JPWO2017159840A1 - Hot metal pretreatment method - Google Patents

Hot metal pretreatment method Download PDF

Info

Publication number
JPWO2017159840A1
JPWO2017159840A1 JP2018506037A JP2018506037A JPWO2017159840A1 JP WO2017159840 A1 JPWO2017159840 A1 JP WO2017159840A1 JP 2018506037 A JP2018506037 A JP 2018506037A JP 2018506037 A JP2018506037 A JP 2018506037A JP WO2017159840 A1 JPWO2017159840 A1 JP WO2017159840A1
Authority
JP
Japan
Prior art keywords
mass
hot metal
converter slag
slag
metal pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018506037A
Other languages
Japanese (ja)
Other versions
JP6544480B2 (en
Inventor
太田 光彦
光彦 太田
阪井 航
航 阪井
孝二郎 川辺
孝二郎 川辺
郁巳 大方
郁巳 大方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JPWO2017159840A1 publication Critical patent/JPWO2017159840A1/en
Application granted granted Critical
Publication of JP6544480B2 publication Critical patent/JP6544480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

転炉スラグを、溶銑予備処理用の精錬剤としてリサイクルする溶銑予備処理方法であって、前記転炉スラグの粒径が3mm以上25mm未満の範囲となり、前記転炉スラグのうち、粒径20mm以上25mm未満の転炉スラグの比率が前記転炉スラグの全量に対して10質量%以上15質量%未満となるように前記転炉スラグを整粒する第1の工程と;整粒後の前記転炉スラグを溶銑予備処理容器内に投入する第2の工程と;前記第1の工程より後でかつ前記第2の工程より前、又は、前記第2の工程と同時に、前記転炉スラグ100質量%に対して1.0質量%以上10.0質量%未満のAl2O3を前記溶銑予備処理容器内に投入する第3の工程と;前記溶銑予備処理容器内に、前記転炉スラグ100質量%に対して0.3質量%以上10.0質量%未満のMnOを投入する第4の工程と;を有することを特徴とする溶銑予備処理方法を提供する。A hot metal pretreatment method for recycling converter slag as a refining agent for hot metal pretreatment, wherein the particle size of the converter slag is in the range of 3 mm or more and less than 25 mm, and the particle size of the converter slag is 20 mm or more. A first step of sizing the converter slag so that a ratio of converter slag of less than 25 mm is 10% by mass or more and less than 15% by mass with respect to the total amount of the converter slag; A second step of charging the furnace slag into the hot metal pretreatment container; 100 masses of the converter slag after the first step and before the second step or simultaneously with the second step. A third step of charging Al 2 O 3 in an amount of 1.0% by mass or more and less than 10.0% by mass to the hot metal pretreatment container; and in the hot metal pretreatment container, the converter slag is added to 100% by mass. 0.3% by mass or more 1 A fourth step of introducing MnO less than 2.0 wt%; to have to provide a hot metal pretreatment method comprising.

Description

本発明は、溶銑予備処理方法に関するものである。
本願は、2016年3月17日に日本に出願された特願2016−053234号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hot metal preliminary treatment method.
This application claims priority based on Japanese Patent Application No. 2006-053234 for which it applied to Japan on March 17, 2016, and uses the content here.

従来、溶銑予備処理工程では、CaOを必須成分として含む精錬剤(脱燐剤や脱硫剤)を使用して、溶銑予備処理(脱Pや脱S)が行われる。ここで、CaOの融点は2625℃と高いため、従来、CaOを粉体化させて溶鋼中での反応滓化を促進する手法や、CaF、AlもしくはMgOを添加して融点を低下させ、スラグと溶鉄の反応を促進する手法が広く採用されている。Conventionally, in a hot metal pretreatment process, a hot metal pretreatment (de-P or de-S) is performed using a refining agent (dephosphorization agent or desulfurization agent) containing CaO as an essential component. Here, since the melting point of CaO is as high as 2625 ° C., conventionally, the method of pulverizing CaO to promote reaction hatching in molten steel, or adding CaF 2 , Al 2 O 3 or MgO to lower the melting point The technique of reducing and promoting reaction of slag and molten iron is widely adopted.

なお、製鋼工程(溶銑予備処理工程〜転炉精錬工程〜2次精錬工程)において発生するスラグをリサイクルする技術として、溶銑予備処理工程に続く転炉精錬(脱C)工程で発生する転炉スラグを冷却後に粉砕し、細粒化して滓化速度を高めた上で、溶銑予備処理工程における精錬剤として使用する技術(特許文献1)や、2次精錬工程で発生する取鍋スラグを精錬剤として使用する技術(特許文献2)が開示されている。 In addition, converter slag generated in the converter refining (de-C) process following the hot metal pretreatment process as a technology for recycling slag generated in the steelmaking process (hot metal pretreatment process-converter refining process-secondary refining process) After cooling, pulverizing and increasing the hatching speed, and then using the technology used as a refining agent in the hot metal pretreatment process (Patent Document 1) and ladle slag generated in the secondary refining process The technique (patent document 2) used as is disclosed.

上記のような従来技術のうち、特許文献1の発明は、転炉精錬(脱C)工程で発生する転炉スラグにはCaOが多く含有されており塩基度も高い点に着目してなされた発明であり、リサイクルによって転炉スラグの排出量削減を図れる点では意義がある。しかしながら、本発明者らの実験調査によると、転炉スラグ単独では、滓化率は50%程度に留まるため、別途、大量の生石灰(転炉スラグ由来でないCaO)を追加使用する必要があり、特許文献1の発明では、精錬剤コストの削減効果が期待できないという問題がある。 Among the conventional techniques as described above, the invention of Patent Document 1 was made by paying attention to the fact that the converter slag generated in the converter refining (de-C) process contains a lot of CaO and has a high basicity. The invention is significant in that it can reduce the amount of converter slag discharged by recycling. However, according to the experimental investigation by the present inventors, the converter slag alone has a hatching rate of only about 50%, so it is necessary to additionally use a large amount of quicklime (CaO not derived from converter slag). In the invention of Patent Document 1, there is a problem that the effect of reducing the refining agent cost cannot be expected.

また、特許文献2の発明は、2次精錬工程で発生する取鍋スラグには、CaOとともに、Alが多く含有されている点に着目してなされた発明である。特許文献2の発明では、スラグの融点を低下させる作用を有するAlによる滓化促進効果は享受できるものの、同時にスラグの粘度が上昇する。スラグの粘度が高い場合、スラグが泡立ちやすく、転炉やトーピードカーなどの反応容器からスラグが溢出して操業を阻害するスロッピングの発生リスクが高まるという問題がある。The invention of Patent Document 2 is an invention made by paying attention to the fact that the ladle slag generated in the secondary refining process contains a large amount of Al 2 O 3 together with CaO. In the invention of Patent Document 2, although the slag formation promoting effect by Al 2 O 3 with an effect of lowering the melting point of the slag can enjoy simultaneously the viscosity of the slag increases. When the viscosity of the slag is high, there is a problem that the slag tends to foam, and the risk of occurrence of slopping that hinders operation due to overflow of the slag from a reaction vessel such as a converter or torpedo car.

日本国特開平4−120209号公報Japanese Unexamined Patent Publication No. 4-120209 日本国特開2006−274349号公報Japanese Unexamined Patent Publication No. 2006-274349

本発明は、上記の事情に鑑みてなされたものであり、スラグの系外排出量の削減を図るとともに、スロッピングの発生を回避し、精錬剤として使用する生石灰の使用量を削減することができる溶銑予備処理方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and aims to reduce the amount of slag discharged outside the system, avoid the occurrence of slopping, and reduce the amount of quicklime used as a refining agent. An object is to provide a hot metal preliminary treatment method.

(1)本発明の一態様に係る溶銑予備処理方法は、溶銑予備処理工程を経た溶銑を転炉精錬する際に得られる転炉スラグを、溶銑予備処理用の精錬剤としてリサイクルする溶銑予備処理方法であって、前記転炉スラグの粒径が3mm以上25mm未満の範囲となり、前記転炉スラグのうち、粒径20mm以上25mm未満の転炉スラグの比率が前記転炉スラグの全量に対して10質量%以上15質量%未満となるように前記転炉スラグを整粒する第1の工程と;整粒後の前記転炉スラグを溶銑予備処理容器内に投入する第2の工程と;前記第1の工程より後でかつ前記第2の工程より前、又は、前記第2の工程と同時に、前記転炉スラグ100質量%に対して1.0質量%以上10.0質量%未満のAlを前記溶銑予備処理容器内に投入する第3の工程と;前記溶銑予備処理容器内に、前記転炉スラグ100質量%に対して0.3質量%以上10.0質量%未満のMnOを投入する第4の工程と;を有する。(1) The hot metal preliminary treatment method according to one aspect of the present invention is a hot metal preliminary treatment in which the converter slag obtained when refining the molten iron that has undergone the hot metal preliminary treatment step is recycled as a refining agent for hot metal pretreatment. It is a method, Comprising: The particle size of the said converter slag becomes the range of 3 mm or more and less than 25 mm, and the ratio of the converter slag whose particle size is 20 mm or more and less than 25 mm among the said converter slag is with respect to the whole quantity of the said converter slag. A first step of sizing the converter slag so as to be 10% by mass or more and less than 15% by mass; a second step of charging the converter slag after sizing into a hot metal pretreatment container; Al not less than 1.0% by mass and less than 10.0% by mass with respect to 100% by mass of the converter slag after the first step and before the second step or simultaneously with the second step. the 2 O 3 in the molten iron pretreatment vessel A third step of entering; and a fourth step of introducing 0.3% by mass or more and less than 10.0% by mass of MnO to 100% by mass of the converter slag in the hot metal pretreatment container; Have.

上記構成からなる溶銑予備処理方法によれば、スラグの系外排出量の削減を図るとともに、スロッピングの発生を回避し、精錬剤として使用する生石灰の使用量を削減することができる。   According to the hot metal preliminary treatment method configured as described above, it is possible to reduce the amount of slag discharged from the system, avoid the occurrence of slopping, and reduce the amount of quicklime used as a refining agent.

(2)上記(1)に記載の溶銑予備処理方法において、前記Alが、転炉精錬工程を経た溶鋼を二次精錬する際に得られる二次精錬スラグに含まれるAlであってもよい。(2) In the molten iron pretreatment method according to the above (1), wherein the Al 2 O 3 is, Al 2 O 3 contained molten steel passing through the converter refining step secondary refining slag obtained when the secondary refining It may be.

(3)上記(1)又は(2)に記載の溶銑予備処理方法において、更に、前記第1の工程より後でかつ前記第2の工程より前、又は、前記第2の工程と同時に、前記転炉スラグ100質量%に対し、FeO換算で1.0質量%以上20.0質量%未満の酸化鉄を前記溶銑予備処理容器内に投入する第5の工程を有してもよい。 (3) In the hot metal preliminary treatment method according to the above (1) or (2), further after the first step and before the second step, or simultaneously with the second step, You may have the 5th process of throwing in iron oxide of 1.0 mass% or more and less than 20.0 mass% in conversion of FeO with respect to 100 mass% of converter slag in the said hot metal pretreatment container.

(4)上記(1)から(3)のいずれか一項に記載の溶銑予備処理方法において、更に、前記第3の工程と同時に、前記溶銑予備処理容器内に、前記転炉スラグ100質量%に対し、KO、LiO、NaO、CaF、MgO、SrOのうち1種又は2種以上をそれぞれ0.3質量%以上5.0質量%未満投入する第6の工程を有してもよい。(4) In the hot metal pretreatment method according to any one of (1) to (3), the converter slag is 100% by mass in the hot metal pretreatment container simultaneously with the third step. On the other hand, a sixth step of adding one or more of K 2 O, Li 2 O, Na 2 O, CaF 2 , MgO, and SrO to 0.3 mass% or more and less than 5.0 mass%, respectively. You may have.

本発明の上記態様に係る溶銑予備処理方法によれば、溶銑予備処理容器内のスラグの粘度を上昇させることなく転炉スラグの滓化を促進することができるため、スラグの系外排出量の削減を図るとともに、スロッピングの発生を回避し、精錬剤として使用する生石灰の使用量を削減することができる。   According to the hot metal pretreatment method according to the above aspect of the present invention, hatching of the converter slag can be promoted without increasing the viscosity of the slag in the hot metal pretreatment container. While aiming at reduction, generation | occurrence | production of slopping can be avoided and the usage-amount of quicklime used as a refining agent can be reduced.

本実施形態に係る溶銑予備処理方法を説明するためのフロー図である。It is a flowchart for demonstrating the hot metal preliminary processing method which concerns on this embodiment. 転炉スラグのうち、粒径20mm以上25mm未満の転炉スラグの比率が、転炉スラグの滓化率及び投入ホッパーの詰まり発生率に与える影響を示すグラフである。It is a graph which shows the influence which the ratio of the converter slag with a particle size of 20 mm or more and less than 25 mm exerts on the hatching rate of the converter slag and the clogging rate of the input hopper among the converter slag. 転炉スラグ投入時刻を基準(0秒)としたAlの投入タイミング(投入時刻)と転炉スラグ滓化率との関係を示すグラフである。Is a graph showing the relationship between the converter slag apply time reference (0 seconds) and was poured timing of Al 2 O 3 (apply time) and converter slag slag formation rates.

以下に本発明の好ましい実施形態を説明するが、本発明はこれらの実施形態のみに限られない。   Preferred embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

溶銑予備処理工程を経た溶銑を転炉で脱炭精錬する際に得られる転炉スラグは、含有P(リン)濃度が低く、かつ、脱Pや脱S(窒素)に必要な塩基性スラグを造る主成分となるCaOを多く含有している。   The converter slag obtained when decarburizing and refining the hot metal that has undergone the hot metal pretreatment process is low in the concentration of P (phosphorus) and contains basic slag required for de-P and de-S (nitrogen). It contains a lot of CaO, which is the main component.

本実施形態に係る溶銑予備処理方法では、図1に示すように、高炉溶銑の溶銑予備処理、転炉精錬、二次精錬を順次行う。本実施形態に係る溶銑予備処理方法では、転炉精錬で得られる転炉スラグを溶銑予備処理工程における精錬剤としてリサイクルすることにより、溶銑予備処理工程で精錬剤として使用される生石灰(転炉スラグ由来でないCaO)の量を削減するとともに、転炉スラグの系外排出量の削減を図っている。 In the hot metal preliminary treatment method according to the present embodiment, as shown in FIG. 1, the hot metal preliminary treatment, converter refining, and secondary refining of the blast furnace hot metal are sequentially performed. In the hot metal pretreatment method according to the present embodiment, the converter slag obtained by the converter refining is recycled as a refining agent in the hot metal pretreatment step, whereby quick lime (converter slag) used as a refining agent in the hot metal pretreatment step. In addition to reducing the amount of non-originating CaO), the amount of converter slag out of the system is reduced.

ここで、転炉スラグの融点は1400℃程度であり、溶銑予備処理温度である1300℃〜1350℃程度では、転炉スラグの塊自体は溶解しない。
本実施形態に係る溶銑予備処理方法では、転炉スラグの低融点化を促す物質として、Al、MnO、FeO、KO、LiO、NaO、CaF、MgO、SrOの各成分を転炉スラグとともに添加し、転炉スラグの粒径を小さく整粒する。これにより、転炉スラグを速やかに溶融させて滓化率を向上させるとともに、精錬効率の向上、すなわち精錬剤として追加利用する生石灰量の削減と脱P率の向上を図ることができる。
Here, the melting point of the converter slag is about 1400 ° C., and the lump of the converter slag itself does not melt at the hot metal pretreatment temperature of about 1300 ° C. to 1350 ° C.
In the hot metal preliminary treatment method according to the present embodiment, Al 2 O 3 , MnO, FeO, K 2 O, Li 2 O, Na 2 O, CaF 2 , MgO, and SrO are used as substances that promote the low melting point of the converter slag. Are added together with the converter slag, and the particle size of the converter slag is reduced. As a result, the converter slag can be rapidly melted to improve the hatching rate, and the refining efficiency can be improved, that is, the amount of quick lime additionally used as a refining agent can be reduced and the P removal rate can be improved.

本実施形態に係る溶銑予備処理方法では、転炉精錬(脱C)時に得られた転炉スラグを排滓し、冷却した後、細粒化したものを篩い分けて、粒径(球相当径)で3mm以上25mm未満の範囲とした上で、転炉スラグのうち、粒径20mm以上25mm未満の転炉スラグの比率が転炉スラグの全量に対して10質量%以上15質量%未満となるように選別する(第1の工程)。
そして、このように整粒した後の転炉スラグを上述の精錬剤としてリサイクルするために、溶銑予備処理容器内に投入する(第2の工程)。
In the hot metal preliminary treatment method according to the present embodiment, the converter slag obtained at the time of converter refining (de-C) is discharged, cooled, and then sieved into fine particles to obtain a particle size (equivalent sphere diameter). ), The ratio of the converter slag having a particle size of 20 mm or more and less than 25 mm in the converter slag is 10% by mass or more and less than 15% by mass with respect to the total amount of the converter slag. (First step).
And in order to recycle the converter slag after sizing as mentioned above as the above-mentioned refining agent, it is put into the hot metal pretreatment container (second step).

転炉スラグの粒径を3mm以上25mm未満の範囲とすることにより、反応界面積が増大し、伝熱が促進されるため、転炉スラグを速やかに溶融させることができる。
転炉スラグの粒径を粒径3mm以上とすることで、集塵により投入した転炉スラグの一部又は全部が反応容器の外に散逸することを抑制し、十分に反応に寄与させることができる。そのため、追加で使用する生石灰量を抑制することができる。転炉スラグの粒径を25mm未満とすることで、転炉スラグの比表面積を大きく確保することができ、スラグの溶融時間を短縮できるため、滓化率が上昇する。これによって精錬効率が上昇するため、追加で使用する生石灰量を抑制することができる。
By setting the particle size of the converter slag in the range of 3 mm or more and less than 25 mm, the reaction interface area is increased and heat transfer is promoted, so that the converter slag can be rapidly melted.
By making the particle size of the converter slag 3 mm or more, it is possible to suppress part or all of the converter slag introduced by dust collection from dissipating outside the reaction vessel, and to fully contribute to the reaction. it can. Therefore, the amount of quicklime used additionally can be suppressed. By setting the particle size of the converter slag to less than 25 mm, a large specific surface area of the converter slag can be secured, and the melting time of the slag can be shortened, so that the hatching rate increases. Since refining efficiency rises by this, the amount of quicklime used additionally can be controlled.

尚、本発明者らは、上記のように3mm以上25mm未満の範囲に整粒した転炉スラグのうちでも、粒径20mm以上25mm未満であるものの比率を種々変化させて実機操業にて試験を行い、図2のような結果を得た。 In addition, among the converter slags that have been sized in the range of 3 mm or more and less than 25 mm as described above, the inventors conducted various tests on actual machine operations with various ratios of those having a particle diameter of 20 mm or more and less than 25 mm. The results shown in FIG. 2 were obtained.

図2の結果によれば、粒径20mm以上(かつ25mm未満)の転炉スラグの比率が転炉スラグの全量に対して10質量%以上の場合、投入ホッパーの詰まりが発生する割合が低く、操業を著しく阻害することがない。また、粒径20mm以上(かつ25mm未満)の転炉スラグの比率が転炉スラグの全量に対して15質量%未満の場合、転炉スラグの滓化率が上昇する。
従って、転炉スラグの全量に対して、粒径20mm以上(かつ25mm未満)の転炉スラグの比率がグラフ中の矢印で示された範囲にあること、すなわち上述のような転炉スラグの粒径の条件を満たすことにより、操業を阻害することなく、精錬剤として効率良く転炉スラグを再利用することができる。
According to the result of FIG. 2, when the ratio of the converter slag having a particle size of 20 mm or more (and less than 25 mm) is 10% by mass or more with respect to the total amount of the converter slag, the ratio of occurrence of clogging of the input hopper is low, There is no significant hindrance to operations. Moreover, when the ratio of the converter slag having a particle size of 20 mm or more (and less than 25 mm) is less than 15% by mass with respect to the total amount of the converter slag, the conversion rate of the converter slag increases.
Therefore, the ratio of the converter slag having a particle size of 20 mm or more (and less than 25 mm) to the total amount of the converter slag is in the range indicated by the arrow in the graph, that is, the grains of the converter slag as described above. By satisfying the diameter condition, the converter slag can be efficiently reused as a refining agent without hindering operation.

本実施形態に係る溶銑予備処理方法では、溶銑予備処理容器内に、上記の転炉スラグ100質量%(全量)に対し、1.0質量%以上10.0質量%未満のAlを上記転炉スラグ投入より前、もしくは同時に、すなわち、第1の工程より後でかつ第2の工程より前、又は、第2の工程と同時に投入するとともに(第3の工程)、0.3質量%以上10.0質量%未満のMnOを投入する(第4の工程)。これにより、スラグの粘度上昇を回避しつつ、転炉スラグの滓化を促進することができる。In the hot metal pretreatment method according to the present embodiment, Al 2 O 3 of 1.0% by mass or more and less than 10.0% by mass is added to 100% by mass (total amount) of the converter slag in the hot metal pretreatment container. Before or simultaneously with the above converter slag injection, that is, after the first step and before the second step, or simultaneously with the second step (third step), 0.3 mass % Or more and less than 10.0% by mass of MnO is added (fourth step). Thereby, hatching of the converter slag can be promoted while avoiding an increase in the viscosity of the slag.

Alの添加量が1.0質量%以上の場合、スラグの融点を低下させる効果が十分に得られ、スラグの融点は溶銑温度である1250℃以下となり、滓化率が向上する。その結果、追加で使用する生石灰量を抑制することができる。
Alの添加量が10.0質量%未満の場合、スラグ粘度の増加が抑制され、スラグの泡立ちが抑制されるため、スラグが反応容器から溢れるスロッピング発生の確率を低くすることができる。
When the addition amount of Al 2 O 3 is 1.0 mass% or more, the effect of lowering the melting point of the slag is sufficiently obtained, and the melting point of the slag becomes 1250 ° C. or less, which is the hot metal temperature, and the hatching rate is improved. As a result, the amount of quicklime used additionally can be suppressed.
When the addition amount of Al 2 O 3 is less than 10.0% by mass, an increase in slag viscosity is suppressed and foaming of slag is suppressed, so that the probability of occurrence of slopping in which slag overflows from the reaction vessel may be lowered. it can.

MnOの添加量が0.3質量%以上の場合、スラグ粘度の上昇を抑制する効果が得られる。その結果、スロッピング発生の確率を低くすることができる。
MnOの添加量については、10.0質量%を超えて添加しても、効果の面で大きな変化は見られない。よって、コストを抑えるため、好ましくはMnOの添加量を10.0質量%以内とする。MnO源としては、例えば、マンガン鉱石を30mm程度に粉砕したものを使用することができる。MnOを投入する第4の工程は、Alを投入する第3の工程と同時、第3の工程の前、あるいは第3の工程の後のいずれであってもよい。
When the amount of MnO added is 0.3% by mass or more, an effect of suppressing an increase in slag viscosity can be obtained. As a result, the probability of occurrence of slopping can be reduced.
About the addition amount of MnO, even if it adds exceeding 10.0 mass%, a big change is not seen by the surface of an effect. Therefore, in order to suppress the cost, the amount of MnO added is preferably within 10.0% by mass. As the MnO source, for example, a manganese ore pulverized to about 30 mm can be used. The fourth step of adding MnO may be performed simultaneously with the third step of adding Al 2 O 3 , before the third step, or after the third step.

また、本発明者らは試験実験研究の結果として図3の関係を明らかにした。図3の結果によれば、滓化促進剤として投入するAlの投入時刻が、転炉スラグ投入より前、もしくは同時である場合に転炉スラグの滓化率が高いことがわかる(グラフ中の矢印で示された範囲)。一方、転炉スラグ投入後にAlを投入した場合には、滓化促進効果が低いことが分かった。Moreover, the present inventors clarified the relationship of FIG. 3 as a result of the test experiment study. According to the results of FIG. 3, it can be seen that the hatching rate of the converter slag is high when the charging time of Al 2 O 3 introduced as the hatching accelerator is before or simultaneously with the converter slag injection ( The range indicated by the arrows in the graph). On the other hand, it was found that when Al 2 O 3 was introduced after the converter slag was introduced, the hatching promoting effect was low.

