JP2005322755A - 誤差検出方法、位置合わせ方法、露光方法 - Google Patents

誤差検出方法、位置合わせ方法、露光方法 Download PDF

Info

Publication number
JP2005322755A
JP2005322755A JP2004139100A JP2004139100A JP2005322755A JP 2005322755 A JP2005322755 A JP 2005322755A JP 2004139100 A JP2004139100 A JP 2004139100A JP 2004139100 A JP2004139100 A JP 2004139100A JP 2005322755 A JP2005322755 A JP 2005322755A
Authority
JP
Japan
Prior art keywords
mark
wafer
detection
alignment
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004139100A
Other languages
English (en)
Inventor
Masahiko Yasuda
雅彦 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004139100A priority Critical patent/JP2005322755A/ja
Publication of JP2005322755A publication Critical patent/JP2005322755A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】複数のマーク検出系相互間における、各マーク検出系の特性のみに起因する検出誤差を求める。
【解決手段】基板W2の静止座標系上での位置座標、及びマーク検出系24a、24bの検出基準点SXa,SXbの静止座標系上での位置座標を管理しつつ、基板上に形成されたマークとマーク検出系の検出基準点との位置関係を、第1マーク検出系24a及び第2マーク検出系24bそれぞれにより検出する。すなわち、マークの静止座標系上での位置座標、ひいては基板上でのマークの位置が各マーク検出系により検出されることとなる。従って、同一基板上に形成された同一マークの位置を比較することで、基板及びマークによる影響を受けない、マーク検出系の特性のみに起因する検出誤差を求めることが可能となる。
【選択図】 図2

Description

本発明は、誤差検出方法、位置合わせ方法、露光方法に係り、更に詳しくは、複数のマーク検出系相互間の検出誤差を検出する誤差検出方法、該誤差検出方法により検出された検出誤差を考慮して第1基板と第2基板とを所定の基準位置に位置合わせする位置合わせ方法、該位置合わせ方法を用いる露光方法に関する。
従来より、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程では、マスク又はレチクル(以下「レチクル」と総称する)に形成されたパターンを投影光学系を介してレジスト等が塗布されたウエハ又はガラスプレート等の基板(以下、「ウエハ」と総称する)上に転写する露光装置が用いられている。近年では、半導体素子の高集積化に伴い、ステップ・アンド・リピート方式の縮小投影露光装置(いわゆるステッパ)や、このステッパに改良を加えたステップ・アンド・スキャン方式の走査型投影露光装置(いわゆるスキャニング・ステッパ)等の逐次移動型の投影露光装置が主流となっている。
この種の露光装置では、XY駆動可能なステージ上に載置されたウエハに対する露光を行い、露光動作が終了すると、ウエハ交換、アライメントを行い、それから露光を行い、再びウエハ交換を行うというように大きく3つの動作が繰り返し行われていた。このため、ウエハ交換、アライメントにかかる時間(以下、適宜「オーバーヘッド時間」と呼ぶ)が、装置のスループットを低下させる原因となっていた。
最近では、このスループットの低下を抑制するため、アライメント検出系及び基板ステージをそれぞれ2台ずつ設けたダブルステージ(ツインステージ)タイプの露光装置が提案されている(例えば、特開平8−51069号公報等参照)。この種の露光装置では、一方の基板ステージ上のウエハの露光中に、他方の基板ステージ上でウエハ交換、アライメントを行うというシーケンスが採用されている。すなわち、2台の基板ステージを用いた同時並行処理によって、装置のスループットを向上しようとするのである。
しかしながら、アライメント検出系によりウエハ上のマークの位置検出を行う場合には、ウエハに形成されるマーク形状がウエハの製造プロセス毎に異なることやウエハの組成変化が生じること等により、各ウエハ間には検出誤差が生じることが分かっている。その上、上述のように1台の露光装置内に複数のアライメント検出系が搭載される場合には、アライメント検出系を構成する光学系に固有の収差が存在すること等により、たとえ同一のウエハ上に形成された同一マークの位置検出を行ったとしても、マークの位置検出に使用されるアライメント検出系毎に異なる検出結果(計測結果)を得ることとなる。
このため、同一の条件下(同一のプロセス)で製造された同一のロットのウエハのアライメント処理を行う場合であっても、それぞれのウエハのアライメント計測を行うアライメント検出系が異なれば、位置制御、重ね合わせ結果が異なることとなる。
すなわち、例えば2台のアライメント検出系が搭載された露光装置で、1ロットのウエハを2台のアライメント検出系で交互に計測した場合には、重ね合わせ結果が1枚置きに異なるため、露光精度の良不良が交互に表れることが推測される。
従って、複数のアライメント検出系相互間の検出誤差を予め正確に検出することができる方法が必要となる。
本発明は、かかる事情の下になされたもので、その第1の目的は、複数のマーク検出系相互間の検出誤差を精度良く検出することができる誤差検出方法を提供することにある。
本発明の第2の目的は、複数枚の基板を複数のマーク検出系を用いて連続処理するに当たり、いずれの基板をも精度良く所望の位置に位置合わせすることができる位置合わせ方法を提供することにある。
本発明の第3の目的は、露光精度を向上することが可能な露光方法を提供することにある。
請求項1に記載の発明は、複数のマーク検出系相互間の検出誤差を検出する誤差検出方法であって、基板(W1又はW2)上に形成された所定のマーク(SXn,SYn)を第1マーク検出系(24a)を用いて検出し、前記所定のマークに関する第1の位置情報を得る第1工程と;前記第1マーク検出系とは異なる第2マーク検出系(24b)を用いて前記所定のマークを検出し、前記所定のマークに関する第2の位置情報を得る第2工程と;前記第1の位置情報と前記第2の位置情報とに基づいて前記第1及び第2マーク検出系相互間の検出誤差を算出する第3工程と;を含む。
これによれば、第1工程で、基板上に形成された所定のマークを第1マーク検出系を用いて検出し、所定のマークに関する第1の位置情報を得、第2工程で、第2マーク検出系を用いて所定のマークを検出し、所定のマークに関する第2の位置情報を得る。この場合、第1の位置情報と第2の位置情報とは、同一基板上の同一マークを検出した結果得られるそのマークに関する位置情報であるから、マーク検出系相互間に検出誤差がなければ、同一の位置情報となる筈である。すなわち、第1の位置情報と第2の位置情報との差は、マーク検出系相互間の検出誤差に対応する。そこで、第3工程では、これを利用して、第1の位置情報と第2の位置情報とに基づいて第1及び第2マーク検出系相互間の検出誤差を算出することにより、同一基板上の同一マークを検出した際のマーク検出系相互間の検出誤差(アライメント誤差)を正確に求めることが可能となる。
請求項4に記載の発明に係る誤差検出方法は、基板保持部材(H2)上に保持された基板(W2)を前記基板保持部材とともに第1ステージ(WST1)上に搭載する工程と;前記基板保持部材上に存在する少なくとも1つの基準マーク(27A〜27D)と前記基板上の少なくとも1つの位置合わせマーク(SXn,SYn)とを第1マーク検出系(24a)を用いてそれぞれ検出し、該検出結果に基づいて前記検出対象の基準マークと前記検出対象の位置合わせマークとの相対位置関係を求める第1計測工程と;前記基板を前記基板保持部材とともに第2ステージ(WST2)上に搭載する工程と;前記検出対象の基準マークと前記検出対象の位置合わせマークとを前記第1マーク検出系とは異なる第2マーク検出系(24b)を用いてそれぞれ検出し、該検出結果に基づいて前記相対位置関係を求める第2計測工程と;前記第1計測工程と前記第2計測工程との計測結果に基づいて、前記第1マーク検出系と前記第2マーク検出系との相互間の検出誤差を算出する工程と;を含む。
これによれば、基板保持部材上に保持された基板を基板保持部材とともに第1ステージ上に搭載し、基板保持部材上の基準マークと基板上の位置合わせマークとを第1マーク検出系を用いてそれぞれ検出し、該検出結果に基づいて前記検出対象の基準マークと位置合わせマークとの相対位置関係(以下、「第1の相対位置情報」と呼ぶ)を求める。次いで、基板を基板保持部材とともに第2ステージ上に搭載し、上記検出対象の基準マークと上記検出対象の位置合わせマークとを第2マーク検出系を用いてそれぞれ検出し、該検出結果に基づいて検出対象の基準マークと位置合わせマークとの相対位置関係(以下、「第2の相対位置情報」と呼ぶ)を求める。そして、上で求めた第1、第2の相対位置情報に基づいて、第1マーク検出系と第2マーク検出系との相互間の検出誤差を算出する。
ここで、第1計測工程と第2計測工程とにおける検出対象である基準マーク及び位置合わせマークがともに同一のマークである限り、その検出対象である基準マークと位置合わせマークとの位置関係は不変である。従って、第1計測工程で計測される第1の相対位置情報と第2計測工程で計測される第2の相対位置情報との差は、マーク検出系相互間の検出誤差に対応する。そこで、第1、第2の相対位置情報とに基づいて第1及び第2マーク検出系相互間の検出誤差を算出することにより、マーク検出系相互間の検出誤差(アライメント誤差)を正確に求めることが可能となる。
本発明にかかる誤差検出方法によれば、複数のマーク検出系相互間の検出誤差を精度良く検出することができるという効果がある。
また、本発明にかかる位置合わせ方法によれば、複数枚の基板を複数のマーク検出系を用いて連続処理するに当たり、いずれの基板をも精度良く所望の位置に位置合わせすることができるという効果がある。
また、本発明に係る露光方法によれば、露光精度を向上することができるという効果がある。
以下、本発明の一実施形態を図1〜図9に基づいて説明する。図1には、本発明に係る誤差検出方法、位置合わせ方法及び露光方法の実施に好適な一実施形態の露光装置の概略構成が示されている。この露光装置10は、ステップ・アンド・スキャン方式の走査型露光装置、すなわちいわゆるスキャニング・ステッパである。
この露光装置10は、不図示の光源及び照明光学系IOPを含み、露光用照明光によりレチクルRを上方から照明する照明系、レチクルRを主として所定の走査方向(Y軸方向(図1における紙面直交方向))に駆動するレチクル駆動系、レチクルRの下方に配置された投影光学系PL、該投影光学系PLの下方に配置され、基板(第1基板)としてのウエハW1、基板(第2基板)としてのウエハW2をそれぞれ保持して独立して2次元面(XY面)上を移動する第1ステージとしてのウエハステージWST1、第2ステージとしてのウエハステージWST2を含むステージ装置20等を備えている。
前記光源としては、ここでは、ArFエキシマレーザ光源(出力波長193nm)、KrFエキシマレーザ光源(出力波長248nm)などの近紫外域のパルス光を出力するパルスレーザ光源が用いられている。なお、光源として、F2レーザ光源(出力波長157nm)その他の真空紫外域のパルス紫外光を出力するレーザ光源、又はEUV光を発するもの等を用いても良い。
光源は、そのパルス発光の繰り返し周波数(発振周波数)やパルスエネルギなどが、主制御装置90の管理下にある不図示のレーザ制御装置によって制御されるようになっている。
前記照明光学系IOPは、2次光源形成光学系、ビームスプリッタ、集光レンズ系、レチクルブラインド、及び結像レンズ系(いずれも図示省略)等から構成され、レチクルR上の矩形(あるいは円弧状)の照明領域IAR(図2参照)を均一な照度で照明する。照明光学系IOPとしては、例えば特開平9−320956号公報などに開示されるものと同様の構成のものが用いられている。
前記レチクル駆動系は、レチクルRを保持して図1に示されるレチクルベース盤32に沿ってXY2次元面内で移動可能なレチクルステージRSTと、このレチクルステージRSTを駆動する不図示のリニアモータ等を含むレチクル駆動部30と、レチクルステージRSTの位置を管理するレチクル干渉計システム36とを備えている。
レチクルステージRSTは、実際には、例えばエアベアリングを介してレチクルベース盤32上に浮上支持され、不図示のリニアモータによって、走査方向であるY軸方向に所定ストローク範囲で駆動されるレチクル粗動ステージと、該レチクル粗動ステージに対してX軸方向、Y軸方向及びθz方向(Z軸回りの回転方向)にボイスコイルモータ等により微少駆動可能なレチクル微動ステージとから構成される。このレチクル微動ステージ上に不図示の静電チャック又は真空チャックを介してレチクルRが吸着保持されている。
上述のように、レチクルステージRSTは、実際には、2つのステージから構成されるが、以下においては、便宜上、レチクルステージRSTは、レチクル駆動部30によりX軸、Y軸方向の微少駆動、θz方向の微少回転、及びY軸方向の走査駆動がなされる単一のステージであるものとして説明する。なお、レチクル駆動部30は、リニアモータ、ボイスコイルモータ等を駆動源とする機構であるが、図1では図示の便宜上から単なるブロックとして示されている。
レチクルステージRST上には、図2に示されるように、X軸方向の一側(+X側)の端部に、レチクルステージRSTと同じ素材(例えばセラミック等)から成る平行平板移動鏡34がY軸方向に延設されており、この移動鏡34のX軸方向の一側の面には鏡面加工により反射面が形成されている。この移動鏡34の反射面に向けて図1の干渉計システム36を構成する測長軸BI6Xで示される干渉計からの干渉計ビームが照射され、その干渉計ではその反射光を受光して基準面に対する相対変位を計測することにより、レチクルステージRSTの位置を計測している。ここで、この測長軸BI6Xを有する干渉計は、実際には独立に計測可能な2つの干渉計光軸を有しており、レチクルステージRSTのX軸方向の位置計測と、ヨーイング量の計測が可能となっている。この測長軸BI6Xを有する干渉計は、後述するウエハステージ側の測長軸BI1X(又はBI2X)を有する干渉計16(又は18)からのウエハステージWST1(又はWST2)のヨーイング情報やX位置情報に基づいてレチクルとウエハの相対回転(回転誤差)をキャンセルする方向にレチクルステージRSTを回転制御したり、X方向同期制御(位置合わせ)を行うために用いられる。
一方、レチクルステージRSTの走査方向(スキャン方向)であるY軸方向の一側(図1における紙面手前側)には、一対のコーナーキューブミラー35A,35Bが設置されている。そして、不図示の一対のダブルパス干渉計から、これらのコーナーキューブミラー35A,35Bに対して図2に測長軸BI7Y,BI8Yで示される干渉計ビームが照射される。これらの干渉計ビームは、レチクルベース盤32上に設けられた不図示の反射面にコーナーキューブミラー35A,35Bより戻され、そこで反射したそれぞれの反射光が同一光路を戻り、それぞれのダブルパス干渉計で受光され、それぞれのコーナーキューブミラー35A,35Bの基準位置(レファレンス位置で前記レチクルベース盤32上の反射面)からの相対変位が計測される。そして、これらのダブルパス干渉計の計測値がステージ制御系38に供給され、その平均値に基づいてレチクルステージRSTのY軸方向の位置が計測される。このY軸方向位置の情報は、後述するウエハ側の測長軸BI2Yを有する干渉計46(図3参照)の計測値に基づくレチクルステージRSTとウエハステージWST1又はWST2との相対位置の算出、及びこれに基づく走査露光時の走査方向(Y軸方向)のレチクルとウエハの同期制御に用いられる。
すなわち、本実施形態では、測長軸BI6Xで示される干渉計及び測長軸BI7Y,BI8Yで示される一対のダブルパス干渉計によってレチクル干渉計システム36が構成されている。
図1に戻り、前記投影光学系PLは、物体面側(レチクル側)と像面側(ウエハ側)の両方がテレセントリックで1/4(又は1/5)縮小倍率の縮小系が用いられている。このため、レチクルRに照明光学系IOPから照明光(紫外パルス光)が照射されると、レチクルR上に形成された回路パターンの部分倒立像が投影光学系PLの像面側に結像される。これにより、投影された回路パターンの部分倒立像は、投影光学系PLの結像面に配置されたウエハW上の複数ショット領域のうちの1つのショット領域表面のレジスト層に縮小転写される。
前記ステージ装置20は、ベース盤12上に不図示のエアベアリングを介して浮上支持され、X軸方向(図1における紙面内左右方向)及びY軸方向(図1における紙面直交方向)に独立して2次元移動可能な2つのウエハステージWST1、WST2と、これらのウエハステージWST1、WST2をそれぞれ駆動するステージ駆動系等を備えている。
ベース盤12上には、図3の平面図に示されるように、X軸方向に延びる一対のX軸リニアガイド(例えば、永久磁石を内蔵する磁極ユニットから成る)86、87がY軸方向に所定間隔を隔てて配置されている。これらのX軸リニアガイド86、87の上方には、当該各X軸リニアガイドに沿って移動可能な各2つのスライダ82、84及び83、85が不図示のエアベアリングをそれぞれ介して例えば数μm程度のクリアランスを介して浮上支持されている。上記合計4つのスライダ82、84、83、85は、X軸リニアガイド86又は87を上方及び側方から囲むような断面逆U字状の形状を有し、その内部に電機子コイルをそれぞれ内蔵している。すなわち、本実施形態では、電機子コイルをそれぞれ内蔵するスライダ(電機子ユニット)82、84とX軸リニアガイド86とによって、ムービングマグネット型のX軸リニアモータがそれぞれ構成され、同様にスライダ(電機子ユニット)83、85とX軸リニアガイド87とによって、ムービングマグネット型のX軸リニアモータがそれぞれ構成されている。以下においては、上記4つのX軸リニアモータのそれぞれを、それぞれの可動子を構成するスライダ82、84、83、85と同一の符号を用いて、適宜、X軸リニアモータ82、X軸リニアモータ84、X軸リニアモータ83、及びX軸リニアモータ85と呼ぶものとする。
上記4つのX軸リニアモータ(スライダ)82〜85の内の2つ、すなわちX軸リニアモータ82、83は、Y軸方向に延びるY軸リニアガイド(例えば、電機子コイルを内蔵する電機子ユニットから成る)80の長手方向の一端と他端にそれぞれ固定されている。また、残り2つのX軸リニアモータ84、85は、Y軸方向に延びる同様のY軸リニアガイド81の一端と他端に固定されている。従って、Y軸リニアガイド80、81は、各一対のX軸リニアモータ82,83、84,85によって、X軸に沿ってそれぞれ駆動されるようになっている。
ウエハステージWST1の底部には、永久磁石を有する磁極ユニット(図示省略)が設けられており、この磁極ユニットと一方のY軸リニアガイド80とによって、ウエハステージWST1をY軸方向に駆動するムービングマグネット型のY軸リニアモータが構成されている。また、ウエハステージWST2の底部には、永久磁石を有する磁極ユニット(図示省略)が設けられており、この磁極ユニットと他方のY軸リニアガイド81とによって、ウエハステージWST2をY軸方向に駆動するムービングマグネット型のY軸リニアモータが構成されている。以下においては、適宜、これらのY軸リニアモータを、それぞれの固定子を構成するリニアガイド80、81と同一の符号を用いて、Y軸リニアモータ80、Y軸リニアモータ81と呼ぶものとする。
本実施形態では、上述したX軸リニアモータ82、83及びY軸リニアモータ80によって、ウエハステージWST1をXY2次元駆動するステージ駆動系が構成され、X軸リニアモータ84、85及びY軸リニアモータ81によって、ウエハステージWST2をウエハステージWST1と独立にXY2次元駆動するステージ駆動系が構成されている。また、前記X軸リニアモータ82〜84及びY軸リニアモータ80,81のそれぞれは、図1に示されるステージ制御系38によって制御される。
前記ウエハステージWST1上には、図1及び図2等に示されるように、基板保持部材としてのウエハホルダH1が設けられている。このウエハホルダH1は、図4に示されるように、段付き円板状の形状を有しており、その上面に、同心円で径の異なる溝64が複数形成されている。これらの溝64には不図示の吸引孔が多数設けられており、これらの吸引孔を介して不図示のバキュームポンプの真空吸引力によりウエハW1がウエハホルダH1上に吸着保持されるようになっている。
また、ウエハステージWST1には、図4に示されるように、ウエハホルダH1の底部小径部が嵌合可能な丸穴72が形成されている。ウエハホルダH1は、この丸穴72にその底部小径部が嵌合した状態で、不図示の真空吸引機構による真空吸引力により、ウエハW1と同様に、ウエハステージWST1に固定されるようになっている。
前記丸穴72の内部の底面には、図4に示されるように、その中心部に円形のガイド穴74が上下方向に形成されている。このガイド穴74の内部には、該ガイド穴74に沿って上下動可能なホルダ支持部材76が挿入されており、このホルダ支持部材76は、不図示の駆動機構によって上下動可能に構成されている。
また、丸穴72の内部の底面上には、不図示の駆動機構により駆動される3本の上下動ピン(センターアップ)78が設けられている。これらの上下動ピン78は、ウエハホルダH1がウエハステージWST1上に吸着固定された状態では、それぞれの先端部が、それぞれの上下動ピン78に対向するウエハホルダH1部分にそれぞれ形成された不図示の丸孔をそれぞれ介してウエハホルダH1の上面側に出没可能になっている。従って、ウエハ交換時には、3本の上下動ピン78によってウエハW1を3点で支持し、あるいは上下動させたりすることができるようになっている。
また、ウエハステージWST1の上面には、基準マーク板FM1がウエハW1とほぼ同じ高さになるように設置されている。この基準マーク板FM1の表面には、図8に示されるように、所定の位置関係で、一対の第1基準マークMK1,MK3と、第2基準マークMK2とが形成されている。
更に、ウエハステージWST1の上面には、X軸方向の一端(−X側端)にX軸に直交する反射面を有するX移動鏡96aがY軸方向に延設され、Y軸方向の一端(+Y側端)にY軸に直交する反射面を有するY移動鏡96bがX軸方向に延設されている。これらの移動鏡96a,96bの各反射面には、図2に示されるように、後述する干渉計システムを構成する各測長軸の干渉計からの干渉計ビーム(測長ビーム)が投射され、それぞれの反射光を各干渉計で受光することにより、各移動鏡反射面の基準位置(一般には投影光学系側面や、アライメント顕微鏡の側面に固定ミラーを配置し、そこを基準面とする)からの変位が計測され、これにより、ウエハステージWST1の2次元位置が計測されるようになっている。
他方のウエハステージWST2の構成は、ウエハホルダ部分を除けば、上述したウエハステージWST1と同様となっている。
すなわち、ウエハステージWST2上には、図2に示されるように、基板保持部材としてのウエハホルダH2を介して、ウエハW2が不図示のバキュームチャックを介して真空吸着されている。ウエハホルダH2は、基本的には、前述したウエハホルダH1と同様に構成されているが、その上面のウエハW2の周囲の部分に所定の位置関係、具体的には正方形の各頂点の位置に、4つの計測用基準板21A,21B,21C,21Dが配設されている。これらの計測用基準板21A,21B,21C,21Dの上面は、ウエハホルダH2上に載置されるウエハW2の表面と同じ高さとなるように設定されている。また、これらの計測用基準板21A,21B,21C,21Dの上面には、図8の拡大平面図に示されるように、理想的な2次元マークより成る同一形状の基準マーク27A,27B,27C,27Dがそれぞれ形成されている。これらの基準マーク27A,27B,27C,27Dは、X軸方向に所定のピッチで配列されたライン・アンド・スペースパターンより成るX軸マーク26Xと、Y方向に所定のピッチで配列されたライン・アンド・スペースパターンよりなるY軸マーク26Yとが組み合わされたマークである。
なお、計測用基準板21A〜21Dは、後述するアライメント顕微鏡24a、24bのキャリブレーションの際の計測の基準となるものであるから、アライメント顕微鏡24a、24bを構成する検出光学系の収差によって計測結果が変動しないよう、収差の影響を受け難い形状(ピッチ、段差、組成等)に作成するのが好ましい。また、これらの計測用基準板の位置関係が変動しないように、ウエハホルダH2には低膨張率の素材を用い、且つ高い剛性が保たれるように作成することが好ましい。
計測用基準板21A〜21Dが設けられている点を除けば、ウエハホルダH2は、前述したウエハホルダH1と全く同様に構成されている。すなわち、このウエハホルダH2は、段付き円板状の形状を有し、ウエハステージWST2の上面に設けられた丸穴73(図6(A)参照)にその底部小径部が嵌合した状態で、不図示のバキュームチャック等を介して吸着される。
ウエハステージWST2の上面には、図2に示されるように、基準マーク板FM2がウエハW2とそれぞれほぼ同じ高さになるように設置されている。この基準マーク板FM2の上面にも基準マーク板FM1と同様の位置関係で第1基準マークMK1,MK3、及び第2基準マークMK2が形成されている。
また、ウエハステージWST2の上面に設けられた前記丸穴73の内底面の中心部には、図6(A)に示されるように、ホルダ支持部材77が配置されている。このホルダ支持部材77は、不図示の駆動機構によって不図示の円形のガイド穴に沿って上下動されるようになっている。
また、丸穴73の内底面上には、図6(A)に示されるように、ウエハ交換時にウエハW2を3点で支持するとともに上下動させる3つの上下動ピン79が設けられている。これらの上下動ピン79は、ホルダH2がウエハステージWST2上に吸着固定された状態では、それぞれの先端部がこれらの上下動ピン79に対応して設けられた不図示の丸孔を介してホルダH2を貫通した状態で上下動するようになっている。
更に、ウエハステージWST2の上面には、X軸方向の一端(−X側端)にX軸に直交する反射面を有するX移動鏡96cがY軸方向に延設され、Y軸方向の一端(+Y側端)にY軸に直交する反射面を有するY移動鏡96dがX軸方向に延設されている。これらの移動鏡96c,96dの各反射面には、後述する干渉計システムを構成する各測長軸の干渉計かからの干渉計ビームが投射され、ウエハステージWST2の2次元位置が上記ウエハステージWST1と同様にして計測されるようになっている。
図1に戻り、前記投影光学系PLのX軸方向の両側には、同じ機能を持ったオフアクシス(off-axis)方式の第1マーク検出系としてのアライメント顕微鏡24aと、第2マーク検出系としてのアライメント顕微鏡24bとが、投影光学系PLの光軸中心(レチクルパターン像の投影中心とほぼ一致)よりそれぞれ同一距離だけ離れた位置に設置されている。
前記アライメント顕微鏡24a、24bとしては、本実施形態では、画像処理方式の結像式アライメントセンサの一種であるFIA(Filed Image Alignment)系のアライメントセンサが用いられている。これらのアライメント顕微鏡24a、24bは、例えば特開2000−77729号などに開示されるように、ブロードバンドな光を発する光源(例えばハロゲンランプ)、検出用光学系(照明光学系、結像光学系)、及び撮像素子(CCD)等を含んで構成されている。これらのアライメント顕微鏡24a、24bでは、光源からのブロードバンド(広帯域)光により照明光学系を介して検出対象であるマークを照明し、このマーク近傍からの反射光が結像光学系を構成する指標板上に結像され、この指標板からの光がCCDで受光され、マークの像が指標板上の指標マークの像とともにCCDの撮像面に結像される。このCCDからの画像信号(撮像信号)に所定の信号処理を施すことにより、検出基準点である指標マークの中心を基準とするマークの位置を計測することができる。
本実施形態では、アライメント顕微鏡24aは、ウエハステージWST1上に保持されたウエハ上のアライメントマーク、基準マーク板FM1上に形成された基準マーク、及び前述した計測用基準板21A〜21Dに形成された基準マークの位置計測等に用いられる。また、アライメント顕微鏡24bは、ウエハステージWST2上に保持されたウエハ上のアライメントマーク及び基準マーク板FM2上に形成された基準マーク、及び計測用基準板21A〜21Dに形成された基準マークの位置計測等に用いられる。
これらのアライメント顕微鏡24a、24bからの画像信号は、不図示のアライメント制御装置でA/D変換され、デジタル化された波形信号を演算処理して指標マーク中心を基準とするマークの位置が検出される。このマーク位置の情報が、不図示のアライメント制御装置から主制御装置90に送られるようになっている。
アライメント顕微鏡24a、24bの内部に、FIA系のセンサの他、レーザ光をマークに照射して、回折・散乱された光を利用してマーク位置を計測する最も汎用性のあるLSA(Laser Step Alignment)系のアライメントセンサ、及び回折格子状のマークに周波数をわずかに変えたレーザ光を2方向から照射し、発生した2つの回折光を干渉させて、その位相からマークの位置情報を検出するLIA(Laser Interferometric Alignment)系のアライメントセンサの少なくとも一方を、併せて組み込んでも良い。このようにすると、LSA系は、幅広いプロセスウエハに対して使用でき、また、LIA系は、低段差や表面荒れウエハに対して有効に使用できるので、これら3種類のアライメントセンサを、適宜目的に応じて使い分けることが、可能になる。
次に、各ウエハステージの2次元位置を計測する前記干渉計システムについて、図1〜図3を参照しつつ説明する。
図2に示されるように、ウエハステージWST1上のX移動鏡96aの反射面には、投影光学系PLの光軸AXとアライメント顕微鏡24aの光軸SXa(前述した指標マークの中心に一致)とを通るX軸に沿って、X軸干渉計16(図1、図3参照)からの測長軸BI1Xで示される干渉計ビームが照射されている。同様に、ウエハステージWST2上のX移動鏡96cの反射面には、投影光学系PLの光軸AXとアライメント顕微鏡24bの光軸SXb(前述した指標マークの中心に一致)とを通るX軸に沿って、X軸干渉計18(図1、図3参照)からの測長軸BI2Xで示される干渉計ビームが照射されている。そして、X軸干渉計16、18ではX移動鏡96a、96cからの反射光をそれぞれ受光することにより、各反射面の基準位置からの相対変位を計測し、ウエハステージWST1、WST2のX軸方向位置を計測するようになっている。ここで、X軸干渉計16、18は、図2に示されるように、各3つの光軸を有する3軸干渉計であり、ウエハステージWST1、WST2のX軸方向の計測以外に、チルト計測及びθz(ヨーイング)計測が可能となっている。各光軸の出力値は独立に計測できるようになっている。
なお、測長軸BI1X、測長軸BI2Xの各干渉計ビームは、ウエハステージWST1、WST2の移動範囲の全域で常にX移動鏡96a、96cに当たるようになっており、従って、X軸方向については、投影光学系PLを用いた露光時、アライメント顕微鏡24a、24bの使用時等のいずれのときにもウエハステージWST1、WST2の位置は、測長軸BI1X、測長軸BI2Xの計測値に基づいて管理される。
また、本実施形態では、図2及び図3に示されるように、投影光学系PLの光軸AXで測長軸BI1X,BI2Xと垂直に交差する測長軸BI2Yを有するY軸干渉計46と、アライメント顕微鏡24a、24b光軸SXa,SXbで測長軸BI1X、BI2Xとそれぞれ垂直に交差する測長軸BI1Y、BI3Yをそれぞれ有するY軸干渉計44,48とが設けられている。
本実施形態の場合、投影光学系PLを用いた露光時のウエハステージWST1、WST2のY方向位置計測には、投影光学系PLの光軸AXを通過する測長軸BI2Yを有するY軸干渉計46の計測値が用いられ、アライメント顕微鏡24aの使用時等のウエハステージWST1のY方向位置計測には、アライメント顕微鏡24aの光軸SXaを通過する測長軸BI1Yを有するY軸干渉計44の計測値が用いられ、アライメント顕微鏡24b使用時等のウエハステージWST2のY方向位置計測には、アライメント顕微鏡24bの光軸SXbを通過する測長軸BI3Yを有するY軸干渉計48の計測値が用いられる。
従って、各使用条件により、Y軸干渉計の測長軸がウエハステージWST1、WST2の反射面より外れることとなるが、少なくとも1つの測長軸、すなわち測長軸BI1X、BI2XはそれぞれのウエハステージWST1、WST2の反射面から外れることがないので、後述するように、使用する干渉計光軸が反射面上に入った適宜な位置でY軸干渉計のリセットを行なうことができるようになっている。
なお、上記Y軸干渉計44、46、48は、図2から明らかなように、各2つの光軸を有する2軸干渉計であり、ウエハステージWST1、WST2のY軸方向の計測以外に、チルト計測が可能となっている。また、各光軸の出力値は独立に計測できるようになっている。
本実施形態では、X軸干渉計16、18及びY軸干渉計44,46,48の合計5つの干渉計によって、ウエハステージWST1、WST2のXY2次元座標位置を管理する干渉計システムが構成されている。そして、この干渉計システムを構成する各干渉計の計測値は、図1に示されるステージ制御系38及びこれを介して主制御装置90に送られるようになっている。ステージ制御系38では、主制御装置90からの指示に応じ、各干渉計の出力値に基づいてウエハステージWST1、WST2を前述した各ステージ駆動系を介して制御するようになっている。
また、図3に示されるように、X軸リニアガイド87の−Y側(図3における紙面内下側)には、回転、上下動、及び伸縮動作が可能なロボットアームを有する多関節ロボットから成る一対のウエハローダ41A、41Bが、所定間隔を隔てて設置されている。一方のウエハローダ41Aは、ウエハステージWST1と不図示のウエハキャリア(カセット)との間で、ウエハを搬送する。他方のウエハローダ41Bは、ウエハステージWST2とウエハキャリア(カセット)の間でウエハを搬送する。
また、ウエハローダ41Aとウエハローダ41Bとの間には、ウエハステージWST1、WST2に対するウエハホルダH1,H2の搬入及びウエハステージWST1、WST2からのウエハホルダH1,H2の回収を行うホルダ搬送機構51が設けられている。このホルダ搬送機構51は、ウエハローダ41A、41Bと同様の多関節ロボットによって構成されているが、これらに比べて大きなアームを有している。
また、X軸リニアガイド87の+X側には、ウエハホルダを一時的に載置するためのテーブル62が設けられている。
更に、本実施形態では、図示は省略されているが、レチクルRの上方に、投影光学系PLを介してレチクルR上のレチクルマークと基準マーク板FM1、FM2上のマークとを同時に観察するための露光波長を用いたTTR(Through The Reticle)方式のレチクルアライメント顕微鏡が設けられている。これらのレチクルアライメント顕微鏡の検出信号は、不図示のアライメント制御装置を介して主制御装置90に供給されるようになっている。なお、レチクルアライメント顕微鏡の構成は、例えば特開平7−176468号公報等に開示されているのでここでは詳細な説明については省略する。
また、図示は省略されているが、投影光学系PL、アライメント顕微鏡24a、24bのそれぞれには、合焦位置を調べるためのオートフォーカス/オートレベリング計測機構(以下、「AF/AL系」という)がそれぞれ設けられている。このように、投影光学系PL及び一対のアライメント顕微鏡24a、24bのそれぞれに、AF/AL系を設けた露光装置の構成は、例えば特開平10−214783号公報に詳細に開示されており、公知であるから、ここではこれ以上の説明を省略する。
次に、上述のようにして構成された、露光装置10における露光処理工程における一連の動作について、ウエハステージWST1、WST2上における動作の流れを時系列的に示す図5に沿って、且つ適宜他の図を参照して説明する。なお、以下の各部の動作は、主制御装置90の管理の下、その配下にあるステージ制御系38その他の制御装置の制御の下で行われるが、以下においては、説明の簡略化のため、特に明示する必要がある場合を除き、各制御装置に関する記述は省略するものとする。
前提として、露光処理シーケンスの開始前の状態にあるため、ウエハステージWST1、WST2上には、ともに、ウエハ及びウエハホルダは載置されていないものとする。また、両ウエハステージWST1及びWST2は、アライメント顕微鏡24aの真下に基準マーク板FM1が位置する左側ローディングポジション、及びアライメント顕微鏡24bの真下に基準マーク板FM2が位置する右側ローディングポジションにそれぞれ静止しているものとする(図6(A)参照)。このとき、ウエハステージWST1の位置は、測長軸BI1Xを有する干渉計16と測長軸BI1Yを有する干渉計44との計測値に基づいてステージ制御系38によってサーボ制御され、ウエハステージWST2位置は、測長軸BI2Xを有する干渉計18と測長軸BI3Yを有する干渉計48との計測値に基づいてステージ制御系38によってサーボ制御されている。従って、これ以前に、測長軸BI1Yを有する干渉計44と、測長軸BI3Yを有する干渉計48とは、主制御装置90により、ステージ制御系38を介してそれぞれリセットされている。
まず、図5のステップ102では、次のようにして、ウエハステージWST1上にウエハホルダH2がロードされる。
すなわち、まず、ホルダ搬送機構51によって、ウエハステージWST1上方にウエハホルダH2が搬送される。この状態で前述したホルダ支持部材76(図4参照)がガイド穴74に沿って上昇し、ウエハホルダH2を下方から支持する。次いで、ホルダ搬送機構51を構成するロボットアームが僅かに下降後、ウエハステージWST1上から退避する。この退避開始から所定時間経過後、ホルダ支持部材76が下降してウエハホルダH2がウエハステージWST1上に載置される。その後、ウエハステージWST1上の不図示の真空吸着機構のバキュームがオンにされる。
このようにして、ウエハホルダH2のウエハステージWST1上へのロードが終了すると、図5のステップ104に処理が移行する。このステップ104では、ウエハローダ41A(図3参照)によってウエハホルダH2上にロット内の第1枚目のウエハW2がロードされる。具体的には、図6(A)に示されるように、まず、ウエハローダ41Aが不図示のウエハキャリア内よりウエハW2を取り出し、ウエハステージWST1(ウエハホルダH2)の上方まで搬送する。この状態で、上下動ピン78が上昇し、上下動ピン78によりウエハW2が下方から持ち上げられる。次いで、ウエハローダ41Aが僅かに下降後、ウエハステージWST1上から退避する。この退避開始から所定時間経過後、上下動ピン78が下降してウエハW2がウエハホルダH2に載置される。その後、ウエハホルダH2によるウエハW2のバキュームがオンにされる。これにより、ウエハW2のロードが終了する。
上記のウエハW2のロードと並行してウエハステージWST2側では、図5のステップ202の処理が行われる。このステップ202では、不図示のホルダ用キャリアからホルダ搬送機構51により搬送されたウエハホルダH1が、前述と同様の手順でウエハステージWST2上にロードされる。このウエハホルダH1のロードは、前述したウエハW2のロードとほぼ同時に終了する。
〔第1計測工程〕
ウエハW2のロードが終了すると、ウエハステージWST1側では、図5中の2重枠で囲まれた第1計測工程のステップ106、108の処理が順次行われる。
この第1計測工程のステップ106では、例えば特開昭61−22249号公報に開示されるようなエンハンスト・グローバル・アライメント(EGA)方式のアライメント計測(誤差パラメータの計測)がウエハW2に対して実行される。
すなわち、ウエハW2上には、図8に示されるように、複数のショット領域SAn(n=1,2,……)が直交する座標系((α,β)とする)に沿ってマトリックス状に配列され、各ショット領域SAnには前工程での露光及び現像等によりそれぞれチップパターンが形成されている。また、各ショット領域SAnには、ショット領域SAn毎に、EGA方式のアライメントに使われる位置合わせマークSXn、SYnが付随して設けられている。この位置合わせマークSXn及びSYnは、それぞれウエハW2上の直交座標系(α,β)の軸方向(α軸方向及びβ軸方向)に所定ピッチで形成された凹凸のライン・アンド・スペースパターンである。これらのマークSXn、SYnにより各ショット領域SAnの基準位置となる中心点(以下、「基準点」と呼ぶ)の座標位置が計測(あるいは算出)できるようになっている。
ここで、EGA方式のウエハアライメントについて簡単に説明すると、1枚のウエハにおいて予め特定ショット領域として選択された複数個(3個以上必要であり、通常7〜15個程度)のショット領域のみの位置座標を計測し、これらの計測値から統計演算処理(最小自乗法等)を用いてウエハ上の全てのショット領域の位置座標(ショット配列)を算出した後、この算出したショット配列に従ってウエハステージをステッピングさせていくものである。このEGA方式は計測時間が短くて済み、ランダムな計測誤差に対して平均化効果が期待できるという長所がある。
ここで、EGA方式で行われている統計処理方法について簡単に説明する。
基準点の設計上の座標値が(Dxn,Dyn)であるショット領域について、実際に露光するにあたって位置決めすべきステージ座標系(X,Y)上の座標(Fxn,Fyn)を、次式(1)で示される線形モデルで表現するものとする。
Figure 2005322755
式(1)において、θは、ステージ座標系(X,Y)に対するウエハの座標系(α,β)の残留回転誤差、wは、X軸方向及びY軸方向のウエハステージの送りが正確に直交していないことにより生じる直交度誤差、Rx及びRyは、α方向及びβ方向についてのウエハスケーリング、Ox,Oyは、ウエハがウエハステージに対して全体的に微少量だけずれることにより生じるオフセット量である。
式(1)より、各ショット位置における設計値からの位置ずれ(εxn,εyn)は次式(2)で表される。
Figure 2005322755
式(1)を行列の演算式で書き表すと、以下のようになる。
Fn=A・Dn+O ……(3)
但し、
Figure 2005322755
そして、ウエハ上から選択されたm(m≧3なる整数)個の特定ショット領域(サンプルショット)について実測して得られた配列座標値と、対応するショット領域について式(1)に基づいて求めた計算上の配列座標値(Fxn,Fyn)との平均的な偏差が最小になるように、オフセット量(Ox,Oy)を決定後、式(3)の行列要素(a,b,c,d)を最小自乗法を用いて決定する。なお、この最小自乗法を用いたオフセット量等の決定方法については、特開昭61−44429号公報に詳述されているので、詳しい説明は省略する。また、式(3)の行列要素(a,b,c,d)を決定することは、残留回転誤差θ、直交度誤差w、ウエハスケーリングRx、Ryの4つの誤差パラメータを求めることと同義であるので、以下においては、上記行列要素、オフセット量を纏めて誤差パラメータ(a,b,c,d,Ox,Oy)と表すものとする。
このようにして、誤差パラメータが算出されると、この誤差パラメータと、各ショット領域の設計上の配列座標とを式(1)に代入することにより、各ショット領域の配列座標(Fxn,Fyn)を高精度に算出することができる。
従って、このステップ106では、ウエハW2上の予め定めたm個のサンプルショットの位置合わせマークSXn、SYnを、アライメント顕微鏡24aを用いて順次検出し、その検出結果(アライメント顕微鏡24aの検出基準点を基準とする各位置合わせマークSXn、SYnの位置座標)と、それぞれのマークの検出時の干渉計16、44の計測値とに基づいて、各サンプルショットの配列座標を求め、この配列座標を用いて、前述のようにして、誤差パラメータ(a、b、c、d、Ox、Oy)を決定する。
なお、ここで決定される6つの誤差パラメータ(a、b、c、d、Ox、Oy)を、(a1、b1、c1、d1、Ox1、Oy1)と表すこととし、以下においては、説明の便宜上、これを纏めてEGAamと呼ぶものとする。すなわち、誤差パラメータEGAamは、次式(4)の行列で表される。
Figure 2005322755
上記ステップ106の処理が終了すると、次のステップ108では、アライメント顕微鏡24aによるEGA方式のアライメント(誤差パラメータの計測)がウエハホルダH2に対して実行される。
このステップ108では、上記ウエハホルダH2上に設けられた4つの計測用基準板21A〜21D上に形成された基準マーク27A〜27Dの座標に基づいて、6つの誤差パラメータが、上記と同様に最小自乗法により決定される。なお、ここで決定される6つのパラメータ(a、b、c、d、Ox、Oy)を(a1’、b1’、c1’、d1’、Ox1’、Oy1’)と表すこととし、以下においては、説明の便宜上、これを纏めてEGAafと呼ぶものとする。すなわち、誤差パラメータEGAafは、次式(5)の行列で表される。
Figure 2005322755
以上、第1計測工程(ステップ106、108)の計測結果より、アライメント顕微鏡24aにおいて計測されるウエハホルダH2の計測結果を基準とするウエハW2の計測結果(誤差パラメータ)EGAaが、次式(6)により求められる。このパラメータEGAaは、ウエハの製造プロセスに起因する誤差成分と、アライメント顕微鏡24aの特性(検出光学系の収差等)に起因する誤差成分とを含んでいると推定される。
EGAa=EGAam−EGAaf …(6)
ウエハステージWST1側で、上記ステップ106における誤差パラメータの計測が行われている間に、ウエハステージWST2側では、これと並行して、ステップ204においてウエハローダ41B(図3参照)によるロット内の第2枚目のウエハW1のロードが行われる。このウエハW1のロードは、ウエハローダ41B及び上下動ピン79(図6(A)参照)によってウエハW2の場合と同様にして行われる。なお、このウエハW1のロードが完了した時点(図5にT1で示される時点)でのウエハステージWST1、WST2の状態が図6(B)に示されている。
このようにして、ウエハW1のロードが終了すると、ウエハステージWST2側では、ステップ206において、ウエハW1がウエハホルダH1とともに、ウエハステージWST2からウエハステージWST2近傍に設けられたテーブル62上に移載される。このステップ206においては、図6(C)に示されるように、ホルダ搬送機構51の伸縮、回転、上下動及び、ウエハステージWST2上の上下動ピン79の上下動等により、ウエハホルダH1がテーブル62上に移載されるようになっている。また、この際、ウエハホルダH1とウエハW1との位置関係は常に一定に保たれ、位置ずれ等は一切起こらないようになっている。
このウエハホルダH1の移載は、ステップ108の誤差パラメータの計測終了より前に終了する。
ウエハステージWST1側でステップ108における誤差パラメータの計測が終了した段階で、ステップ110の処理が行われる。このステップ110では、図7(A)に示されるように、ホルダ搬送機構51により、ウエハホルダH2がウエハW2と一体でウエハステージWST1からウエハステージWST2の上方へ搬送される。そして、ウエハホルダH2及びウエハW2は、ホルダ支持部材77の上下動等の動作により、前述したステップ102と同様にしてウエハステージWST2上に載置され、これによりウエハホルダH2とウエハW2とのウエハステージWST1からウエハステージWST2への移載が行われる。この場合も、ウエハホルダH2とウエハW2の位置関係は一様に保たれた状態となっている。
〔第2計測工程〕
上述のようにして、ウエハステージWST2へのウエハホルダH2及びウエハW2の移載が終了すると、ウエハステージWST2側では、図5中で2重枠で囲まれた第2計測工程のステップ208、210の処理が行われる。
この第2計測工程のステップ208では、アライメント顕微鏡24bを用いたウエハW2に対するEGA方式のアライメント計測(誤差パラメータ計測)が前述したステップ106と同様に実行される。
ここで決定される6つの誤差パラメータ(a、b、c、d、Ox、Oy)を(a2、b2、c2、d2、Ox2、Oy2)と表すこととし、以下においては、説明の便宜上、これを纏めてEGAbmと表すものとする。すなわち、誤差パラメータEGAbmは、次式(7)の行列で表される。
Figure 2005322755
次のステップ210では、アライメント顕微鏡24bを用いて、ウエハホルダH2上の4つの計測用基準板21A,21B,21C,21Dのアライメント計測(誤差パラメータ計測)が前述のステップ108と同様に実行される。このとき求められる6つの誤差パラメータ(a、b、c、d、Ox、Oy)を(a2’、b2’、c2’、d2’、Ox2’、Oy2’)と表すこととし、以下においては、説明の便宜上、これを纏めてEGAbfと表すものとする。すなわち、誤差パラメータEGAbfは次式(8)の行列で表される。
Figure 2005322755
以上、第2計測工程(ステップ208、210)の結果より、アライメント顕微鏡24bを用いて計測されたウエハホルダH2の計測結果を基準としたウエハW2の計測結果(誤差パラメータ)EGAbは次式(9)により求められる。このパラメータEGAbは、ウエハの製造プロセスに起因する誤差成分と、アライメント顕微鏡24bの特性(例えば検出光学系の収差等)に起因する誤差成分とを含んでいると推測される。
EGAb=EGAbm−EGAbf …(9)
上述した第1、第2計測工程(ステップ106、108、208、210)では、同一のウエハ(W2)及び同一のウエハホルダ(H2)の位置関係を一定に保った状態で別々のアライメント顕微鏡によりそれぞれに形成されたマークを計測しているため、EGAa、EGAbに含まれるウエハの製造プロセスに起因する誤差成分は、同一であるものと推定される。従って、次式(10)に示されるように、EGAaとEGAbとの差をとることにより、アライメント顕微鏡24a,24bそれぞれの特性(検出光学系の収差等)に起因する誤差成分の差、すなわちアライメント顕微鏡24a,24b相互間の検出誤差を導き出すことができる。
EGAb-a=EGAb−EGAa …(10)
なお、ここで算出された値EGAb-aを補正値として用いたウエハのアライメント方法については、後に詳述する。
ウエハステージWST2側において、上記ステップ208、210の計測が行われている間に、ウエハステージWST1側では、ステップ112とステップ114の処理が行われる。ステップ112においては、図7(B)に示されるように、テーブル62上に載置されたままの状態にあるウエハホルダH1がウエハW1とともに、ホルダ搬送機構51によってウエハステージWST1に向けて搬送され、ウエハステージWST1上にロードされる(図9(A)等参照)。このウエハホルダH1とウエハW1とのテーブル62からウエハステージWST1への移載は、ウエハステージWST2側のステップ208の処理より先に終了する。この終了時点以後は、ウエハステージWST1上にはウエハホルダH1が常駐し、ウエハステージWST2上にはウエハホルダH2が常駐することとなる。
続いて、ウエハステージWST1側では、ステップ114におけるウエハアライメントが行われる。このステップ114の処理が開始される時点では、ウエハステージWST1は、図9(A)に示されるように、左側のローディングポジションに位置しており、アライメント顕微鏡24aの真下にウエハステージWST1上の基準マーク板FM1が位置している。そこで、主制御装置90では、アライメント顕微鏡24aにより基準マーク板FM1上の基準マークMK2(図8参照)を検出する。このときも、ウエハステージWST1の位置は、前述したように、測長軸BI1Xを有する干渉計16と測長軸BI1Yを有する干渉計44との計測値に基づいてステージ制御系38によってサーボ制御されている。
前記基準マークMK2の検出に際しては、アライメント顕微鏡24aにより基準マークMK2の画像が取り込まれ、この画像信号に基づいて不図示のアライメント制御装置により、指標マーク中心を基準とする基準マークMK2の位置情報が算出され、この位置情報が不図示のアライメント制御装置から主制御装置90に送られる。主制御装置90では、その基準マークMK2の位置情報と測長軸BI1X、BI1Yの干渉計16、44の計測結果とに基づいて、測長軸BI1XとBI1Yを用いた座標系における基準マーク板FM1上の基準マークMK2の位置座標を算出する。
主制御装置90では、上述した基準マークMK2の座標位置の算出に引き続いて、前述したEGAアライメント計測を行って、各ショット領域SAnの位置座標を算出する。具体的には、アライメント顕微鏡24aにより、ウエハステージWST1上に載置されたウエハW1上のサンプルショットに形成された位置合わせマークSXn、SYnの位置検出を行い、ウエハ上のショット領域で計測されるマークの座標とマークの設計値とに基づいて最小自乗法により6つの誤差パラメータ(EGAarとする)を決定する。但し、通常、この誤差パラメータ(EGA結果)を補正するため、ユーザが補正値(EGAauとする)を設定する場合が多いので、主制御装置90では、次式(11)によりユーザの補正を考慮した誤差パラメータEGA1を求める。
EGA1=EGAar+EGAau …(11)
次いで、主制御装置90では、この誤差パラメータEGA1と、各ショット領域SAnの設計上の配列座標とを前述した式(1)に代入することによって各ショット領域SAnの配列座標を算出し、その算出した各ショット領域SAnの位置座標から前述した基準マークMK2の位置座標を減算することで、基準マークMK2に対する各ショット領域SAnの相対位置関係を算出する。
これにより、ステップ114におけるウエハW1に対するアライメントが終了する。このアライメントは、ウエハステージWST2側の前述した第2計測工程の終了前に終了する。
次に、ウエハステージWST1側では、ステップ116の露光動作に移行するが、この露光開始に先立って、いわゆるレチクルパターンの投影位置を求めるために、ウエハステージWST1は、図9(B)に示される、投影光学系PLの光軸AXの真下に基準マーク板FM1が位置する位置まで移動される。しかしながら、図3からも容易に想像されるように、この移動の途中で測長軸BI1Yの干渉計ビームが、ウエハステージWST1のY移動鏡96bに照射されなくなるので、アライメント終了後直ちに図9(B)の位置までウエハステージWST1を移動させることは困難である。
そこで、本実施形態では、次のような工夫がなされている。先に説明したように、本実施形態では左側ローディングポジションにウエハステージWST1がある場合に、アライメント顕微鏡24aの真下に基準マーク板FM1が来るように設定されており、この位置で測長軸BI1Yの干渉計44がリセットされている。そこで、主制御装置90では、この位置までウエハステージWST1を一旦戻し、その位置から予めわかっているアライメント顕微鏡24aの検出中心(光軸SXaに一致)と投影光学系PLの光軸AXとの距離(便宜上BLとする)に基づいて、干渉計ビームの切れることのない測長軸BI1Xの干渉計16の計測値をモニタしつつ、ウエハステージWST1を距離BLだけ+X側に移動させる。これにより、図9(B)に示される位置までウエハステージWST1を移動させることができる。
次いで、主制御装置90では、一対のレチクルアライメント顕微鏡(図示省略)により露光光を用いて基準マーク板FM1上の基準マークMK1,MK3とそれに対応するレチクル上マークのウエハ面上投影像の相対位置検出を行なう。
ここで、主制御装置90では、上記の相対位置検出(レチクルアライメント顕微鏡による前記各マーク像の画像信号の取り込み)をするのに先立って、測長軸BI2Yの干渉計46をリセットしている。リセット動作は、次に使用する測長軸がY移動鏡を照射できるようになった時点で実行することができる。
このため、上記の相対位置検出では、測長軸BI1X、BI2Yを用いた座標系における基準マーク板FM1上の基準マークMK1,MK3の座標位置と、レチクルR上マークのウエハ面上投影像座標位置が検出される。そして、両者の差により露光位置(投影光学系PLの投影中心)と基準マーク板FM1上の基準マークMK1,MK3の座標位置との相対位置関係が求められる。
なお、アライメント終了位置から図9(B)の位置にウエハステージWST1が移動する間に、測長軸BI1Yが切れないような場合には、測長軸BI1X、BI1Yの計測値をモニタしつつ、アライメント終了後に直ちに、図9(B)の位置までウエハステージWST1を直線的に移動させても良いことは勿論である。この場合、ウエハステージWST1のY移動鏡96bに投影光学系PLの光軸AXを通る測長軸BI2Yがかかった時点以後、レチクルアライメント顕微鏡による基準マーク板FM1上の基準マークMK1,MK3とそれに対応するレチクル上マークのウエハ面上投影像の相対位置検出より以前のいずれの時点で干渉計のリセット動作を行なうようにしても良い。
そして、主制御装置90では、先に求めた基準マーク板FM1上の基準マークMK2に対するウエハW1上の各ショット領域SAnの相対位置関係、及び露光位置と基準マーク板FM1上の一対の基準マークMK1,MK3の座標位置との相対位置関係より、最終的に露光位置と各ショット領域の相対位置関係を算出する。
そして、その算出結果に基づいて、ウエハW1上の各ショット領域SAnが次のようにしてステップ・アンド・スキャン方式で露光される。
すなわち、ステージ制御系38では、主制御装置90から前述のアライメント結果に基づいて与えられる指令に応じ、前述した干渉計システムの測長軸BI2Yと測長軸BI1Xの計測値をモニタしつつ、ステージ駆動系を制御してウエハW1の第1ショットの露光のための走査開始位置にウエハステージWST1を移動する。
次に、ステージ制御系38では、主制御装置90の指示に応じてレチクルRとウエハW1、すなわちレチクルステージRSTとウエハステージWST1とのY軸方向の相対走査を開始する。両ステージRST、WST1がそれぞれの目標走査速度に達し、等速同期状態に達すると、照明光学系IOPからの紫外パルス光によってレチクルRのパターン領域が照明され始め、走査露光が開始される。上記の相対走査は、ステージ制御系38が、前述した干渉計システムの測長軸BI2Yと測長軸BI1X及びレチクル干渉計システムの測長軸BI7Y、BI8Yと測長軸BI6Xの計測値をモニタしつつ、レチクル駆動部30及びステージ駆動系を制御することにより行われる。
この走査露光の開始に先立って、両ステージがそれぞれの目標走査速度に達した時点で、主制御装置90では、不図示のレーザ制御装置に指示してパルス発光を開始させているが、ステージ制御系38によって不図示のブラインド駆動装置を介して照明光学系IOP内の可動レチクルブラインドの所定のブレードの移動がレチクルステージRSTの移動と同期制御されている。これにより、レチクルR上のパターン領域外への紫外パルス光の照射が遮光されることは、通常のスキャニング・ステッパと同様である。
ステージ制御系38は、レチクル駆動部30及びステージ駆動系を介してレチクルステージRST及びウエハステージWST1を同期制御する。その際、特に上記の走査露光時には、レチクルステージRSTのY軸方向の移動速度VrとウエハステージWST1のY軸方向の移動速度Vwとが、投影光学系PLの投影倍率(1/4倍あるいは1/5倍)に応じた速度比に維持されるように同期制御を行う。
そして、レチクルRのパターン領域の異なる領域が紫外パルス光で逐次照明され、パターン領域全面に対する照明が完了することにより、ウエハW1上の第1ショットの走査露光が終了する。これにより、レチクルRのパターンが投影光学系PLを介して第1ショットに縮小転写される。
また、不図示のブラインド駆動装置では、ステージ制御系38からの指示に基づき、走査露光終了の直後のレチクルR上のパターン領域外への紫外パルス光の照射を遮光すべく、可動レチクルブラインドの所定のブレードの移動をレチクルステージRSTの移動と同期制御するようになっている。
上述のようにして、第1ショットの走査露光が終了すると、主制御装置90からの指示に基づき、ステージ制御系38により、ステージ駆動系を介してウエハステージWST1がX、Y軸方向にステップ移動され、第2ショットの露光のための走査開始位置に移動される。
そして、主制御装置90の指示に応じて、ステージ制御系38、及び不図示のレーザ制御装置により、上述と同様に各部の動作が制御され、ウエハW1上の第2ショットに対して上記と同様の走査露光が行われる。
このようにして、ウエハW1上のショットの走査露光と次ショット露光のためのステッピング動作とが繰り返し行われ、ウエハW1上の露光対象ショットの全てにレチクルRのパターンが順次転写される(図9(C)参照)。
一方、ウエハステージWST1側で、上述のようにしてウエハW1の露光が行われている間、ウエハステージWST2側では、ステップ210の誤差パラメータの計測が終了し、前述したステップ114と同様にして、ウエハW2のアライメント計測が行われる(ステップ212)。
すなわち、主制御装置90では、ウエハステージWST2を、右側のローディングポジションに移動し、アライメント顕微鏡24bの真下にウエハステージWST2の基準マーク板FM2を位置させる。そこで、アライメント顕微鏡24bを用いて基準マーク板FM2上の基準マークMK2を検出し、アライメント顕微鏡24bの指標マーク中心を基準とする基準マークMK2の位置情報を取り込む。このとき、ウエハステージWST2の位置は、前述したように、測長軸BI2Xを有する干渉計18と測長軸BI3Yを有する干渉計48との計測値に基づいてステージ制御系38によってサーボ制御されている。
次いで、主制御装置90では、その基準マークMK2の位置情報と測長軸BI2Xを有する干渉計18と測長軸BI3Yを有する干渉計48との計測結果とに基づいて、測長軸BI2XとBI3Yを用いた座標系における基準マーク板FM2上の基準マークMK2の位置座標を算出する。
次いで、主制御装置90では、アライメント顕微鏡24bにより、ウエハステージWST2上に載置されたウエハW2上のサンプルショットに形成された位置合わせマークSXn、SYnの位置検出を行い(図9(C)参照)、ウエハ上のショット領域で計測されるマークの座標とマークの設計値とに基づいて最小自乗法により6つの誤差パラメータ(EGAbrとする)を決定する。そして、主制御装置90では、前述したユーザによって設定された補正値EGAauを考慮した誤差パラメータEGA2を、次式(12)に基づいて算出する。
EGA2=(EGAbr−EGAb-a)+EGAau …(12)
上式(12)では、実際にアライメント顕微鏡24bにより計測されたウエハW2のアライメント結果EGAbrから前述したアライメント顕微鏡の特性(検出光学系の収差等)のみに起因するアライメント顕微鏡24a、24b相互間の検出誤差EGAb-aを差し引いているため、アライメント顕微鏡24bによる検出結果をアライメント顕微鏡24aでの検出結果と同等となるように換算していることになる。従って、本実施形態によれば、複数のアライメント顕微鏡24a、24bを用いているにも拘わらず、単一のアライメント顕微鏡を用いた場合と同等の検出結果を得ることが可能である。
次いで、主制御装置90では、この誤差パラメータEGA2と、ウエハW2の各ショット領域SAnの設計上の配列座標とを前述した式(1)に代入することによって各ショット領域SAnの配列座標を算出し、その算出した各ショット領域SAnの位置座標から前述した基準マーク板FM2上の基準マークMK2の位置座標を減算することで、基準マークMK2に対する各ショット領域SAnの相対位置関係を算出する。
これにより、ステップ212におけるウエハW2に対するアライメントが終了する。このアライメントは、ウエハステージWST1側の前述したウエハW1に対する露光動作より前に終了する。従って、ウエハステージWST2は、その後、前述した右側ローディングポジションに移動して、ステップ116におけるウエハW1の露光が終了するのを待つ、待ち状態となる。
なお、上記のウエハステージWST2側でのステップ212におけるウエハW2のアライメントでは、前述したステップ208において既にウエハW2の誤差パラメータの計測が実行されているので、そこで得られた誤差パラメータEGAbmを上式(12)中の誤差パラメータEGAbrに代入して、ユーザによって設定された補正値EGAauを考慮した誤差パラメータEGA2を求めることとしても良い。この場合には、ステップ212では、再度ウエハW2のサンプルショットの位置合わせマークを計測することなく、右側ローディングポジションへのウエハステージWST2の移動と、そこにおける基準マークMK2の位置情報の取り込み、及び所定の演算のみを行えば良い。
そして、ウエハステージWST1側でウエハW1に対する露光が終了すると、主制御装置90では、ウエハステージWST1を左側ローディングポジションに移動する。この際、主制御装置90では、測長軸BI3Yの干渉計のリセット動作を前述と同様にして行う。そして、左側ローディングポジションにウエハステージWST1を静止させた状態で、ウエハローダ41Aにより、露光済みのウエハ(この場合、ウエハW1)と、次のウエハ(この場合、ロット内の第3枚目のウエハ(W3とする))との交換が行われる(ステップ118)。
次いで、ウエハステージWST1側では、ステップ120、122でウエハW3に対して、前述したステップ114、116とそれぞれ同様にしてアライメント、露光動作が順次行われる。その後は、同様のウエハ交換、アライメント、露光動作が繰り返し行われる。
一方、ウエハステージWST2側で、ステップ116において、ウエハW1に対する露光が終了すると、待機状態にあったウエハステージWST2が、露光位置へ移動し、ステップ214で、前述したステップ116と同様にして、ウエハステージWST2上のウエハW2に対してステップ・アンド・スキャン方式の露光が行われる。このウエハW2の露光動作と並行して、ウエハステージWST1側では、ステップ118、120のウエハ交換、アライメントが行われている。そして、このウエハW2に対する露光動作は、ステップ120のアライメントの終了より少し遅れて終了する。
その後、ウエハステージWST2側では、ウエハ交換、アライメント、露光がウエハステージWST2側と同様にして順次繰り返し行われる。
本実施形態では、上述の如く、一方のウエハステージ上のウエハに対する露光動作と並行して他方のウエハステージ上ではウエハ交換、アライメントが行われる。即ち、両ウエハステージ上で、前記の並行処理が繰り返し行われる(図5参照)。
その後は、Nロット(Nは、例えば1、1ロットは例えば25枚)のウエハに対する露光が終了する度毎に、露光処理シーケンスが一旦終了し、その時点で上述したアライメント顕微鏡24a、24b相互間の検出誤差EGAb-aの計測が行われ、これに引き続いて、ウエハステージWST1、WST2による並行処理が前述と同様にして繰り返し行われるようになっている。
以上詳細に説明したように、本実施形態の露光装置10によると、2枚のウエハをそれぞれ独立に保持する2つのウエハステージWST1,WST2を具備し、これら2つのウエハステージをXY面内で独立に移動させて、一方のウエハステージ上でウエハ交換とアライメント動作を実行する間に、他方のウエハステージ上で露光動作を実行することとし、両方の動作が終了した時点でお互いの動作を切り換えるようにしている。このため、単一のウエハステージ上で、ウエハ交換、アライメント、露光をシーケンシャルに繰り返し行う場合に比べて、スループットを大幅に向上させることが可能になる。
また、2つのアライメント顕微鏡24a、24bを用いているにもかかわらず、一方のアライメント顕微鏡の計測結果が補正されることで、1つのアライメント顕微鏡を用いてアライメントを行う場合と同等の精度を得ることができる。すなわち、使用する各アライメント顕微鏡でのアライメント精度が同等となり、良好なアライメント精度を得ることができる。従って、同一ロット内のウエハについては、いずれのアライメント顕微鏡を用いてアライメントが行われても、レチクルパターンとウエハ上の各ショット領域に既に形成されているチップパターン(回路パターン)との重ね合せを高精度かつ均一にすることができる。
更に、本実施形態によると、上述したような高スループットが得られるため、オフアクシスのアライメント顕微鏡を投影光学系PLより大きく離して設置したとしてもスループットの劣化の影響が殆ど無くなる。このため、直筒型の高N.A.(開口数)であって且つ収差の小さい光学系を設計して設置することが可能となる。
なお、本実施形態では、ウエハホルダH2上の計測用基準板21A〜21D上に形成された基準マークとウエハW2上に形成された位置合わせマークの位置関係によりアライメント顕微鏡間の検出誤差を求めたが、これに限らず、ウエハ又はウエハホルダ等のマーク形成部材上に形成された同一のプロセスマーク又は基準マークを、別々のアライメント顕微鏡で検出し、それぞれの検出中心とマークの位置関係を求め、それぞれの顕微鏡によるマークの検出時の顕微鏡とマーク形成部材との相対位置関係とに基づいて、アライメント顕微鏡間の検出誤差を求めるようにしても良い。
また、本実施形態では、計測用基準板はウエハホルダH2のみに配設されていたが、これに限らずウエハホルダH2のみならず、ウエハホルダH1上にも設けるようにしても良い。
更に、前述した計測用基準板に代えて、ウエハホルダ上に、基準マークを直接形成したり、あるいは、ウエハ上にレジストが塗布されない部分を設け、この部分に基準マークを設けるようにしても良い。前者の場合、ウエハホルダ上のウエハの載置される部分.を凹部とし、ウエハの表面とウエハホルダ上のマークが形成される部分の表面とが同一の高さとされることが好ましい。
また、本実施形態では、アライメント顕微鏡間の検出誤差を求めるために、ウエハ及びウエハホルダ上に形成されたマーク位置をそれぞれ4つ検出し、マークの設計値からのずれを最小にする所定の統計演算を行ったが、これに限らず、少なくとも3つのマークを計測することにより、オフセット、スケーリング(伸縮)、ローテーション(回転誤差)、直交度誤差より成る6個の誤差パラメータを算出することができる。また、少なくとも1つ又は2つのマークを検出することとしても良く、この場合には、検出(算出)できる成分に制限があるが、同様にアライメント顕微鏡間の検出誤差を検出することができる。また、位置合わせマーク、基準マークともに1次元マーク、2次元マークの何れを用いても構わない。
また、本実施形態では、アライメント顕微鏡が2本搭載された露光装置について説明したが、これに限らず、3本以上のマーク検出系を有する装置であれば、本発明は同様に適用が可能である。
なお、上記実施形態では、アライメント顕微鏡の検出誤差の検出をロットの1枚目のウエハを用いて行うこととしたが、これに限らず、ロット内の他のウエハあるいは同種の適当なプロセスウエハを用いても同様に実施できる。また、本実施形態のように実際に露光が行われるプロセスウエハを用いて位置検出誤差を検出するのみならず、理想的なマークが形成された計測用のウエハを別に用意してそのマーク位置を検出することで、各アライメント顕微鏡間の位置検出誤差を検出することも可能である。
なお、前述したアライメント顕微鏡の検出誤差の検出、すなわちアライメント顕微鏡のキャリブレーションは、露光開始前に必ず実施しても良いが、プロセスによるアライメント誤差がロット間で安定していれば、同種のプロセスで実施したキャリブレーション結果を用いることとして、露光開始前のアライメント顕微鏡の検出誤差の検出のための前述した計測動作を省略しても良い。
また、このアライメント顕微鏡の検出誤差について、その値を数多く蓄積し、それらの傾向分析を行うことで各アライメント顕微鏡の検出誤差を推測し、実測値に対してフィードフォワード的に補正をかけることも可能である。
また、ウエハ毎に2つのアライメント顕微鏡24a,24bのうちのどちらを用いてアライメント計測を行ったのかを覚えておくようにしておき、以降の処理で、この情報を活用するようにしても良い。例えば、ウエハW1の1層目をアライメント顕微鏡24aを用いて計測した場合には、そのウエハW1の2層目以降のアライメント計測時には1層目で使用したのと同じアライメント顕微鏡(アライメント顕微鏡24a)を使うようにすれば、アライメント顕微鏡自身に起因するアライメント誤差を低減できる。
また、ウエハ毎に2つのステージWST1,WST2のうちのどちらを使って露光処理したかを覚えておくようにしておき、以降の処理でこの情報を活用するようにしても良い。例えば、ウエハW2の1層目を露光した時に使ったステージがWST1であるならば、ウエハW2の2層目を1層目上に重ね露光するときにステージWST1を使うようにすれば、ステージ起因の重ね合わせ誤差を低減することができる。
なお、上記実施形態では、ステップ・アンド・スキャン方式等の走査型露光装置に本発明が適用された場合について説明したが、本発明の適用範囲がこれに限定されないことは勿論である。すなわちステップ・アンド・リピート方式の縮小投影露光装置にも本発明は好適に適用できる。
なお、本発明は、半導体製造用の露光装置に限らず、液晶表示素子などを含むディスプレイの製造に用いられる、デバイスパターンをガラスプレート上に転写する露光装置、薄膜磁気ヘッドの製造に用いられるデバイスパターンをセラミックウエハ上に転写する露光装置、及び撮像素子(CCDなど)の製造に用いられる露光装置などにも適用することができる。
一実施形態にかかる露光装置の概略構成を示す図である。 2つのウエハステージとレチクルステージと投影光学系と2つのアライメント顕微鏡の位置関係を示す斜視図である。 ウエハステージの駆動系の構成、及びウエハ、ウエハホルダの搬送系を示す平面図である。 ウエハステージをホルダとともに一部破砕して示す図である。 2つのウエハステージ動作を説明するためのタイミングチャートである。 図6(A)〜(C)は、2つのアライメント顕微鏡間の位置検出誤差の検出方法を説明するための図である。 図7(A)、(B)は、2つのアライメント顕微鏡間の位置検出誤差の検出方法を説明するための図である。 図6(B)のウエハステージWST1を拡大して示す平面図である。 図9(A)〜図9(C)は、2つのウエハステージによる同時並行処理について説明するための図である
符号の説明
24a…アライメント顕微鏡(第1マーク検出系)、24b…アライメント顕微鏡(第2マーク検出系)、27A〜27D…基準マーク、H1,H2…ウエハホルダ(基板保持部材)、SXn,SYn…位置合わせマーク(位置検出マーク)、W1…ウエハ(第1基板、基板)、W2…ウエハ(第2基板、基板)、WST1…ウエハステージ(第1ステージ)、WST2…ウエハステージ(第2ステージ)。

Claims (5)

  1. 複数のマーク検出系相互間の検出誤差を検出する誤差検出方法であって、
    基板上に形成された所定のマークを第1マーク検出系を用いて検出し、前記所定のマークに関する第1の位置情報を得る第1工程と;
    前記第1マーク検出系とは異なる第2マーク検出系を用いて前記所定のマークを検出し、前記所定のマークに関する第2の位置情報を得る第2工程と;
    前記第1の位置情報と前記第2の位置情報とに基づいて前記第1及び第2マーク検出系相互間の検出誤差を算出する第3工程と;を含む誤差検出方法。
  2. 請求項1に記載の誤差検出方法により、第1及び第2マーク検出系相互間の前記検出誤差を検出する工程と;
    前記第1マーク検出系を用いて第1基板上に形成された位置検出マークの位置を検出し、この検出結果に基づいて前記第1基板を所定の基準位置に位置合わせする工程と;
    前記第2マーク検出系を用いて第2基板上に形成された位置検出マークの位置を検出し、この検出結果と前記検出誤差とに基づいて前記第2基板を所定の基準位置に位置合わせする工程と;を含む位置合わせ方法。
  3. 請求項2に記載の位置合わせ方法を用いて、前記第1基板と前記第2基板とを所定の基準位置に位置合わせし、
    前記位置合わせが行われる度に、前記第1基板と第2基板とをそれぞれ露光することを特徴とする露光方法。
  4. 基板保持部材上に保持された基板を前記基板保持部材とともに第1ステージ上に搭載する工程と;
    前記基板保持部材上に存在する少なくとも1つの基準マークと前記基板上の少なくとも1つの位置合わせマークとを第1マーク検出系を用いてそれぞれ検出し、該検出結果に基づいて前記検出対象の基準マークと前記検出対象の位置合わせマークとの相対位置関係を求める第1計測工程と;
    前記基板を前記基板保持部材とともに第2ステージ上に搭載する工程と;
    前記検出対象の基準マークと前記検出対象の位置合わせマークとを前記第1マーク検出系とは異なる第2マーク検出系を用いてそれぞれ検出し、該検出結果に基づいて前記相対位置関係を求める第2計測工程と;
    前記第1計測工程と前記第2計測工程との計測結果に基づいて、前記第1マーク検出系と前記第2マーク検出系との相互間の検出誤差を算出する工程と;を含む誤差検出方法。
  5. 請求項4に記載の誤差検出方法により第1マーク検出系と第2マーク検出系との相互間の前記検出誤差を検出する工程と;
    前記第1マーク検出系を用いて前記第1ステージ上に搭載される基板上の位置合わせマークを検出した検出結果に基づいて、前記第1ステージの位置を制御しつつ、前記第1ステージ上の前記基板を露光する工程と;
    前記第2マーク検出系を用いて前記第2ステージ上に搭載される基板上の位置合わせマークを検出した検出結果と前記検出誤差とに基づいて、前記第2ステージの位置を制御しつつ、前記第2ステージ上の前記基板を露光する工程と;を含む露光方法。
JP2004139100A 2004-05-07 2004-05-07 誤差検出方法、位置合わせ方法、露光方法 Pending JP2005322755A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004139100A JP2005322755A (ja) 2004-05-07 2004-05-07 誤差検出方法、位置合わせ方法、露光方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004139100A JP2005322755A (ja) 2004-05-07 2004-05-07 誤差検出方法、位置合わせ方法、露光方法

Publications (1)

Publication Number Publication Date
JP2005322755A true JP2005322755A (ja) 2005-11-17

Family

ID=35469806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004139100A Pending JP2005322755A (ja) 2004-05-07 2004-05-07 誤差検出方法、位置合わせ方法、露光方法

Country Status (1)

Country Link
JP (1) JP2005322755A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184342A (ja) * 2006-01-05 2007-07-19 Nikon Corp 露光システム、露光方法、及びデバイス製造方法
JP2008130745A (ja) * 2006-11-20 2008-06-05 Canon Inc 液浸露光装置
JP2009054736A (ja) * 2007-08-24 2009-03-12 Nikon Corp マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
CN101738873A (zh) * 2008-11-10 2010-06-16 优志旺电机株式会社 曝光装置
CN105446090A (zh) * 2014-08-20 2016-03-30 中芯国际集成电路制造(上海)有限公司 对准测量方法
WO2016136691A1 (ja) * 2015-02-23 2016-09-01 株式会社ニコン 基板処理システム及び基板処理方法、並びにデバイス製造方法
JP2019015991A (ja) * 2017-02-03 2019-01-31 エーエスエムエル ネザーランズ ビー.ブイ. 露光装置
CN116525482A (zh) * 2023-06-28 2023-08-01 东莞市兆恒机械有限公司 一种半导体检测设备标定的方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184342A (ja) * 2006-01-05 2007-07-19 Nikon Corp 露光システム、露光方法、及びデバイス製造方法
JP2008130745A (ja) * 2006-11-20 2008-06-05 Canon Inc 液浸露光装置
JP2009054736A (ja) * 2007-08-24 2009-03-12 Nikon Corp マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
CN101738873A (zh) * 2008-11-10 2010-06-16 优志旺电机株式会社 曝光装置
CN105446090A (zh) * 2014-08-20 2016-03-30 中芯国际集成电路制造(上海)有限公司 对准测量方法
WO2016136691A1 (ja) * 2015-02-23 2016-09-01 株式会社ニコン 基板処理システム及び基板処理方法、並びにデバイス製造方法
JP2019015991A (ja) * 2017-02-03 2019-01-31 エーエスエムエル ネザーランズ ビー.ブイ. 露光装置
JP2019049728A (ja) * 2017-02-03 2019-03-28 エーエスエムエル ネザーランズ ビー.ブイ. 露光装置
US11092903B2 (en) 2017-02-03 2021-08-17 Asml Netherlands B.V. Exposure apparatus
CN116525482A (zh) * 2023-06-28 2023-08-01 东莞市兆恒机械有限公司 一种半导体检测设备标定的方法
CN116525482B (zh) * 2023-06-28 2024-01-05 广东兆恒智能科技有限公司 一种半导体检测设备标定的方法

Similar Documents

Publication Publication Date Title
JP4029183B2 (ja) 投影露光装置及び投影露光方法
JP4029180B2 (ja) 投影露光装置及び投影露光方法
KR100314557B1 (ko) 노광장치 및 노광방법
TWI548953B (zh) A moving body system and a moving body driving method, a pattern forming apparatus and a pattern forming method, an exposure apparatus and an exposure method, and an element manufacturing method
JP5464155B2 (ja) 露光装置、及び露光方法
JPH10163099A (ja) 露光方法及び露光装置
JP2000164504A (ja) ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
US20020037460A1 (en) Stage unit, measurement unit and measurement method, and exposure apparatus and exposure method
JP4029181B2 (ja) 投影露光装置
US20030020889A1 (en) Stage unit, measurement unit and measurement method, and exposure apparatus and exposure method
EP1372041A2 (en) Control of an apparatus for exposing a semiconductor device
JP2005322755A (ja) 誤差検出方法、位置合わせ方法、露光方法
JP2002231616A (ja) 位置計測装置及び方法、露光装置及び方法、並びにデバイス製造方法
JPH11284052A (ja) 基板搬送方法、基板搬送装置、及び露光装置、並びにデバイス製造方法
JP2000228347A (ja) 位置決め方法及び露光装置
JP2004259845A (ja) パラメータ調整方法、物体搬送方法、露光装置、及びプログラム
JP4078683B2 (ja) 投影露光装置及び投影露光方法並びに走査露光方法
JP2006148013A (ja) 位置合わせ方法及び露光方法
JP2003100599A (ja) 露光装置の調整方法及び露光システム
JPH1050600A (ja) 投影露光方法及び投影露光装置
JP2001135559A (ja) 位置計測方法及び露光方法
JP4029360B2 (ja) 投影露光装置及び投影露光方法並びに走査露光方法
JP2003060000A (ja) 基板搬送装置及び露光装置、並びにデバイス製造方法
JP2003007602A (ja) 計測装置及び計測方法、露光装置及び露光方法
JP2006032807A (ja) 露光装置及びデバイス製造方法