JP2005314760A - Refining method having high reaction efficiency - Google Patents

Refining method having high reaction efficiency Download PDF

Info

Publication number
JP2005314760A
JP2005314760A JP2004135309A JP2004135309A JP2005314760A JP 2005314760 A JP2005314760 A JP 2005314760A JP 2004135309 A JP2004135309 A JP 2004135309A JP 2004135309 A JP2004135309 A JP 2004135309A JP 2005314760 A JP2005314760 A JP 2005314760A
Authority
JP
Japan
Prior art keywords
cao
refining
slag
concentration
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004135309A
Other languages
Japanese (ja)
Other versions
JP4854933B2 (en
Inventor
Naoto Sasaki
直人 佐々木
Mitsutaka Matsuo
充高 松尾
Masanori Nakano
正則 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004135309A priority Critical patent/JP4854933B2/en
Publication of JP2005314760A publication Critical patent/JP2005314760A/en
Application granted granted Critical
Publication of JP4854933B2 publication Critical patent/JP4854933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating molten pig iron containing little Si at high efficiency and high productivity with the use of a small amount of an auxiliary material, and for solving problems that refractory wears, that refining capability is reduced, that slopping occurs and that CaO does not form adequate slag. <P>SOLUTION: The refining method having high reaction efficiency includes adding a refining agent mainly containing CaO and Fe<SB>t</SB>O and containing a compound of CaO and Fe<SB>t</SB>O at least in one part, and blowing oxygen gas, when refining molten pig iron containing 0.20 mass% or less Si in a treatment furnace, wherein the refining agent contains 5 mass% or more of a CaO-Fe<SB>2</SB>O<SB>3</SB>phase and 20 mass% or more of a CaO component at room temperature before being added to the treatment furnace. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はCaOを主成分とする精錬剤を用いる溶鉄の精錬処理において、少量で高効率かつ生産性の高い処理を可能とする方法に関する。   The present invention relates to a method for enabling high-efficiency and high-productivity processing in a small amount in a refining process of molten iron using a refining agent mainly composed of CaO.

溶鉄の精錬では不純物を安定的に除去するためにCaOを主成分に含む精錬剤が用いられる。スラグ発生量の低減や精錬コストの削減のためには少量の精錬剤で効率良く処理を行うことが望まれるが、CaO分として生石灰や石灰石などを直接添加する場合にはこれらの滓化性が悪く、反応性が低いという問題があった。   In the refining of molten iron, a refining agent containing CaO as a main component is used to stably remove impurities. In order to reduce the amount of slag generated and reduce the refining cost, it is desirable to perform the treatment efficiently with a small amount of a refining agent. However, when quick lime or limestone is directly added as a CaO component, these hatching properties are reduced. There was a problem that it was bad and the reactivity was low.

この問題に対してこれまでに、例えば特許文献1では、ハロゲン化物などを添加することによって滓化性を改善した溶銑脱りん剤の製法が開示されているが、ハロゲン化物の添加はCaO分の滓化を容易ならしめる一方で、精錬容器の耐火物の損傷を招くという問題がある。   To date, for example, Patent Document 1 discloses a method for producing a hot metal dephosphorizing agent that has improved hatchability by adding a halide or the like. While facilitating hatching, there is a problem of causing damage to the refractory in the smelting vessel.

また、特許文献2では、CaOを60−70%含む造滓剤(精錬剤)に、やはり滓化改善を目的としてFe23などに加えてAl23を8−13%添加することを提案している。しかし、Al23を8%以上添加した場合、CaO濃度が相対的に低下するために脱りん能が低下するという問題がある。また、Al23濃度が高い場合には、転炉からスラグがあふれるスロッピング現象が激しく操業を著しく阻害するという問題がある。 In Patent Document 2, the forming agent (refining agent) containing CaO 60-70%, the addition of Al 2 O 3 8-13% of still slag formation improved in addition to such Fe 2 O 3 for the purpose Has proposed. However, when Al 2 O 3 is added in an amount of 8% or more, there is a problem that the dephosphorization ability is lowered because the CaO concentration is relatively lowered. Further, when the Al 2 O 3 concentration is high, there is a problem that the slopping phenomenon in which the slag overflows from the converter is severely disturbed.

また、一般に脱りん反応はスラグの塩基度((CaOの質量濃度)/(SiO2の質量濃度))が高いほど有利であるため、事前に脱珪するなどして溶銑中のSi濃度(以降は[Si]と記載することがある)を下げた溶銑を、さらにこの脱珪処理で生じたスラグを極力除去した後に脱りん処理に供する方法が非特許文献1に開示されているが、この方法ではCaO分を滓化せしめるのに有効なSiO2分がないために、よりいっそうCaOの滓化が阻害されて脱りんが進行しないばかりではなく、処理後のスラグ中には未反応のCaOが残り、スラグの再利用時に大きな問題を生じる。 In general, dephosphorization reaction is more advantageous as the slag basicity ((CaO mass concentration) / (SiO 2 mass concentration)) is higher. Non-Patent Document 1 discloses a method in which the hot metal with a reduced [S] may be used for dephosphorization after removing the slag generated by this desiliconization as much as possible. In this method, since there is no SiO 2 component effective for allowing the CaO content to hatch, not only the hatching of CaO is inhibited and dephosphorization does not proceed, but also the unreacted CaO is not contained in the slag after the treatment. Will remain and cause major problems when slag is reused.

特開昭57−13109号公報JP-A-57-13109 特開昭55−34653号公報JP 55-34653 A NKK技報 No.178 p.1−5NKK Technical Report No. 178 p. 1-5

本発明は、上記のような耐火物の損耗、精錬能の低下およびスロッピング、さらにはCaO分の滓化不良といった問題を解決するもので、低Si濃度の溶銑を対象として、少なくとも一部に化合したCaOとFetOを含んだ、主成分をCaOとFetOとする精錬剤を添加することにより、少量の副原料によって高効率かつ生産性の高い処理方法を提供することを目的とする。なお、本明細書中では、価数の異なる酸化鉄の総和をFetOと示す。 The present invention solves the problems such as refractory wear, refining ability reduction and slopping, and poor hatching of CaO content as described above. containing compound was CaO and Fe t O, by adding a refining agent to the main component CaO and Fe t O, and aims to provide a highly efficient and productive processing method with a small amount of auxiliary materials To do. In this specification, it shows the sum of the different iron oxide valence and Fe t O.

本発明の要旨は以下の通りである。
(1) Si濃度が0.20mass%以下の溶銑を処理炉で精錬する場合において、少なくとも一部にCaOとFetOとの化合物を含んだ、主成分をCaOとFetOとする精錬剤を添加して吹錬することを特徴とする反応効率の高い精錬方法。
(2) 精錬処理を開始する前の溶銑上のスラグを排滓し、次に炉内のスラグがすでに排滓された処理炉へ該溶銑を移送し、その後精錬処理を行うことを特徴とする(1)に記載の反応効率の高い精錬方法。
(3) 前記の精錬剤が、処理炉へ添加前の室温の状態において、CaO・Fe23相が5mass%以上存在し、かつ、CaO成分が20mass%以上含まれるものであることを特徴とする(1)または(2)に記載の反応効率の高い精錬方法。ここで、室温とはたとえば−5℃から30℃の範囲を想定している。あくまでもこの温度範囲を標準状態として、この範囲での鉱物相を規定したものであり、使用前の温度が室温である必要はない。
(4) 前記の精錬処理で用いられる全CaO分のうち30mass%以上を、事前にFetOと化合したCaOとなる様に精錬剤を添加することを特徴とする(1)から(3)のいずれかに記載の反応効率の高い精錬方法。
(5) 同一処理炉において、排滓することなく所定の溶鉄中P濃度および溶鉄中C濃度となるまで精錬を行うことを特徴とする(1)から(4)のいずれかに記載の反応効率の高い精錬方法。
The gist of the present invention is as follows.
(1) In the case where Si concentration is refined in the process furnace 0.20 mass% or less of molten iron, including the compound of CaO and Fe t O on at least a portion, refining agent for the main component CaO and Fe t O A refining method with high reaction efficiency, characterized by adding and blowing.
(2) The slag on the hot metal before the start of the refining process is discharged, and then the hot metal is transferred to a processing furnace in which the slag in the furnace has already been discharged, and then the refining process is performed. The refining method with high reaction efficiency as described in (1).
(3) The refining agent is characterized in that the CaO · Fe 2 O 3 phase is present in an amount of 5 mass% or more and the CaO component is contained in an amount of 20 mass% or more in a state at room temperature before addition to the processing furnace. The refining method having high reaction efficiency according to (1) or (2). Here, the room temperature is assumed to be in the range of, for example, -5 ° C to 30 ° C. This temperature range is defined as a standard condition, and the mineral phase in this range is defined, and the temperature before use need not be room temperature.
More than 30 mass% of the total CaO content used in (4) the refining process, the advance is characterized by adding a refining agent As the CaO was combined with Fe t O (1) (3) The refining method with high reaction efficiency in any one of.
(5) The reaction efficiency according to any one of (1) to (4), wherein refining is performed until a predetermined P concentration in molten iron and a C concentration in molten iron are achieved in the same treatment furnace without being discharged. High refining method.

本発明により、CaOの滓化障害や、滓化改善に伴うスロッピングの発生、さらに低SiO2濃度時に発生する顕著な滓化障害および未反応のCaOの残留といった操業上や精錬能上の問題を回避しながらも、副材原単位やスラグ発生量を低減し、再利用が容易なスラグを生成しつつ、精錬を安定して高効率に行うことができる。 According to the present invention, problems in operation and refining ability such as failure of hatching of CaO, occurrence of slopping accompanying improvement of hatching, remarkable hatching failure occurring at low SiO 2 concentration and residual unreacted CaO While avoiding the above, it is possible to reduce the amount of raw materials used and the amount of slag, and to produce slag that can be easily reused, and to perform refining stably and efficiently.

本発明者らは、溶銑中Si濃度が低い場合、すなわちスラグ量が少ないかまたは塩基度(CaOとSiO2成分の質量濃度比(%CaO)/(%SiO2))が高い場合においても、少なくとも一部にCaOとFetOとの化合物を含んだ、主成分をCaOとFetOとする精錬剤を用いることにより、CaO分の滓化が促進され安定して高効率な精錬が可能であることを見出した。 In the case where the Si concentration in the hot metal is low, that is, the case where the amount of slag is small or the basicity (the mass concentration ratio of CaO and SiO 2 component (% CaO) / (% SiO 2 )) is high, containing compounds of CaO and Fe t O on at least a portion, by using a refining agent to the main component CaO and Fe t O, stably possible efficient refining slag of CaO content is promoted I found out.

ここで、CaOとFetOとの化合物とはFeを固溶したCaO、2CaO・Fe23、CaO・Fe23、CaO・2Fe23等のCaO−Fe23系の化合物に加え、これらにAl,Mn,Mg,P,Siが固溶したもの、さらにはCaO−Fe23系の化合物とAl,Mn,Mg,P,Siの酸化物との複合酸化物を含む。また、必ずしも化学量論組成となっている必要はなく、特にFeなどの酸化数は影響しない。 Here, CaO and Fe t O the compound of a solid solution of Fe CaO, 2CaO · Fe 2 O 3, CaO · Fe 2 O 3, etc. CaO · 2Fe 2 O 3 of CaO-Fe 2 O 3 system In addition to compounds, those in which Al, Mn, Mg, P, and Si are dissolved, and composite oxides of CaO—Fe 2 O 3 compounds and oxides of Al, Mn, Mg, P, and Si including. In addition, the stoichiometric composition is not necessarily required, and the oxidation number of Fe or the like is not particularly affected.

溶銑中Si濃度が低い場合の精錬には次の二つの場合が考えられる。まず、溶銑中Siによらず塩基度を一定とする場合、溶銑中Siが低いほど必要なCaO分は少量で済む。この場合は溶銑中Si濃度が低いほどスラグ量が少なくなるが、少ないスラグ量の場合には、溶銑によるスラグの還元速度も相対的に高く、CaOの滓化に寄与するFetO濃度の確保が困難であり、このため滓化障害が問題となる。しかし、CaOとFetOとの化合物を含んだ精錬剤を用いた場合には、精錬反応において生成したFetOによって溶解されるのではなく、この精錬剤が自ら融解するために、滓化が阻害されることなく進行する。 The following two cases can be considered for refining when the Si concentration in the hot metal is low. First, when the basicity is constant regardless of the Si content in the hot metal, the lower the Si content in the hot metal, the smaller the required CaO content. In this case, the lower the Si concentration in the hot metal, the smaller the amount of slag. However, in the case of a small amount of slag, the reduction rate of slag by the hot metal is relatively high, ensuring the Fe t O concentration that contributes to the hatching of CaO. This makes hatching a problem. However, when a refining agent containing a compound of CaO and Fe t O, rather than being dissolved by Fe t O produced in refining reactions, for the refining agent melts themselves, slag formation Progresses without being inhibited.

また、溶銑中Siによらず投入CaO量を一定とする場合には、溶銑中Si濃度が低いほど塩基度が高くなる。一般には塩基度が高いほど脱りんには有利であるが、CaOの滓化も塩基度が高いほど阻害されてしまい、溶銑中Si濃度が低い場合においても、メタルと主に反応する液相スラグ中の塩基度を高めることは困難である。しかし、CaOとFetOとの化合物を含んだ精錬剤を用いた場合には、溶銑中Si濃度が低い場合においてもSi分による溶解を待つことなく、この精錬剤が自ら融解するために、CaOの滓化が阻害されることなく、液相中の塩基度を上昇させることができる。 In addition, when the amount of CaO charged is constant regardless of the Si content in the hot metal, the basicity increases as the Si concentration in the hot metal decreases. In general, the higher the basicity, the more advantageous for dephosphorization, but the higher the basicity, the more the CaO hatching is inhibited, and even when the Si concentration in the hot metal is low, the liquid phase slag reacts mainly with the metal. It is difficult to increase the basicity. However, when a refining agent containing a compound of CaO and Fe t O, without waiting for lysis by Si content even when a low Si concentration in the molten iron, for the refining agent is melted itself, The basicity in the liquid phase can be increased without inhibiting the hatching of CaO.

さらに、上記においてスラグ中のSiO2分を極力低減するため、精錬剤を投入する前にメタル上に存在するスラグ量を除去した場合においても、スラグによる溶解に頼らず、この精錬剤は自ら融解することにより滓化障害を回避できる。ここで、液相スラグとは、スラグ中の未溶解の副原料以外の部分を指す。以下にこの脱りん反応の形態について説明する。 Furthermore, in order to reduce the SiO 2 content in the slag as much as possible, even if the amount of slag present on the metal is removed before the refining agent is added, the refining agent melts itself without relying on melting by the slag. By doing so, hatching failure can be avoided. Here, the liquid phase slag refers to a portion other than the undissolved auxiliary material in the slag. The mode of this dephosphorization reaction will be described below.

本明細書における精錬とは、溶鉄中からC,Si,Pなどを除去することを意味している。また、溶鉄とは、溶銑と溶鋼の総称であり、溶銑とは脱炭前のもの、溶鋼とは脱炭後のものと定義する。   In this specification, refining means removing C, Si, P, etc. from molten iron. Moreover, molten iron is a general term for molten iron and molten steel, and molten iron is defined as that before decarburization, and molten steel is defined as that after decarburization.

特に、本発明ではCaOを主成分(最終スラグ中にCaOに換算して30mass%以上)とする脱りんを対象としている。代表的なCaO源である生石灰は単独では融点が2500℃以上であり、また、CaO源として添加される、石灰石およびドロマイトも生石灰に分解した後に反応に寄与するため、同様の融点となる。このために転炉内に装入されたCaOは、自ら融解することはできず周囲のスラグと反応して溶解が進行するが、その際、脱珪反応由来の、あるいは持越スラグ由来のSiO2と反応することでCaOの周囲に2CaO・SiO2の殻が生成する。ここで、持越スラグとは当該溶銑の前処理において発生したスラグが当該溶銑に随伴して混入するものと、当該処理を行う炉で、当該溶銑を装入する前に残留しているスラグである。この殻が周囲の液相とほぼ平衡状態となるため、内部に存在する未反応のCaOがそのまま反応終了時まで残留する。本発明者らの調査の結果、液相スラグのFetO濃度が高い場合には2CaO・SiO2の殻が薄く、内部のCaOの溶解も早いことが明らかとなったが、溶銑中のSi濃度が低い場合には、溶銑中C濃度(以降[C]と示すことがある。)によるスラグ中FetO分の還元が進行しやすく、このため初期のCaOの溶解が阻害される問題がある。 In particular, the present invention is intended for dephosphorization containing CaO as a main component (30 mass% or more in terms of CaO in the final slag). Quick lime, which is a typical CaO source, has a melting point of 2500 ° C. or more alone, and limestone and dolomite added as a CaO source contribute to the reaction after being decomposed into quick lime, and thus have the same melting point. For this reason, CaO charged in the converter cannot melt by itself and reacts with the surrounding slag to proceed with melting. At that time, SiO 2 derived from the desiliconization reaction or derived from the carryover slag. 2CaO · SiO 2 shells are formed around CaO. Here, the carry-over slag is the slag generated in the pretreatment of the hot metal and mixed with the hot metal and the slag remaining in the furnace for performing the treatment before the hot metal is charged. . Since this shell is almost in equilibrium with the surrounding liquid phase, unreacted CaO present inside remains as it is until the end of the reaction. As a result of investigations by the present inventors, it has been clarified that when the Fe t O concentration of the liquid phase slag is high, the shell of 2CaO · SiO 2 is thin and the dissolution of the internal CaO is fast, but the Si in the molten iron When the concentration is low, reduction of the Fe t O content in the slag is likely to proceed due to the C concentration in the hot metal (hereinafter sometimes referred to as [C]), and therefore, there is a problem that the initial dissolution of CaO is hindered. is there.

一方で、単純にはスラグ中のCaO濃度が高いほうが脱りんに有利である。少ないCaO原料によって高いCaO濃度を実現するには、スラグに入るSiO2源を低減することが効果的であり、[Si]濃度が低い溶銑、あるいは事前に脱珪して[Si]濃度を下げた溶銑を用いて、かつ、SiO2を含むスラグを極力除外したのちに脱りん処理を行う方法があるが、この場合には上記のようにCaOの溶解がネックとなり、主にメタルと直接反応する液相スラグのCaO濃度が高くならずに脱りんが進行しないばかりか、処理後のスラグに未反応のCaOが残留し、スラグの再利用を阻害する。 On the other hand, a higher CaO concentration in the slag is advantageous for dephosphorization. In order to achieve a high CaO concentration with a small amount of CaO raw material, it is effective to reduce the SiO 2 source that enters the slag, and the [Si] concentration is lowered by desiliconization in advance with low [Si] concentration. There is a method of dephosphorization after removing hot slag containing SiO 2 as much as possible, but in this case, dissolution of CaO becomes a bottleneck as mentioned above, and it mainly reacts directly with metal Not only does the dephosphorization proceed without the CaO concentration of the liquid phase slag being increased, but unreacted CaO remains in the slag after treatment, thereby inhibiting the reuse of the slag.

この問題に対し、本発明者らは詳細な実験を行い、生石灰、石灰石あるいはドロマイトのみを用いた場合には、CaOの溶解阻害現象は[Si]≦0.20mass%でかつスラグ塩基度が1.2を超える場合に顕著に生じるが、この条件下でも、CaOとFetOとの化合物を含んだ精錬剤を用いた場合には、CaOの溶解阻害現象が抑制されることを確認した。これは、CaOとFetOとの化合物である、モノカルシウムフェライトやダイカルシウムフェライトなどの低融点の相が融解の起点となるため、液相スラグのFeO濃度が比較的低い場合においても精錬剤の溶解が進行し、この結果、液相スラグのCaO濃度も高濃度となることによる。 In order to solve this problem, the present inventors have conducted detailed experiments. When only quick lime, limestone or dolomite is used, the dissolution inhibition phenomenon of CaO is [Si] ≦ 0.20 mass% and the slag basicity is 1. occurs conspicuously when exceeding .2, but under these conditions, when a refining agent containing a compound of CaO and Fe t O was confirmed that the dissolution inhibition phenomenon CaO is suppressed. This is a compound of CaO and Fe t O, since the low-melting phase, such as mono-calcium ferrite and dicalcium ferrite as a starting point of melting, refining agent even when relatively low FeO concentration in the liquid phase slag As a result, the CaO concentration of the liquid phase slag becomes high.

また、Si濃度が0.20mass%以下の溶銑を精錬した際には、生成するスラグ量をSi濃度が0.20質量%より高い場合に比べて減少させることができる。従って、本発明では、Si濃度が0.20mass%以下の溶銑を対象とする。   Moreover, when the hot metal having a Si concentration of 0.20 mass% or less is refined, the amount of slag to be generated can be reduced as compared with the case where the Si concentration is higher than 0.20 mass%. Therefore, in the present invention, hot metal having a Si concentration of 0.20 mass% or less is targeted.

さらに、本発明で用いる精錬剤は、少なくとも一部がCaOとFetOとの化合物を含んだものであり、主成分をCaOとFetOとするものである。ここで、主成分とは精錬剤全量に対するCaOとFetOの合計の割合として、約70質量%以上であることを目安とするが、90質量%以上がより望ましい。従来、蛍石あるいは塩化カルシウムなどのハロゲン化物を含有しない精錬剤は迅速に溶解しないと考えられていたが、モノカルシウムフェライトを精錬剤中に分散させることにより、滓化が促進される。 Furthermore, refining agents used in the present invention is at least partly those containing a compound of CaO and Fe t O, in which the main component CaO and Fe t O. Here, as a percentage of the total CaO and Fe t O for refining agent total amount mainly, but as a guide to be about 70 mass% or more, more preferably at least 90 mass%. Conventionally, it has been thought that a refining agent not containing a halide such as fluorite or calcium chloride does not dissolve rapidly, but by dispersing monocalcium ferrite in the refining agent, hatching is promoted.

したがって本発明では、ハロゲン化物を用いない場合においても、滓化障害を回避可能であり、さらに耐火物の溶損を抑制することが出来、かつ、精錬剤のコストを低減することが出来る。   Therefore, in the present invention, even when a halide is not used, hatching failure can be avoided, and further, refractory melting can be suppressed, and the cost of the refining agent can be reduced.

ここで、ハロゲン化物は、フッ化カルシウム、塩化カルシウムを代表として、F,Cl,Brの化合物を示す。   Here, the halide represents a compound of F, Cl, Br, typically calcium fluoride and calcium chloride.

精錬剤は、石灰石と鉄鉱石を主原料として、望ましくは1000℃以上に加熱して作られる。石灰石代替としては、生石灰、ドロマイトに加え、CaO含有スラグを用いることもできる。また、鉄鉱石は酸化鉄分として添加されるものであり、鉄鉱石、焼結鉱、所内発生ダスト、スラッジなどを用いることができる。   The refining agent is made by using limestone and iron ore as main raw materials, preferably by heating to 1000 ° C. or higher. As an alternative to limestone, CaO-containing slag can be used in addition to quicklime and dolomite. Moreover, iron ore is added as an iron oxide component, and iron ore, sintered ore, in-house generated dust, sludge, and the like can be used.

また、CaO分を全量精錬剤で供給する必要はなく、脱炭滓などのリサイクルを行う場合でも何ら問題はない。ただし、メタル成分変動や脱りん能の観点から、精錬剤中の硫黄、リン濃度は、S<0.1mass%かつP<1mass%であることが望ましい。   Further, it is not necessary to supply the entire amount of CaO as a refining agent, and there is no problem even when recycling such as decarburized soot. However, from the viewpoint of metal component fluctuation and dephosphorization ability, it is desirable that the sulfur and phosphorus concentrations in the refining agent are S <0.1 mass% and P <1 mass%.

上記の[Si]濃度に加えさらに、精錬処理を開始する前の溶銑上のスラグを排滓し、次に炉内のスラグがすでに排滓された処理炉へ該溶銑を移送し、その後精錬処理を行う場合には、処理炉内のスラグ量が少ないため、特にCaOの滓化阻害が顕著となるが、この場合にCaOとFetOとの化合物を含んだ精錬剤を用いることで、滓化阻害を抑制できる。 In addition to the above [Si] concentration, the slag on the hot metal before the start of the refining process is discharged, and then the hot metal is transferred to the processing furnace where the slag in the furnace has already been discharged, and then the refining process to the case of performing, for the amount of slag in the processing furnace is low, especially conspicuous faint inhibition of CaO, by using a refining agent containing a compound of CaO and Fe t O in this case, slag Inhibition of oxidization can be suppressed.

具体的には、物質バランスで計算される持越スラグ量が10kg/t−メタル以下である場合が望ましい。ここで、10kg/t−メタルとは、1tの溶鉄あたりのスラグ量が10kgであることを意味しており、この溶鉄は処理炉へ移送された溶銑を指す。また精錬開始以降では、溶銑のみならず溶鋼を対象とする場合があるが、その際には溶鉄は溶鋼を指す。   Specifically, it is desirable that the carry-over slag amount calculated by the material balance is 10 kg / t-metal or less. Here, 10 kg / t-metal means that the amount of slag per 1 t of molten iron is 10 kg, and this molten iron refers to the molten iron transferred to the processing furnace. In addition, after the start of refining, not only hot metal but also molten steel may be targeted, but in that case, molten iron refers to molten steel.

持越スラグ量を物質バランスで求める方法は、たとえば以下の方法がある。当該処理が始まる直前に、炉内に装入された溶銑上のスラグから採取された試料から持越スラグの成分を分析する。持越スラグ中のCaO濃度、SiO2濃度をそれぞれc1、s1(mass%)とし、当該処理で新たに追加されるCaO量とSiO2量、さらに反応により生成するSiO2の量をそれぞれC2、S2、S3(kg/t)とする。処理後のスラグ中のCaO濃度、SiO2濃度をc4、s4とすると、
(c1・X/100+C2)/c4=(s1・X/100+S2+S3)/s4
となり、持越スラグ量X(kg/t)について解くことによって持越スラグ量を求めることができる。この計算では投入CaO分は全量スラグに添加されると仮定しているが、実現象にあわせて石灰の歩留まりなど考慮する必要がある。
As a method of obtaining the carryover slag amount by the material balance, for example, there are the following methods. Immediately before the treatment starts, components of the carry-over slag are analyzed from a sample collected from the slag on the hot metal charged in the furnace. CaO concentration carryover slag, the SiO 2 concentration of each c1, s1 (mass%), CaO amount and SiO 2 amount of newly added in the process, further the amount of SiO 2 produced by the reaction, respectively C2, S2 , S3 (kg / t). If the CaO concentration and SiO 2 concentration in the slag after treatment are c4 and s4,
(C1 · X / 100 + C2) / c4 = (s1 · X / 100 + S2 + S3) / s4
Thus, the carryover slag amount can be obtained by solving for the carryover slag amount X (kg / t). In this calculation, it is assumed that the amount of CaO added is added to the slag, but it is necessary to consider the yield of lime in accordance with the actual phenomenon.

持越スラグ成分は当該処理開始前には不明であると想定されるため、上記の方法での持越スラグ量の計算は過去に終了した処理について複数例行った上で、排滓時間や傾動角度などの操業条件から統計的に推定できる方法として担保しておくことが望ましい。   Since the carry-over slag component is assumed to be unknown before the start of the process, the calculation of the carry-over slag amount using the above method is performed for multiple examples of processes that have been completed in the past, and then the evacuation time, tilt angle, etc. It is desirable to secure it as a method that can be statistically estimated from the operating conditions.

CaOとFetOとの化合物を含む精錬剤は、添加前の室温の状態においてCaO・Fe23相(モノカルシウムフェライト相)が5mass%以上存在し、かつ、CaO濃度が20mass%以上である場合において、溶解促進効果をより発揮し脱りんが進む。 In refining agent comprising a compound of CaO and Fe t O is, CaO · Fe 2 O 3 phase (monocalcium ferrite phase) is present more than 5 mass% in the previous room temperature condition added, and, CaO concentration 20 mass% or more In some cases, the dissolution promoting effect is further exhibited and dephosphorization proceeds.

これらは、精錬剤の融解の起点であるモノカルシウムフェライト量を調査した結果に基づくものであり、この調査ではモノカルシウムフェライトが5mass%以上である場合に融解が速やかに進行する。また、前述したように脱りん能の観点からスラグ中CaO濃度は高いほうが良く、精錬剤中のCaO濃度が20mass%以上であれば、少ない精錬剤量で高いCaO濃度のスラグが得られる。また、CaO濃度が20mass%以上ある場合には、精錬剤が融解して直接生じる液相内のCaO濃度も高いために、脱りんに有利となる。より高効率な脱りんのためには40mass%以上のCaO濃度が望ましい。   These are based on the result of investigating the amount of monocalcium ferrite which is the starting point of melting of the refining agent. In this investigation, melting proceeds rapidly when monocalcium ferrite is 5 mass% or more. Further, as described above, it is better that the CaO concentration in the slag is high from the viewpoint of dephosphorization ability. If the CaO concentration in the refining agent is 20 mass% or more, a slag having a high CaO concentration can be obtained with a small amount of the refining agent. Further, when the CaO concentration is 20 mass% or more, the CaO concentration in the liquid phase directly generated by melting the refining agent is high, which is advantageous for dephosphorization. For more efficient dephosphorization, a CaO concentration of 40 mass% or more is desirable.

しかし平衡論的には、CaO濃度が40mass%以上の領域の大部分ではモノカルシウムフェライトとCaOは共存しない。そこで本発明者らは、焼結鉱の製造と同等のプロセスで精錬剤が製造可能であることを見出した。。焼結機で溶融する場合には、5分程度の短時間で1400℃前後の温度に到達し、その後冷却される。このために、CaO濃度が40mass%を超えるような組成領域においても、本来非平衡相であるモノカルシウムフェライト(CaO・Fe23)が生成する。モノカルシウムフェライトは融点が1200℃程度であり、精錬剤の滓化に有利である。さらには、焼結機で行うことにより、石油などに比べて安価なコークスを使用することが可能である。また、CaO分やFetO分の原料として3mm以下のような粉を用いることもできる。 However, in equilibrium, monocalcium ferrite and CaO do not coexist in the majority of the region where the CaO concentration is 40 mass% or more. Accordingly, the present inventors have found that a refining agent can be produced by a process equivalent to the production of sintered ore. . In the case of melting with a sintering machine, the temperature reaches about 1400 ° C. in a short time of about 5 minutes and then cooled. For this reason, even in a composition region where the CaO concentration exceeds 40 mass%, monocalcium ferrite (CaO.Fe 2 O 3 ), which is essentially a non-equilibrium phase, is generated. Monocalcium ferrite has a melting point of about 1200 ° C., which is advantageous for hatching of a refining agent. Furthermore, by using a sintering machine, it is possible to use coke that is cheaper than petroleum. It is also possible to use a powder such as 3mm below as CaO content and Fe t O content of the raw material.

また、良好な脱りん反応のためには、スラグがCaO飽和であることが望ましい。未反応のCaOを最低限まで削減しつつ、高効率な安定した脱りんを実現するためには、CaO相とダイカルシウムフェライト(2CaO・Fe23)相とが存在することが望ましい。 Moreover, for a good dephosphorization reaction, it is desirable that the slag is CaO saturated. In order to realize highly efficient and stable dephosphorization while reducing unreacted CaO to the minimum, it is desirable that a CaO phase and a dicalcium ferrite (2CaO · Fe 2 O 3 ) phase exist.

また、図1に示すように本発明者らが行った実機規模の実験の結果から、当該吹錬で炉内に存在する全CaO分のうち30mass%以上を、CaOとFetOとの化合物を含んだCaOとFetOを主成分とする精錬剤のCaO分で添加する場合に、さらに脱りん効率が向上し、安定化が図れる。図1の横軸は、全投入CaOのうち精錬剤中のCaOで供給したCaOの割合(精錬剤置換率)を示しており、この割合が30%以上で、良好な脱りんが得られていることがわかる。炉内に存在する全CaO分を把握することが困難な場合は、簡易的に投入CaO量をそのまま炉内に存在するCaO量としても良い。また、CaO分を投入する前の残留スラグ量を、当該精錬の前に行った適当な数の精錬の実績から、マスバランス計算などによって求めても良い。 The compounds of the results of actual scale experiments conducted by the present inventors, as shown in FIG. 1, more than 30 mass% of the total CaO content present in the furnace in the blowing, the CaO and Fe t O When the CaO content of the refining agent mainly containing CaO and Fe t O is added, the dephosphorization efficiency is further improved and stabilization can be achieved. The horizontal axis of FIG. 1 shows the proportion of CaO supplied by CaO in the refining agent among all the input CaO (refining agent replacement rate). When this proportion is 30% or more, good dephosphorization is obtained. I understand that. When it is difficult to grasp the total amount of CaO present in the furnace, the input CaO amount may be simply used as the amount of CaO present in the furnace as it is. Moreover, you may obtain | require the amount of residual slag before throwing in a CaO part by mass balance calculation etc. from the performance of the appropriate number of refining performed before the said refining.

上記は主に溶銑予備脱りん処理を対象としているが、同一処理炉において、排滓することなく所定の溶鉄中P濃度および溶鉄中C濃度となるまで精錬を行う場合にも、CaOとFetOとの化合物を含む精錬剤を用いることにより、高効率で安定した脱りんが可能となる。ここで、所定の溶鉄中Pおよび溶鉄中C濃度とは、製造しようとしている製品の管理基準に見合う濃度であるが、当該処理炉の後工程で別途精錬処理が可能である場合には、その処理での成分変動幅を考慮した濃度を指す。たとえば溶鉄中C濃度で言えば主に0.03〜1質量%程度、溶鉄中P濃度では0.002〜0.040質量%であるが、製品によってはこの範囲を超える値をもつこともあり、そのような場合でも本発明は効果をもつ。 The above is mainly intended for hot metal preliminary dephosphorization treatment, but when refining is performed in the same treatment furnace to a predetermined P concentration in molten iron and C concentration in molten iron without waste, CaO and Fe t By using a refining agent containing a compound with O, highly efficient and stable dephosphorization becomes possible. Here, the predetermined P concentration in the molten iron and C concentration in the molten iron are concentrations that meet the management standards of the product to be manufactured, but if a separate refining process is possible in the subsequent process furnace, Concentration taking into account the component fluctuation range in processing. For example, the concentration of C in molten iron is about 0.03 to 1% by mass, and the concentration of P in molten iron is 0.002 to 0.040% by mass, but some products may have values exceeding this range. Even in such a case, the present invention has an effect.

まず、予備処理として脱りんを行い、続いて脱炭を行う場合は、従来技術ではスラグ除去あるいはメタルの移し変えが必要となる。しかし、本発明によれば、スラグを除去せずに脱炭処理を同一処理炉で続けて行うことができるため、スラグの除去を行う場合と比べて移し変えやスラグ排出に伴う時間、熱のロスを排除することができ、生産性・コストの面で効果がある。   First, when dephosphorization is performed as a preliminary treatment and subsequently decarburization is performed, slag removal or metal transfer is required in the conventional technology. However, according to the present invention, since the decarburization process can be continuously performed in the same processing furnace without removing the slag, compared to the case of removing the slag, the time and heat associated with the transfer and slag discharge are reduced. Loss can be eliminated, which is effective in terms of productivity and cost.

溶銑中Siが低く炉内のSi量が少量であるために、少量のCaO分でCaO濃度を高くできる。さらにCaOとFetOとの化合物を含んだ精錬剤を用いることにより、メタルと直接反応する液相スラグのCaO濃度が高いために、脱炭処理終点まで同一のスラグで精錬処理を行っても、良好な脱りんが得られる。 Since the amount of Si in the hot metal is low and the amount of Si in the furnace is small, the CaO concentration can be increased with a small amount of CaO. Further by using a refining agent containing a compound of CaO and Fe t O, because of the high CaO concentration in the liquid phase slag to react directly with the metal, even if the refining process with the same slag to decarburization endpoint Good dephosphorization is obtained.

また、従来はFetO濃度が上昇してCaOの溶解が進行する脱炭末期まで脱りんも進行しなかったが、CaOとFetOとの化合物を含んだ精錬剤を用いることにより、精錬初期から液相スラグのCaO濃度を高濃度にすることが可能であり、したがって精錬初期から脱りんが進行する。このため、予備処理として脱りんを行いスラグ除去やメタルの移し変えを行わなくても、脱りんの高効率化・安定化が可能である。 Further, conventionally, the dissolution of CaO and increased Fe t O concentration was not de Rinmo proceeds to decarburization end which proceeds by using a refining agent containing a compound of CaO and Fe t O, refining It is possible to increase the CaO concentration of the liquid phase slag from the beginning, and therefore dephosphorization proceeds from the beginning of refining. For this reason, dephosphorization can be highly efficient and stabilized without dephosphorization as a pretreatment and without removing slag or changing metal.

また、高炭素濃度で低りん濃度を要求される鋼材を溶製する場合には、低炭素鋼にくらべて早い段階で吹止めることになるが、その場合においても脱りんが初期から進行しているため、生石灰や石灰石、ドロマイトなどを用いるよりも安定した脱りんが可能である。   In addition, when steel materials requiring high carbon concentration and low phosphorus concentration are melted, they are blown off at an early stage compared to low carbon steel, but even in this case, dephosphorization proceeds from the beginning. Therefore, more stable dephosphorization is possible than using quick lime, limestone, dolomite and the like.

実施例1〜4、および比較例1〜2では、300t規模の上底吹き転炉を用いた溶銑予備脱りんを行った。実施例5及び比較例3では低炭濃度まで吹錬を継続した。いずれの場合においても、高炉から出銑された溶銑を脱珪し、Si濃度を0.2mass%以下まで低減させた。その後原則としてドラッガーによる排滓を行い、炉内のスラグが排滓された転炉に装入した。ただし、実施例1と比較例1においては排滓時間が短く、転炉内のスラグは除去されたが、溶銑上のスラグが十分に除去できていない。   In Examples 1 to 4 and Comparative Examples 1 and 2, hot metal preliminary dephosphorization was performed using a 300 t scale top-bottom blowing converter. In Example 5 and Comparative Example 3, blowing was continued to a low coal concentration. In either case, the hot metal discharged from the blast furnace was desiliconized to reduce the Si concentration to 0.2 mass% or less. After that, as a rule, the waste was discharged by a dragger and charged into the converter where the slag in the furnace was discharged. However, in Example 1 and Comparative Example 1, the removal time was short and the slag in the converter was removed, but the slag on the hot metal was not sufficiently removed.

これらの例では、酸素は上吹きランスから、1.0〜2.0 Nm3/min/ton−溶銑の速度で供給し、底吹きは小径集合管羽口から処理の全般にわたって窒素を2000Nm3/hの速度で供給した。 In these examples, the oxygen from the top lance, 1.0~2.0 Nm 3 / min / ton- supplied with hot metal rate of bottom blowing is 2000Nm with nitrogen for general processing from the small diameter collecting pipe tuyere 3 / H was supplied.

約250tの溶銑の初期温度は1330〜1350℃であり、この溶銑をスクラップ30〜40tと合わせて転炉に装入し、生石灰、鉄鉱石及び実施例では本発明の精錬剤を添加して脱りん精錬を8〜9分間行った。   The initial temperature of hot metal of about 250 tons is 1330 to 1350 ° C., and this hot metal is combined with scraps of 30 to 40 tons and charged into the converter. In the examples, quick lime, iron ore and the refining agent of the present invention are added to remove the hot metal. Phosphorus refining was performed for 8-9 minutes.

また、実施例5および比較例3では、脱りん脱炭精錬を行った。吹錬開始から終点まで酸素は上吹きランスから、1.0〜2.5 Nm3/min/ton−溶銑の速度で供給し、底吹きは小径集合管羽口から処理の全般にわたってCO2を2000Nm3/hの速度で供給した。吹錬時間は15〜16分とした。 Moreover, in Example 5 and Comparative Example 3, dephosphorization decarburization refining was performed. From the beginning to the end of blowing, oxygen is supplied from the top blowing lance at a rate of 1.0 to 2.5 Nm 3 / min / ton-molten iron, and the bottom blowing is CO 2 from the small diameter collecting pipe tuyere throughout the treatment. It was supplied at a speed of 2000 Nm 3 / h. The blowing time was 15 to 16 minutes.

ここで、精錬処理の始点は厳密には吹錬開始時点を指すが、処理炉に装入する前の鍋から得られたサンプルの成分を用い、処理前溶鉄成分として表中に示した。   Here, although the starting point of the refining process indicates the start point of the blowing process strictly, the components of the sample obtained from the pan before charging into the processing furnace are used and are shown in the table as the pre-processing molten iron components.

また、精錬処理の終点は、厳密には吹錬終了時点を指すが、実施例1から4および比較例1から2では吹錬終了後にサブランスで処理炉内から採取したサンプルの成分を、また、実施例5と比較例3では、処理炉から出鋼した後の鍋から得られたサンプルの成分を用い、処理後溶鉄成分として示した。   In addition, the end point of the refining process strictly refers to the end point of blowing, but in Examples 1 to 4 and Comparative Examples 1 to 2, the components of the sample collected from the processing furnace with a sub lance after the end of blowing, In Example 5 and Comparative Example 3, the components of the sample obtained from the pan after the steel was removed from the processing furnace were used and indicated as the molten iron component after the treatment.

各例の条件を表1に、結果を表2に示す。表1中の精錬剤置換率は、全投入CaOに対して本発明の精錬剤中のCaOとして投入したCaOの割合を示す。   Table 1 shows the conditions of each example, and Table 2 shows the results. The refining agent replacement rate in Table 1 indicates the ratio of CaO input as CaO in the refining agent of the present invention with respect to all input CaO.

実施例についてはいずれも終点での溶鉄中P濃度で0.02mass%以下、処理後排滓場で採取したスラグのf−CaOが0.5mass%以下となり、良好な脱りんができた。   In all the examples, the P concentration in molten iron at the end point was 0.02 mass% or less, and the f-CaO of the slag collected at the post-treatment waste disposal site was 0.5 mass% or less, and good dephosphorization was achieved.

特に、実施例4では、精錬剤置換率が67mass%と大きかったため、終点での溶鉄中P濃度がより良好な脱燐処理を行うことができた。   In particular, in Example 4, since the refining agent substitution rate was as large as 67 mass%, dephosphorization treatment with a better P concentration in molten iron at the end point could be performed.

Figure 2005314760
Figure 2005314760

Figure 2005314760
Figure 2005314760

CaOの精錬剤置換率と精錬終点での溶鉄中P濃度の関係Relation between refining agent replacement rate of CaO and P concentration in molten iron at the end of refining

Claims (5)

Si濃度が0.20mass%以下の溶銑を処理炉で精錬する場合において、少なくとも一部にCaOとFetOとの化合物を含んだ、主成分をCaOとFetOとする精錬剤を添加して吹錬することを特徴とする反応効率の高い精錬方法。 When the Si concentration is refined in the process furnace 0.20 mass% or less of molten iron, least partially containing a compound of CaO and Fe t O, adding a refining agent to the main component CaO and Fe t O Refining method with high reaction efficiency characterized by blowing and blowing. 精錬処理を開始する前の溶銑上のスラグを排滓し、次に炉内のスラグがすでに排滓された処理炉へ該溶銑を移送し、その後精錬処理を行うことを特徴とする請求項1に記載の反応効率の高い精錬方法。   The slag on the hot metal before the start of the refining process is discharged, and then the hot metal is transferred to a processing furnace in which the slag in the furnace has already been discharged, and then the refining process is performed. The refining method with high reaction efficiency described in 1. 前記の精錬剤が、処理炉へ添加前の室温の状態において、CaO・Fe23相が5mass%以上存在し、かつ、CaO成分が20mass%以上含まれるものであることを特徴とする請求項1または2に記載の反応効率の高い精錬方法。 The refining agent is characterized in that the CaO · Fe 2 O 3 phase is present in an amount of 5 mass% or more and a CaO component is contained in an amount of 20 mass% or more in a state at room temperature before addition to the processing furnace. Item 3. A refining method having high reaction efficiency according to Item 1 or 2. 前記の精錬処理で用いられる全CaO分のうち30mass%以上を、事前にFetOと化合したCaOとなる様に精錬剤を添加することを特徴とする請求項1から3のいずれかに記載の反応効率の高い精錬方法。 Described above 30 mass% of the total CaO content used in the refining process above, either in advance from claim 1, characterized in that the addition of Fe t O the compound was refining agent As the CaO 3 of Refining method with high reaction efficiency. 同一処理炉において、排滓することなく所定の溶鉄中P濃度および溶鉄中C濃度となるまで精錬を行うことを特徴とする請求項1から4のいずれかに記載の反応効率の高い精錬方法。   The refining method with high reaction efficiency according to any one of claims 1 to 4, wherein refining is performed in a single treatment furnace until a predetermined P concentration in molten iron and C concentration in molten iron are obtained without waste.
JP2004135309A 2004-04-30 2004-04-30 Refining method with high reaction efficiency Expired - Fee Related JP4854933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004135309A JP4854933B2 (en) 2004-04-30 2004-04-30 Refining method with high reaction efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004135309A JP4854933B2 (en) 2004-04-30 2004-04-30 Refining method with high reaction efficiency

Publications (2)

Publication Number Publication Date
JP2005314760A true JP2005314760A (en) 2005-11-10
JP4854933B2 JP4854933B2 (en) 2012-01-18

Family

ID=35442485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004135309A Expired - Fee Related JP4854933B2 (en) 2004-04-30 2004-04-30 Refining method with high reaction efficiency

Country Status (1)

Country Link
JP (1) JP4854933B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249644A (en) * 2008-04-01 2009-10-29 Kobe Steel Ltd Method for charging pre-melt slag-formation promotive agent
JP2010001536A (en) * 2008-06-20 2010-01-07 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron
JP2013133484A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp Converter refining method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249644A (en) * 2008-04-01 2009-10-29 Kobe Steel Ltd Method for charging pre-melt slag-formation promotive agent
JP2010001536A (en) * 2008-06-20 2010-01-07 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron
JP2013133484A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp Converter refining method

Also Published As

Publication number Publication date
JP4854933B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4196997B2 (en) Hot metal processing method
JP2010168641A (en) Method for reclaiming iron and phosphorous from steelmaking slag
WO2013012039A9 (en) Method for smelting molten pig iron
JP6481774B2 (en) Molten iron dephosphorizing agent, refining agent and dephosphorizing method
CN111670258B (en) Method for dephosphorizing molten iron
JP6222490B2 (en) Hot phosphorus dephosphorization method
JP2004190101A (en) Method for pre-treating molten iron
JP5983492B2 (en) Hot metal pretreatment method
JP5268019B2 (en) How to remove hot metal
JP4854933B2 (en) Refining method with high reaction efficiency
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JP2008063645A (en) Steelmaking method
JP5915711B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JPH10237526A (en) Dephosphorization of hot metal
JP2011084777A (en) Steel-making refining method performed by using electric furnace
JP5286892B2 (en) Dephosphorization method of hot metal
JP3158912B2 (en) Stainless steel refining method
JP2019151535A (en) Method of producing phosphate slag fertilizer
JP6011556B2 (en) Method for producing phosphate fertilizer raw material
JP5447554B2 (en) Dephosphorization method for hot metal
JP2011149083A (en) Method for dephosphorizing molten pig iron
JPWO2017159840A1 (en) Hot metal pretreatment method
JP2017171975A (en) Dephosphorization agent for molten pig iron and dephosphorization method
JPWO2017122536A1 (en) Converter blowing method
JP6665654B2 (en) Silica removal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4854933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees