JP2005324281A - Blasting abrasives - Google Patents

Blasting abrasives Download PDF

Info

Publication number
JP2005324281A
JP2005324281A JP2004144242A JP2004144242A JP2005324281A JP 2005324281 A JP2005324281 A JP 2005324281A JP 2004144242 A JP2004144242 A JP 2004144242A JP 2004144242 A JP2004144242 A JP 2004144242A JP 2005324281 A JP2005324281 A JP 2005324281A
Authority
JP
Japan
Prior art keywords
alloy
shape memory
blasting
abrasive
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004144242A
Other languages
Japanese (ja)
Inventor
Masanori Hirai
正典 平井
Naoto Kayama
直人 香山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2004144242A priority Critical patent/JP2005324281A/en
Publication of JP2005324281A publication Critical patent/JP2005324281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide abrasives having a long product life because of high repeated use frequency without damaging the surface of a polished material, making the most of polymer-like elastic property in spite of a single metallic material using superelastic property. <P>SOLUTION: In the blasting abrasives formed of powder of a shape memory alloy member with a primary average grain diameter of 0.05-3 mm exhibiting martensitic transformation, a member used as the shape memory alloy member is to exhibit a shape memory effect through solution annealing and quenching after crushing at least one alloy selected from CuAlNi alloy, CuZnAl alloy, FeMnSi alloy, CuAlMn alloy, CuAlNiTi alloy and CuAlNiMn alloy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はブラスト用研磨材に係り、詳しくは金属部品や樹脂部品等の研磨やばり取り、強固な塗膜剥離に使用されるものであり、優れた研磨性能を有するとともに被研磨材の表面を疵付けることなく、かつ繰り返し使用頻度が高いため製品寿命が長い研磨材に関する。   The present invention relates to an abrasive for blasting, and more specifically, is used for polishing and deburring metal parts and resin parts, and for strong coating film peeling, and has excellent polishing performance and the surface of the material to be polished. The present invention relates to an abrasive that has a long product life because it is frequently used without being brazed.

近年、諸部品に対して高機能、高精密、高品質化の要求が高くなっており、ブラスト研磨やバリ取り分野においても部品の表面を疵付けることなく研磨やバリ取りが可能な研磨材が必要とされている。   In recent years, there has been a growing demand for high performance, high precision, and high quality for various parts. In the fields of blast polishing and deburring, there are abrasives that can be polished and deburred without scratching the surface of the parts. is necessary.

これらの要求を満たす製品として、軟質な高分子核体中に金属、ガラス、ダイヤモンド、セラミックス等の無機質粉末を分散させた、平均一次粒径が0.1~3mm程度の研磨材が提案されている。これらの複合粒子は、軟質な高分子核体が被研磨材に衝突した際に弾性変形して衝突時の衝撃を緩和することによって表面を疵付けることがなく、複合粒子表面の硬質な無機粉末が研磨を行うという複合効果を有する。   As a product that satisfies these requirements, an abrasive having an average primary particle size of about 0.1 to 3 mm in which inorganic powders such as metal, glass, diamond, and ceramics are dispersed in a soft polymer core has been proposed. Yes. These composite particles are hard inorganic powders on the surface of the composite particles without causing the surface to be scratched by elastically deforming and softening the impact when the soft polymer core collides with the material to be polished. Has the combined effect of polishing.

例えば、特許文献1では、バリ取りを目的としたブラスト材として、金属又は金属酸化物粒子を樹脂100重量部に対して10〜200重量部含有した投射材が提案されているが、金属粒子としてステンレス粒子が挙げられている。また、特許文献2では、ゼラチン粒子表面に3,000~10,000メッシュのダイヤモンド、炭化珪素、アルミナのいずれかまたは全てを水で粘着させた研磨材が提案されている。
特開2000−127045号公報 特許第3376334号
For example, Patent Document 1 proposes a projection material containing 10 to 200 parts by weight of metal or metal oxide particles with respect to 100 parts by weight of resin as a blasting material for the purpose of deburring. Stainless particles are mentioned. Patent Document 2 proposes an abrasive in which any or all of 3,000 to 10,000 mesh diamond, silicon carbide, and alumina are adhered to the surface of gelatin particles with water.
Japanese Patent Laid-Open No. 2000-127045 Patent No. 3376334

しかし、複合粒子ではブラスト時の衝撃により粒子表面の無機粉末が高分子核体から分離し、研磨効率が低下すると同時に研磨材の寿命が短くなるという欠点があった。このために分離した無機粒子を高分子核体に再接着処理する方法がとられているが、この場合、研磨された粒子が研磨材に混入して研磨材の性能が低下し、研磨された粒子を除去しようとすればコストの上昇が避けられない。   However, the composite particles have a drawback that the inorganic powder on the particle surface is separated from the polymer core due to impact during blasting, and the polishing efficiency is lowered and at the same time the life of the abrasive is shortened. For this purpose, a method of re-adhering the separated inorganic particles to the polymer core is taken, but in this case, the polished particles are mixed in the abrasive and the performance of the abrasive is lowered and polished. An increase in cost is inevitable if particles are to be removed.

本発明は形状記憶合金が有する超弾性の性質を使って、単一の金属材料でも高分子並みの弾性特性を有するため、被研磨材表面を疵付けることなく、かつ繰り返し使用頻度が高いため製品寿命が長い研磨材を提供するものである。   The present invention uses the super-elastic property of shape memory alloy, and even a single metal material has the same elastic properties as a polymer, so the surface of the material to be polished is not scratched and the product is frequently used repeatedly. An abrasive having a long life is provided.

本願請求項記載の発明は、マルテンサイト変態を発現させた一次平均粒子径0.05~3mmの形状記憶合金製部材の粉末であるブラスト用研磨材にある。上記形状記憶合金製部材としては、CuAlNi合金、CuZnAl合金、FeMnSi合金、CuAlMn合金、CuAlNiTi合金、そしてCuAlNiMn合金から選ばれた少なくとも一種の合金を粉砕した後に加熱して溶体化処理し、焼入れを行って形状記憶効果を発現させたものであり、また上記形状記憶合金製部材としては、CuAlNi合金、CuZnAl合金、FeMnSi合金、CuAlMn合金、CuAlNiTi合金、そしてCuAlNiMn合金から選ばれた少なくとも一種の合金をアトマイズ法により溶湯から直接粉末を作製し、これを加熱して溶体化処理して焼入れを行って、形状記憶効果を発現させるものを含む。   The invention described in the claims of the present application lies in an abrasive for blasting, which is a powder of a shape memory alloy member having a primary average particle diameter of 0.05 to 3 mm in which martensitic transformation is expressed. The shape memory alloy member is made of CuAlNi alloy, CuZnAl alloy, FeMnSi alloy, CuAlMn alloy, CuAlNiTi alloy, and CuAlNiMn alloy, and then pulverized and heated for solution treatment and quenching. In addition, the shape memory alloy member is made by atomizing at least one alloy selected from CuAlNi alloy, CuZnAl alloy, FeMnSi alloy, CuAlMn alloy, CuAlNiTi alloy, and CuAlNiMn alloy. In this method, the powder is directly produced from the molten metal by the method, and this is heated to form a solution, followed by quenching to develop a shape memory effect.

ブラスト用研磨材として使用する形状記憶合金は、マルテンサイト変態および逆変態に付随して起こる顕著な形状記憶動作を示し、また逆変態の母相状態では良好な超弾性を示す。超弾性は伸びのひずみ量が数%に達し、弾性係数も高分子と同程度である。このため、形状記憶合金を用いて作製したブラスト用研磨材を、超弾性状態で使用することにより、被研磨物表面を疵付けることが少ないという特長を持ち、更には上記研磨材が被研磨材表面に衝突したときには研磨材の衝突部分が加工硬化するため研磨効果が発揮される。このため形状記憶合金粉末は、単一材料であるにもかかわらず弾性性能と研磨性能を兼ね備えた研磨材ということができる。   Shape memory alloys used as abrasives for blasting exhibit remarkable shape memory operations that occur accompanying martensitic transformation and reverse transformation, and also exhibit good superelasticity in the parent phase state of reverse transformation. Superelasticity has an elongation strain amount of several percent, and the elastic modulus is about the same as that of a polymer. For this reason, the use of a blasting abrasive prepared using a shape memory alloy in a superelastic state has the advantage that the surface of the object to be polished is less likely to be scratched. When colliding with the surface, the impacted portion is hardened because the impacted portion of the abrasive is work hardened. Therefore, it can be said that the shape memory alloy powder is an abrasive having both elastic performance and polishing performance despite being a single material.

本発明のブラスト用研磨剤として使用する形状記憶合金の材質には、TiNi系合金、Cu系合金、Fe系合金等があるが、このうち経済的に粉末を作製できる材質は、Cu系合金およびFe系合金である。Cu系合金にはCuAlNi合金やCuZnAl合金、CuAlMn合金、CuAlNiTi合金、そしてCuAlNiMn合金があり、Fe系合金にはFeMnSi合金がよく知られている。   Examples of the material of the shape memory alloy used as the abrasive for blasting of the present invention include a TiNi-based alloy, a Cu-based alloy, and an Fe-based alloy. Among these, materials that can produce powder economically include Cu-based alloys and Fe-based alloy. Cu-based alloys include CuAlNi alloys, CuZnAl alloys, CuAlMn alloys, CuAlNiTi alloys, and CuAlNiMn alloys. Fe-based alloys are well known as FeMnSi alloys.

ここで合金の組成は、マルテンサイト変態温度に大きな影響を与える。研磨材が超弾性を示すためには、マルテンサイト変態温度が研磨材の使用温度以下になるよう成分を設定する必要があるが、上記合金系の組成と変態温度の関係は、学会や文献等で報告されているのでこれを利用することができる。例えば、宮崎、大塚等の研究によると、CuAlNi合金ではNiを4重量%に固定すると、マルテンサイト変態温度(Ms点)とAlの組成は下記の式で表される。   Here, the composition of the alloy greatly affects the martensitic transformation temperature. In order for the abrasive to show superelasticity, it is necessary to set the components so that the martensite transformation temperature is equal to or lower than the operating temperature of the abrasive. The relationship between the composition of the above alloy system and the transformation temperature is You can use this because it is reported in For example, according to research by Miyazaki, Otsuka, etc., when Ni is fixed at 4% by weight in a CuAlNi alloy, the martensitic transformation temperature (Ms point) and the composition of Al are expressed by the following equations.

Y=−126X+1759 (−100<Y<100)
ここで、Yはマルテンサイト変態温度(Ms点)、XはAlの組成である。また、Niを4重量%に固定できない場合でも、あらかじめ合金組成に対するマルテンサイト変態温度の関係を調べておけば、それを活用することができる。
Y = −126X + 1759 (−100 <Y <100)
Here, Y is the martensitic transformation temperature (Ms point), and X is the composition of Al. Even when Ni cannot be fixed at 4% by weight, it can be utilized if the relationship between the martensite transformation temperature and the alloy composition is examined in advance.

形状記憶合金粉末は、材料を溶解して作製したインゴットを粉砕した粉末や、材料の溶湯を噴霧し急冷微細化するアトマイズ法により溶湯から直接作製した粉末を加熱して溶体化処理後、例えば水中に焼入れすることによってマルテンサイト変態を発現させて形状記憶性能を与えることができる。上記アトマイズ法の具体的な方法としては、材料を溶解した後に細孔から落下させ、この流れに対して高圧の水ジェットを噴射して得る水アトマイズ法、溶湯を真空中に噴出させる真空アトマイズ法、細孔から落下させ溶融材料を高圧ガス中に噴出させるガスアトマイズ法等がある。
アトマイズ法は粉砕工程を経ずに粉末を作製することがでるために製造コストを低減することができるが、合金元素の種類や組成によっては溶湯の粘性が上昇して、粉末を作製することが困難になることがある。このような場合、粉砕法により粉末を作製することができる。
Shape memory alloy powder is a powder obtained by pulverizing an ingot produced by melting a material, or a powder produced directly from a molten metal by atomizing method by spraying a molten metal and quenching and refining, for example, in water By quenching, the martensitic transformation can be developed to give shape memory performance. Specific methods of the atomizing method include a water atomizing method in which a material is dissolved and then dropped from the pores, and a high-pressure water jet is jetted against this flow, and a vacuum atomizing method in which the molten metal is jetted into a vacuum There is a gas atomizing method in which the molten material is dropped from the pores and ejected into the high-pressure gas.
The atomization method can produce powder without going through the pulverization process, so the manufacturing cost can be reduced. However, depending on the type and composition of the alloy element, the viscosity of the molten metal can be increased to produce the powder. It can be difficult. In such a case, the powder can be produced by a pulverization method.

形状記憶合金粉末の平均一次粒径は0.05~3mmが適当であり、0.05mmより小さくなると研磨効果が得られなくなり、一方3mmを超えると被研磨材に対する衝突エネルギーが大きくなるため、表面を疵付ける恐れがある。   The average primary particle size of the shape memory alloy powder is suitably 0.05 to 3 mm, and if it is smaller than 0.05 mm, the polishing effect cannot be obtained, while if it exceeds 3 mm, the collision energy against the material to be polished increases. There is a risk that

実施例1〜2
表1に実施例と比較例に用いた研磨材の材質、粒径およびマルテンサイト変態温度(Ms点)を示す。実施例では、99.9%純度の電解銅およびニッケル、99.99%純度のアルミニウムを用いて、高周波溶解炉にてCu−14重量%Al−4重量%Niからなる合金インゴットを作製した。このインゴットからフライス盤にてチップを削り出し、これを振動ミルにて粉砕し、平均一次粒径が0.05〜0.1mmおよび0.1〜0.5mmの粉末を作製した。
Examples 1-2
Table 1 shows the material, particle size, and martensitic transformation temperature (Ms point) of the abrasive used in the examples and comparative examples. In Examples, an alloy ingot made of Cu-14 wt% Al-4 wt% Ni was produced in a high frequency melting furnace using 99.9% purity electrolytic copper and nickel and 99.99% purity aluminum. Chips were cut out from the ingot with a milling machine and pulverized with a vibration mill to produce powders having average primary particle sizes of 0.05 to 0.1 mm and 0.1 to 0.5 mm.

次に、この粉末を850℃、5分間加熱して溶体化処理し、約10℃の冷水中に焼入れてマルテンサイト変態を発現させた。実際にマルテンサイト変態が発現したかどうかを確認するために、示差走査熱量測定(DSC測定)により変態温度を測定した。上記の式によると、Cu−14重量%Al−4重量%Niの変態温度は−5℃であるのに対して、実測値はそれよりも若干低い。しかし、ブラスト試験温度(23℃)では、変態温度は十分に低く超弾性状態にあることが明らかである。   Next, this powder was heated at 850 ° C. for 5 minutes for solution treatment, and quenched in cold water at about 10 ° C. to develop martensitic transformation. In order to confirm whether or not martensitic transformation actually occurred, the transformation temperature was measured by differential scanning calorimetry (DSC measurement). According to the above formula, the transformation temperature of Cu-14 wt% Al-4 wt% Ni is −5 ° C., whereas the measured value is slightly lower than that. However, it is clear that at the blast test temperature (23 ° C.), the transformation temperature is sufficiently low to be in a superelastic state.

実際に本合金から粉砕前に曲げ試験片を切り出し、上記溶体化処理・焼入れにてマルテンサイト変態を発現させたものと、処理を施していないものについて、常温状態(23℃)で曲げ試験を実施した。その結果、マルテンサイト変態を発現させたものは、曲げひずみ量が5%を超えても弾性変形を維持し試験片表面には、曲げ応力によって誘起されたマルテンサイト変態の模様が確認された。これに対して、処理を施さなかったものについては、曲げひずみ量が1%で塑性変形が発生しマルテンサイト変態も確認できなかった。   Bending test pieces were actually cut out from this alloy before pulverization, and the bending test was performed at room temperature (23 ° C) for the above-mentioned solution treatment and quenching that exhibited martensitic transformation and those that had not been treated. Carried out. As a result, the material exhibiting martensitic transformation maintained elastic deformation even when the amount of bending strain exceeded 5%, and a pattern of martensitic transformation induced by bending stress was confirmed on the surface of the test piece. On the other hand, in the case where the treatment was not performed, plastic deformation occurred at a bending strain amount of 1%, and no martensitic transformation could be confirmed.

比較例1〜4
比較例1は実施例1と同じ材質、平均一次粒径でマルテンサイト変態処理を施していないもの、比較例2〜3は鉄製の被研磨材表面を疵付け難く、研磨力が優れていると考えられる市販の還元鉄粉およびスチールショットを用いた。比較例4は200メッシュのアトマイズ鉄粉を20体積%の割合でポリプロピレン樹脂に分散させたものを用いた。
Comparative Examples 1-4
Comparative Example 1 is the same material as in Example 1 and has an average primary particle size that has not been subjected to martensite transformation. Comparative Examples 2 to 3 are difficult to braze the surface of an iron material to be polished and have excellent polishing power. Possible commercial reduced iron powders and steel shots were used. In Comparative Example 4, 200 mesh atomized iron powder dispersed in polypropylene resin at a ratio of 20% by volume was used.

Figure 2005324281
Figure 2005324281

表1の研磨材を用いて実施した試験結果を表2に示す。評価はSUS304試験板、S50C試験板およびSKD試験板にブラストを実施し、試験板の中心線平均表面粗さRaを測定した。各試験板はペーパー仕上げにより予め中心線平均表面粗さRaを0.1μmに仕上げたものを用いた。ブラスト条件は吸引式エアブラストで投射圧力0.4Mpa、投射距離10cm、投射時間は1分とした。次に、S50C試験板およびSKD試験板に熱処理を施し、試験板表面に強固な黒色酸化皮膜を発生させた。この試験板に対して同一条件にてブラスト処理を行い、研磨力の比較を行った。表2に結果を示す。   Table 2 shows the results of tests conducted using the abrasives in Table 1. For evaluation, SUS304 test plate, S50C test plate and SKD test plate were blasted, and the center line average surface roughness Ra of the test plate was measured. Each test plate was prepared by finishing the centerline average surface roughness Ra to 0.1 μm in advance by paper finishing. The blasting conditions were a suction type air blast, a projection pressure of 0.4 Mpa, a projection distance of 10 cm, and a projection time of 1 minute. Next, the S50C test plate and the SKD test plate were heat treated to generate a strong black oxide film on the test plate surface. The test plate was blasted under the same conditions, and the polishing power was compared. Table 2 shows the results.

Figure 2005324281
Figure 2005324281

その結果、実施例は比較例1に対して表面粗さは小さく研磨力は同等であり、また比較例2〜4と比較すると、実施例1は表面粗さが最も小さくかつ研磨力は優れている。実施例2は表面粗さがほぼ同等で研磨力が優れていることを示している。   As a result, the surface roughness of the example is small and the polishing force is equivalent to that of the comparative example 1, and the surface roughness of the example 1 is the smallest and the polishing force is excellent as compared with the comparative examples 2 to 4. Yes. Example 2 shows that the surface roughness is almost the same and the polishing power is excellent.

本発明に係るブラスト用研磨材は、金属部品や樹脂部品等の研磨やばり取り、強固な塗膜剥離に好適に使用できるものである。
The abrasive for blasting according to the present invention can be suitably used for polishing and deburring metal parts, resin parts, etc., and for strong coating film peeling.

Claims (3)

マルテンサイト変態を発現させた一次平均粒子径0.05~3mmの形状記憶合金製部材の粉末であることを特徴とするブラスト用研磨材。   An abrasive for blasting, which is a powder of a shape memory alloy member having a primary average particle diameter of 0.05 to 3 mm in which martensitic transformation is manifested. 上記形状記憶合金製部材として、CuAlNi合金、CuZnAl合金、FeMnSi合金、CuAlMn合金、CuAlNiTi合金、そしてCuAlNiMn合金から選ばれた少なくとも一種の合金を粉砕した後に加熱して溶体化処理し、焼入れを行って形状記憶効果を発現させたものである請求項1記載のブラスト用研磨材。   At least one kind of alloy selected from CuAlNi alloy, CuZnAl alloy, FeMnSi alloy, CuAlMn alloy, CuAlNiTi alloy, and CuAlNiMn alloy is pulverized as the above-mentioned shape memory alloy member, and then heated, solution treated, and quenched. The abrasive for blasting according to claim 1, which exhibits a shape memory effect. 上記形状記憶合金製部材として、CuAlNi合金、CuZnAl合金、FeMnSi合金、CuAlMn合金、CuAlNiTi合金、そしてCuAlNiMn合金から選ばれた少なくとも一種の合金をアトマイズ法により溶湯から直接粉末を作製し、これを加熱して溶体化処理し、焼入れを行って、形状記憶効果を発現させる請求項1記載のブラスト用研磨材。
As the shape memory alloy member, at least one alloy selected from a CuAlNi alloy, a CuZnAl alloy, a FeMnSi alloy, a CuAlMn alloy, a CuAlNiTi alloy, and a CuAlNiMn alloy is directly powdered from a molten metal by an atomizing method, and this is heated. The blasting abrasive according to claim 1, wherein the blasting treatment is performed by solution treatment and quenching to develop a shape memory effect.
JP2004144242A 2004-05-14 2004-05-14 Blasting abrasives Pending JP2005324281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004144242A JP2005324281A (en) 2004-05-14 2004-05-14 Blasting abrasives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004144242A JP2005324281A (en) 2004-05-14 2004-05-14 Blasting abrasives

Publications (1)

Publication Number Publication Date
JP2005324281A true JP2005324281A (en) 2005-11-24

Family

ID=35471029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004144242A Pending JP2005324281A (en) 2004-05-14 2004-05-14 Blasting abrasives

Country Status (1)

Country Link
JP (1) JP2005324281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052287A1 (en) * 2009-10-30 2011-05-05 新東工業株式会社 Zinc-based alloy shots
CN102418057A (en) * 2011-11-25 2012-04-18 河北工业大学 Heat treatment method of porous copper-aluminum-manganese shape memory alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052287A1 (en) * 2009-10-30 2011-05-05 新東工業株式会社 Zinc-based alloy shots
CN102574274A (en) * 2009-10-30 2012-07-11 新东工业株式会社 Zinc-based alloy shots
JP5007776B2 (en) * 2009-10-30 2012-08-22 新東工業株式会社 Zinc-based alloy shot
KR101237904B1 (en) 2009-10-30 2013-02-27 신토고교 가부시키가이샤 Zinc-based alloy shots
CN102574274B (en) * 2009-10-30 2015-06-17 新东工业株式会社 Zinc-based alloy shots
CN102418057A (en) * 2011-11-25 2012-04-18 河北工业大学 Heat treatment method of porous copper-aluminum-manganese shape memory alloy

Similar Documents

Publication Publication Date Title
JP3952252B2 (en) Powder for thermal spraying and high-speed flame spraying method using the same
KR101237904B1 (en) Zinc-based alloy shots
CN105324500B (en) Disk aluminium alloy plate, disk aluminium alloy base substrate and disk aluminum alloy substrate
CN102453910A (en) Roller surface laser strengthened coating powder material of roller type crusher
JP6684139B2 (en) Aluminum alloy blanks for magnetic disks and aluminum alloy substrates for magnetic disks
JP2016216802A (en) Hard powder high in productivity and corrosion resistance with inexpensive price and projection material for shot-peening and iron-based abrasion resistant sintered alloy having hard particle dispersed
CN109605059B (en) Low-temperature efficient processing method of amorphous alloy
JP4245035B2 (en) Powder for grinding and grinding method
JP2020114945A (en) Aluminum alloy sheet for magnetic disk, aluminum alloy blank for magnetic disk, and aluminum alloy substrate for magnetic disk
JP6808834B2 (en) Electrode coating method for resistance welding and electrodes for resistance welding
JP4252883B2 (en) Method for producing high carbon ferrochrome-crushed slag and abrasive
JP2005324281A (en) Blasting abrasives
WO2017130476A1 (en) Cast steel projection material
JP5565826B2 (en) Abrasive for blasting and method for producing the same
JP6213694B2 (en) Projection material
Liang et al. Physical-metallurgical properties and micro-milling machinability evaluation of high entropy alloy FeCoNiCrAlx
JP2002004015A (en) Iron-based amorphous spherical grain
JP2926397B2 (en) Impact-resistant iron-based alloy spherical particles
JP2009263756A (en) High hardness shot material
JP2005076083A (en) Method for manufacturing iron-based amorphous spherical particle, and iron-based amorphous spherical type particle thereof
JP2013000814A (en) Zinc-base alloy shot
JP2009102727A (en) Micro-alloyed high-strength zinc alloy
JP2015155145A (en) Zinc-base alloy shot
JPH0647675A (en) Shot blast particle
CN113718093B (en) High-speed impact large-area preparation of amorphous/nanocrystalline composite coating and preparation process thereof