却水ポンプ202を用いて冷却水WCLを蒸発濃縮装置本体VEの冷却管入口9INに送水する。冷却管9を通過した冷却水WCLは加熱されて冷却管出口9OUTから冷却水タンク200にある戻り口203を通じて冷却水タンク200に戻る。また、冷却水タンク200に設けられた取水口204からは加熱された冷却水WCLを取り出すことができ、温水として他の用途に利用可能である。取り出された冷却水WCLを補うために冷却水タンク200の比較的下部に設けられた補給口205から冷却水WCLを補給する。
このとき、吸引口201と補給口205は、戻り口203と取出口204よりも下に配置するようにしてある。
また、冷却水タンク200には冷却水量制御用に液量センサ206を設置してある。これは2点制御であり、上が補給停止用、下が補給開始用である。
好ましくは、戻り口位置、取り出し口位置と吸引口位置、補給口位置の間に仕切板207を設け、冷却水タンク200の上下の水が混合しにくくする方がよい。この仕切板207は冷却水タンク200を完全に分離するのではなく、一部に通水口208を設けて上から下に水が流れるようにしておく。
The cooling water tank 200 stores the cooling water WCL that circulates in the cooling pipe 9 of the evaporative concentration apparatus main body VE. A suction port 201 is provided at the lower part of the cooling water tank 200, and the cooling water WCL is supplied from here to the cooling pipe inlet 9IN of the evaporative concentrator body VE using the cooling water pump 202. The cooling water WCL that has passed through the cooling pipe 9 is heated and returns to the cooling water tank 200 from the cooling pipe outlet 9OUT through the return port 203 in the cooling water tank 200. Moreover, the heated cooling water WCL can be taken out from the water intake port 204 provided in the cooling water tank 200, and can be used for other purposes as hot water. In order to supplement the extracted cooling water WCL, the cooling water WCL is replenished from a replenishing port 205 provided in a relatively lower part of the cooling water tank 200.
At this time, the suction port 201 and the supply port 205 are arranged below the return port 203 and the outlet 204.
The cooling water tank 200 is provided with a liquid amount sensor 206 for controlling the cooling water amount. This is a two-point control, where the top is for supply stop and the bottom is for start supply.
Preferably, a partition plate 207 is provided between the return port position, the take-out port position and the suction port position, and the replenishment port position so that the water above and below the cooling water tank 200 is less likely to be mixed. The partition plate 207 does not completely separate the cooling water tank 200 but is provided with a water passage 208 in a part so that water flows from top to bottom.

実施例3では、冷却水タンク200の容量を100L、取水口204から取り出す水量を4L/分、補給する水量を4L/分とした。補給する水の温度は15℃であった。この他の条件は実施例1と同じにして濃縮処理を行ったところ、運転開始後3時間後には冷却水WCLの冷却管入口9INでの温度が23℃、冷却管出口9OUTでの温度が48℃であった。蒸留排水の流量は12〜14L/時間であった。冷却水タンク200の取水口204から取り出した水の温度は43℃であった。実施例3の処理条件と蒸留排水の水質を表2に示す。  In Example 3, the capacity of the cooling water tank 200 was 100 L, the amount of water taken out from the water intake 204 was 4 L / min, and the amount of water to be replenished was 4 L / min. The temperature of the water to be replenished was 15 ° C. The other conditions were the same as in Example 1 and the concentration treatment was performed. As a result, after 3 hours from the start of operation, the temperature of the cooling water WCL at the cooling pipe inlet 9IN was 23 ° C., and the temperature at the cooling pipe outlet 9OUT was 48. ° C. The flow rate of the distilled effluent was 12-14 L / hour. The temperature of the water taken out from the water intake 204 of the cooling water tank 200 was 43 ° C. Table 2 shows the treatment conditions of Example 3 and the water quality of the distilled effluent.

Figure 2005329380
Figure 2005329380

この結果から冷却水の温度上昇として回収できた熱量を計算すると、7.8kWであり、廃液の加熱に使用した電気ヒーターの容量10kWの78%が回収できた。  From this result, the amount of heat recovered as the temperature rise of the cooling water was calculated to be 7.8 kW, and 78% of the capacity of 10 kW of the electric heater used for heating the waste liquid could be recovered.

次に実施例4として、冷却水に使用する水を水道水、軟水、電解アルカリ性水を用いたときの例を説明する。実施例4は請求項4に対応するものである。  Next, as Example 4, an example in which tap water, soft water, or electrolytic alkaline water is used as cooling water will be described. The fourth embodiment corresponds to the fourth aspect.

使用した冷却水WCLのうち、水道水は滋賀県東浅井郡びわ町の水道水を使用した。水道水の全硬度は50mg/Lであった。軟水はこの水道水を三浦工業株式会社製全自動軟水装置MS−5に通水して全硬度を1mg/L以下とした水を使用した。また、電解アルカリ性水は、水道水或いは軟水を原水として高橋金属株式会社製電解イオン水生成装置TIWS−IW06を用いて電気分解を行い、pH10.4のアルカリ性水とした。その他、冷却水タンク200と蒸発濃縮装置本体VEの配管接続等の構造は実施例3と同じである。  Of the used cooling water WCL, tap water from Biwa-cho, Higashi Asai-gun, Shiga Prefecture was used as tap water. The total hardness of tap water was 50 mg / L. As the soft water, tap water was passed through a fully automatic water softener MS-5 manufactured by Miura Kogyo Co., Ltd. to make the total hardness 1 mg / L or less. Moreover, electrolytic alkaline water was electrolyzed using tap water or soft water as raw water using an electrolytic ionic water generator TIWS-IW06 manufactured by Takahashi Metals Co., Ltd. to obtain alkaline water having a pH of 10.4. In addition, the structure of the piping connection between the cooling water tank 200 and the evaporation concentrator main body VE is the same as that of the third embodiment.

蒸発濃縮装置の冷却管9の材料として銅管を使用したものと、鋼管を使用したものを製作し、上記の各冷却水WCLを通水して3ヶ月間使用したときの、冷却管内部のスケール付着状態と錆の発生状態を比較した。結果を表3に示す。  When using the copper pipe as the material of the cooling pipe 9 of the evaporative concentrator and the pipe using the steel pipe, the cooling water inside the cooling pipe when the cooling water WCL is used for 3 months is manufactured. The scale adhesion state and the rust generation state were compared. The results are shown in Table 3.

Figure 2005329380
Figure 2005329380

水道水を冷却水として使用した場合は、硬度成分を含むため冷却管9内面にカルシウムを主成分とするスケールが付着し、熱交換効率が低下する。また、錆の発生も見られた。
軟水を冷却水として使用した場合は、スケールの付着は発生せず、熱効率の低下を防止できた。しかし、錆の発生は、水道水の場合とほぼ同様である。
原水に水道水を使用して生成した電解アルカリ性水を冷却水として使用した場合は、冷却管9内面の錆の発生を抑制することができた。これはpHがアルカリ性になっていることと、塩化物イオンに代表されるような陰イオン濃度が低くなっているためと考えられる。しかし、スケールの付着は防止できなかった。
また、原水に軟水を使用して生成した電解アルカリ性水を冷却水として使用した場合は、冷却管9内面のスケール付着が防止できたのに加えて、冷却管内面の錆の発生も抑制することができた。
When tap water is used as cooling water, since a hardness component is included, a scale mainly composed of calcium adheres to the inner surface of the cooling pipe 9 and heat exchange efficiency is lowered. Moreover, generation | occurrence | production of rust was also seen.
When soft water was used as cooling water, scale adhesion did not occur and a decrease in thermal efficiency could be prevented. However, the occurrence of rust is almost the same as in the case of tap water.
When electrolytic alkaline water produced by using tap water as raw water was used as cooling water, the generation of rust on the inner surface of the cooling pipe 9 could be suppressed. This is probably because the pH is alkaline and the anion concentration as typified by chloride ions is low. However, scale adhesion could not be prevented.
In addition, when electrolytic alkaline water generated using soft water as raw water is used as cooling water, in addition to preventing the scale inner surface from adhering to the inner surface of the cooling pipe 9, the generation of rust on the inner surface of the cooling pipe is also suppressed. I was able to.

実施例5として、蒸発濃縮装置と水系洗浄装置を組み合わせて使用する例を説明する。実施例5は請求項5及び請求項6に対応するものである。  As Example 5, an example in which an evaporation concentrating device and an aqueous cleaning device are used in combination will be described. The fifth embodiment corresponds to claims 5 and 6.

図4は実施例5を構成するシステムのフロー図である。
この実施例では水系洗浄装置としてコンベア式2槽洗浄装置を示しているが、洗浄槽の数や洗浄方式はこの例に限定されるものではなく、浸漬洗浄方式、超音波洗浄方式等の水系洗浄装置であれば適用できる。
水系洗浄装置300には、第1洗浄タンク301と第2洗浄タンク302があり、それぞれ洗浄ポンプ303、304と洗浄室にあるシャワーノズル305、306によって洗浄水をシャワーする。被洗浄物Aはコンベア307の入口308から投入し、洗浄済みの被洗浄物はコンベアの出口309から取り出す。水系洗浄装置の第2洗浄タンク302の液量が給水開始レベルまで減少したら、蒸発濃縮装置の冷却水タンク200の取水口204から第2洗浄タンク302に洗浄水を給水する。給水方法は洗浄水給水弁310を開いて液面の高低差で給水しても良いし、ポンプ(図示していない)を設置しておき、これを用いて給水しても良い。第2洗浄タンク302の液量が給水停止レベルになったら給水を停止する。
FIG. 4 is a flowchart of the system constituting the fifth embodiment.
In this embodiment, a conveyor type two tank cleaning apparatus is shown as an aqueous cleaning apparatus, but the number of cleaning tanks and the cleaning method are not limited to this example, and an aqueous cleaning such as an immersion cleaning method or an ultrasonic cleaning method is used. Any device can be used.
The water-based cleaning apparatus 300 includes a first cleaning tank 301 and a second cleaning tank 302. The cleaning water is showered by cleaning pumps 303 and 304 and shower nozzles 305 and 306 in the cleaning chamber, respectively. The object to be cleaned A is introduced from the entrance 308 of the conveyor 307, and the object to be cleaned is taken out from the exit 309 of the conveyor. When the amount of liquid in the second cleaning tank 302 of the water-based cleaning apparatus decreases to the water supply start level, cleaning water is supplied to the second cleaning tank 302 from the water intake 204 of the cooling water tank 200 of the evaporative concentration apparatus. As a water supply method, the flush water supply valve 310 may be opened to supply water with a difference in liquid level, or a pump (not shown) may be installed and water may be supplied using this. When the amount of liquid in the second cleaning tank 302 reaches the water supply stop level, the water supply is stopped.

また、水系洗浄装置の第1洗浄タンク301の液量が給水開始レベルまで減少したら、水系洗浄装置の洗浄水送水ポンプ311を起動して第2洗浄タンク302の洗浄水を第1洗浄タンク301に給水する。第1給水タンク301の洗浄水は蒸発濃縮装置で処理する水系廃液WOとして吸引し濃縮処理を行う。
蒸発濃縮装置の冷却水WCLには、原水(滋賀県東浅井郡びわ町の水道水)を高橋金属製電解イオン水生成装置IONによって電気分解して生成した電解アルカリ性水を使用する。冷却水タンク200と真空減容化装置VEの接続は実施例3、実施例4と同じである。
When the amount of liquid in the first cleaning tank 301 of the water-based cleaning device decreases to the water supply start level, the cleaning water feed pump 311 of the water-based cleaning device is activated to supply the cleaning water in the second cleaning tank 302 to the first cleaning tank 301. Supply water. The washing water in the first water supply tank 301 is sucked as the aqueous waste liquid WO to be processed by the evaporating and concentrating device and concentrated.
As the cooling water WCL of the evaporative concentrator, electrolytic alkaline water generated by electrolyzing raw water (tap water in Biwa-cho, Higashi-Asai-gun, Shiga-ken) with an electrolytic ion water generator ION made by Takahashi Metal is used. The connection between the cooling water tank 200 and the vacuum volume reducing device VE is the same as in the third and fourth embodiments.

また、図5は比較例として真空減容化装置を使用しない場合の水系洗浄装置のフロー図である。水系洗浄装置300の第2洗浄タンク302の液量が給水開始レベルまで減少したら、電解イオン水生成装置IONから電解アルカリ性水が給水され、第2洗浄タンク302の液量が給水停止レベルに達したら給水を停止する。  FIG. 5 is a flow diagram of an aqueous cleaning apparatus when a vacuum volume reducing apparatus is not used as a comparative example. When the amount of liquid in the second cleaning tank 302 of the water-based cleaning device 300 decreases to the water supply start level, electrolytic alkaline water is supplied from the electrolytic ionic water generating device ION, and when the amount of liquid in the second cleaning tank 302 reaches the water supply stop level. Stop water supply.

なお、図4、図5には図示していないが、水系洗浄装置の各洗浄タンクには給水開始レベルと、給水停止レベルで作動する液量センサを設置してある。液量センサは、実施例4ではフロートスイッチを使用したが、液面高さを検知できるものであれば検知方式や構造を限定するものではなく、電極式、超音波式、光学式等の液量センサを使用することも可能である。また、洗浄液を温度60℃程度に加熱するために電気ヒーターが設置してある。加熱手段は電気ヒーターに限定するものではなく、蒸気式等を使用することも可能である。  Although not shown in FIGS. 4 and 5, each cleaning tank of the water-based cleaning apparatus is provided with a liquid amount sensor that operates at a water supply start level and a water supply stop level. As the liquid amount sensor, a float switch was used in Example 4, but the detection method and structure are not limited as long as the liquid surface height can be detected. Electrode type, ultrasonic type, optical type, etc. It is also possible to use a quantity sensor. An electric heater is installed to heat the cleaning liquid to a temperature of about 60 ° C. The heating means is not limited to an electric heater, and a steam type or the like can also be used.

水系洗浄装置の仕様と試験条件は次の通りである。
各洗浄槽の容量:200L。電気ヒーター容量:10kW。シャワー圧力:0.3MPa。シャワー流量:100L/分。洗浄液温度:60℃。コンベア速度:2m/分。洗浄サンプル:ステンレス鋼板(SUS304 寸法200mm×200mm×t1.5mm)。サンプルに塗布した油:プレス加工油(日本工作油 PG−3066)。油塗布量:0.8g/枚。洗浄処理速度:8枚/分。
以上の条件で8時間試験を行った結果を表4に示す。
The specifications and test conditions of the water-based cleaning equipment are as follows.
Capacity of each washing tank: 200L. Electric heater capacity: 10 kW. Shower pressure: 0.3 MPa. Shower flow rate: 100 L / min. Washing liquid temperature: 60 ° C. Conveyor speed: 2 m / min. Cleaning sample: Stainless steel plate (SUS304 size 200 mm × 200 mm × t1.5 mm). Oil applied to the sample: Press working oil (Japanese working oil PG-3066). Oil application amount: 0.8 g / sheet. Washing speed: 8 sheets / min.
Table 4 shows the results of the test conducted for 8 hours under the above conditions.

Figure 2005329380
Figure 2005329380

実施例5では、蒸発濃縮装置に使用した電気ヒーター熱量の内、84.7%を回収することができ、これによって水系洗浄装置に使用するヒーター用電力を8.3kW削減することができた。また、水系洗浄装置300の第1洗浄タンク301の洗浄液を蒸発濃縮装置で連続的に濃縮処理することができ、これによって第1洗浄タンク301及び第2洗浄タンク302の洗浄液中の油分濃度は実施例5の方が比較例2よりも1/2〜1/5に減少した。これに伴い、洗浄サンプルの油分除去率も向上している。  In Example 5, 84.7% of the electric heater heat quantity used in the evaporative concentrator could be recovered, thereby reducing the heater power used in the aqueous cleaning device by 8.3 kW. Further, the cleaning liquid in the first cleaning tank 301 of the water-based cleaning apparatus 300 can be continuously concentrated by the evaporative concentration apparatus, whereby the oil concentration in the cleaning liquid in the first cleaning tank 301 and the second cleaning tank 302 is reduced. Example 5 was reduced to 1/2 to 1/5 that of Comparative Example 2. Along with this, the oil removal rate of the washed sample is also improved.

本発明における最良の形態の内、油水分離にコアレッサーを使用した水系廃液の蒸発濃縮装置のフロー図である。  It is a flowchart of the evaporation concentration apparatus of the water-system waste liquid which uses a coalescer for oil-water separation among the best forms in this invention. 本発明における最良の形態の内、油水分離に限外ろ過膜を使用した水系廃液の蒸発濃縮装置のフロー図である。  It is a flow figure of the evaporation concentration apparatus of the water-system waste liquid which uses the ultrafiltration membrane for oil-water separation among the best forms in this invention. 本発明における水系廃液の蒸発濃縮装置に冷却水タンクを組み合わせた実施例のフロー図である。  It is a flowchart of the Example which combined the cooling water tank with the evaporation concentration apparatus of the aqueous waste liquid in this invention. 本発明における水系廃液の蒸発濃縮装置と、冷却水タンクと、水系洗浄装置を組み合わせた実施例のフロー図である。  It is a flowchart of the Example which combined the evaporation concentration apparatus of the aqueous waste liquid in this invention, the cooling water tank, and the aqueous cleaning apparatus. 従来の水系洗浄装置のフロー図である。  It is a flowchart of the conventional water-system washing | cleaning apparatus.

符号の説明Explanation of symbols

1 濃縮室
2 ヒーター
4 水系廃液供給管
7 液量センサ
8 冷却室
9 冷却管
11 エジェクタ
12 循環タンク
17 油水分離ポンプ
18 油水分離ユニット
100 油水分離タンク
101 油水分離フィルター
101a コアレッサー
101b 限外ろ過膜
200 冷却水タンク
202 冷却水ポンプ
300 水系洗浄装置
W0 水系廃液
W1 濃縮廃液
W2 蒸留排水
WCL 冷却水
WCN 凝縮水
VE 蒸発濃縮装置本体
A 被洗浄物
ION 電解イオン水生成装置
DESCRIPTION OF SYMBOLS 1 Concentration chamber 2 Heater 4 Water-system waste liquid supply pipe 7 Liquid quantity sensor 8 Cooling chamber 9 Cooling pipe 11 Ejector 12 Circulation tank 17 Oil-water separation pump 18 Oil-water separation unit 100 Oil-water separation tank 101 Oil-water separation filter 101a Corelesser 101b Ultrafiltration membrane 200 Cooling water tank 202 Cooling water pump 300 Water-based cleaning device W0 Water-based waste liquid W1 Concentrated waste liquid W2 Distilled waste water WCL Cooling water WCN Condensed water VE Evaporative concentrator main body A To-be-cleaned ION Electrolyzed ion water generator

Claims (6)

水系廃液の蒸発濃縮装置において、水系廃液の加熱手段としてのヒーターと、このヒーターを組み込み水系廃液を蒸発濃縮するための濃縮室と、濃縮室で発生した蒸気を冷却し液化するために冷却水を通水する冷却管と、この冷却管を収納する冷却室と、濃縮室と冷却室を減圧するためのエジェクタと、エジェクタに通水する循環水を送水する循環ポンプと、循環水を貯水する循環タンクと、循環水に含まれる油分を分離・除去・吸着するための油水分離ユニットより構成されることを特徴とする水系廃液の蒸発濃縮装置。In an aqueous waste liquid evaporating and concentrating apparatus, a heater as a heating means for aqueous waste liquid, a concentrating chamber for evaporating and concentrating the aqueous waste liquid by incorporating this heater, and cooling water for cooling and liquefying the steam generated in the concentrating chamber. A cooling pipe for passing water, a cooling chamber for storing the cooling pipe, an ejector for depressurizing the concentration chamber and the cooling chamber, a circulation pump for feeding circulating water to be passed through the ejector, and a circulation for storing the circulating water An apparatus for evaporating and concentrating an aqueous waste liquid comprising a tank and an oil / water separation unit for separating, removing and adsorbing oil contained in circulating water. 油水分離ユニットには、親油性繊維を原料として製造されたフィルターからなるコアレッサ−、または/及び分画分子量が5,000〜300,000の限外ろ過膜を使用することを特徴とする請求項1記載の水系廃液の蒸発濃縮装置。The oil / water separation unit uses a coalescer made of a filter manufactured using lipophilic fibers as a raw material, and / or an ultrafiltration membrane having a molecular weight cut-off of 5,000 to 300,000. The water-based waste liquid evaporation concentrator according to 1. 冷却水を貯蔵する冷却水タンクと、冷却水を冷却管に送水する冷却水ポンプと、加熱された冷却水を再び冷却水タンクに戻す冷却水戻り配管と、更に、冷却水タンクには、冷却管に送水するための冷却水を吸引する吸引口と、加熱された冷却水を冷却水タンクに戻す戻り口と、冷却水を補給する補給口と、冷却水を取り出す取出口を有し、吸引口位置と補給口位置が戻り口位置と取出口位置よりも下に配置され、冷却水タンクの冷却水を取出口から取り出し、冷却水を温水供給源として使用することができることを特徴とする請求項1乃至請求項2記載の水系廃液の蒸発濃縮装置。A cooling water tank for storing cooling water, a cooling water pump for sending cooling water to the cooling pipe, a cooling water return pipe for returning the heated cooling water to the cooling water tank, and a cooling water tank It has a suction port for sucking cooling water for feeding water to the pipe, a return port for returning heated cooling water to the cooling water tank, a replenishment port for replenishing cooling water, and an outlet for taking out cooling water. The outlet position and the supply port position are disposed below the return port position and the outlet position, and the cooling water in the cooling water tank can be taken out from the outlet, and the cooling water can be used as a hot water supply source. The apparatus for evaporating and concentrating an aqueous waste liquid according to claim 1 or 2. 冷却水が全硬度10mg/L以下(炭酸カルシウム相当)の軟水または/及びpH8.0〜12.0の電解アルカリ性水であることを特徴とする、請求項1乃至請求項3記載の水系廃液の蒸発濃縮装置。The aqueous waste liquid according to any one of claims 1 to 3, wherein the cooling water is soft water having a total hardness of 10 mg / L or less (equivalent to calcium carbonate) or / and electrolytic alkaline water having a pH of 8.0 to 12.0. Evaporative concentration device. 水系洗浄装置において、洗浄に使用する前の洗浄水を請求項1乃至請求項4記載の水系廃液の蒸発濃縮装置の冷却水として使用し、蒸発濃縮装置で加熱された冷却水を水系洗浄装置の洗浄水として使用することを特徴とする水系洗浄装置。In the water-based cleaning device, the cleaning water before being used for cleaning is used as cooling water for the water-based waste liquid evaporation concentrating device according to claims 1 to 4, and the cooling water heated by the evaporation-concentrating device is used for the water-based cleaning device. An aqueous cleaning apparatus characterized by being used as cleaning water. 水系洗浄装置の洗浄液を蒸発濃縮装置で濃縮処理しながら、濃縮処理により減少した洗浄液を補う量の新しい洗浄液を洗浄装置に補給することを特徴とする請求項5記載の水系洗浄装置。6. The aqueous cleaning apparatus according to claim 5, wherein the cleaning apparatus is replenished with an amount of new cleaning liquid that compensates for the cleaning liquid reduced by the concentration process while the cleaning liquid of the aqueous cleaning apparatus is concentrated by the evaporative concentration apparatus.
JP2004174828A 2004-05-17 2004-05-17 Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same Expired - Fee Related JP4264950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004174828A JP4264950B2 (en) 2004-05-17 2004-05-17 Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004174828A JP4264950B2 (en) 2004-05-17 2004-05-17 Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same

Publications (2)

Publication Number Publication Date
JP2005329380A true JP2005329380A (en) 2005-12-02
JP4264950B2 JP4264950B2 (en) 2009-05-20

Family

ID=35484371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004174828A Expired - Fee Related JP4264950B2 (en) 2004-05-17 2004-05-17 Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same

Country Status (1)

Country Link
JP (1) JP4264950B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207128A (en) * 2007-02-27 2008-09-11 Gunbiru:Kk Polymer wax peeling waste liquid treatment method
JP2012106168A (en) * 2010-11-16 2012-06-07 Nippon Steel Corp Apparatus and method for treating wastewater
CN103086450A (en) * 2013-01-14 2013-05-08 无锡市星亿涂装环保设备有限公司 Atmospheric evaporation device for recovering electroplating waste liquor and waste water
JP2018053333A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Production method of piping, and oxide film formation method on copper tube inner surface
JP2018062878A (en) * 2016-10-12 2018-04-19 三浦工業株式会社 Water addition type compressor system and heat recovery system
CN108947077A (en) * 2018-09-19 2018-12-07 联洲环保科技(太仓)有限公司 A kind of coating wastewater vaporising device
CN108947076A (en) * 2018-09-19 2018-12-07 联洲环保科技(太仓)有限公司 Waste water evaporation process equipment before a kind of coating
CN109896587A (en) * 2019-04-16 2019-06-18 安徽弗斯特环境科技有限公司 A kind of absorption intercepts water-oil separating degreaser and its technique
CN109911960A (en) * 2019-04-12 2019-06-21 宇恒(南京)环保装备科技有限公司 One kind pretreatment method for wastewater containing the dregs of fat and equipment
JP2021030115A (en) * 2019-08-20 2021-03-01 株式会社スイレイ Waste water treatment facility, and waste water treatment method
CN112939121A (en) * 2020-12-30 2021-06-11 马鞍山华盛冶金科技发展有限公司 Distillation machine waste heat recovery and cooling water circulation method
JP2021152257A (en) * 2020-03-24 2021-09-30 Dowaテクノロジー株式会社 Treatment method for water accompanying oil drilling
CN115231717A (en) * 2022-08-26 2022-10-25 镇江新区固废处置股份有限公司 High-salt-content organic wastewater treatment system and process based on EVAIR technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627337B (en) * 2012-04-20 2014-03-05 黑龙江新金山环保工程有限公司 Equipment capable of treating high-difficult waste water and enabling waste water to be directly recycled

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207128A (en) * 2007-02-27 2008-09-11 Gunbiru:Kk Polymer wax peeling waste liquid treatment method
JP4614979B2 (en) * 2007-02-27 2011-01-19 株式会社グンビル Polymer wax peeling waste liquid treatment method
JP2012106168A (en) * 2010-11-16 2012-06-07 Nippon Steel Corp Apparatus and method for treating wastewater
CN103086450A (en) * 2013-01-14 2013-05-08 无锡市星亿涂装环保设备有限公司 Atmospheric evaporation device for recovering electroplating waste liquor and waste water
CN103086450B (en) * 2013-01-14 2016-01-13 无锡市星亿涂装环保设备有限公司 A kind of atmospheric evaporation device for electroplating effluent waste water reclamation
JP2018053333A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Production method of piping, and oxide film formation method on copper tube inner surface
JP2018062878A (en) * 2016-10-12 2018-04-19 三浦工業株式会社 Water addition type compressor system and heat recovery system
CN108947077A (en) * 2018-09-19 2018-12-07 联洲环保科技(太仓)有限公司 A kind of coating wastewater vaporising device
CN108947076A (en) * 2018-09-19 2018-12-07 联洲环保科技(太仓)有限公司 Waste water evaporation process equipment before a kind of coating
CN109911960A (en) * 2019-04-12 2019-06-21 宇恒(南京)环保装备科技有限公司 One kind pretreatment method for wastewater containing the dregs of fat and equipment
CN109896587A (en) * 2019-04-16 2019-06-18 安徽弗斯特环境科技有限公司 A kind of absorption intercepts water-oil separating degreaser and its technique
JP2021030115A (en) * 2019-08-20 2021-03-01 株式会社スイレイ Waste water treatment facility, and waste water treatment method
JP7294653B2 (en) 2019-08-20 2023-06-20 株式会社スイレイ Wastewater treatment facility and wastewater treatment method
JP2021152257A (en) * 2020-03-24 2021-09-30 Dowaテクノロジー株式会社 Treatment method for water accompanying oil drilling
WO2021192763A1 (en) * 2020-03-24 2021-09-30 Dowaエコシステム株式会社 Treatment method for petroleum drilling produced water
CN115298142A (en) * 2020-03-24 2022-11-04 同和环保再生事业有限公司 Treatment method of oil exploitation produced water
JP7450215B2 (en) 2020-03-24 2024-03-15 Dowaテクノロジー株式会社 Treatment method for water produced by oil drilling
CN112939121A (en) * 2020-12-30 2021-06-11 马鞍山华盛冶金科技发展有限公司 Distillation machine waste heat recovery and cooling water circulation method
CN115231717A (en) * 2022-08-26 2022-10-25 镇江新区固废处置股份有限公司 High-salt-content organic wastewater treatment system and process based on EVAIR technology
CN115231717B (en) * 2022-08-26 2023-12-19 镇江新区固废处置股份有限公司 High-salt organic wastewater treatment system and technology based on EVAIR technology

Also Published As

Publication number Publication date
JP4264950B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4264950B2 (en) Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same
US10968130B2 (en) Method and device for treating wastewater containing organic matter and/or wet waste containing organic matter, in particular for treating sanitary wastewater in trains
JP2011167628A (en) Hollow fiber membrane module, membrane distillation type fresh water generator, and membrane distillation type desalination apparatus
CN102630216B (en) Thermal distillation system and technique
CN104085933A (en) High-salinity and high organic matter wastewater treatment process
US8273156B2 (en) Method and apparatus for water distillation and recovery
TW478948B (en) Hybrid distillation method and apparatus
CN110002652A (en) Reclaiming system and process flow is concentrated in acid-bearing wastewater
US20040079491A1 (en) Evaporative process for the reconstitution of glycol bearing deicing fluids
US20130186740A1 (en) Method and Apparatus for Water Distillation
KR101904156B1 (en) Vacuum evaporation apparatus with function of removing the scale and bubble
JP3975312B2 (en) Waste hydrochloric acid treatment method
Chandwankar et al. Thermal Processes for Seawater Desalination: Multi-effect Distillation, Thermal Vapor Compression, Mechanical Vapor Compression, and Multistage Flash
TW200413256A (en) Hydrofluoric acid wastewater treatment method and device
WO2017008814A1 (en) System and method for purification of contaminated liquid
JPH05185094A (en) Method for concentrating aqueous solution and device for concentrating treatment
WO2000010922A1 (en) Treatment of aqueous wastes
CN216039102U (en) High salt waste water degree of depth concentrated processing system
CN105731569A (en) In-tower vacuum rectification system for low-temperature seawater purification
JP4206949B2 (en) Cleaning method for water-soluble waste liquid treatment equipment
CN213416572U (en) Evaporation device
CN210915714U (en) Landfill leachate treatment system based on MVR technology and RO device
Awerbuch et al. Disposal of concentrates from brackish water desalting plants by means of evaporation technology
JP4096130B2 (en) Waste hydrochloric acid treatment method
JP4052652B2 (en) Water treatment method and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees