JP7450215B2 - Treatment method for water produced by oil drilling - Google Patents
Treatment method for water produced by oil drilling Download PDFInfo
- Publication number
- JP7450215B2 JP7450215B2 JP2020052549A JP2020052549A JP7450215B2 JP 7450215 B2 JP7450215 B2 JP 7450215B2 JP 2020052549 A JP2020052549 A JP 2020052549A JP 2020052549 A JP2020052549 A JP 2020052549A JP 7450215 B2 JP7450215 B2 JP 7450215B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- oil
- concentration
- produced
- oil drilling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 226
- 238000011282 treatment Methods 0.000 title claims description 82
- 238000000034 method Methods 0.000 title claims description 75
- 238000005553 drilling Methods 0.000 title claims description 62
- 238000001704 evaporation Methods 0.000 claims description 47
- 230000008020 evaporation Effects 0.000 claims description 46
- 239000012528 membrane Substances 0.000 claims description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- 238000000926 separation method Methods 0.000 claims description 21
- 238000004062 sedimentation Methods 0.000 claims description 20
- 239000002244 precipitate Substances 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 11
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 5
- 238000003672 processing method Methods 0.000 claims description 3
- 239000003921 oil Substances 0.000 description 127
- 238000005345 coagulation Methods 0.000 description 20
- 230000015271 coagulation Effects 0.000 description 20
- 238000001556 precipitation Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 238000001223 reverse osmosis Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 230000005484 gravity Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 239000002351 wastewater Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 4
- 239000000701 coagulant Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000008394 flocculating agent Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000341 volatile oil Substances 0.000 description 3
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000003223 protective agent Substances 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- CMMUKUYEPRGBFB-UHFFFAOYSA-L dichromic acid Chemical compound O[Cr](=O)(=O)O[Cr](O)(=O)=O CMMUKUYEPRGBFB-UHFFFAOYSA-L 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/0202—Separation of non-miscible liquids by ab- or adsorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/01—Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Geology (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Description
本発明は石油掘削随伴水の処理方法に関する。 The present invention relates to a method for treating water produced from oil drilling.
石油掘削サイトにおける石油の掘削では、地下水が石油と共に汲み上げられる。このように汲み上げられた石油掘削随伴水(本発明において「随伴水」と記載する場合がある。)には油分をはじめとするCOD成分や、土壌由来の懸濁物(泥)や無機塩類が含まれている。その上、随伴水の発生量は多量であり、汲み上げられる石油の数倍以上ともいわれており、処理の困難な廃棄物である。なお掘削ドリルの保護などの目的のため、掘削しているドリルに対しては掘削泥水が供給されている。この掘削泥水も随伴水に混入して随伴水の一部を構成することになる。 When drilling for oil at an oil drilling site, groundwater is pumped along with the oil. The produced water pumped up in this way (sometimes referred to as "produced water" in the present invention) contains COD components such as oil, soil-derived suspended matter (sludge), and inorganic salts. include. Moreover, the amount of produced water generated is large, said to be several times more than the amount of oil pumped up, and is a difficult waste to dispose of. In order to protect the drilling drill, drilling mud is supplied to the drilling drill. This drilling mud also mixes with the produced water and forms part of the produced water.
現在石油掘削サイトの多くはインフラの整備されていない僻地に存在するが、随伴水を適切に処理する方法として、随伴水を適切な廃水処理設備を有する工場に輸送してそこで処理する方法や、そのような廃水処理設備をオンサイトに設け、その場で処理する方法が考えられる。しかし、前者は輸送コストの観点から現実的でない。 Currently, many oil drilling sites are located in remote areas without developed infrastructure, but there are ways to properly treat produced water by transporting the produced water to a factory with appropriate wastewater treatment equipment and treating it there. One possible method is to install such wastewater treatment equipment on-site and treat it on the spot. However, the former is not realistic from the viewpoint of transportation costs.
また、処理され清浄となった水は河川へ放流されるなどするが、処理の結果生まれる残留物については、固形化、埋め立てなど更なる処理プロセスが必要である。そのためいかに残留物の発生量を少なくする(濃縮する)かも、随伴水の処理における重要な要素である。 In addition, treated and purified water is discharged into rivers, but the residue produced as a result of treatment requires further treatment processes such as solidification and landfilling. Therefore, how to reduce (concentrate) the amount of generated residue is an important factor in the treatment of produced water.
なお、上記のオンサイトで随伴水を処理する(し得る)方法について、特許文献1および2は、随伴水に対して(事前の精密膜ろ過をしたうえで)逆浸透膜処理し、続いて得られた濃縮水を蒸発濃縮する方法について開示している。 Regarding the above-mentioned on-site method of treating produced water, Patent Documents 1 and 2 disclose that produced water is subjected to reverse osmosis membrane treatment (after preliminary precision membrane filtration), and then A method for evaporating and concentrating the obtained concentrated water is disclosed.
しかし本発明者らの検討によると、特許文献1および2にて提案された、随伴水に対して逆浸透膜を用いて分離処理を実行する方法には、以下の問題がある。まず、随伴水は特に油分について組成変動が大きい。すなわち、掘削ドリルが水層を掘削しているときには、随伴水は比較的清浄であり油分は非常に少ない。一方掘削ドリルが油層に近づいたときには、随伴水は多量の油分を含んでいる。また、そのいずれでもなく掘削ドリルがただ土壌を掘削しているときもある。更に随伴水は、土壌由来の物質や掘削泥水由来の成分も含んでおり、複雑な組成の混合物である。 However, according to studies by the present inventors, the methods proposed in Patent Documents 1 and 2, in which a reverse osmosis membrane is used to perform a separation process on produced water, have the following problems. First, the composition of produced water varies greatly, especially regarding oil content. That is, when a drilling drill is drilling into a water layer, the produced water is relatively clean and contains very little oil. On the other hand, when the drilling drill approaches an oil layer, the produced water contains a large amount of oil. Other times, the drill drill is simply digging into the soil. Furthermore, produced water also contains substances derived from soil and components derived from drilling mud, and is a mixture with a complex composition.
特許文献1等の方法で使用される逆浸透膜は分離性能が非常に優れている為、随伴水の浄化性能には優れるものの、随伴水は前記の通り複雑な組成の混合物であることから、膜にかかる負荷が高くすぐに当該膜が使用不能になる。この為、石油掘削随伴水処理の実操業においては膜の交換頻度が高く、随伴水の発生量を考えたとき、随伴水の処理コストが膨大になる。随伴水中の油分やその他の成分(特に膜を閉塞させうる泥や掘削泥水由来の保護剤(グアーガム等の多糖類などの高分子化合物))が多い場合にはこの問題が特に顕著になる。 The reverse osmosis membrane used in the method of Patent Document 1 etc. has very excellent separation performance, so it has excellent purification performance of produced water, but as mentioned above, produced water is a mixture with a complex composition. The load on the membrane is so high that it soon becomes unusable. For this reason, in the actual operation of oil drilling produced water treatment, the frequency of membrane replacement is high, and when considering the amount of produced water generated, the cost of producing produced water becomes enormous. This problem becomes particularly noticeable when the resulting water contains a large amount of oil and other components (particularly protective agents derived from mud and drilling mud (high molecular compounds such as polysaccharides such as guar gum) that can clog the membrane).
本発明は当該状況の下で為されたものであり、その解決しようとする課題は、油分等でより汚染された随伴水であっても、低コストで、油分等を濃縮しかつ放流可能なレベルにまで浄化する処理方法を提供することである。 The present invention was made under the above circumstances, and the problem it seeks to solve is to provide a method that can condense oil, etc. and discharge it at low cost, even if the produced water is more contaminated with oil, etc. The object of the present invention is to provide a treatment method that purifies the water to a certain level.
上述の課題を解決する為、本発明者らは鋭意研究を行った結果、汚染された随伴水へ凝集沈殿処理を行い、得られた清澄水に対して蒸発濃縮処理を行えば、低コストで、放流可能なレベルまで浄化された凝縮水と、適宜処理可能な濃縮水とが得られることを見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors conducted intensive research and found that if contaminated water is subjected to coagulation-sedimentation treatment and the resulting clear water is subjected to evaporation concentration treatment, it can be done at low cost. They discovered that it is possible to obtain condensed water that has been purified to a level that can be discharged, and concentrated water that can be treated appropriately, and have completed the present invention.
即ち、課題を解決するための第1の発明は、
石油掘削随伴水の処理方法であって、
前記石油掘削随伴水に凝集沈殿処理を行い、清澄水及び沈殿物に分離する工程と、
前記清澄水に蒸発濃縮処理を行い、凝縮水及び濃縮水を得る工程と
を有する、石油掘削随伴水の処理方法である。
第2の発明は、
前記石油掘削随伴水中の油分濃度が100~5000ppmであり、CODが10~20,000ppmであり、無機塩類の濃度がTDSとして200~35,000ppmである、第1の発明に記載の石油掘削随伴水の処理方法である。
第3の発明は、
さらに、前記凝縮水中の油分濃度を測定し、所定値を超えることが判明した場合は、油分分離膜を用いて前記凝縮水から油分の除去処理を行う工程を有する、第1または第2の発明に記載の石油掘削随伴水の処理方法である。
第4の発明は、
さらに、前記凝縮水中の窒素分濃度を測定し、所定値を超えることが判明した場合は、前記凝縮水から窒素分の除去処理を行う工程を有する、第1~第3の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第5の発明は、
前記清澄水中の油分濃度が5~1000ppmである、第1~第4の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第6の発明は、
前記凝縮水中の油分濃度が5~100ppmであり、CODが5~200ppmであり、無機塩類の濃度がTDSとして10~100ppmである、第1~第5の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第7の発明は、
前記蒸発濃縮処理を、車両にて運搬可能な蒸発濃縮装置、又は、車両にて運搬可能な2~4のユニットに分離可能な蒸発濃縮装置を用いて実施する、第1~第6の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第8の発明は、
前記凝集沈殿処理の前に、前記石油掘削随伴水中の有機成分の除去処理を行う、第1~第7の発明のいずれかに記載の石油掘削随伴水の処理方法である。
That is, the first invention for solving the problem is:
A method for treating water produced by oil drilling, the method comprising:
A step of subjecting the oil drilling produced water to a coagulation-sedimentation treatment and separating it into clear water and precipitate;
This is a method for treating water produced from oil drilling, which includes a step of subjecting the clear water to evaporation concentration treatment to obtain condensed water and concentrated water.
The second invention is
The oil drilling associated water according to the first invention, wherein the oil concentration in the oil drilling associated water is 100 to 5000 ppm, the COD is 10 to 20,000 ppm, and the inorganic salt concentration is 200 to 35,000 ppm as TDS. It is a water treatment method.
The third invention is
The first or second invention further comprises a step of measuring the oil concentration in the condensed water and, if it is found to exceed a predetermined value, removing the oil from the condensed water using an oil separation membrane. This is a method for treating water produced from oil drilling as described in .
The fourth invention is
Further, according to any one of the first to third inventions, the method further comprises a step of measuring the nitrogen concentration in the condensed water and, if it is found that it exceeds a predetermined value, performing a treatment to remove nitrogen from the condensed water. This is the method for treating water produced from oil drilling.
The fifth invention is
The method for treating water produced by oil drilling according to any one of the first to fourth inventions, wherein the clarified water has an oil concentration of 5 to 1000 ppm.
The sixth invention is
The oil drilling companion according to any one of the first to fifth inventions, wherein the concentration of oil in the condensed water is 5 to 100 ppm, the COD is 5 to 200 ppm, and the concentration of inorganic salts is 10 to 100 ppm as TDS. It is a water treatment method.
The seventh invention is
According to the first to sixth inventions, the evaporation concentration process is carried out using an evaporation concentration device that can be transported by a vehicle, or an evaporation concentration device that can be separated into 2 to 4 units that can be transported by a vehicle. The method for treating water produced by oil drilling according to any one of the above.
The eighth invention is
The method for treating oil drilling produced water according to any one of the first to seventh inventions, wherein a treatment for removing organic components in the oil drilling produced water is performed before the coagulation and precipitation treatment.
本発明によれば、より汚染された随伴水であっても、低コストで、油分等を濃縮しかつ放流可能なレベルにまで浄化することが出来る。 According to the present invention, even if produced water is more contaminated, it is possible to concentrate oil and the like and purify it to a level where it can be discharged at low cost.
上述したように本発明は、石油掘削サイトにおける石油の掘削において、地下水が石油と共に汲み上げられたものであって、油分をはじめとして、COD成分や土壌由来の懸濁物(泥)や無機塩類を含む随伴水(掘削泥水も混入している)を、低コストで、濃縮しかつ放流可能なレベルにまで浄化する処理方法である。 As mentioned above, the present invention deals with groundwater pumped up together with oil during oil drilling at an oil drilling site, and which contains not only oil but also COD components, soil-derived suspended solids (mud), and inorganic salts. This is a low-cost treatment method that condenses produced water (which also contains drilling mud) and purifies it to a level that can be discharged.
本発明に係る石油掘削随伴水の処理方法は、随伴水に凝集沈殿処理を行い、清澄水と沈殿に分離する凝集沈殿処理工程と、前記清澄水に蒸発濃縮処理を行い、凝縮水及び濃縮水を得る蒸発濃縮処理工程とを有する。また、本発明に係る石油掘削随伴水の処理方法においては、所望により前記凝縮水から油分を除去処理する油分除去工程や、所望により前記凝縮水から窒素分を除去処理する脱窒処理工程を設ける場合がある。さらに所望により、前記凝集沈殿処理工程の前に有機成分除去工程を設ける場合がある。 The method for treating water produced by oil drilling according to the present invention includes a coagulation-sedimentation treatment step in which produced water is subjected to a coagulation-sedimentation treatment and separated into clear water and precipitate; and an evaporation concentration treatment step to obtain. Furthermore, in the method for treating water produced from oil drilling according to the present invention, an oil removal step for removing oil from the condensed water is optionally provided, and a denitrification treatment step is optionally provided for removing nitrogen from the condensed water. There are cases. Further, if desired, an organic component removal step may be provided before the coagulation and precipitation treatment step.
以下、本発明に係る処理方法の操作フロー及び処理装置の例を示す図1を参照しながら、本発明について説明する。 The present invention will be described below with reference to FIG. 1, which shows an example of an operation flow of a processing method and a processing apparatus according to the present invention.
図1に示すように本発明は、必要に応じて有機成分除去工程[1´]により有機成分を除去した随伴水(10)を受け入れ、随伴水(10)を凝集沈殿させて、清澄水(11)及び沈殿物(12)を得る凝集沈殿処理工程[1]と、清澄水(11)を受け入れ、これに蒸発濃縮処理を行い、凝縮水(21)及び濃縮水(22)を得る蒸発濃縮処理工程[2]を有するものである。なお、凝縮水(21)は例えば河川や海へ放流するなどして環境へ還元し、濃縮水(22)については処分場へ輸送して固形化するなど、適宜な処理を行う。なお図1では便宜上、有機成分除去工程[1’]に受け入れる随伴水を「随伴水(10)」と表示している。 As shown in FIG. 1, the present invention receives produced water (10) from which organic components have been removed by an organic component removal step [1'] as necessary, coagulates and precipitates the produced water (10), and then produces clear water ( 11) and a coagulation-precipitation treatment step [1] to obtain a precipitate (12); and an evaporative concentration step in which clear water (11) is received and subjected to evaporation concentration treatment to obtain condensed water (21) and concentrated water (22). It has a treatment step [2]. The condensed water (21) is returned to the environment by, for example, being discharged into a river or the sea, and the condensed water (22) is subjected to appropriate treatment such as being transported to a disposal site and solidified. In FIG. 1, for convenience, the produced water received in the organic component removal step [1'] is indicated as "produced water (10)".
尤も、凝縮水(21)に油分や窒素分が所定の基準以上に含まれていた場合、凝縮水(21)から油分を除去する油分除去工程[3]、および/または、凝縮水(21)から窒素分を除去する脱窒工程[4]を設けることが好ましい。 However, if the condensed water (21) contains oil or nitrogen in an amount higher than a predetermined standard, the oil removal step [3] of removing the oil from the condensed water (21) and/or the condensed water (21) It is preferable to provide a denitrification step [4] for removing nitrogen from the base.
以下、[1´]有機成分除去工程、[1]凝集沈殿処理工程、[2]蒸発濃縮処理工程、[3]油分除去工程、[4]脱窒工程、[5]沈殿物および濃縮水の処理、の順で本発明について説明する。 Hereinafter, [1'] organic component removal step, [1] coagulation precipitation treatment step, [2] evaporation concentration treatment step, [3] oil removal step, [4] denitrification step, [5] precipitate and concentrated water. The present invention will be explained in order of processing.
[1´]有機成分除去工程
随伴水(10)に有機成分が多く含有されている場合、凝集沈殿処理工程[1]を実施する前に、有機成分を除去する工程[1´]を実施してもよい。この場合、凝集沈殿処理工程[1]を実施する凝集槽(15)の前に生物処理槽(17)を設けることが好ましい。好気性処理/嫌気性処理により有機成分を分解するものである。生物処理槽(17)の好ましい具体例としては、好気と嫌気の条件選択が可能であることと高い固液分離安定性よりSBR槽を挙げることが出来る。
[1'] Organic component removal step If the produced water (10) contains a large amount of organic components, the organic component removal step [1'] is carried out before the coagulation-sedimentation treatment step [1]. It's okay. In this case, it is preferable to provide a biological treatment tank (17) before the flocculation tank (15) that performs the coagulation-sedimentation treatment step [1]. Organic components are decomposed by aerobic/anaerobic treatment. A preferred example of the biological treatment tank (17) is an SBR tank because it allows selection of aerobic and anaerobic conditions and has high solid-liquid separation stability.
[1]凝集沈殿処理工程
本発明においては、必要に応じて随伴水(10)に対して有機成分除去工程[1´]を実施した後、凝集沈殿処理工程[1]を実施する。この工程にて受け入れる随伴水(10)は、上述した通り複雑な組成の混合物であり、典型的には黒~茶褐色である。その油分濃度は、通常100~5000ppm程度と大きな幅がある。これは上述した通り、随伴水(10)の組成が、掘削ドリルが油層付近を掘削している時と、水層付近を掘削している時や、そのいずれでもない時などで大きく変わる為である。具体的には、掘削ドリルが油層付近を掘削している時の油分含有量は高い値を示す。随伴水のCODは、通常10~20000ppm程度であり、無機塩類の濃度はTDSとして通常200~35000ppm程度である。本発明は随伴水(10)中の油分が高濃度であっても問題なく処理することができ、油分濃度が120~5000ppmの随伴水(10)に対して好ましく適用可能であり、油分濃度が150~5000ppmの随伴水(10)に対してより好ましく適用可能である。
[1] Coagulation and precipitation treatment step In the present invention, after implementing the organic component removal step [1'] on the produced water (10) as needed, the coagulation and precipitation treatment step [1] is carried out. The produced water (10) received in this step is a mixture with a complex composition, as described above, and is typically black to brown in color. The oil concentration usually varies widely, from about 100 to 5000 ppm. This is because, as mentioned above, the composition of the produced water (10) changes greatly depending on when the drilling drill is drilling near an oil layer, when drilling near a water layer, or when neither of these conditions exist. be. Specifically, when a drilling drill is drilling near an oil layer, the oil content shows a high value. The COD of the produced water is usually about 10 to 20,000 ppm, and the concentration of inorganic salts is usually about 200 to 35,000 ppm as TDS. The present invention can treat even if the oil concentration in the produced water (10) is high, without any problem, and is preferably applicable to the produced water (10) with an oil concentration of 120 to 5000 ppm. It is more preferably applicable to produced water (10) of 150 to 5000 ppm.
なお、油分濃度が5000ppmを超えるほど濃厚な場合は、随伴水表面に油分が浮いているので、それを掬い取ることで上記濃度範囲におさめてから凝集沈殿処理工程[1]を実施することが好ましい。 In addition, if the oil concentration is so thick as to exceed 5000 ppm, the oil will be floating on the surface of the produced water, so it is possible to bring the concentration within the above range by scooping it up and then carry out the coagulation-sedimentation treatment step [1]. preferable.
凝集沈殿処理工程[1]は、凝集槽(15)を用いた凝集処理と続く沈殿処理により、随伴水(10)中における土壌由来の懸濁物(泥)を除去して清澄水(11)を得ることを目的とする。当該凝集沈殿処理に拠って、随伴水(10)中におけるCODおよび油分の一部も除去できる場合が多く好ましい。 The coagulation-sedimentation treatment step [1] is a coagulation treatment using a coagulation tank (15) followed by a sedimentation treatment to remove soil-derived suspended matter (sludge) in the produced water (10) and produce clear water (11). The purpose is to obtain. The coagulation-sedimentation treatment is often preferable in that it is possible to also remove some of the COD and oil in the produced water (10).
凝集沈殿処理工程[1]では、随伴水(10)を収容した凝集槽(15)へまず凝集剤を添加し、凝集剤で捕獲可能な物質(前記の懸濁物等)を凝集させる。当該凝集剤としては、無機凝集剤(13)及び高分子凝集剤(14)が挙げられる。無機凝集剤(13)として、例えばポリ硫酸鉄、ポリ塩化鉄、ポリアルミニウムクロライド、ポリ硫酸アルミニウム等を好ましく挙げることが出来る。高分子凝集剤(14)として、例えばアニオン系凝集剤、カチオン系凝集剤、ノニオン系凝集剤を好ましく挙げることが出来る。 In the coagulation-sedimentation treatment step [1], a coagulant is first added to the coagulation tank (15) containing the produced water (10), and substances that can be captured by the coagulant (such as the above-mentioned suspended matter) are coagulated. Examples of the flocculant include an inorganic flocculant (13) and a polymer flocculant (14). Preferred examples of the inorganic flocculant (13) include polyferric sulfate, polyferric chloride, polyaluminum chloride, polyaluminum sulfate, and the like. Preferred examples of the polymer flocculant (14) include anionic flocculants, cationic flocculants, and nonionic flocculants.
これら凝集剤の中でもポリ硫酸鉄は、油分除去機能に優れている、カルシウムなどスケールの要因となる成分と沈殿物を形成し除去出来る、随伴水(10)の一連の処理においてpHが変動した場合であっても(特にpHが10程度になった場合でも)、沈殿物が再溶解しない、といった優れた特徴がある。これらの特徴は、後工程である蒸発濃縮処理工程[2]の安定操業を維持する観点から好ましい。 Among these flocculants, polyferric sulfate has an excellent oil removal function, can form and remove precipitates with components that cause scale, such as calcium, and can be used when the pH changes during a series of treatments for produced water (10). It has the excellent feature that the precipitate does not re-dissolve even when the pH reaches about 10 (particularly when the pH reaches about 10). These characteristics are preferable from the viewpoint of maintaining stable operation of the subsequent evaporation concentration treatment step [2].
凝集沈殿処理工程[1]では、以上説明した凝集により凝集物が生じた随伴水(10)に対して、固液分離装置(16)を使用した固液分離(具体例として、遠心分離装置による遠心分離、シックナー等による沈降分離、中空糸膜によるろ過、凝集槽からデカント等がある。)によって、清澄水(11)と沈殿物(12)とに分離する。そして必要に応じて、清澄水(11)は蒸発濃縮原水槽(20)にて、一旦貯蔵する。 In the coagulation-sedimentation treatment step [1], the produced water (10) in which aggregates have been generated due to the coagulation described above is subjected to solid-liquid separation using a solid-liquid separator (16) (as a specific example, using a centrifugal separator). Clear water (11) and precipitate (12) are separated by centrifugation, sedimentation using a thickener, filtration using a hollow fiber membrane, decantation from a coagulation tank, etc.). If necessary, the clear water (11) is temporarily stored in the evaporation concentration raw water tank (20).
凝集沈殿処理工程[1]で得られる清澄水(11)における油分濃度は通常5~1000ppm程度、CODは通常10~5000ppm程度であり、スタートの随伴水(10)に比べて低減される場合が多い。無機塩類の濃度はTDSとして通常200~35000ppm程度である。また、清澄水(11)においては随伴水(10)に含まれていた懸濁物(泥)が顕著に除去されており、無色透明ないし白い半透明の色、あるいは本工程で使用した薬剤由来の色となっている。 The oil concentration in the clear water (11) obtained in the coagulation-sedimentation treatment step [1] is usually about 5 to 1000 ppm, and the COD is usually about 10 to 5000 ppm, which may be reduced compared to the starting produced water (10). many. The concentration of inorganic salts is usually about 200 to 35,000 ppm as TDS. In addition, in the clear water (11), the suspended solids (mud) contained in the produced water (10) have been significantly removed, and the color is colorless and transparent to white and translucent, or is derived from the chemicals used in this process. It is the color of
[2]蒸発濃縮処理工程
蒸発濃縮処理工程[2]においては、蒸発濃縮装置(23)を用いて、凝集沈殿処理工程[1]で得られた清澄水(11)に対して蒸発濃縮処理を行う。当該蒸発濃縮処理により、凝縮水(21)と濃縮水(22)とが得られる。蒸発濃縮する対象が泥などの粗大な物質を含んでいると、これが濃縮水(22)に移行することとなるが、蒸発濃縮装置の配管等を閉塞させるなどの問題を引き起こして、連続操業ができなくなる。すなわち、操業コスト上昇につながる。しかし本発明では、随伴水(10)に対してまず凝集沈殿処理を施し、粗大な物質を実質的に除去しているので、前記の問題は起こらず、連続操業が可能であり、操業コストを低くおさえることができる。
[2] Evaporation concentration treatment step In the evaporation concentration treatment step [2], the clear water (11) obtained in the coagulation and precipitation treatment step [1] is subjected to evaporation concentration treatment using the evaporation concentration device (23). conduct. Through the evaporation concentration process, condensed water (21) and concentrated water (22) are obtained. If the target to be evaporated and concentrated contains coarse substances such as mud, this will be transferred to concentrated water (22), but this will cause problems such as clogging the pipes of the evaporation and concentration equipment, making continuous operation impossible. become unable. In other words, this leads to an increase in operating costs. However, in the present invention, the produced water (10) is first subjected to coagulation and sedimentation treatment to substantially remove coarse substances, so the above problem does not occur and continuous operation is possible, reducing operating costs. It can be kept low.
蒸発濃縮処理工程[2]において使用する蒸発濃縮装置(23)は、特に限定されるものではない。例えば、特開昭59-26184号公報に記載の水蒸気圧縮式塩水蒸留器(水平伝熱管と水蒸気圧縮機とを備えた水蒸気圧縮式塩水蒸留器)、特開平10-57702号公報に記載の自己蒸発圧縮式濃縮装置(2つの圧縮手段により2段圧縮が可能な濃縮装置)、特開2011-185192号公報に記載の真空蒸発装置(ルーツブロワを備えた真空蒸発装置)、等を、当該工程における蒸発濃縮装置として使用することができる。尤も、石油掘削サイトの多くが僻地に設けられていることを考慮すると、蒸発濃縮装置をオンサイトで一から建設するのでは、長い工期が必要となり建設コストも高額なものとなる。 The evaporation concentration device (23) used in the evaporation concentration treatment step [2] is not particularly limited. For example, a steam compression salt water distiller (steam compression salt water distiller equipped with a horizontal heat exchanger tube and a steam compressor) described in JP-A-59-26184, An evaporative compression type concentrator (a concentrator capable of two-stage compression using two compression means), a vacuum evaporator described in JP-A No. 2011-185192 (a vacuum evaporator equipped with a Roots blower), etc. are used in the process. It can be used as an evaporative concentration device. However, considering that many oil drilling sites are located in remote areas, constructing an evaporative concentrator on-site from scratch would require a long construction period and result in high construction costs.
ここで本発明者らは、完成品または分離して複数のユニットとなった蒸発濃縮装置(23)を石油掘削サイトに輸送して設置、または、最終組み立てを行って設置し、運転することが好ましいことに想到した。このような蒸発濃縮装置(23)は、それ自体トラック等の車両にて運搬可能なサイズであるか、2~4程度のユニットに分離可能で、分離されたユニットの各々が車両にて運搬可能なサイズである。さらに本発明者らは、特開2018-126680号公報に開示された蒸発濃縮装置は、装置を二つの収納容器(当該公報の請求項1における、第1収納容器と第2収納容器)に分離可能であり、各々をトラック等の車両で輸送可能であることから、本発明における蒸発濃縮処理工程[2]に使用する装置として特に好適であることにも想到した。 Here, the present inventors have discovered that it is possible to transport and install the finished product or the evaporative concentrator (23) separated into multiple units to an oil drilling site, or to perform final assembly, installation, and operation. I came up with something nice. Such an evaporation concentration device (23) is of a size that can be transported by a vehicle such as a truck, or can be separated into about 2 to 4 units, and each of the separated units can be transported by a vehicle. It is a large size. Furthermore, the present inventors have discovered that the evaporation concentration device disclosed in Japanese Patent Application Laid-open No. 2018-126680 separates the device into two storage containers (a first storage container and a second storage container in claim 1 of the publication). The present inventors have also come up with the idea that the apparatus is particularly suitable for use in the evaporation and concentration treatment step [2] of the present invention, since each of them can be transported by a vehicle such as a truck.
蒸発濃縮処理工程[2]における蒸発条件については、蒸発濃縮装置(23)の蒸発缶内の液温は60~80℃、蒸発缶内圧力は5~50kPa absに設定することが操業コスト低廉化の観点から好ましい。当該工程で得られる濃縮水(22)の濃縮倍率(清澄水(11)の濃縮水(22)に対する体積倍率)は、2~20体積倍とすることが、随伴水(10)の濃縮及び操業コスト低廉化の観点から好ましい。 Regarding the evaporation conditions in the evaporation concentration process [2], it is recommended to set the liquid temperature in the evaporator of the evaporation concentrator (23) to 60 to 80°C and the pressure in the evaporator to 5 to 50 kPa abs to reduce operating costs. preferred from the viewpoint of The concentration ratio of the concentrated water (22) obtained in this process (the volume ratio of the clear water (11) to the concentrated water (22)) should be 2 to 20 times the volume, depending on the concentration and operation of the produced water (10). Preferable from the viewpoint of cost reduction.
蒸発濃縮処理で得られる凝縮水(21)の品質チェックを実施した場合、油分濃度は通常5~100ppm程度であり、CODは通常5~200ppm程度であり、無機塩類の含有量はTDSとして通常10~100ppm程度である。凝縮水(21)は清澄水(11)中の揮発性成分で構成されるので、油分(揮発性油を除く)その他の成分が顕著に低減されている。当該凝縮水(21)の油分含有量、CODおよび無機塩類の含有量等の値が環境基準に適合するほどに低い場合は、そのまま河川等へ放流、石油掘削サイトでの用水としてのリサイクルまたは地下へ返送することができる。 When the quality of condensed water (21) obtained through evaporation concentration treatment is checked, the oil concentration is usually about 5 to 100 ppm, the COD is usually about 5 to 200 ppm, and the content of inorganic salts is usually about 10 ppm as TDS. ~100ppm. Since the condensed water (21) is composed of volatile components in the clear water (11), oil content (excluding volatile oil) and other components are significantly reduced. If the oil content, COD, and inorganic salt content of the condensed water (21) is low enough to meet environmental standards, it can be directly discharged into rivers, etc., recycled as water at oil drilling sites, or stored underground. can be returned to.
以上説明した凝集沈殿処理工程[1]及び蒸発濃縮処理工程[2]の実施により、随伴水(10)から、環境へ還元等し得る凝縮水(21)と、適宜な方法により処理すべき沈殿物(12)及び濃縮水(22)とが得られる。本発明によれば、随伴水(10)から沈殿物(12)及び濃縮水(22)の合計への濃縮倍率(随伴水/(沈殿物+濃縮水))として、好ましくは3~15体積倍という倍率を達成することができる。しかも、凝集沈殿処理工程[1]及び蒸発濃縮処理工程[2]のいずれも、高価な薬剤や装置を使う必要がなく、しかも連続操業が可能であることから、本発明の石油掘削随伴水の処理方法は非常に低コストで実施することができる。 By carrying out the coagulation-sedimentation treatment step [1] and the evaporation concentration treatment step [2] explained above, condensed water (21) that can be returned to the environment, etc., and precipitate to be treated by an appropriate method are obtained from the produced water (10). A product (12) and concentrated water (22) are obtained. According to the present invention, the concentration ratio from the produced water (10) to the sum of the precipitate (12) and concentrated water (22) (produced water/(precipitate + concentrated water)) is preferably 3 to 15 volume times. It is possible to achieve this magnification. Moreover, both the coagulation-precipitation treatment process [1] and the evaporation concentration treatment process [2] do not require the use of expensive chemicals or equipment, and can be operated continuously. The processing method can be implemented at very low cost.
[3]油分除去工程
油分除去工程[3]は、上述した凝縮水(21)についての品質チェック(油分濃度の測定)の結果、凝縮水(21)に含有される油分が所定値を超える場合は、油分分離装置(32)に設置された油分分離膜(33)を用い、例えば凝縮水(21)に対して比重分離を実施して処理水(31)と油分(34)とを得る工程である。なお、油分濃度の測定方法については、実施例にて後述する。また前記所定値とは、各国の、環境基準等の排水に関する基準により定まる値で、これについては、後述する脱窒工程[4]の項にてまとめて説明する。
[3] Oil removal process The oil removal process [3] is performed when the oil contained in the condensed water (21) exceeds a predetermined value as a result of the quality check (measurement of oil concentration) of the condensed water (21) described above. is a step in which, for example, condensed water (21) is subjected to specific gravity separation using an oil separation membrane (33) installed in an oil separation device (32) to obtain treated water (31) and oil (34). It is. Note that the method for measuring the oil concentration will be described later in Examples. Further, the predetermined value is a value determined by standards regarding wastewater such as environmental standards of each country, and this will be explained in detail in the section of the denitrification process [4] described later.
「凝集沈殿処理工程[1]」にて説明した本発明の石油掘削随伴水の処理方法が対象とする随伴水(10)は、一般に油分の含有量が非常に高い。この為、当該随伴水(10)に対して特許文献1に代表される従来技術に係る、逆浸透膜等を用いる方法にて油分を分離しようとすると、逆浸透膜等への負荷が高く頻繁な交換が必要で、処理コストが高くなる。随伴水(10)に含まれる懸濁物(泥)も逆浸透膜(あるいは逆浸透膜の前に使用される精密ろ過膜)を閉塞させ、頻繁な交換の必要性を高くする。 The produced water (10) targeted by the oil drilling produced water treatment method of the present invention described in "Coagulation and precipitation treatment step [1]" generally has a very high oil content. For this reason, if an attempt is made to separate the oil from the produced water (10) using a method using a reverse osmosis membrane, etc. according to the conventional technology represented by Patent Document 1, the load on the reverse osmosis membrane etc. is high and the frequency of Replacement is required, which increases processing costs. Suspended matter (sludge) contained in the produced water (10) can also clog the reverse osmosis membrane (or the microfiltration membrane used before the reverse osmosis membrane), increasing the need for frequent replacement.
なお、従来技術において逆浸透膜を使用しているのは、その前の精密膜ろ過では無機塩類等のシングルナノオーダー又はそれ以下の超微細サイズの物質を除去することができないためである。これに対して本発明の場合は、蒸発濃縮処理により無機塩類等の超微細サイズの物質は実質的に除去され(サイズではなく沸点に着目した除去)、実質的に水と揮発性の油分(34)とで構成された、その他の夾雑物が非常に少ない凝縮水(21)が得られる。凝縮水(21)中で油分(34)はミクロンレベルの液滴として存在する。このような油分(34)の除去には、孔のサイズが1nm未満と超微細な逆浸透膜は不要であり、これよりも安価な油分分離膜(33)を用いた油分除去が可能である。さらに、当該凝縮水(21)は、実質的に水と揮発性の油分(34)とで構成されていることから油分分離膜(33)への負荷も軽い為、当該油分分離膜(33)の頻繁な交換は不要であり、処理コストは低廉なものとなる。 The reason why a reverse osmosis membrane is used in the prior art is that the precision membrane filtration that precedes it cannot remove substances of single nano-order or smaller ultrafine size, such as inorganic salts. In contrast, in the case of the present invention, ultrafine-sized substances such as inorganic salts are substantially removed by evaporation concentration treatment (removal focused on boiling point rather than size), and water and volatile oil (removal focused on boiling point rather than size) are substantially removed. Condensed water (21) consisting of 34) and very few other impurities is obtained. The oil (34) exists in the condensed water (21) as droplets of micron level. Removal of such oil (34) does not require an ultra-fine reverse osmosis membrane with a pore size of less than 1 nm, and it is possible to remove oil using a cheaper oil separation membrane (33). . Furthermore, since the condensed water (21) is substantially composed of water and volatile oil (34), the load on the oil separation membrane (33) is light; There is no need for frequent replacement, and the processing cost is low.
油分分離膜(33)は、上記の通り逆浸透膜のような孔のサイズがシングルナノオーダー又はそれ以下のレベルといった高価なものである必要はない。本発明においては、油分分離膜(33)として、コアレッサー方式の膜を好適に使用することができる。この方式の油分分離膜(33)は、太さ(断面が円形であれば直径)が0.1~10μm程度の繊維で構成される膜であり、これにまず水を流して繊維を湿らせておく。続けて(所定値以上の油分を含んだ)凝縮水(21)を膜に流すと、水は膜を透過するが、油分(34)は湿った繊維に対して反発し、膜を透過しない。凝縮水(21)を流し続けると、油分が繊維のところに蓄積して合体して大きくなり、水の比重との大小に従って分離される(比重分離)。このようにして、簡易で安価な方法により、凝縮水(21)から油分を除去することができる。なお、油分に関して厳しい基準に対応する場合は、必要に応じて、更に活性炭による油分の除去処理など、高次の処理を施してもよい。このような処理もまた安価に実施可能である。 As described above, the oil separation membrane (33) does not need to be an expensive membrane such as a reverse osmosis membrane, in which the pore size is on the order of a single nanometer or smaller. In the present invention, a coalescer type membrane can be suitably used as the oil separation membrane (33). This type of oil separation membrane (33) is a membrane composed of fibers with a thickness (diameter if the cross section is circular) of about 0.1 to 10 μm, and water is first poured through it to moisten the fibers. I'll keep it. When condensed water (21) (containing oil content above a predetermined value) is subsequently flowed through the membrane, the water passes through the membrane, but the oil content (34) is repelled by the wet fibers and does not pass through the membrane. When the condensed water (21) continues to flow, oil accumulates on the fibers, coalesces, becomes larger, and is separated according to the specific gravity of the water (specific gravity separation). In this way, oil can be removed from the condensed water (21) by a simple and inexpensive method. In addition, when meeting strict standards regarding oil content, higher-level treatments such as oil removal treatment using activated carbon may be performed as necessary. Such processing can also be carried out at low cost.
油分除去工程[3]を経て得られた処理水(31)の品質チェックの結果、処理水(31)に含有される油分の濃度が所定値以下の場合は、河川等への放流、リサイクルまたは地下へ返送することができる。 As a result of the quality check of the treated water (31) obtained through the oil removal process [3], if the concentration of oil contained in the treated water (31) is below a predetermined value, it may be discharged into a river, recycled, or It can be sent back underground.
[4]脱窒工程
脱窒工程[4]は、凝縮水(21)又は油分除去工程[3]で得られた処理水(31)中の窒素分濃度を測定し、窒素分濃度が所定値を超える場合は、公知の脱窒素法で処理する工程である。凝縮水(21)(又は処理水(31))に含有される窒素分が多いと、環境負荷の原因ともなるからである。公知の脱窒素法としては、操業コストの安価なクロラミン脱窒素法が好ましい。なお、窒素分濃度の測定方法については、実施例にて後述する。また前記所定値とは、各国の環境基準等の排水に関する基準により定まる値で、前述した油分除去工程[3]における油分の排水基準に関する所定値とあわせて下記表1に例を示す。なお油分及び窒素分のいずれについても、所定値として、排水基準値に安全率をかけて、排水基準値の5%以上100%未満の値を設定する場合もある。
[4] Denitrification process In the denitrification process [4], the nitrogen concentration in the condensed water (21) or the treated water (31) obtained in the oil removal process [3] is measured, and the nitrogen concentration is determined to a predetermined value. If the amount exceeds 100%, the step is to use a known denitrification method. This is because if the condensed water (21) (or treated water (31)) contains a large amount of nitrogen, it may cause environmental burden. As the known denitrification method, the chloramine denitrification method is preferred because of its low operating cost. Note that the method for measuring the nitrogen concentration will be described later in Examples. Further, the predetermined value is a value determined by standards regarding wastewater such as environmental standards of each country, and examples are shown in Table 1 below together with the predetermined value regarding the oil wastewater standard in the oil removal step [3] described above. Note that for both the oil content and the nitrogen content, the predetermined value may be set to a value of 5% or more and less than 100% of the wastewater standard value by multiplying the wastewater standard value by a safety factor.
脱窒工程[4]を経て得られた処理水(31)の品質チェックの結果、得られた処理水(31)に含有される窒素分濃度が所定値以下の場合は、河川等への放流、リサイクルまたは地下へ返送等することができる。なお、凝縮水(21)について油分除去と脱窒の両方が必要となった場合は、油分除去を先に実施することが好ましい。脱窒の代表的手法であるクロラミン脱窒素法を先に行うと、凝縮水(21)中の油分が酸化されて水溶性となり、油分除去が困難となるからである。 As a result of the quality check of the treated water (31) obtained through the denitrification process [4], if the nitrogen concentration contained in the obtained treated water (31) is below a predetermined value, it will be discharged into a river, etc. , can be recycled or sent underground. Note that if both oil removal and denitrification are required for the condensed water (21), it is preferable to perform oil removal first. This is because if the chloramine denitrification method, which is a typical denitrification method, is performed first, the oil in the condensed water (21) will be oxidized and become water-soluble, making it difficult to remove the oil.
[5]沈殿物および濃縮水の処理
「凝集沈殿処理工程[1]」にて説明した沈殿物(12)および「蒸発濃縮処理工程[2]」にて説明した濃縮水(22)は、適切な処分場へ輸送して処分することが好ましい。ここで、石油掘削サイトの多くが僻地に設けられていることを考慮すると、沈殿物(12)および濃縮水(22)の、処分場への輸送コストは高価である。従って、これらの輸送量が少ないこと、即ち、随伴水(10)からの濃縮率が大きいことが重要である。当該観点から、本発明に係る石油掘削随伴水の処理方法を検討してみると、上述の通り、沈殿物(12)および濃縮水(22)は合計で、随伴水(10)に対して3~15体積倍程度に濃縮され、減容している。当該濃縮による減容は、輸送コスト低減の観点から十分な効果を発揮していると考えられる。
[5] Treatment of precipitate and concentrated water The precipitate (12) explained in “Coagulation and precipitation treatment step [1]” and the concentrated water (22) explained in “Evaporation concentration treatment step [2]” are It is preferable to transport and dispose of it to a suitable disposal site. Considering that many oil drilling sites are located in remote areas, the cost of transporting the sediment (12) and concentrated water (22) to a disposal site is expensive. Therefore, it is important that the amount of these transported is small, that is, the concentration ratio from the produced water (10) is high. From this point of view, when considering the method for treating water produced by oil drilling according to the present invention, as mentioned above, the total amount of sediment (12) and concentrated water (22) is 3% compared to produced water (10). It has been concentrated and reduced in volume by ~15 times. The volume reduction through concentration is considered to be sufficiently effective from the perspective of reducing transportation costs.
以下、実施例を参照しながら、本発明についてより具体的に説明する。
尚、実施例において、
油分濃度は、試料をpH4にした後、ノルマルヘキサンに抽出した後、80℃に加熱してノルマルヘキサンを蒸発させ、残留物の重量を測定することで求め、
無機塩類濃度はTDSとして、OrionTM Versa Star ProTM pH/導電率デスクトップ型マルチパラメーターメーターにより、全溶存性固体を測定し、
窒素分濃度はアンモニア態窒素(NH3-N)の濃度として、イオン電極法(OrionTM Versa Star ProTM,Thermo fisher製)で測定し、
pH値の測定にはHORIBA製pH meter F-16を使用し、測定時の試料温度が25℃の場合は実測定値を採用し、25℃でない場合はpH測定装置内蔵の校正機能により25℃でのpH値を求め、
CODはJIS K 0102:2013に準拠し、二クロム酸法(CODCr)により測定した。
Hereinafter, the present invention will be described in more detail with reference to Examples.
In addition, in the examples,
The oil concentration was determined by adjusting the sample to pH 4, extracting it with normal hexane, heating it to 80 ° C. to evaporate the normal hexane, and measuring the weight of the residue.
Inorganic salt concentrations were measured as TDS and total dissolved solids using an Orion ™ Versa Star Pro ™ pH/Conductivity desktop multiparameter meter;
The nitrogen concentration was measured as the concentration of ammonia nitrogen (NH 3 -N) using an ion electrode method (Orion TM Versa Star Pro TM , manufactured by Thermo Fisher),
HORIBA pH meter F-16 is used to measure the pH value. If the sample temperature at the time of measurement is 25°C, the actual measured value is used, and if it is not 25°C, it is adjusted at 25°C using the built-in calibration function of the pH measuring device. Find the pH value of
COD was measured by the dichromic acid method (COD Cr ) in accordance with JIS K 0102:2013.
(参考例)
ある石油掘削サイトで異なる時点で産出された石油掘削随伴水(随伴水1及び2)について油分濃度を測定したところ、随伴水1の油分濃度は3010ppmであり、随伴水2の油分濃度は198ppmであった。この結果より、石油掘削随伴水の油分濃度の変動が大きいことがわかる。なお、いずれの随伴水にも保護剤としての高分子化合物が含まれていた。以下の実施例においても同様である。
(Reference example)
When the oil concentration was measured in oil drilling produced water (produced water 1 and 2) produced at different times at a certain oil drilling site, the oil concentration in produced water 1 was 3010 ppm, and the oil concentration in produced water 2 was 198 ppm. there were. This result shows that the oil concentration in oil drilling water fluctuates greatly. Note that all of the accompanying water contained a polymer compound as a protective agent. The same applies to the following examples.
(実施例1)
ある石油掘削サイトで産出された随伴水を原水として、本発明に係る石油掘削随伴水の処理方法を実施した。
以下、1.凝集沈殿処理工程、2.蒸発濃縮処理工程、3.油分除去工程、の順に説明する。
(Example 1)
The method for treating oil drilling produced water according to the present invention was carried out using produced water produced at a certain oil drilling site as raw water.
Below, 1. Coagulation and precipitation treatment step, 2. Evaporation concentration treatment step, 3. The oil removal step will be explained in order.
1.凝集沈殿処理工程
産出された随伴水を原水として凝集槽へ導入し、そこへ凝集剤としてポリ硫酸鉄(登録商標:ポリテツ 日鉄鉱業株式会社製)を、随伴水1Lに対し2gの割合で添加した。なお、随伴水は懸濁物(泥)を含んでおり、茶褐色であった。
1. Coagulation and sedimentation treatment process The produced water is introduced into the coagulation tank as raw water, and polyferric sulfate (registered trademark: Polytetsu, manufactured by Nittetsu Mining Co., Ltd.) is added there as a coagulant at a ratio of 2 g to 1 L of produced water. did. The resulting water contained suspended matter (mud) and was brown in color.
そして凝集槽に付属の攪拌機を用いて0.1時間、250rpmで撹拌して混合した。得られたスラリーを、固液分離装置である遠心分離装置を用いて4500rpmで遠心分離し、上澄みである清澄水と、沈殿物とに分離した。清澄水は淡橙色であった。沈殿物の量は随伴水の1~5体積%程度であった。 Then, the mixture was stirred and mixed at 250 rpm for 0.1 hour using a stirrer attached to the flocculation tank. The obtained slurry was centrifuged at 4500 rpm using a centrifugal separator, which is a solid-liquid separator, to separate it into clear water, which is a supernatant, and a precipitate. The clear water was pale orange in color. The amount of precipitate was approximately 1 to 5% by volume of the accompanying water.
2.蒸発濃縮処理工程
分離された清澄水を、一旦、蒸発濃縮原水槽に貯蔵した後、株式会社ササクラ製の蒸発濃縮装置(登録商標:モバイルエバポレーター VVCC-40)に導入して、蒸発濃縮処理を行った。尚、当該蒸発濃縮装置は二つのユニット(特開2018-126680号公報の請求項1にて開示された第1収納容器と第2収納容器)に分離可能であり、各々をトラック等で輸送可能である装置である。
2. Evaporation concentration treatment process The separated clear water is once stored in an evaporation concentration raw water tank, and then introduced into an evaporation concentration device (registered trademark: Mobile Evaporator VVCC-40) manufactured by Sasakura Co., Ltd. to perform evaporation concentration treatment. Ta. Note that the evaporation concentration device can be separated into two units (the first storage container and the second storage container disclosed in claim 1 of JP2018-126680A), and each can be transported by truck, etc. It is a device that is
蒸発濃縮装置の運転条件は、蒸発缶内の真空度は20kPa absとし、保有液の温度は65℃以上70℃以下とした。保有液の含有成分が濃縮されることによる沸点上昇は8℃以内で管理しながら、保有液から揮発成分を蒸発・凝縮させて凝縮水を生成し、蒸発濃縮装置から取り出した。一方、蒸発缶内の保有液の比重を監視し、比重1.1kg/Lとなった時点で濃縮水となったと判断して蒸発濃縮装置から排出させることで、連続的に蒸発濃縮処理を行なった。濃縮率は約3.7体積倍だった。 The operating conditions of the evaporative concentration device were such that the degree of vacuum in the evaporator was 20 kPa abs, and the temperature of the retained liquid was 65° C. or higher and 70° C. or lower. Volatile components were evaporated and condensed from the retained liquid while controlling the increase in boiling point due to concentration of the components of the retained liquid to within 8° C. to generate condensed water, which was taken out from the evaporation concentrator. On the other hand, the specific gravity of the liquid held in the evaporator is monitored, and when the specific gravity reaches 1.1 kg/L, it is determined that the liquid has become concentrated water, and the liquid is discharged from the evaporator, thereby performing continuous evaporative concentration processing. Ta. The concentration rate was approximately 3.7 times by volume.
3.油分除去工程
上述した蒸発濃縮処理工程で得られた凝縮水に含有される油分の含有量が52ppmと高かった為、油分分離膜を備えた油分分離装置(登録商標:ユーテックTH-80 旭化成製)を用いて油分除去工程を実施し、処理水を得た。なおこの油分分離装置は、コアレッサー方式の装置であり、比重分離により凝縮水から油分を除去して処理水を得た。
3. Oil removal process Since the oil content contained in the condensed water obtained in the above-mentioned evaporation concentration treatment process was as high as 52 ppm, an oil separation device (registered trademark: Utec TH-80 manufactured by Asahi Kasei) equipped with an oil separation membrane was used. The oil removal step was carried out using a water filter to obtain treated water. Note that this oil separation device was a coalescer type device, and treated water was obtained by removing oil from condensed water through specific gravity separation.
以上の操作における、随伴水、清澄水、凝縮水、濃縮水及び処理水のpH値、無機塩類濃度(TDSとして)、アンモニア態窒素濃度、COD値、油分濃度の値を下記表2に示す。 The values of the pH value, inorganic salt concentration (as TDS), ammonia nitrogen concentration, COD value, and oil concentration of the produced water, clear water, condensed water, concentrated water, and treated water in the above operation are shown in Table 2 below.
得られた処理水について、更にこれを、例えば活性炭で処理することで、油分濃度を更に低減することができる。また今回の実施例では実施しなかったが、処理水に対して脱窒工程を実施すれば、アンモニア態窒素濃度を容易に1ppm以下に低減することができる。 The oil concentration of the obtained treated water can be further reduced by further treating it with, for example, activated carbon. Further, although it was not carried out in this example, if a denitrification process is carried out on the treated water, the ammonia nitrogen concentration can be easily reduced to 1 ppm or less.
(実施例2)
実施例1とは異なる石油掘削サイトで産出された随伴水を原水とした。そして、実施例1と同様に、1.凝集沈殿処理工程、及び2.蒸発濃縮処理工程、を実施した。
以上の操作における係る随伴水、凝縮水および濃縮水のpH値、アンモニア態窒素濃度、COD値、油分濃度の値を表3に示す。
(Example 2)
Produced water produced at an oil drilling site different from that in Example 1 was used as raw water. As in Example 1, 1. coagulation and precipitation treatment step, and 2. An evaporation concentration treatment step was carried out.
Table 3 shows the pH value, ammonia nitrogen concentration, COD value, and oil concentration values of the produced water, condensed water, and concentrated water in the above operations.
なお、随伴水に対して凝集沈殿処理工程は実施せずに、蒸発濃縮処理工程を実施すると、蒸発濃縮装置の配管等が閉塞するなどし、すぐに装置が故障してしまう。 Note that if the evaporative concentration treatment step is performed without performing the coagulation-sedimentation treatment step on the produced water, the piping of the evaporation concentration device will become clogged, and the device will soon break down.
1´:有機成分除去工程
1:凝集沈殿処理工程
2:蒸発濃縮処理工程
3:油分除去工程
4:脱窒工程
10:随伴水
11:清澄水
12:沈殿物
13:無機凝集剤
14:高分子凝集剤
15:凝集槽
16:固液分離装置
17:生物処理槽(SBR槽)
20:蒸発濃縮原水槽
21:凝縮水
22:濃縮水
23:蒸発濃縮装置
31:処理水
32:油分分離装置
33:油分分離膜
34:油分
1': Organic component removal process 1: Coagulation precipitation process 2: Evaporation concentration process 3: Oil removal process 4: Denitrification process 10: Associated water 11: Clear water 12: Precipitate 13: Inorganic flocculant 14: Polymer Coagulant 15: Coagulation tank 16: Solid-liquid separator 17: Biological treatment tank (SBR tank)
20: Evaporation concentration raw water tank 21: Condensed water 22: Concentrated water 23: Evaporation concentration device 31: Treated water 32: Oil separation device 33: Oil separation membrane 34: Oil content
Claims (8)
前記石油掘削随伴水に凝集沈殿処理を行い、清澄水及び沈殿物に分離する工程と、
前記清澄水に蒸発濃縮処理を行い、凝縮水及び濃縮水を得る工程と
を有する、石油掘削随伴水の処理方法。 A method for treating oil drilling water having an oil concentration of 100 to 5000 ppm ,
A step of subjecting the oil drilling produced water to a coagulation-sedimentation treatment and separating it into clear water and precipitate;
A method for treating water produced by oil drilling, comprising the step of subjecting the clear water to evaporation concentration treatment to obtain condensed water and concentrated water.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020052549A JP7450215B2 (en) | 2020-03-24 | 2020-03-24 | Treatment method for water produced by oil drilling |
CN202180023277.4A CN115298142A (en) | 2020-03-24 | 2021-02-19 | Treatment method of oil exploitation produced water |
PCT/JP2021/006349 WO2021192763A1 (en) | 2020-03-24 | 2021-02-19 | Treatment method for petroleum drilling produced water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020052549A JP7450215B2 (en) | 2020-03-24 | 2020-03-24 | Treatment method for water produced by oil drilling |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021152257A JP2021152257A (en) | 2021-09-30 |
JP7450215B2 true JP7450215B2 (en) | 2024-03-15 |
Family
ID=77887323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020052549A Active JP7450215B2 (en) | 2020-03-24 | 2020-03-24 | Treatment method for water produced by oil drilling |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7450215B2 (en) |
CN (1) | CN115298142A (en) |
WO (1) | WO2021192763A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005329380A (en) | 2004-05-17 | 2005-12-02 | Takahashi Kinzoku Kk | Evaporation concentrator for aqueous waste liquid and aqueous cleaning device using the same |
CN201151689Y (en) | 2007-12-28 | 2008-11-19 | 福建师范大学 | Mobile set device for electrochemical treatment system of oil field wastewater |
WO2009001676A1 (en) | 2007-06-22 | 2008-12-31 | Hitachi, Ltd. | Oil-contaminated water reutilization system |
CN201963229U (en) | 2011-03-14 | 2011-09-07 | 廊坊富邦德石油机械制造有限公司 | Low-temperature moving type slurry purification system |
JP2013071057A (en) | 2011-09-28 | 2013-04-22 | Toshiba Corp | Water treatment equipment |
JP2015039664A (en) | 2013-08-22 | 2015-03-02 | 株式会社日立製作所 | Water treatment method and organic substance flocculant |
WO2017183236A1 (en) | 2016-04-21 | 2017-10-26 | 水ing株式会社 | Waste liquid treatment method and apparatus for treating oil-containing waste liquid |
JP2018126680A (en) | 2017-02-07 | 2018-08-16 | 株式会社ササクラ | Evaporative concentration apparatus |
US20180272246A1 (en) | 2017-03-24 | 2018-09-27 | Fred Polnisch | Production Water Desalinization Via a Reciprocal Heat Transfer and Recovery |
-
2020
- 2020-03-24 JP JP2020052549A patent/JP7450215B2/en active Active
-
2021
- 2021-02-19 CN CN202180023277.4A patent/CN115298142A/en active Pending
- 2021-02-19 WO PCT/JP2021/006349 patent/WO2021192763A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005329380A (en) | 2004-05-17 | 2005-12-02 | Takahashi Kinzoku Kk | Evaporation concentrator for aqueous waste liquid and aqueous cleaning device using the same |
WO2009001676A1 (en) | 2007-06-22 | 2008-12-31 | Hitachi, Ltd. | Oil-contaminated water reutilization system |
CN201151689Y (en) | 2007-12-28 | 2008-11-19 | 福建师范大学 | Mobile set device for electrochemical treatment system of oil field wastewater |
CN201963229U (en) | 2011-03-14 | 2011-09-07 | 廊坊富邦德石油机械制造有限公司 | Low-temperature moving type slurry purification system |
JP2013071057A (en) | 2011-09-28 | 2013-04-22 | Toshiba Corp | Water treatment equipment |
JP2015039664A (en) | 2013-08-22 | 2015-03-02 | 株式会社日立製作所 | Water treatment method and organic substance flocculant |
WO2017183236A1 (en) | 2016-04-21 | 2017-10-26 | 水ing株式会社 | Waste liquid treatment method and apparatus for treating oil-containing waste liquid |
JP2018126680A (en) | 2017-02-07 | 2018-08-16 | 株式会社ササクラ | Evaporative concentration apparatus |
US20180272246A1 (en) | 2017-03-24 | 2018-09-27 | Fred Polnisch | Production Water Desalinization Via a Reciprocal Heat Transfer and Recovery |
Also Published As
Publication number | Publication date |
---|---|
WO2021192763A1 (en) | 2021-09-30 |
JP2021152257A (en) | 2021-09-30 |
CN115298142A (en) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Samaei et al. | Performance evaluation of reverse osmosis process in the post-treatment of mining wastewaters: Case study of Costerfield mining operations, Victoria, Australia | |
US9758394B2 (en) | Treatment of contaminated water from gas wells | |
US8734650B2 (en) | Method for recovering gas from shale reservoirs and purifying resulting produced water to allow the produced water to be used as drilling or frac water, or discharged to the environment | |
Farahani et al. | Recovery of cooling tower blowdown water for reuse: The investigation of different types of pretreatment prior nanofiltration and reverse osmosis | |
JP2009509737A (en) | Water treatment method comprising a high-speed sedimentation step followed by a direct filtration step with a microfiltration membrane or ultrafiltration membrane, and corresponding apparatus | |
CN109250855B (en) | Treatment method of leachate of hazardous waste landfill | |
Abdel-Fatah et al. | Water treatment and desalination | |
WO2017207527A1 (en) | Process for the treatment of production waters associated with crude oil extraction | |
US10358360B2 (en) | Purification of oil-polluted water and device suitable therefor | |
Krug et al. | Preliminary Assessment of a Microfiltraiton/Reverse Osmosis Process for the Treatment of Landfill Leachate | |
Azmi et al. | The Effect of Operating Parameters on Ultrafiltration and Reverse Osmosis of Palm Oil Mill Effluent for Reclamation and Reuse of Water. | |
US12084369B2 (en) | Wastewater treatment equipment and treatment method thereof | |
US9637404B2 (en) | Method for treating organic laden produced water | |
JP2008264723A (en) | Method and apparatus for coagulating impurity | |
JP7450215B2 (en) | Treatment method for water produced by oil drilling | |
JP2003093807A (en) | Apparatus for circularly using vehicle washing wastewater | |
JP2003093802A (en) | Wastewater treatment apparatus and operation method therefor | |
CN107381850A (en) | A kind of system and method for handling shale refinery(waste) water | |
CN105246835A (en) | Operation method for water treatment device | |
CN104961287A (en) | Oily sewage zero-discharge treatment method and system | |
JP2009056346A (en) | Polluted muddy water treatment system | |
US20130075339A1 (en) | Method for clarifying industrial wastewater | |
CN114835281B (en) | Shale gas flowback fluid treatment method and shale gas flowback fluid treatment device | |
Alexandrov et al. | Study of the processes of Physico-chemical treatment of landfill leachate | |
EP3464199B1 (en) | Process for the treatment of production waters associated with crude oil extraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230912 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7450215 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |