JP2010055894A - Sealing film for light-emitting element - Google Patents

Sealing film for light-emitting element Download PDF

Info

Publication number
JP2010055894A
JP2010055894A JP2008218690A JP2008218690A JP2010055894A JP 2010055894 A JP2010055894 A JP 2010055894A JP 2008218690 A JP2008218690 A JP 2008218690A JP 2008218690 A JP2008218690 A JP 2008218690A JP 2010055894 A JP2010055894 A JP 2010055894A
Authority
JP
Japan
Prior art keywords
layer
organic layer
refractive index
film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008218690A
Other languages
Japanese (ja)
Inventor
Masahiro Nakamura
将啓 中村
Masato Yamana
正人 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008218690A priority Critical patent/JP2010055894A/en
Publication of JP2010055894A publication Critical patent/JP2010055894A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing film for a light-emitting element which is flexible, and has high sealing properties and high light extraction efficiency. <P>SOLUTION: The sealing film for the light-emitting element is equipped with a multilayered film 4 formed by laminating organic layers 2 and inorganic layers 3 on the surface of a translucent film 1. Refractive index differences between neighboring layers are 0.05 or less. The refractive index differences of a layer in contact with the translucent film 1 out of the multilayered film 4 are lower than those of other layers. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液晶表示素子、有機EL素子(有機エレクトロルミネッセンス素子)などの透明基材として用いられる発光素子用封止フィルムに関するものである。   The present invention relates to a sealing film for a light emitting element used as a transparent substrate such as a liquid crystal display element and an organic EL element (organic electroluminescence element).

液晶表示素子、有機EL素子などへの透明基材として、重くて割れ易いガラス基材に代わって、軽量化、形状の自由度が高いこと等の特徴がある透明プラスチック等のフィルム基材が採用され始めている。   As a transparent base material for liquid crystal display elements, organic EL elements, etc., film base materials such as transparent plastics, which have features such as light weight and high degree of freedom, are used instead of glass substrates that are heavy and easy to break. Being started.

しかしながら、透明プラスチック等のフィルム基材はガラス基材に対して封止性が劣るという問題がある。フィルム基材の封止性が劣ると水分や酸素が素子内部に浸入し、発光素子を劣化させてしまう。そこで、透明性を維持しつつも高い封止性を確保するために、近年、有機層/無機層の交互積層構造を有するバリア膜を真空蒸着法によりフィルム基材上に作製する技術が提案されている(特許文献1参照)。   However, a film substrate such as a transparent plastic has a problem that sealing properties are inferior to a glass substrate. If the sealing property of the film substrate is inferior, moisture and oxygen enter the element, and the light emitting element is deteriorated. Therefore, in order to ensure high sealing performance while maintaining transparency, in recent years, a technique for producing a barrier film having an alternately laminated structure of organic layers / inorganic layers on a film substrate by vacuum deposition has been proposed. (See Patent Document 1).

しかしながら、これらの有機層/無機層の交互積層構造を有する封止フィルムでは、各層の屈折率差のため、光の多層干渉による着色の影響が無視できない。この着色を低減するために、有機層の屈折率と無機層の屈折率との差を少なくする技術も提案されている(特許文献2参照)が、これら封止フィルムを有機EL素子用として用いた場合、有機層/無機層の積層部分による光取り出し効率の低下が問題となる。
米国特許第6413645号明細書 特開2003−203771号公報
However, in the sealing film having the alternately laminated structure of these organic layers / inorganic layers, the influence of coloring due to multilayer interference of light cannot be ignored due to the difference in the refractive index of each layer. In order to reduce this coloring, a technique for reducing the difference between the refractive index of the organic layer and the refractive index of the inorganic layer has also been proposed (see Patent Document 2), but these sealing films are used for organic EL elements. In such a case, there is a problem of a decrease in light extraction efficiency due to the organic layer / inorganic layer stack.
US Pat. No. 6,413,645 JP 2003-203771 A

このように、フィルム基材を用いた有機EL素子ができれば、ガラス基材を用いたものよりも軽量化が図れるが、フィルム基材はガラス基材に比べて封止性が低いため、有機層/無機層の積層構造からなるバリア層を設置して封止性を向上させる技術が提案されている。一方で、有機層/無機層の交互積層構造により有機EL素子の光取り出し効率が低下する問題があった。   Thus, if an organic EL element using a film base material can be obtained, the weight can be reduced as compared with that using a glass base material. A technique for improving the sealing property by installing a barrier layer having a laminated structure of inorganic layers has been proposed. On the other hand, there is a problem that the light extraction efficiency of the organic EL element is lowered due to the alternately laminated structure of the organic layer / inorganic layer.

本発明は上記の点に鑑みてなされたものであり、フレキシブルかつ高封止性および高光取り出し効率を有する発光素子用封止フィルムを提供することを目的とする。   This invention is made | formed in view of said point, and it aims at providing the sealing film for light emitting elements which has flexibility, high sealing property, and high light extraction efficiency.

本発明の請求項1に係る発光素子用封止フィルムAは、透光性フィルム1の表面に有機層2と無機層3とを積層した多層膜4を備えた発光素子用封止フィルムAにおいて、隣り合う層の屈折率の差が0.05以下であり、かつ、多層膜4のうち透光性フィルム1に接する層の屈折率が、他方の層の屈折率よりも低いことを特徴とするものである。   A sealing film A for a light emitting device according to claim 1 of the present invention is a sealing film A for a light emitting device comprising a multilayer film 4 in which an organic layer 2 and an inorganic layer 3 are laminated on the surface of a translucent film 1. The difference in refractive index between adjacent layers is 0.05 or less, and the refractive index of the layer in contact with the translucent film 1 in the multilayer film 4 is lower than the refractive index of the other layer. To do.

本発明の請求項2に係る発光素子用封止フィルムAは、請求項1において、有機層2が、樹脂相中に、樹脂相を形成する樹脂の屈折率より高い屈折率の粒子を分散して形成されていることを特徴とするものである。   The sealing film A for a light-emitting element according to claim 2 of the present invention is that in claim 1, the organic layer 2 disperses particles having a refractive index higher than the refractive index of the resin forming the resin phase in the resin phase. It is characterized by being formed.

本発明の請求項3に係る発光素子用封止フィルムAは、請求項1又は2において、有機層2が、樹脂相中に中空の粒子を分散して形成されていることを特徴とするものである。   The sealing film A for a light emitting device according to claim 3 of the present invention is characterized in that in claim 1 or 2, the organic layer 2 is formed by dispersing hollow particles in a resin phase. It is.

請求項1の発明では、樹脂製の透光性フィルム1を基材として用いることにより、ガラス基材よりも可撓しやすくなって、フレキシブルに形成することができるものである。また、有機層/無機層の積層構造からなる多層膜4を備えることにより、ガスバリア性を高くすることができ、透光性フィルム1単体よりも高封止性を具備することができるものである。さらに、有機層と無機層の光学設計を行うことにより、高光取り出し効率で長期的に安定な光学特性を実現することができるものである。   In invention of Claim 1, by using the resin-made translucent film 1 as a base material, it becomes easier to be flexible than a glass base material, and can be formed flexibly. Moreover, by providing the multilayer film 4 having a laminated structure of an organic layer / inorganic layer, the gas barrier property can be increased, and the sealing property can be higher than that of the translucent film 1 alone. . Furthermore, by performing optical design of the organic layer and the inorganic layer, long-term stable optical characteristics can be realized with high light extraction efficiency.

請求項2の発明では、有機層2を屈折率の高い粒子と樹脂との混合系で形成することにより更なる高封止性を実現することができる。   According to the second aspect of the present invention, further high sealing performance can be realized by forming the organic layer 2 with a mixed system of particles having a high refractive index and a resin.

請求項3の発明では、中空粒子を使用することにより、この中空粒子と同形状の中実粒子を使用する場合よりもより発光素子用封止フィルムの光透過率を向上させることができる。   In the invention of claim 3, by using the hollow particles, the light transmittance of the sealing film for a light emitting element can be improved more than when solid particles having the same shape as the hollow particles are used.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明の発光素子用封止フィルムAは、透光性フィルム1の表面に有機層2と無機層3とを積層して形成した多層膜4を封止層として備えるものである。   The sealing film A for light-emitting elements of the present invention comprises a multilayer film 4 formed by laminating an organic layer 2 and an inorganic layer 3 on the surface of a translucent film 1 as a sealing layer.

透光性フィルム1は透明な可撓性支持基材として用いられるものであって、透明で、且つ、可撓性を有するプラスチック基材であれば、特に限定なく用いることができ、前記各層を保持できる基板であれば、例えば、発光素子の使用目的等に応じて適宜選択することができる。透光性フィルム1を構成する材料としては、具体的に、ポリエステル樹脂、メタクリル樹脂、メタクリル酸−マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド樹脂、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性カーボネート樹脂、脂環変性ポリカーボネート樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。これらの樹脂のうち、好ましい例としては、ポリエステル樹脂で特にポリエチルナフタレート樹脂(PEN)、ポリアリレート樹脂(PAr)、ポリエーテルスルホン樹脂(PES)等の化合物からなるフィルムが挙げられる。また、透光性フィルム1の厚みは可撓性や透光性や強度などの物性を損なわない範囲であればよく、例えば、0.01〜1mmとするのが好ましい。   The translucent film 1 is used as a transparent flexible support substrate, and can be used without any particular limitation as long as it is a transparent and flexible plastic substrate. Any substrate that can be held can be selected as appropriate depending on, for example, the purpose of use of the light-emitting element. Specific examples of the material constituting the translucent film 1 include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide resin, fluorinated polyimide resin, polyamide resin, and polyamideimide. Resin, polyetherimide resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modification Examples thereof include thermoplastic resins such as carbonate resins, alicyclic modified polycarbonate resins, and acryloyl compounds. Among these resins, a preferable example is a film made of a polyester resin, particularly a polyethyl naphthalate resin (PEN), a polyarylate resin (PAr), a polyether sulfone resin (PES), or the like. Moreover, the thickness of the translucent film 1 should just be a range which does not impair physical properties, such as flexibility, translucency, and intensity | strength, For example, it is preferable to set it as 0.01-1 mm.

有機層2は、無機層3の脆性および封止性を向上させるために、無機層3と隣接して1層以上設けられており、本発明において無機層3と有機層2とは交互に積層されていることが好ましい。また、有機層2の屈折率は上記透光性フィルムの屈折率以上であり、かつ後述の陽極材料の屈折率以下であることが好ましい。前述のとおり、本発明で好ましく用いられる透光性フィルム1の材料のポリエチレンナフタレート(PEN)の屈折率は約1.65であり、一般的にボトムエミッション型有機EL素子で用いられる陽極材料のITOの屈折率は2.00以下であるため、有機層2を構成する材料の屈折率は1.65〜2.00であることが好ましい。有機層2の厚みについては特に限定されないが、10nm〜5000nmが好ましい。有機層2の厚みが薄すぎると、厚みの均一性を得ることが困難となるため、無機層3の構造欠陥を効率よく有機層2で埋めることができずに、封止性の向上は見られなくなることがある。逆に、有機層2の厚みが厚すぎると、曲げ等の外力により有機層2にクラックが発生し易くなるため封止性が低下してしまう不具合が発生することがある。有機層2を形成させるための方法としては、有機物を塗布または蒸着で積層した後、紫外線硬化させる方法、蒸着、プラズマCVD等による真空成膜法等を挙げることができる。塗布方式で作製する場合には、従来用いられる種々の塗布方法、例えば、スプレーコート、スピンコート、バーコート等の方法を用いることができる。   One or more organic layers 2 are provided adjacent to the inorganic layer 3 in order to improve the brittleness and sealing performance of the inorganic layer 3, and in the present invention, the inorganic layer 3 and the organic layer 2 are alternately laminated. It is preferable that Moreover, it is preferable that the refractive index of the organic layer 2 is more than the refractive index of the said translucent film, and below the refractive index of the anode material mentioned later. As described above, the refractive index of polyethylene naphthalate (PEN), which is a material of the translucent film 1 that is preferably used in the present invention, is about 1.65, and is generally used for an anode material used in a bottom emission type organic EL element. Since the refractive index of ITO is 2.00 or less, the refractive index of the material constituting the organic layer 2 is preferably 1.65 to 2.00. Although it does not specifically limit about the thickness of the organic layer 2, 10 nm-5000 nm are preferable. If the thickness of the organic layer 2 is too thin, it will be difficult to obtain thickness uniformity, so that the structural defects of the inorganic layer 3 cannot be efficiently filled with the organic layer 2, and the improvement in sealing performance is observed. It may not be possible. Conversely, if the thickness of the organic layer 2 is too thick, cracks are likely to occur in the organic layer 2 due to an external force such as bending, which may cause a problem that the sealing performance is lowered. Examples of the method for forming the organic layer 2 include a method in which an organic substance is laminated by coating or vapor deposition, and then ultraviolet curing, vapor deposition, a vacuum film forming method by plasma CVD, or the like. When the coating method is used, various conventionally used coating methods such as spray coating, spin coating, and bar coating can be used.

有機層2は、例えばポリイミド樹脂やビスフェノール型エポキシ樹脂など屈折率1.65〜2.00を満たす材料で形成することができる。また、有機層2は樹脂相(マトリックス)中に、この樹脂の屈折率よりも高い屈折率を有する一種又は複数種の粒子を分散して形成することができる。この場合、樹脂としては特に制限されず、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂など適宜の材料を用いることができる。また高い屈折率を有する粒子としてはTiO2、ZrO2、Al23など可視光の吸収が低く、かつ高屈折の材料が好ましい。この粒子の粒子径は0.001μm〜100μmの範囲が好ましく、粒径が前記範囲より大きいと有機層2の平坦化が困難になるおそれがある。粒子の屈折率は樹脂の屈折率よりも0.01以上高くすることができる。また、有機層2中の樹脂の全量に対して粒子を5〜95質量%配合することができる。 The organic layer 2 can be formed of a material satisfying a refractive index of 1.65 to 2.00 such as polyimide resin or bisphenol type epoxy resin. The organic layer 2 can be formed by dispersing one or more kinds of particles having a refractive index higher than that of the resin in the resin phase (matrix). In this case, the resin is not particularly limited, and an appropriate material such as an acrylic resin, an epoxy resin, or a polyimide resin can be used. Further, as the particles having a high refractive index, a material having low absorption of visible light and high refraction, such as TiO 2 , ZrO 2 , and Al 2 O 3 is preferable. The particle diameter of these particles is preferably in the range of 0.001 μm to 100 μm. If the particle diameter is larger than the above range, it is difficult to flatten the organic layer 2. The refractive index of the particles can be higher than the refractive index of the resin by 0.01 or more. Moreover, 5 to 95 mass% of particles can be blended with respect to the total amount of the resin in the organic layer 2.

有機層2に分散させる粒子として中空のものを用いることができる。この場合、同形状の中空でない粒子(中実粒子)を用いる場合に比べて、発光素子用封止フィルムの光透過率を向上させることができる。中空の粒子としては粒径が0.001〜100μmの範囲でSiO2、TiO2、ZrO2、Al23など可視光の吸収が低い材料からなるものを用いることが好ましい。尚、粒径が前記範囲より大きいと有機層2の平坦化が困難になるおそれがある。粒子の屈折率は樹脂の屈折率よりも0.01以上高くすることができる。また、有機層2中の樹脂の全量に対して粒子を5〜95質量%配合することができる。 As particles dispersed in the organic layer 2, hollow particles can be used. In this case, the light transmittance of the sealing film for a light-emitting element can be improved as compared with the case of using non-hollow particles (solid particles) having the same shape. As the hollow particles, those made of a material having low visible light absorption such as SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 with a particle size in the range of 0.001 to 100 μm are preferably used. If the particle size is larger than the above range, it may be difficult to planarize the organic layer 2. The refractive index of the particles can be higher than the refractive index of the resin by 0.01 or more. Moreover, 5 to 95 mass% of particles can be blended with respect to the total amount of the resin in the organic layer 2.

無機層3は、無機物を含有し、透光性フィルム1の封止性能を改善する層である。無機層に含まれる無機物の成分は特に限定されないが、例えば、Si、Al、In、Sn、Zn、Ti、Cu、Ce、Ta等から選ばれる1種以上を含む酸化物、窒化物もしくは酸化窒化物などを用いることができる。本発明における無機層3は、屈折率の点では上記透光性フィルム1の屈折率以上であり、かつ後述の陽極材料の屈折率以下であることが好ましい。本発明で好ましく用いられる透光性フィルム1の材料のポリエチレンナフタレート(PEN)の屈折率は約1.65であり、一般的にボトムエミッション型有機EL素子で用いられる陽極材料のITOの屈折率は約2.00である。このため、無機層3を構成する材料の屈折率は1.65〜2.00であることが好ましい。例えば、無機層3としては透光性フィルム1に近い方ではAl(屈折率n=1.75)であることが好ましく、その外側の無機層3はZnO(屈折率n=1.90)であることが好ましい。本発明における無機層3は目的とする薄膜を形成できる方法であればいかなる方法により形成してもよく、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法などが適している。無機層の厚みは特に限定されないが、厚すぎると曲げ応力によるクラックのおそれがあり、薄すぎると膜が島状に分布するため、いずれも水蒸気バリア性が低下する傾向がある。このため、各無機層3の厚みは5nm〜1000nmが好ましい。本発明では、無機層3が二層以上形成されていることが好ましい。その場合、各無機層3は各々が同じ組成でも別の組成でもよく、制限はない。 The inorganic layer 3 is a layer that contains an inorganic substance and improves the sealing performance of the translucent film 1. The inorganic component contained in the inorganic layer is not particularly limited. For example, an oxide, nitride, or oxynitride containing one or more selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce, Ta, and the like. Things can be used. The inorganic layer 3 in the present invention is preferably not less than the refractive index of the translucent film 1 in terms of refractive index and not more than the refractive index of the anode material described later. The refractive index of polyethylene naphthalate (PEN), which is a material of the translucent film 1 preferably used in the present invention, is about 1.65, and the refractive index of ITO, which is an anode material generally used in bottom emission type organic EL elements. Is about 2.00. For this reason, it is preferable that the refractive index of the material which comprises the inorganic layer 3 is 1.65 to 2.00. For example, the inorganic layer 3 is preferably Al 2 O 3 (refractive index n = 1.75) closer to the translucent film 1, and the outer inorganic layer 3 is ZnO (refractive index n = 1. 90). The inorganic layer 3 in the present invention may be formed by any method as long as it can form a target thin film. For example, a sputtering method, a vacuum deposition method, an ion plating method, a plasma CVD method and the like are suitable. The thickness of the inorganic layer is not particularly limited, but if it is too thick, there is a risk of cracking due to bending stress, and if it is too thin, the film is distributed in an island shape, so that the water vapor barrier property tends to decrease in any case. For this reason, the thickness of each inorganic layer 3 is preferably 5 nm to 1000 nm. In the present invention, it is preferable that two or more inorganic layers 3 are formed. In that case, each inorganic layer 3 may have the same composition or a different composition, and is not limited.

そして、本発明の発光素子用封止フィルムAは、透光性フィルム1の表面に少なくとも一層の無機層3と少なくとも一層の有機層2とを積層した多層膜4を封止層として設けて形成されている。無機層3と有機層2の数の上限は特に限定はないが、10層以下にすることができる。また、隣り合う有機層2と無機層3の屈折率の差が0.05以下である。この場合、隣り合う有機層2と無機層3の屈折率の差は無いことが好ましいので、この差の下限は0である。また、多層膜4のうち透光性フィルム1に接する層の屈折率は他方の層の屈折率より低く設定する。つまり、多層膜4を構成する有機層2と無機層3のうち、透光性フィルム1に接する層の屈折率を最も低くするものである。   And the sealing film A for light emitting elements of this invention forms the multilayer film 4 which laminated | stacked the at least one layer of the inorganic layer 3 and the at least one layer of the organic layer 2 on the surface of the translucent film 1 as a sealing layer. Has been. The upper limit of the number of inorganic layers 3 and organic layers 2 is not particularly limited, but can be 10 layers or less. Further, the difference in refractive index between the adjacent organic layer 2 and the inorganic layer 3 is 0.05 or less. In this case, since it is preferable that there is no difference in refractive index between the adjacent organic layer 2 and the inorganic layer 3, the lower limit of this difference is zero. Moreover, the refractive index of the layer which contacts the translucent film 1 among the multilayer films 4 is set lower than the refractive index of the other layer. That is, the refractive index of the layer in contact with the translucent film 1 among the organic layer 2 and the inorganic layer 3 constituting the multilayer film 4 is made the lowest.

本発明の発光素子用封止フィルムAは上述のように構成されることにより、光の多層干渉が抑制され、このような多層干渉により任意の波長で光が強めあったり弱めあったりして偏りを生じることにより均一なスペクトルが得られなくなるなどといった光学特性の悪化が生じることがない。また、発光素子としてボトムエミッション型有機EL素子を形成する場合、陽極(透明導電膜)として形成するITOなど酸化物半導体(陽極材料)と上記透光性フィルム1の屈折率の差が大きく、透光性フィルム1の表面に陽極を直接形成すると、この層界面での屈折率差が大きくなり、スネルの法則により、全反射の起こる臨界角が低下して光取り出し効率の低下を招く。そこで、本発明では、有機層2と無機層3とを積層した多層膜4の屈折率を上述のように設計し、多層膜4上に陽極を形成することにより、各層間での屈折率の差を極力小さくすることで、光取り出し効率の向上を図るものである。   The sealing film A for a light emitting device of the present invention is configured as described above, so that multi-layer interference of light is suppressed, and light is strengthened or weakened at an arbitrary wavelength due to such multi-layer interference. As a result, the optical characteristics are not deteriorated such that a uniform spectrum cannot be obtained. Further, when a bottom emission type organic EL element is formed as a light emitting element, a difference in refractive index between the oxide semiconductor (anode material) such as ITO formed as an anode (transparent conductive film) and the translucent film 1 is large. When the anode is directly formed on the surface of the light-sensitive film 1, the difference in refractive index at the interface between the layers increases, and Snell's law reduces the critical angle at which total reflection occurs, leading to a decrease in light extraction efficiency. Therefore, in the present invention, the refractive index of the multilayer film 4 in which the organic layer 2 and the inorganic layer 3 are laminated is designed as described above, and an anode is formed on the multilayer film 4 so that the refractive index between the respective layers can be reduced. The light extraction efficiency is improved by making the difference as small as possible.

尚、本発明において、透光性フィルム1、有機層2、無機層3の各屈折率は使用する材料の種類や組成などを変えることにより設計することができる。また、本発明の効果を損なわない限りその他の層、例えば紫外線吸収層や反射防止層などを有していても良い。また、本発明の屈折率の値は特に指定が無ければ633nmの波長の光に対する値を示す。各層の屈折率はプリズムカプラ、透過反射屈折率測定計、アッベ屈折計を用いて測定できる。   In the present invention, the refractive indexes of the translucent film 1, the organic layer 2, and the inorganic layer 3 can be designed by changing the type and composition of the materials used. Moreover, as long as the effect of this invention is not impaired, you may have another layer, for example, an ultraviolet absorption layer, an antireflection layer, etc. Further, the refractive index value of the present invention is a value for light having a wavelength of 633 nm unless otherwise specified. The refractive index of each layer can be measured using a prism coupler, a transmission / reflection refractometer, and an Abbe refractometer.

以下本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

(実施例)
透光性フィルム1としては、厚み120μmのPENフィルムを用いた。フィルムの両面にコロナ放電処理、UV照射処理を行った。前記コロナ放電処理により、放電自体の物理的表面改質と、極性官能基生成による化学的表面改質によって透光性フィルム1の表面の濡れ性が著しく向上し、更に前記UV照射による表面処理によって透光性フィルム1の表面改質と洗浄とがなされる。
(Example)
As the translucent film 1, a PEN film having a thickness of 120 μm was used. Both sides of the film were subjected to corona discharge treatment and UV irradiation treatment. By the corona discharge treatment, the wettability of the surface of the translucent film 1 is remarkably improved by the physical surface modification of the discharge itself and the chemical surface modification by the generation of polar functional groups, and further by the surface treatment by the UV irradiation. Surface modification and washing of the translucent film 1 are performed.

この透光性フィルム1の片面に多層膜4として、有機層2a、無機層3a、有機層2b、有機層2c、無機層3bを順番に積層して形成した。   An organic layer 2a, an inorganic layer 3a, an organic layer 2b, an organic layer 2c, and an inorganic layer 3b were laminated in order on one side of the translucent film 1 as a multilayer film 4.

有機層2aは透光性フィルム1の表面に接して形成される層である。TiO球状粒子1g、イミド系樹脂9gをホモジナイザーにて混合・攪拌し、TiO球状粒子をイミド樹脂中に分散させた後、スピンコートにより塗布して200℃にて10分間加熱硬化させることによって、厚み500nmの有機層2aを形成した。有機層2aの屈折率は1.71であった。尚、TiO球状粒子はアナターゼ型で屈折率2.5、粒子径20〜30nmのものを用いた。イミド系樹脂はオプトメイト社製の品番HRI672で、屈折率がnD=1.67のものを用いた。 The organic layer 2 a is a layer formed in contact with the surface of the translucent film 1. TiO 2 spherical particles 1g, the imide resin 9g were mixed and stirred by a homogenizer, after dispersing the TiO 2 spherical particles in the imide resin, by heat cured for 10 minutes at coating to 200 ° C. by spin coating An organic layer 2a having a thickness of 500 nm was formed. The refractive index of the organic layer 2a was 1.71. The TiO 2 spherical particles were anatase type with a refractive index of 2.5 and a particle size of 20 to 30 nm. The imide-based resin was a product number HRI672 manufactured by Optomate Corporation and had a refractive index of nD = 1.67.

無機層3aはAlで形成される層である。ターゲットとしてAlをセットし、放電電源としてパルス印加方式の直流電源を用意した。スパッタリング装置への有機層2aを形成した透光性フィルム1の準備が終了後、真空チャンバーの扉を閉めて真空ポンプを起動し、真空引きを開始した。到達圧力が4×10−4Paになったところで、放電ガスとしてアルゴンを導入して放電電源をONし、放電電力5kW、成膜圧力0.3PaでAlターゲット上にプラズマを発生させ、5分間プレスパッタを行った。この後、反応ガスとして酸素を導入した。放電が安定してから、一定時間Alの成膜を行った。成膜終了後、真空チャンバーを大気圧に戻して有機層2aの表面に厚み100nmのAl層を成膜したフィルムを取り出した。この無機層3aの屈折率は1.75であった。 The inorganic layer 3a is a layer formed of Al 2 O 3 . Al was set as a target, and a pulse application type DC power source was prepared as a discharge power source. After the preparation of the translucent film 1 on which the organic layer 2a was formed on the sputtering apparatus, the vacuum chamber door was closed, the vacuum pump was started, and evacuation was started. When the ultimate pressure reached 4 × 10 −4 Pa, argon was introduced as a discharge gas to turn on the discharge power source, and plasma was generated on the Al target at a discharge power of 5 kW and a film formation pressure of 0.3 Pa for 5 minutes. Pre-sputtering was performed. Thereafter, oxygen was introduced as a reaction gas. Discharge is stabilized, the film formation was carried out for a certain time Al 2 O 3. After completion of film formation, the vacuum chamber was returned to atmospheric pressure, and a film having an Al 2 O 3 layer having a thickness of 100 nm formed on the surface of the organic layer 2a was taken out. The refractive index of this inorganic layer 3a was 1.75.

有機層2bは無機層3aの表面に形成される層である。TiO球状粒子4g、イミド系樹脂6gをホモジナイザーにて混合・攪拌し、TiO球状粒子をイミド系樹脂中に分散させた後、上記の無機層3a上にスピンコートにより塗布して200℃にて10分間加熱硬化させることによって、厚み500nmの有機層2bを形成した。有機層2bの屈折率は1.80であった。TiO球状粒子とイミド系樹脂とは上記と同様のものを用いた。 The organic layer 2b is a layer formed on the surface of the inorganic layer 3a. 4 g of TiO 2 spherical particles and 6 g of imide resin were mixed and stirred with a homogenizer, and the TiO 2 spherical particles were dispersed in the imide resin, and then applied onto the inorganic layer 3a by spin coating to 200 ° C. For 10 minutes to form an organic layer 2b having a thickness of 500 nm. The refractive index of the organic layer 2b was 1.80. The TiO 2 spherical particles and imide resin used was the same as described above.

有機層2cは有機層2bの表面に形成される層である。TiO球状粒子5g、イミド系樹脂5gをホモジナイザーにて混合・攪拌し、TiO球状粒子をイミド系樹脂中に分散させた後、上記の有機層2b上にスピンコートにより塗布して200℃にて10分間加熱硬化させることによって、厚み300nmの有機層2cを形成した。有機層2cの屈折率は1.85であった。 The organic layer 2c is a layer formed on the surface of the organic layer 2b. TiO 2 spherical particles 5g, the imide resin 5g were mixed and stirred by a homogenizer, after dispersing the TiO 2 spherical particles in the imide resin, a 200 ° C. is applied by spin coating on the organic layer 2b For 10 minutes to form an organic layer 2c having a thickness of 300 nm. The refractive index of the organic layer 2c was 1.85.

無機層3bは有機層2cの表面に形成されるZnOの層である。この無機層3bは、ターゲットをZnに変更する以外は上記のAlの無機層3aと同様にしてZnOを成膜した。無機層3bの屈折率は1.90であった。 The inorganic layer 3b is a ZnO layer formed on the surface of the organic layer 2c. The inorganic layer 3b was formed by depositing ZnO in the same manner as the Al 2 O 3 inorganic layer 3a except that the target was changed to Zn. The refractive index of the inorganic layer 3b was 1.90.

(実施例2)
実施例1において使用したTiO2粒子(アナターゼ型、屈折率2.5、粒子径20〜30nm)に代えて、中空TiO2粒子(アナターゼ型、屈折率2.5、粒子径20〜30nm)を使用した。有機層2aの屈折率は1.71、有機層2bの屈折率は1.80、有機層2cの屈折率は1.90であった。それ以外は実施例1と同様の方法で、透光性フィルム1の片面に多層膜4として、有機層2a、無機層3a、有機層2b、有機層2c、無機層3bを順番に積層して形成した。
(Example 2)
Instead of the TiO 2 particles (anatase type, refractive index 2.5, particle size 20-30 nm) used in Example 1, hollow TiO 2 particles (anatase type, refractive index 2.5, particle size 20-30 nm) were used. used. The refractive index of the organic layer 2a was 1.71, the refractive index of the organic layer 2b was 1.80, and the refractive index of the organic layer 2c was 1.90. Other than that, in the same manner as in Example 1, the organic layer 2a, the inorganic layer 3a, the organic layer 2b, the organic layer 2c, and the inorganic layer 3b were sequentially laminated as a multilayer film 4 on one side of the translucent film 1. Formed.

(実施例3)
実施例1と同様の透光性フィルム1の片面に多層膜4として、有機層2a、有機層2b、無機層3a、有機層2c、有機層2d、有機層2eを順番に積層して形成した。
(Example 3)
As a multilayer film 4 formed on one side of a light-transmitting film 1 similar to that in Example 1, an organic layer 2a, an organic layer 2b, an inorganic layer 3a, an organic layer 2c, an organic layer 2d, and an organic layer 2e were sequentially stacked. .

有機層2aは透光性フィルム1の表面に接して形成される層である。TiO球状粒子0.2g、ポリイミド樹脂10gをホモジナイザーにて混合・攪拌し、TiO球状粒子をポリイミド樹脂中に分散させた後、スピンコートにより塗布して200℃にて10分間加熱硬化させることによって、厚み500nmの有機層2aを形成した。有機層2aの屈折率は1.66であった。尚、TiO球状粒子は実施例1の場合と同一のものを用いた。ポリイミド樹脂はオプトメイト社製の品番HRI592で、屈折率がnD=1.59のものを用いた。 The organic layer 2 a is a layer formed in contact with the surface of the translucent film 1. Mix and stir 0.2 g of TiO 2 spherical particles and 10 g of polyimide resin with a homogenizer, disperse the TiO 2 spherical particles in the polyimide resin, apply by spin coating, and heat cure at 200 ° C. for 10 minutes. Thus, an organic layer 2a having a thickness of 500 nm was formed. The refractive index of the organic layer 2a was 1.66. The same TiO 2 spherical particles as those used in Example 1 were used. The polyimide resin used was a product number HRI592 manufactured by Optomate Corporation and the refractive index was nD = 1.59.

有機層2bは有機層2aの上に形成される層である。TiO球状粒子0.4g、ポリイミド樹脂10gをホモジナイザーにて混合・攪拌し、TiO球状粒子をポリイミド樹脂中に分散させた後、上記の無機層3a上にスピンコートにより塗布して200℃にて10分間加熱硬化させることによって、厚み500nmの有機層2bを形成した。有機層2bの屈折率は1.71であった。TiO球状粒子とポリイミド樹脂とは上記と同様のものを用いた。 The organic layer 2b is a layer formed on the organic layer 2a. After 0.4 g of TiO 2 spherical particles and 10 g of polyimide resin were mixed and stirred with a homogenizer, the TiO 2 spherical particles were dispersed in the polyimide resin, and then applied onto the inorganic layer 3 a by spin coating to 200 ° C. For 10 minutes to form an organic layer 2b having a thickness of 500 nm. The refractive index of the organic layer 2b was 1.71. The TiO 2 spherical particles and the polyimide resin used was the same as described above.

無機層3aはAlで形成される層であり、実施例1における無機層3aと同様にして形成した。 The inorganic layer 3a is a layer formed of Al 2 O 3 and was formed in the same manner as the inorganic layer 3a in Example 1.

有機層2cは無機層3aの表面に形成される層である。TiO球状粒子0.5g、ポリイミド樹脂10gをホモジナイザーにて混合・攪拌し、TiO球状粒子をポリイミド樹脂中に分散させた後、上記の無機層3a上にスピンコートにより塗布して200℃にて10分間加熱硬化させることによって、厚み300nmの有機層2cを形成した。有機層2cの屈折率は1.80であった。TiO球状粒子とポリイミド樹脂とは上記と同様のものを用いた。 The organic layer 2c is a layer formed on the surface of the inorganic layer 3a. TiO 2 spherical particles 0.5 g and polyimide resin 10 g were mixed and stirred with a homogenizer to disperse the TiO 2 spherical particles in the polyimide resin, and then applied onto the inorganic layer 3a by spin coating to 200 ° C. For 10 minutes to form an organic layer 2c having a thickness of 300 nm. The refractive index of the organic layer 2c was 1.80. The TiO 2 spherical particles and the polyimide resin used was the same as described above.

有機層2dは有機層2cの表面に形成される層である。TiO球状粒子0.6g、ポリイミド樹脂10gをホモジナイザーにて混合・攪拌し、TiO球状粒子をポリイミド樹脂中に分散させた後、上記の有機層2c上にスピンコートにより塗布して200℃にて10分間加熱硬化させることによって、厚み200nmの有機層2dを形成した。有機層2dの屈折率は1.85であった。TiO球状粒子とポリイミド樹脂とは上記と同様のものを用いた。 The organic layer 2d is a layer formed on the surface of the organic layer 2c. 0.6 g of TiO 2 spherical particles and 10 g of polyimide resin were mixed and stirred with a homogenizer, and the TiO 2 spherical particles were dispersed in the polyimide resin, and then applied onto the organic layer 2c by spin coating to 200 ° C. The organic layer 2d having a thickness of 200 nm was formed by heating and curing for 10 minutes. The refractive index of the organic layer 2d was 1.85. The TiO 2 spherical particles and the polyimide resin used was the same as described above.

有機層2eは有機層2dの表面に形成される層である。TiO球状粒子0.7g、ポリイミド樹脂10gをホモジナイザーにて混合・攪拌し、TiO球状粒子をポリイミド樹脂中に分散させた後、上記の有機層2d上にスピンコートにより塗布して200℃にて10分間加熱硬化させることによって、厚み200nmの有機層2eを形成した。有機層2eの屈折率は1.90であった。TiO球状粒子とポリイミド樹脂とは上記と同様のものを用いた。 The organic layer 2e is a layer formed on the surface of the organic layer 2d. TiO 2 spherical particles 0.7 g and polyimide resin 10 g were mixed and stirred with a homogenizer, and the TiO 2 spherical particles were dispersed in the polyimide resin, and then applied onto the organic layer 2d by spin coating to 200 ° C. The organic layer 2e having a thickness of 200 nm was formed by heating and curing for 10 minutes. The refractive index of the organic layer 2e was 1.90. The TiO 2 spherical particles and the polyimide resin used was the same as described above.

(実施例4)
実施例1において、有機層2aと有機層2bを形成するにあたり、TiO2粒子に代えて、ZrO2粒子(アナターゼ型、屈折率2.2、粒子径約20nm)を使用した。有機層2aの屈折率は1.71、有機層2bの屈折率は1.80であった。それ以外は実施例1と同様の方法で、透光性フィルム1の片面に多層膜4として、有機層2a、無機層3a、有機層2b、有機層2c、無機層3bを順番に積層して形成した。
Example 4
In Example 1, in forming the organic layer 2a and the organic layer 2b, ZrO 2 particles (anatase type, refractive index 2.2, particle diameter of about 20 nm) were used instead of TiO 2 particles. The refractive index of the organic layer 2a was 1.71, and the refractive index of the organic layer 2b was 1.80. Other than that, in the same manner as in Example 1, the organic layer 2a, the inorganic layer 3a, the organic layer 2b, the organic layer 2c, and the inorganic layer 3b were sequentially laminated as a multilayer film 4 on one side of the translucent film 1. Formed.

(比較例1)
透光性フィルム1の表面に有機層2c、ZnOの無機層3b、有機層2b、有機層2a、Alの無機層3aの順で多層膜4を形成した以外は実施例1と同様に行った。
(Comparative Example 1)
Except that the multilayer film 4 was formed on the surface of the translucent film 1 in the order of the organic layer 2c, the ZnO inorganic layer 3b, the organic layer 2b, the organic layer 2a, and the Al 2 O 3 inorganic layer 3a. Went to.

上記の実施例及び比較例の発光素子用封止フィルムAを用いて、発光素子として有機EL素子を形成した。   An organic EL element was formed as a light emitting element using the sealing film A for a light emitting element of the above Examples and Comparative Examples.

まず、ITO(スズドープ酸化物インジウム)ターゲット(東ソー製)を用いて、上記封止フィルムAの多層膜4(封止層)側にスパッタを行い、150nmのITO層を形成した。得られたITO層付封止フィルムを、Ar雰囲気下200℃で1時間アニール処理を行い、シート抵抗20Ω/□の透明電極層(陽極層)10を形成した。   First, sputtering was performed on the multilayer film 4 (sealing layer) side of the sealing film A using an ITO (indium tin oxide indium) target (manufactured by Tosoh Corporation) to form an ITO layer having a thickness of 150 nm. The obtained sealing film with an ITO layer was annealed at 200 ° C. for 1 hour in an Ar atmosphere to form a transparent electrode layer (anode layer) 10 having a sheet resistance of 20Ω / □.

次に、透明電極層付封止フィルムを純水で10分間超音波洗浄をした後、乾燥し、その後UV−03処理を10分間行った。この後、この透明電極層付封止フィルムを真空蒸着装置にセットし、ホール輸送層11として、N,N’−ジフェニル−N,N’−ビス(1−ナフチル)−1,1’−ビフェニル−4,4’−ジアミン(NPB)(eRay製)を陽極層10上に40nm形成した。次に、電子輸送層12、発光層13としてアルミニウム−トリス(8−ヒドロキシキノリン)(Alq)(eRay製)をホール輸送層11上に60nm形成した。更にその上に電子注入層14としてLiF(高純度化学製)を1nm形成した。そして最後に、電子注入層14上にAl(高純度化学製)を80nmの膜厚で真空蒸着し、陰極層15を形成した。この後、これらの各層を蒸着して形成した封止フィルムを露点−80℃以下のドライ窒素雰囲気のグローブボックスに大気に暴露することなく搬送した。   Next, the sealing film with a transparent electrode layer was subjected to ultrasonic cleaning with pure water for 10 minutes, dried, and then subjected to UV-03 treatment for 10 minutes. Thereafter, this sealing film with a transparent electrode layer is set in a vacuum deposition apparatus, and N, N′-diphenyl-N, N′-bis (1-naphthyl) -1,1′-biphenyl is used as the hole transport layer 11. -4,4'-diamine (NPB) (manufactured by eRay) was formed on the anode layer 10 to a thickness of 40 nm. Next, 60 nm of aluminum-tris (8-hydroxyquinoline) (Alq) (manufactured by eRay) was formed on the hole transport layer 11 as the electron transport layer 12 and the light emitting layer 13. Further thereon, 1 nm of LiF (manufactured by High Purity Chemical) was formed as the electron injection layer 14. Finally, Al (made by high-purity chemical) was vacuum-deposited on the electron injection layer 14 with a film thickness of 80 nm to form the cathode layer 15. Then, the sealing film formed by vapor-depositing each of these layers was transported to a glove box having a dew point of −80 ° C. or less in a dry nitrogen atmosphere without being exposed to the air.

一方、ガラス製の封止キャップ16に吸水剤(ダイニック製)を貼り付けると共に封止キャップ16の外周部に紫外線硬化樹脂製のシール剤を塗布したものを予め用意した。そして、グローブボックス内で封止フィルムAと封止キャップ16をシール剤で張り合わせ、紫外線照射してシール剤を硬化させることによって、図2に示すように、封止キャップ16で各層を封止した有機EL発光素子を得た。   On the other hand, a sealant made of UV curable resin was prepared in advance while adhering a water absorbing agent (made by Dynic) to the glass sealing cap 16 and applying the sealing agent made of UV curable resin to the outer periphery of the sealing cap 16. Then, the sealing film A and the sealing cap 16 are laminated with a sealing agent in the glove box, and each layer is sealed with the sealing cap 16 as shown in FIG. An organic EL light emitting device was obtained.

上記のようにして得られた有機EL発光素子の特性は、DC電源(ケースレイ製)を用い、素子内部に流れる電流を10mA/cmに固定し、輝度計(トプコン製)を用いて素子の特性評価を行った。正面輝度[電流効率(cd/A)ともに、10°ごとの角度方位を−80°〜+80°まで測定し、全光束[電力効率lm/W]を算出した。下記に結果を以下の表1に示す。比較例1の電流効率(cd/A)及び電力効率(lm/W)を基準にして、各実施例1の正面及び全方位の光取出し効率向上倍率を計算すると、実施例1では約1.3倍、実施例2では約1.4倍、実施例3では約1.4倍、実施例4では約1.3倍となった。 Characteristics of the organic EL light-emitting device obtained as described above, using a DC power supply (manufactured by case Ray), to secure the current flowing through the internal element 10 mA / cm 2, using a luminance meter (manufactured by Topcon) element The characteristic evaluation of was performed. Front luminance [current efficiency (cd / A) was measured for each 10 ° angular orientation from −80 ° to + 80 °, and the total luminous flux [power efficiency lm / W] was calculated. The results are shown in Table 1 below. Based on the current efficiency (cd / A) and power efficiency (lm / W) of Comparative Example 1, the front and omnidirectional light extraction efficiency improvement magnification of each Example 1 is calculated. It was about 1.4 times in Example 2, about 1.4 times in Example 2, about 1.4 times in Example 3, and about 1.3 times in Example 4.

Figure 2010055894
Figure 2010055894

本発明の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of this invention. 有機EL素子の一例を示す断面図である。It is sectional drawing which shows an example of an organic EL element.

符号の説明Explanation of symbols

1 透光性フィルム
2 有機層
3 無機層
4 多層膜
DESCRIPTION OF SYMBOLS 1 Translucent film 2 Organic layer 3 Inorganic layer 4 Multilayer film

Claims (3)

透光性フィルムの表面に有機層と無機層とを積層した多層膜を備えた発光素子用封止フィルムにおいて、隣り合う層の屈折率の差が0.05以下であり、かつ、多層膜のうち透光性フィルムに接する層の屈折率が、他方の層の屈折率よりも低いことを特徴とする発光素子用封止フィルム。   In the sealing film for a light-emitting element including a multilayer film in which an organic layer and an inorganic layer are laminated on the surface of the light-transmitting film, the difference in refractive index between adjacent layers is 0.05 or less, and the multilayer film The sealing film for light emitting elements characterized by the refractive index of the layer which contacts a translucent film being lower than the refractive index of the other layer. 有機層が、樹脂相中に、樹脂相を形成する樹脂の屈折率より高い屈折率の粒子を分散して形成されていることを特徴とする請求項1に記載の発光素子用封止フィルム。   2. The sealing film for a light-emitting element according to claim 1, wherein the organic layer is formed by dispersing particles having a refractive index higher than that of the resin forming the resin phase in the resin phase. 有機層が、樹脂相中に中空の粒子を分散して形成されていることを特徴とする請求項1又は2記載の発光素子用封止フィルム。
The organic layer is formed by dispersing hollow particles in a resin phase, and the sealing film for a light-emitting element according to claim 1 or 2.
JP2008218690A 2008-08-27 2008-08-27 Sealing film for light-emitting element Pending JP2010055894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218690A JP2010055894A (en) 2008-08-27 2008-08-27 Sealing film for light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218690A JP2010055894A (en) 2008-08-27 2008-08-27 Sealing film for light-emitting element

Publications (1)

Publication Number Publication Date
JP2010055894A true JP2010055894A (en) 2010-03-11

Family

ID=42071592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218690A Pending JP2010055894A (en) 2008-08-27 2008-08-27 Sealing film for light-emitting element

Country Status (1)

Country Link
JP (1) JP2010055894A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089313A (en) * 2010-10-18 2012-05-10 Fujifilm Corp Light-extracting sheet, organic electroluminescent device, and method for manufacturing the same
JP2012109225A (en) * 2010-10-20 2012-06-07 Semiconductor Energy Lab Co Ltd Lighting device
JP2013067109A (en) * 2011-09-22 2013-04-18 Dainippon Printing Co Ltd Gas barrier film, gas barrier layer, apparatus, and method for manufacturing gas barrier film
JP2013140791A (en) * 2011-12-28 2013-07-18 Samsung Display Co Ltd Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus
WO2016043141A1 (en) * 2014-09-16 2016-03-24 コニカミノルタ株式会社 Gas barrier film
JP6301042B1 (en) * 2017-03-30 2018-03-28 堺ディスプレイプロダクト株式会社 Organic EL device and manufacturing method thereof
KR20180031884A (en) * 2016-09-20 2018-03-29 삼성디스플레이 주식회사 Organic light emitting diode display
JP2018174128A (en) * 2018-02-27 2018-11-08 堺ディスプレイプロダクト株式会社 Organic EL device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203771A (en) * 2002-01-09 2003-07-18 Matsushita Electric Ind Co Ltd Organic light emitting element, display device, and illumination device
JP2004001296A (en) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd Film with laminated film, manufacturing method thereof and film type indication element
JP2005212229A (en) * 2004-01-29 2005-08-11 Tomoegawa Paper Co Ltd Transparent gas barrier film and electroluminescence element
JP2005235467A (en) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd Organic el element
WO2005097484A1 (en) * 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. Transparent conductive film, method for producing transparent conductive film and organic electroluminescent device
JP2005317302A (en) * 2004-04-28 2005-11-10 Nippon Zeon Co Ltd Organic el display element and its manufacturing method
WO2006095612A1 (en) * 2005-03-10 2006-09-14 Konica Minolta Holdings, Inc. Resin film substrate for organic electroluminescence and organic electroluminescent device
JP2006305752A (en) * 2005-04-26 2006-11-09 Konica Minolta Holdings Inc Gas barrier film, resin base material for organic electroluminescence and organic electroluminescence element
JP2007253589A (en) * 2006-03-27 2007-10-04 Fujifilm Corp Barrier film substrate and organic electroluminescence element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203771A (en) * 2002-01-09 2003-07-18 Matsushita Electric Ind Co Ltd Organic light emitting element, display device, and illumination device
JP2004001296A (en) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd Film with laminated film, manufacturing method thereof and film type indication element
JP2005212229A (en) * 2004-01-29 2005-08-11 Tomoegawa Paper Co Ltd Transparent gas barrier film and electroluminescence element
JP2005235467A (en) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd Organic el element
WO2005097484A1 (en) * 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. Transparent conductive film, method for producing transparent conductive film and organic electroluminescent device
JP2005317302A (en) * 2004-04-28 2005-11-10 Nippon Zeon Co Ltd Organic el display element and its manufacturing method
WO2006095612A1 (en) * 2005-03-10 2006-09-14 Konica Minolta Holdings, Inc. Resin film substrate for organic electroluminescence and organic electroluminescent device
JP2006305752A (en) * 2005-04-26 2006-11-09 Konica Minolta Holdings Inc Gas barrier film, resin base material for organic electroluminescence and organic electroluminescence element
JP2007253589A (en) * 2006-03-27 2007-10-04 Fujifilm Corp Barrier film substrate and organic electroluminescence element

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089313A (en) * 2010-10-18 2012-05-10 Fujifilm Corp Light-extracting sheet, organic electroluminescent device, and method for manufacturing the same
JP2012109225A (en) * 2010-10-20 2012-06-07 Semiconductor Energy Lab Co Ltd Lighting device
US9188323B2 (en) 2010-10-20 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Lighting device
JP2013067109A (en) * 2011-09-22 2013-04-18 Dainippon Printing Co Ltd Gas barrier film, gas barrier layer, apparatus, and method for manufacturing gas barrier film
JP2013140791A (en) * 2011-12-28 2013-07-18 Samsung Display Co Ltd Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus
WO2016043141A1 (en) * 2014-09-16 2016-03-24 コニカミノルタ株式会社 Gas barrier film
CN114784211A (en) * 2016-09-20 2022-07-22 三星显示有限公司 Organic light emitting diode display device including thin film encapsulation layer
US12048190B2 (en) 2016-09-20 2024-07-23 Samsung Display Co., Ltd. Organic light-emitting diode display device including a thin film encapsulation layer
KR20180031884A (en) * 2016-09-20 2018-03-29 삼성디스플레이 주식회사 Organic light emitting diode display
KR102622390B1 (en) * 2016-09-20 2024-01-08 삼성디스플레이 주식회사 Organic light emitting diode display
WO2018179233A1 (en) * 2017-03-30 2018-10-04 堺ディスプレイプロダクト株式会社 Organic el device and method for producing same
CN110447307A (en) * 2017-03-30 2019-11-12 堺显示器制品株式会社 Organic EL device and its manufacturing method
US10505150B2 (en) 2017-03-30 2019-12-10 Sakai Display Products Corporation Organic electroluminescent device and method for producing same
CN110447307B (en) * 2017-03-30 2022-01-04 堺显示器制品株式会社 Organic EL device and method for manufacturing the same
US10276830B2 (en) 2017-03-30 2019-04-30 Sakai Display Products Corporation Organic electroluminescent device and method for producing same
JP6301042B1 (en) * 2017-03-30 2018-03-28 堺ディスプレイプロダクト株式会社 Organic EL device and manufacturing method thereof
JP2018174128A (en) * 2018-02-27 2018-11-08 堺ディスプレイプロダクト株式会社 Organic EL device

Similar Documents

Publication Publication Date Title
JP5010556B2 (en) Organic EL light emitting device
JP2010055894A (en) Sealing film for light-emitting element
JP5066814B2 (en) ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
WO2006095632A1 (en) Electroluminescence element and lighting apparatus
JP2007066886A (en) Laminate for electroluminescent element and electroluminescent element
TWI834533B (en) Organic light-emitting diode (oled) display devices with uv-cured filler and manufacturing method thereof
WO2008007770A1 (en) Transparent conducting layer coated film and its use
JP2009004275A (en) Manufacturing method of surface light emitter and surface light emitter
US20110260201A1 (en) Radiation-Emitting Device and Method for Producing a Radiation-Emitting Device
US10982064B2 (en) Multilayer barrier films
JP4703107B2 (en) Manufacturing method of organic EL element
KR101650029B1 (en) Light-emitting components and method for producing a light-emitting component
JP2007035313A (en) Light take-out film, translucent element with light take-out film, and electroluminescent element
JP2004327402A (en) Moisture-proof electroluminescent element and its manufacturing method
US20140374729A1 (en) Method for producing an optoelectronic component, and optoelectronic component
US20170100926A1 (en) Method of manufacturing electronic device and composite film
JP6648752B2 (en) Sealed structure
KR20170003997A (en) Organic electroluminescent element
JP5054464B2 (en) Organic EL light emitting device
TW200539263A (en) Composite optical destructive electrode for high contrast electroluminescent devices
JP2010055926A (en) Organic electroluminescent element and its manufacturing method
JP2002359070A (en) Organic light emitting element and display panel using this element
JP5660128B2 (en) Light emitting device
JP2004237655A (en) Alternately laminated moistureproof film, its manufacturing method and alternately laminated moistureproof film with transparent electrode plate
JP2010232041A (en) Organic el device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529