JP2005322432A - Organic el element and its manufacturing method - Google Patents

Organic el element and its manufacturing method Download PDF

Info

Publication number
JP2005322432A
JP2005322432A JP2004137245A JP2004137245A JP2005322432A JP 2005322432 A JP2005322432 A JP 2005322432A JP 2004137245 A JP2004137245 A JP 2004137245A JP 2004137245 A JP2004137245 A JP 2004137245A JP 2005322432 A JP2005322432 A JP 2005322432A
Authority
JP
Japan
Prior art keywords
organic
filler
sealing
sealing material
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004137245A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tanaka
康裕 田中
Mutsuo Mitsui
六男 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004137245A priority Critical patent/JP2005322432A/en
Publication of JP2005322432A publication Critical patent/JP2005322432A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element and its manufacturing method wherein it is possible to maintain a stable light emitting characteristic over a long period and possible to make it inexpensive in a manufacturing process by preventing leakage of water as much as possible. <P>SOLUTION: This is the organic EL element utilizing a material in which a filler having both thixotropic characteristic and a water adsorption action is internally attached as a sealing material of the outer peripheral face of the element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は発光を素子の陽極側で取り出すことの出来る有機電界発光素子及びその製造方法に関するものであり、詳しくは有機発光層に電界をかけて発光するタイプの薄型ディスプレイの封止方法に関するものである。   The present invention relates to an organic electroluminescent device capable of extracting light emission on the anode side of the device and a method for manufacturing the same, and more particularly to a sealing method for a thin type display that emits light by applying an electric field to an organic light emitting layer. is there.

現在開発中の有機EL素子の構成は、下部のガラス基板上に有機発光層が二つの電極の間に挟まれたサンドイッチ構造であるが、前記有機発光層の光を外に取り出せるようにするために、電極の片方は透明のものが使われており、一般的には陽極にITO(Indium Tin Oxide)透明電極が使われている。更に前記有機発光層の外周面は封止材により封止され、外部駆動回路により電圧を印加することにより発光する。   The structure of the organic EL element currently under development is a sandwich structure in which an organic light emitting layer is sandwiched between two electrodes on a lower glass substrate. In order to allow light from the organic light emitting layer to be extracted outside. In addition, one of the electrodes is transparent, and generally an ITO (Indium Tin Oxide) transparent electrode is used for the anode. Furthermore, the outer peripheral surface of the organic light emitting layer is sealed with a sealing material, and emits light when a voltage is applied by an external drive circuit.

以上の原理により発光する有機EL素子は、視認性とフレキシブル性に優れ且つ発色性が多様であることから、車載用コンポや携帯電話等のディスプレイや表示素子に利用されている。   Organic EL elements that emit light based on the above principle are used for displays and display elements such as in-vehicle components and mobile phones because they are excellent in visibility and flexibility and have various coloring properties.

ところで、これらの特性を有するディスプレイではあるが、一方で有機EL素子は一般的に水分に極めて弱いという問題がよく知られている。一例としては有機EL素子中に有機発光層を形成するガラス基板を封止する際の環境雰囲気中に含まれる水分や封止層欠陥部を透過してくる水分が進入することにより、ダークスポットと称する非発光領域が発生、発光が維持出来なくなるといった寿命の課題が生じている。   By the way, although it is a display which has these characteristics, on the other hand, the problem that an organic EL element is generally very weak to moisture is known well. As an example, when the moisture contained in the environmental atmosphere at the time of sealing the glass substrate which forms the organic light emitting layer in the organic EL element or the moisture passing through the defective portion of the sealing layer enters, the dark spot and A non-light-emitting region is generated, and there is a problem of lifetime such that light emission cannot be maintained.

この寿命に関する課題を解決するための方策として、従来、請求項1〜10に対し、有機EL素子の外周部の封止部材として、カチオン硬化タイプの紫外線硬化型接着剤を用い封止する方法が知られている(特許文献1、2)。更に、有機EL素子の外周部をバリアコート層およびバリア層ベースからなるバリア性基材を二層以上積層してなるバリア性積層構造体を用いて封止する手法も知られている。
特開平10−241858号公報 特開平10−233283号公報 特開2002−134271号公報
As a measure for solving the problem relating to the lifetime, conventionally, in contrast to claims 1 to 10, there is a method of sealing using a cationic curing type ultraviolet curing adhesive as a sealing member of the outer peripheral portion of the organic EL element. Known (Patent Documents 1 and 2). Furthermore, a method of sealing the outer peripheral portion of the organic EL element by using a barrier laminate structure in which two or more barrier substrates made of a barrier coat layer and a barrier layer base are laminated is also known.
JP-A-10-241858 JP-A-10-233283 JP 2002-134271 A

上記、特許文献1乃至2に示されるように、有機EL素子をカチオン硬化タイプの紫外線硬化型接着剤を用いて有機EL素子を封止しても、接着剤自体からの水分の侵入や封止界面からの侵入を完全には防ぐことは出来ず、ダークスポットが徐々に生じたり、これが拡大したりして素子が劣化、ついには使用不能になってしまうという課題があった。また、特許文献3に示されるようにバリア性積層構造体を用いて封止する手法もあるが、製造工程が複雑になり、コスト高になるといった課題がある。   As shown in Patent Documents 1 and 2, even if the organic EL element is sealed with a cationic curing type ultraviolet curable adhesive, moisture intrusion or sealing from the adhesive itself is performed. Intrusion from the interface cannot be completely prevented, and there is a problem that a dark spot is gradually generated or enlarged, and the element is deteriorated and finally becomes unusable. Also, as disclosed in Patent Document 3, there is a method of sealing using a barrier laminate structure, but there is a problem that the manufacturing process becomes complicated and the cost increases.

そこで、本発明は上述の問題点に鑑みてなされたものであり、水分の侵入を極力防ぐことにより、長期にわたって安定した発光特性を維持するとともに、製造工程上安価に作製することが可能な有機EL素子およびその製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-mentioned problems. By preventing moisture from entering as much as possible, an organic material that can maintain stable emission characteristics over a long period of time and can be manufactured at low cost in the manufacturing process. It is an object of the present invention to provide an EL element and a manufacturing method thereof.

上記の課題を解決するために、本発明は対向する陽極と陰極からなる1対の電極と前記1対の電極の間に有機化合物が設けられた有機EL素子において、前記有機EL素子外周面の封止材料としてチキソトロピック性と水分吸着作用を併せ持つフィラーを内添した有機材料を用いることを提案する。
また、前記のフィラーが多孔質フィラーであることを提案する。
また、前記フィラーを内添する有機材料がエポキシ系接着剤であることを提案する。
また、前記多孔質フィラーがシリカ系であることを提案する。
また、前記エポキシ系接着剤が光カチオン重合であることを提案する。
また、前記の封止材料の巾が3.0mm以下で、厚みが0.1mm以下であることを提案する。
In order to solve the above-described problems, the present invention provides an organic EL element in which an organic compound is provided between a pair of electrodes composed of an anode and a cathode facing each other and the pair of electrodes. It is proposed to use an organic material containing a filler that has both thixotropic properties and moisture adsorption as a sealing material.
It is also proposed that the filler is a porous filler.
It is also proposed that the organic material to which the filler is internally added is an epoxy adhesive.
It is also proposed that the porous filler is silica-based.
It is also proposed that the epoxy adhesive is photocationic polymerization.
It is also proposed that the sealing material has a width of 3.0 mm or less and a thickness of 0.1 mm or less.

本発明によれば、有機ELの封止材として有機材料中にチキソトロピック性と吸湿作用を併せ持つフィラーを内添させることにより、下記に示す効果が得られる。
1.有機EL素子の封止外部から進入する空気中の水蒸気を内添したフィラーが積極的に吸湿することで、素子内部まで到達する水蒸気量が少なくなり、長期間安定性に優れた有機EL素子を提供することが出来る。
2.封止材がチキソトロピック性を有することから、ディスペンサーによる精密塗布が可能となり、安価に製造することが出来る。
According to the present invention, the following effects can be obtained by internally adding a filler having both thixotropic properties and hygroscopic action into an organic material as an organic EL sealing material.
1. The organic EL element is excellent in long-term stability because the amount of water vapor reaching the inside of the element is reduced because the filler containing water vapor in the air entering from outside the sealing of the organic EL element actively absorbs moisture. Can be provided.
2. Since the sealing material has thixotropic properties, it can be precisely applied by a dispenser and can be manufactured at low cost.

本発明では、有機EL素子外周面の封止材料中にチキソトロピック性と水分吸着作用を併せ持つフィラーを内添することにより、外部から進入する水分に対する素子の劣化に対しても、前記水分吸着作用を有するフィラーにより長期間、水分ブロック性を維持することが可能であり、更にチキソトロピック性を有することから簡易装置であるディスペンサーによる精密な封止作業が可能となり、信頼性の高い有機EL素子を安価に提供することが可能となる。   In the present invention, by adding a filler having both thixotropic properties and moisture adsorption action in the sealing material on the outer peripheral surface of the organic EL element, the moisture adsorption action can be applied to deterioration of the element due to moisture entering from the outside. It is possible to maintain the moisture blocking property for a long period of time by the filler having, and the thixotropic property enables precise sealing work by a dispenser which is a simple device, and a highly reliable organic EL element can be obtained. It can be provided at low cost.

本発明の代表図を図1に示す。図1は符号1のガラス基板上に蒸着装置やスピンコーターなどの成膜装置により透明電極と有機発光層と電極からなる符号3の有機EL素子を形成した後、図2に示すように符号2の封止ガラスの外周部に封止材4をディスペンサーにより塗布し、前記ガラス基板1と該封止ガラス2とを封止材4を介して封着し、硬化させた後、電極を外部回路に接続することにより本発明の有機EL素子が発光する。   A typical view of the present invention is shown in FIG. In FIG. 1, after forming an organic EL element of reference numeral 3 composed of a transparent electrode, an organic light emitting layer, and an electrode on a glass substrate of reference numeral 1 by a film forming apparatus such as a vapor deposition device or a spin coater, reference numeral 2 as shown in FIG. The sealing material 4 is applied to the outer peripheral portion of the sealing glass by a dispenser, and the glass substrate 1 and the sealing glass 2 are sealed and cured through the sealing material 4, and then the electrode is connected to the external circuit. By connecting to, the organic EL element of the present invention emits light.

ここで本発明の詳細について、封止材4の部分を拡大して図3に示す。ここで図3の符号6はフィラーを示し、符号7は有機材料を示す。   Here, the details of the present invention are shown in FIG. Here, reference numeral 6 in FIG. 3 indicates a filler, and reference numeral 7 indicates an organic material.

符号6のフィラーは、水分吸着作用とチキソトロピック性を併せ持つフィラーであり、具体的には、シリカ(合成シリカ含む)、カオリン、デラミカオリン、水酸化アルミニウム、チタンホワイト、重質炭酸カルシウム、軽質炭酸カルシウム、硫酸カルシウム、硫酸バリウム、二酸化チタン、焼成カオリン、タルク、酸化亜鉛、炭酸亜鉛、硫化亜鉛、アルミナ、微粒子状アルミナ、ケイソウ土、焼成ケイソウ土、珪酸アルミニウム、珪酸カルシウム、珪酸マグネシウム、酸化マグネシウム、炭酸マグネシウム、アルミノ珪酸塩、コロイダルシリカ、活性白土、ベントナイト、ゼオライト、セリサイト、リトポン等の鉱物質顔料、多孔質顔料や有機顔料等の微粒子、多孔質微粒子、及び中空微粒子等が挙げられる。   The filler of the code | symbol 6 is a filler which has a water | moisture-content adsorption | suction action and thixotropic property, and specifically, a silica (a synthetic silica is included), a kaolin, a delaminated kaolin, an aluminum hydroxide, titanium white, a heavy calcium carbonate, a light carbonate Calcium, calcium sulfate, barium sulfate, titanium dioxide, calcined kaolin, talc, zinc oxide, zinc carbonate, zinc sulfide, alumina, particulate alumina, diatomaceous earth, calcined diatomaceous earth, aluminum silicate, calcium silicate, magnesium silicate, magnesium oxide, Examples thereof include mineral pigments such as magnesium carbonate, aluminosilicate, colloidal silica, activated clay, bentonite, zeolite, sericite, and lithopone, fine particles such as porous pigments and organic pigments, porous fine particles, and hollow fine particles.

また、有機材料としては、エポキシ樹脂、環状ポリオレフィン系樹脂、ポリ塩化ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリエチレンテレフタレート系樹脂、各種ナイロンのポリアミド樹、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアリールフタレート樹脂、シリコーン樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、及上記列挙の前駆体を共重合してなる共重合体が挙げられる。   Organic materials include epoxy resins, cyclic polyolefin resins, polyvinyl chloride resins, poly (meth) acrylic resins, polyethylene terephthalate resins, various nylon polyamide resins, polyimide resins, polyamideimide resins, and polyaryl phthalates. Examples include resins, silicone resins, polysulfone resins, polyphenylene sulfide resins, polyethersulfone resins, polyurethane resins, acetal resins, and copolymers obtained by copolymerizing the above-mentioned precursors.

ここで一例として、前記有機材料としては光カチオン重合系の液状樹脂(KR695A/旭電化工業製)を用い、前記樹脂中にチキソトロピック性と吸湿作用を併せ持つフィラーとして、ここでは合成シリカ(商品名:マイクロイド/東洋化学工業製)を50wt%添加した材料を封止材料として調製し、前記封止材をディスペンサーにより幅1mm、厚み4ミクロンに精密塗布を行い、UV照射装置により硬化させた。   As an example, a photocationic polymerization liquid resin (KR695A / Asahi Denka Kogyo Co., Ltd.) is used as the organic material, and synthetic silica (trade name) is used as a filler having both thixotropic properties and hygroscopicity in the resin. : Microid / manufactured by Toyo Kagaku Kogyo Co., Ltd.) was prepared as a sealing material, and the sealing material was precisely applied to a width of 1 mm and a thickness of 4 microns with a dispenser, and cured with a UV irradiation apparatus.

これら封着する工程は、グローブボックス(不図示)中の水分濃度を10ppm以下に制御して封着することにより、組み立て直後にこれまで大きな課題であったダークスポットの発生を押さえ込むことが可能となった。また、長期信頼性においても60℃/90%RHの雰囲気条件で1000時間の連続耐久試験を行ったが、輝度劣化等の発光特性の低下は確認されず、ダークスポット等の発生もなく、安定した有機EL素子とその製造方法を得ることが出来た。   These sealing steps can suppress the generation of dark spots, which has been a major problem until now, immediately after assembly by controlling the moisture concentration in the glove box (not shown) to 10 ppm or less for sealing. became. Also, for long-term reliability, a continuous durability test of 1000 hours was performed under an atmospheric condition of 60 ° C./90% RH, but no deterioration in light emission characteristics such as luminance deterioration was confirmed, and there was no occurrence of dark spots or the like. An organic EL device and a method for producing the same were obtained.

(第1の実施例)
本発明の代表図を図1に示す。ここで符号1はガラス基板であり、符号3は蒸着装置やスピンコーターなどの成膜装置により透明電極と有機発光層と電極からなる有機EL素子を示す。ここで、該有機EL素子の詳細な作製方法について以下に述べる。
(First embodiment)
A typical view of the present invention is shown in FIG. Reference numeral 1 denotes a glass substrate, and reference numeral 3 denotes an organic EL element including a transparent electrode, an organic light emitting layer, and an electrode by a film forming apparatus such as a vapor deposition apparatus or a spin coater. Here, a detailed manufacturing method of the organic EL element will be described below.

[Cr電極形成]
ガラス基板上に、CrターゲットをDCスパッタし陽極Aとして100nmの厚さにCr膜を成膜した。この際成膜マスクを用いて、3mmのストライプとした。Arガスを用いて、0.2Paの圧力、300Wの投入Pw条件で行った。
[Cr electrode formation]
On the glass substrate, a Cr target was formed into a thickness of 100 nm as a positive electrode by DC sputtering of a Cr target. At this time, a 3 mm stripe was formed using a film formation mask. Ar gas was used under the conditions of 0.2 Pa pressure and 300 W input Pw conditions.

[大気開放]
次に基板をスパッタ装置より取り出してアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄した。
[Atmospheric release]
Next, the substrate was taken out of the sputtering apparatus, ultrasonically cleaned with acetone and isopropyl alcohol (IPA) in sequence, then boiled and washed with IPA, and then dried. Further, UV / ozone cleaning was performed.

[前処理]
有機EL蒸着装置へ移し真空排気し、前処理室で基板付近に設けたリング状電極に50WのRF電力を投入し酸素プラズマ洗浄処理を行った。酸素圧力は0.6Pa、処理時間は40秒であった。
[Preprocessing]
The sample was transferred to an organic EL vapor deposition apparatus and evacuated, and 50 W RF power was applied to a ring electrode provided near the substrate in the pretreatment chamber to perform an oxygen plasma cleaning process. The oxygen pressure was 0.6 Pa and the treatment time was 40 seconds.

[正孔輸送層形成]
基板を前処理室より成膜室へ移動し、成膜室を、1×10E(-4)Paまで排気した後、正孔輸送性を有するαNPDを抵抗加熱蒸着法により成膜速度0.2〜0.3nm/secの条件で成膜、膜厚35nm正孔輸送層を形成した。なお、正孔輸送層、発光層、および電子注入層は、同一の蒸着マスクを用いることにより所定の部分に蒸着した。所定の部分とは基板上で、Crが露出している部分である(画素電極)。
[Hole transport layer formation]
The substrate was moved from the pretreatment chamber to the film formation chamber, and the film formation chamber was evacuated to 1 × 10E (−4) Pa. Then, αNPD having hole transportability was formed at a film formation rate of 0.2 by resistance heating vapor deposition. A film was formed under a condition of ˜0.3 nm / sec, and a 35 nm-thick hole transport layer was formed. Note that the hole transport layer, the light emitting layer, and the electron injection layer were deposited on predetermined portions by using the same deposition mask. The predetermined portion is a portion where the Cr is exposed on the substrate (pixel electrode).

[発光層形成]
続いて正孔輸送層の上にアルキレート錯体であるAlq3を抵抗加熱蒸着法により正孔輸送層と同様の成膜条件で膜厚15nm成膜、発光層を形成した。
[Light emitting layer formation]
Subsequently, Alq 3 as an alkylate complex was formed on the hole transport layer by a resistance heating vapor deposition method under the same film formation conditions as the hole transport layer to form a 15 nm-thick film and a light emitting layer.

[電子注入電極層形成]
次に、発光層の上に抵抗加熱共蒸着法によりAlq3と炭酸セシウム(Cs2CO3)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して成膜、膜厚35nm電子注入層を形成した。詳しくは、それぞれの蒸着ボートにセットした材料を抵抗加熱方式で蒸発させ、有機層は〜5A/S、共蒸着層もそれぞれのボート電流値を調整することで、あわせて〜5A/Sの蒸着速度で膜形成を行った。
[Electron injection electrode layer formation]
Next, each deposition rate is adjusted to form a film on the light emitting layer by resistance heating co-evaporation so that Alq 3 and cesium carbonate (Cs 2 CO 3 ) are mixed at a film thickness ratio of 9: 1. An electron injection layer having a thickness of 35 nm was formed. Specifically, the material set in each evaporation boat is evaporated by resistance heating method, the organic layer is ~ 5 A / S, and the co-deposition layer is also adjusted to the respective boat current value. Film formation was performed at a speed.

[陰極(透明導電膜)形成]
最後に別の成膜室に基板を移し、電子注入層の上にITOターゲットを用いてDCマグネトロンスパッタリング法により、膜厚が130nmになるようマスク成膜によりCr画素電極を覆って、Crストライプに交差するように、陰極Kを形成した。
[Cathode (transparent conductive film) formation]
Finally, the substrate is transferred to another film formation chamber, and the Cr pixel electrode is covered by a mask film formation so that the film thickness becomes 130 nm by a DC magnetron sputtering method using an ITO target on the electron injection layer to form a Cr stripe. A cathode K was formed so as to intersect.

成膜中においては、成膜時間の経過につれてH2Oガス供給量を減少させることにより陰極Kの膜厚方向にHの濃度勾配を形成した。Hの濃度勾配は、電子注入電極層界面近傍においてHを5×1021〜1×1022atom/ccとし、膜厚方向に向かって連続的に濃度を低下させ、陰極Kの膜厚中心付近(電子注入電極層界面より65nm)でHの含有量が1020atom/cc台とした。なお、前述のようにITOターゲット裏面には強磁場タイプのマグネットが配置されており、低電圧スパッタリングが可能となっている。 During film formation, an H concentration gradient was formed in the film thickness direction of the cathode K by decreasing the H 2 O gas supply amount as the film formation time elapses. The concentration gradient of H is 5 × 10 21 to 1 × 10 22 atom / cc in the vicinity of the electron injection electrode layer interface, and the concentration is decreased continuously in the film thickness direction, near the film thickness center of the cathode K. The H content was on the order of 10 20 atoms / cc (65 nm from the electron injection electrode layer interface). As described above, a strong magnetic field type magnet is disposed on the back surface of the ITO target, and low voltage sputtering is possible.

成膜条件としては、基板加熱なしの室温成膜で成膜圧力を1.0Pa、Ar、H2OおよびO2ガスを用いそれぞれの流量は500、1.5、5.0scccmとし、ターゲットに印加する投入パワーはITO:500Wで成膜を行った。透過率は85%(at.450nm)、比抵抗値は8.0E-4Ωcmであった。 Deposition conditions include room temperature film formation without substrate heating, film formation pressure of 1.0 Pa, Ar, H 2 O and O 2 gases, flow rates of 500, 1.5, 5.0 scccm, and input power applied to the target. Formed a film with ITO: 500W. The transmittance was 85% (at 450 nm), and the specific resistance value was 8.0E −4 Ωcm.

以上のようにして、符号1のガラス基板上に、陽極、正孔輸送層、発光層、電子注入電極層及び陰極を設け、有機EL発光素子を形成した。   As described above, the anode, the hole transport layer, the light emitting layer, the electron injection electrode layer, and the cathode were provided on the glass substrate denoted by reference numeral 1 to form an organic EL light emitting device.

[封止工程]
次に形成した有機EL発光素子に空気中の水蒸気が浸入しないような封止材料でバリア性を付与させるため、封止工程に移る。
[Sealing process]
Next, in order to give barrier property with the sealing material which the water vapor | steam in air does not permeate into the formed organic electroluminescent light emitting element, it transfers to a sealing process.

ここで用いる封止材料としては、光カチオン重合系の液状樹脂(KR695/旭電化製)を用い、前記液状樹脂中にチキソトロピック性と水分吸着作用を有するフィラーとして、ここでは合成シリカ(商品名:マイクロイド/東海化学工業所製)を混合・分散装置により50wt%内添した材料を封止材料4として調製した。   As the sealing material used here, a photocationic polymerization liquid resin (KR695 / manufactured by Asahi Denka) is used. As a filler having thixotropic properties and moisture adsorption action in the liquid resin, here, synthetic silica (trade name) : Microid / manufactured by Tokai Chemical Industry Co., Ltd.) was prepared as a sealing material 4 with a 50 wt% internal addition using a mixing / dispersing device.

調製した前記封止材料4を符号5のディスペンサー用シリンジ中に注入し、注入後、図2に示すように、符号2の封止ガラスの外周部に封止材料4をディスペンサーにより、幅1mm、厚み4ミクロンで精密塗布を行った。ここで上記寸法で有機EL素子外周部に精密塗布することはチキソトロピック性を有さない液状樹脂では不可能であり、本封止材料のようにフィラーによりチキソトロピック性を付与(チキソトロピー係数:4.5)させたことで可能となる。   The prepared sealing material 4 is poured into a syringe for a dispenser with a reference number 5, and after the injection, as shown in FIG. 2, the sealing material 4 is placed on the outer periphery of the sealing glass with a reference number 2 by a dispenser with a width of 1 mm, Precision coating was performed with a thickness of 4 microns. Here, precise application to the outer periphery of the organic EL element with the above dimensions is impossible with a liquid resin having no thixotropic property, and thixotropic property is imparted by a filler as in the present sealing material (thixotropic coefficient: 4). .5) It becomes possible by doing.

次に前記ガラス基板1と該封止ガラス2とを封止材料4を介して封着し、紫外線照射装置(EX250 HOYA-SHOTT製)8により硬化させた。尚、その時の紫外線照射強度は100mW/cm2で光量は3,000mJ/cm2である。 Next, the glass substrate 1 and the sealing glass 2 were sealed with a sealing material 4 and cured by an ultraviolet irradiation device (manufactured by EX250 HOYA-SHOTT) 8. In addition, the ultraviolet irradiation intensity at that time is 100 mW / cm 2 and the amount of light is 3,000 mJ / cm 2 .

以上述べた封着工程は、グローブボックス(不図示)中の水分濃度を10ppm以下に制御して封着することにより、組み立て直後にこれまで大きな課題であったダークスポットの発生を押さえ込むことが可能となった。   The sealing process described above can suppress the generation of dark spots, which has been a major problem until now, immediately after assembly by controlling the moisture concentration in the glove box (not shown) to 10 ppm or less for sealing. It became.

[素子評価]
長期信頼性においても表1に示すように、60℃/90%RHの雰囲気条件で1000時間の連続耐久試験を行ったが、封止材料中に内添したフィラーの作用により、外部からの余分な水分の浸入がないため、輝度劣化等の発光特性の低下はほとんど確認されず、ダークスポット等の発生もなく、安定した有機EL素子とその製造方法を得ることが出来た。
[Element evaluation]
In long-term reliability, as shown in Table 1, a continuous durability test was conducted for 1000 hours under an atmospheric condition of 60 ° C./90% RH. Since there was no permeation of moisture, there was almost no decrease in light emission characteristics such as luminance deterioration, and there was no occurrence of dark spots and the like, and a stable organic EL device and a method for producing the same could be obtained.

(第1の比較例)
第1の比較例は第1の実施例に対して、有機ELの封止材料として、チキソトロピック性と水分吸着作用を併せ持つフィラーを内添しなかった場合について示す。
(First comparative example)
The first comparative example shows a case where a filler having both thixotropic properties and moisture adsorption action is not added as an organic EL sealing material to the first embodiment.

ここで用いる封止材料としては、光カチオン重合系の液状樹脂(KR695/旭電化製)を用い、フィラーは添加しなかった。   As the sealing material used here, a photocationic polymerization type liquid resin (KR695 / manufactured by Asahi Denka) was used, and no filler was added.

前記封止材料4を符号5のディスペンサー用シリンジ中に注入し、注入後、図2に示すように、符号2の封止ガラスの外周部に封止材料4をディスペンサーにより、幅1mm、厚み4ミクロンで精密塗布を行った。   The said sealing material 4 is inject | poured in the syringe for dispensers of the code | symbol 5, and after injection | pouring, as shown in FIG. Precision coating was performed with micron.

次に前記ガラス基板1と該封止ガラス2とを封止材料4を介して封着し、紫外線照射装置(EX250 HOYA-SHOTT製)8により硬化させた。尚、その時の紫外線照射強度は100mW/cm2で光量は3,000mJ/cm2である。 Next, the glass substrate 1 and the sealing glass 2 were sealed with a sealing material 4 and cured by an ultraviolet irradiation device (manufactured by EX250 HOYA-SHOTT) 8. In addition, the ultraviolet irradiation intensity at that time is 100 mW / cm 2 and the amount of light is 3,000 mJ / cm 2 .

以上述べた封着工程は、グローブボックス(不図示)中の水分濃度を10ppm以下に制御して封着した。   In the sealing step described above, sealing was performed by controlling the water concentration in the glove box (not shown) to 10 ppm or less.

[素子評価]
組み立てた有機EL素子について、60℃/90%RHの雰囲気条件で1000時間の連続耐久試験を行ったが、余分な水分が封止材及び封止界面から浸入し、表1に示すように輝度劣化が進む、安定性に乏しい有機EL素子となった。
[Element evaluation]
The assembled organic EL device was subjected to a continuous durability test for 1000 hours under an atmospheric condition of 60 ° C./90% RH. Excess water entered from the sealing material and the sealing interface, and the luminance was as shown in Table 1. It became an organic EL device having poor stability and poor stability.

Figure 2005322432
Figure 2005322432

本発明の有機EL素子の断面図である。It is sectional drawing of the organic EL element of this invention. ディスペンサーにより封止ガラス上に封止材を塗布している図である。It is the figure which has apply | coated the sealing material on sealing glass with the dispenser. 本発明の封止部の拡大図である。It is an enlarged view of the sealing part of this invention. 封止材をUVランプにより硬化している図である。It is the figure which has hardened the sealing material with UV lamp.

符号の説明Explanation of symbols

1 ガラス基板
2 封止ガラス
3 有機EL素子
4 封止材
5 ディスペンサー用シリンジ
6 フィラー
7 有機材料
8 UV照射装置
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Sealing glass 3 Organic EL element 4 Sealing material 5 Syringe for dispenser 6 Filler 7 Organic material 8 UV irradiation apparatus

Claims (6)

対向する陽極と陰極からなる1対の電極と前記1対の電極の間に有機化合物が設けられた有機EL素子において、前記有機EL素子外周面の封止材料としてチキソトロピック性と水分吸着作用を併せ持つフィラーを内添した有機材料を用いることを特徴とする有機EL素子。   In an organic EL element in which an organic compound is provided between a pair of electrodes, which are an anode and a cathode facing each other, and an organic compound between the pair of electrodes, thixotropic property and moisture adsorption action are used as a sealing material for the outer peripheral surface of the organic EL element. An organic EL element characterized by using an organic material internally added with a filler. 前記請求項1記載のフィラーが多孔質フィラーであることを特徴とする有機EL素子。   The organic EL device according to claim 1, wherein the filler according to claim 1 is a porous filler. 前記請求項1記載のフィラーを内添する有機材料がエポキシ系接着剤であることを特徴とする有機EL素子。   2. An organic EL device, wherein the organic material to which the filler according to claim 1 is internally added is an epoxy adhesive. 前記請求項2記載の多孔質フィラーがシリカ系であることを特徴とする有機EL素子。   3. The organic EL device according to claim 2, wherein the porous filler is based on silica. 前記請求項3記載のエポキシ系接着剤が光カチオン重合であることを特徴とする有機EL素子。   4. The organic EL device according to claim 3, wherein the epoxy adhesive according to claim 3 is cationic photopolymerization. 前記請求項1〜5記載の封止材料の巾が3.0mm以下で、厚みが0.1mm以下であることを特徴とする有機EL製造方法。   6. The organic EL manufacturing method according to claim 1, wherein the sealing material has a width of 3.0 mm or less and a thickness of 0.1 mm or less.
JP2004137245A 2004-05-06 2004-05-06 Organic el element and its manufacturing method Withdrawn JP2005322432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137245A JP2005322432A (en) 2004-05-06 2004-05-06 Organic el element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137245A JP2005322432A (en) 2004-05-06 2004-05-06 Organic el element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005322432A true JP2005322432A (en) 2005-11-17

Family

ID=35469551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137245A Withdrawn JP2005322432A (en) 2004-05-06 2004-05-06 Organic el element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005322432A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814272B1 (en) 2006-01-31 2008-03-18 티디케이가부시기가이샤 Electroluminescence panel
KR100857733B1 (en) 2006-02-28 2008-09-10 티디케이가부시기가이샤 EL panel
KR100977703B1 (en) * 2007-12-31 2010-08-24 주성엔지니어링(주) Display device
KR100977702B1 (en) * 2007-12-31 2010-08-24 주성엔지니어링(주) Display device and method of manufacturing the same
JP2011068772A (en) * 2009-09-25 2011-04-07 Namics Corp Epoxy resin composition and adhesive film thereof
KR101074807B1 (en) * 2009-12-10 2011-10-19 삼성모바일디스플레이주식회사 Organic light emitting display apparatus
KR20180130447A (en) * 2017-05-29 2018-12-07 엘지디스플레이 주식회사 Display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814272B1 (en) 2006-01-31 2008-03-18 티디케이가부시기가이샤 Electroluminescence panel
KR100857733B1 (en) 2006-02-28 2008-09-10 티디케이가부시기가이샤 EL panel
US7692383B2 (en) 2006-02-28 2010-04-06 Tdk Corporation EL panel
KR100977703B1 (en) * 2007-12-31 2010-08-24 주성엔지니어링(주) Display device
KR100977702B1 (en) * 2007-12-31 2010-08-24 주성엔지니어링(주) Display device and method of manufacturing the same
JP2011068772A (en) * 2009-09-25 2011-04-07 Namics Corp Epoxy resin composition and adhesive film thereof
KR101074807B1 (en) * 2009-12-10 2011-10-19 삼성모바일디스플레이주식회사 Organic light emitting display apparatus
US8288944B2 (en) 2009-12-10 2012-10-16 Samsung Display Co., Ltd. Organic light-emitting display apparatus sealed with a sealant containing a filler
KR20180130447A (en) * 2017-05-29 2018-12-07 엘지디스플레이 주식회사 Display device
KR102596754B1 (en) * 2017-05-29 2023-10-31 엘지디스플레이 주식회사 Display device

Similar Documents

Publication Publication Date Title
JP2006228519A (en) Organic electroluminescent element and its manufacturing method
JP2005190683A (en) Organic el element and its manufacturing method
KR101173713B1 (en) Multilayer body, light-emitting device and use thereof
JP2008210788A (en) Organic el device
JP2001338755A (en) Organic el element and its manufacturing method
JPH11195487A (en) Organic el element
JP2011124216A (en) Getter composition and organic light-emitting device containing the same
WO2016009958A1 (en) Organic electroluminescent element
TW201507147A (en) Organic light-emitting display apparatus and method of manufacturing the same
JP2004327402A (en) Moisture-proof electroluminescent element and its manufacturing method
JP2006114399A (en) Organic el element
JP2010055894A (en) Sealing film for light-emitting element
CN101662000A (en) Organic electroluminescence element and method of manufacturing the same
JP2005322432A (en) Organic el element and its manufacturing method
JP2004237655A (en) Alternately laminated moistureproof film, its manufacturing method and alternately laminated moistureproof film with transparent electrode plate
JP4451213B2 (en) Display substrate
JP2007265764A (en) Organic el element
JP2005347204A (en) Organic el element and its manufacturing method
JP2006185679A (en) Organic el panel, organic el light-emitting device and manufacturing method of organic el panel
KR20000060241A (en) organic electroluminescence device with organic coating layer for preventing penetration of moisture
JP6303835B2 (en) Electronic devices
JP2006164691A (en) Organic el element and method of manufacturing the same
CN114555661A (en) Composition, cured product, sealing material for organic electroluminescent display element, and organic electroluminescent display device
CN114555653A (en) Composition, cured product, sealing material for organic electroluminescent display element, and organic electroluminescent display device
KR20050029790A (en) Organic electro luminescence panel having layer for preventing humidity from percolation and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807