Al源としては、転炉精錬工程を経た溶鋼を二次精錬する際に得られる二次精錬スラグをリサイクル使用することが好ましい。通常、二次精錬スラグにはAlが20.0質量%から40.0質量%程度含まれている。従って、二次精錬スラグの化学組成を予め分析して投入量を決定すれば、二次精錬スラグの投入のみで所望のAl濃度を達成できる。As the Al 2 O 3 source, it is preferable to recycle secondary refining slag obtained when secondary refining of molten steel that has undergone a converter refining process. Usually, secondary refining slag contains about 20.0 mass% to 40.0 mass% of Al 2 O 3 . Therefore, if the chemical composition of the secondary refining slag is analyzed in advance to determine the input amount, the desired Al 2 O 3 concentration can be achieved only by the input of the secondary refining slag.

このように、Al源として二次精錬スラグをリサイクル使用することは、製鋼工程(溶銑予備処理工程〜転炉精錬工程〜二次精錬工程)において発生するスラグの系外排出量削減と等価であり、スラグ廃棄に伴うコストや環境負荷を低減することができる。すなわち、二次精錬スラグ使用量がスラグ系外排出削減量と一致するため、二次精錬スラグ使用量の分、スラグ廃棄に伴うコストや環境負荷を低減することができる。
尚、Al源として二次精錬スラグを用いない場合は、ボーキサイト、ギブサイトなどのAl含有鉱物や廃アルミナレンガなどを用いることができる。
Thus, recycling the secondary refining slag as the Al 2 O 3 source reduces the out-of-system emissions of slag generated in the steelmaking process (hot metal pretreatment process-converter refining process-secondary refining process) It is equivalent and can reduce the cost and environmental burden associated with slag disposal. That is, since the amount of secondary refining slag used matches the amount of emission reduction outside the slag system, the amount of secondary refining slag used can reduce the cost and environmental load associated with slag disposal.
When secondary refining slag is not used as the Al 2 O 3 source, Al 2 O 3 -containing minerals such as bauxite and gibbsite, waste alumina bricks, and the like can be used.

上述のFeOは、溶銑予備処理時の固体酸素源として使用される。上述の転炉スラグ100質量%に対し、FeO換算で1.0質量%以上20.0質量%未満の酸化鉄を前記溶銑予備処理容器内に投入する第5の工程を有することが好ましい。
これにより、精錬効率の向上を実現することができる。酸化鉄源としては、鉄鉱石の他、粉鉱石を焼結して塊状にしたものや、スケール粉やダストを成型したペレットなどを使用することができる。
第5の工程は、第1の工程より後でかつ第2の工程より前、又は、第2の工程と同時であることが好ましい。
The above-mentioned FeO is used as a solid oxygen source during hot metal pretreatment. It is preferable to have a fifth step of charging 1.0% by mass or more and less than 20.0% by mass of iron oxide into the hot metal pretreatment vessel with respect to 100% by mass of the above converter slag.
Thereby, the improvement of refining efficiency is realizable. As the iron oxide source, in addition to iron ore, powdered ore sintered into a lump, pellets formed from scale powder and dust, and the like can be used.
The fifth step is preferably after the first step and before the second step, or at the same time as the second step.

上述のKO、LiO、NaO、CaF、MgO、SrOは、スラグの融点を低下させるための滓化促進剤として使用される。上述の転炉スラグ100質量%に対し、これらの滓化促進剤のうちで、1種又は2種以上をそれぞれ0.3〜5.0質量%未満を、溶銑予備処理容器内に投入する第6の工程を有することが好ましい。これにより、転炉スラグの滓化率を増大させて精錬効率を向上させることができる。The above-mentioned K 2 O, Li 2 O, Na 2 O, CaF 2 , MgO, and SrO are used as hatching accelerators for reducing the melting point of slag. Of these hatching accelerators, 100% by mass of the converter slag mentioned above, one or two or more of them are each charged into the hot metal pretreatment container at 0.3 to 5.0% by mass or less. It is preferable to have six steps. Thereby, the hatching rate of converter slag can be increased and refinement efficiency can be improved.

上記の滓化促進剤の投入量が0.3質量%以上の場合、精錬効率がより向上する。また、上記の滓化促進剤の投入量が5.0質量%未満の場合、精錬効率の向上効果と共に、製造コストを抑制することも可能となる。 When the input amount of the hatching accelerator is 0.3% by mass or more, the refining efficiency is further improved. Moreover, when the input amount of the above hatching accelerator is less than 5.0% by mass, it is possible to suppress the production cost as well as the effect of improving the refining efficiency.

また、これら滓化促進剤の成分はAlと同じタイミングで投入することにより、転炉スラグの滓化促進効果を享受することができる。これら成分の投入時の形態としては、上記化合物を主成分として精製した化学物質の他、上記成分を含有する化合物、例えばKCO、LiCO、NaCO、MgCO、SrCOなどの炭酸塩、あるいは蛍石、長石、ドロマイトなどの鉱石、鉱物を20mm程度に粉砕したものなど、いずれも好適に使用することができる。Moreover, the hatching promoting effect of converter slag can be enjoyed by adding these hatching accelerator components at the same timing as Al 2 O 3 . As the form when these components are added, in addition to chemical substances purified with the above compounds as main components, compounds containing the above components, for example, K 2 CO 3 , Li 2 CO 3 , Na 2 CO 3 , MgCO 3 , SrCO Carbonate such as 3 , ores such as fluorite, feldspar, and dolomite, and those obtained by pulverizing minerals to about 20 mm can be suitably used.

上記の転炉スラグとAl、MnO、FeO、KO、LiO、NaO、CaF、MgO、SrO等の滓化促進剤の投入方法は、特に限定されず、溶銑予備処理時に溶銑予備処理容器内に添加されていれば良い。
転炉精錬と溶銑予備処理を別々の精錬容器で行う操業形態の他に、転炉精錬と溶銑予備処理を同一の転炉を交互に使用して行う操業形態にも適用することができる。
The method for charging the converter slag and the hatching accelerator such as Al 2 O 3 , MnO, FeO, K 2 O, Li 2 O, Na 2 O, CaF 2 , MgO, SrO, etc. is not particularly limited. It may be added to the hot metal pretreatment container at the time of pretreatment.
In addition to an operation mode in which converter refining and hot metal pretreatment are performed in separate smelting vessels, it can be applied to an operation mode in which converter refining and hot metal pretreatment are alternately performed using the same converter.

転炉精錬と溶銑予備処理を同一の転炉を交互に使用して行う操業形態では、転炉精錬処理後に、一部の転炉スラグを残して排滓を行い、そこに、溶銑予備処理を行う溶銑と、上記の転炉スラグの細粒とAl等の滓化促進剤を投入して、溶銑予備処理を行うこともできる。In the operation mode in which converter refining and hot metal pretreatment are performed alternately using the same converter, after the converter refining treatment, some of the converter slag is left and discharged, and hot metal pretreatment is performed there. It is also possible to perform hot metal pretreatment by introducing hot metal to be performed, and the above-mentioned converter slag fine particles and a hatching accelerator such as Al 2 O 3 .

上記の通り、本実施形態に係る溶銑予備処理方法は、溶銑予備処理工程を経た溶銑を転炉精錬する際に得られる転炉スラグを、溶銑予備処理用の精錬剤としてリサイクルする溶銑予備処理方法である。
本実施形態に係る溶銑予備処理方法は、前記転炉スラグの粒径が3mm以上25mm未満の範囲となり、前記転炉スラグのうち、粒径20mm以上25mm未満の転炉スラグの比率が前記転炉スラグの全量に対して10質量%以上15質量%未満となるように前記転炉スラグを整粒する第1の工程を有する。
また、本実施形態に係る溶銑予備処理方法は、整粒後の前記転炉スラグを溶銑予備処理容器内に投入する第2の工程を有する。
また、本実施形態に係る溶銑予備処理方法は、前記第1の工程より後でかつ前記第2の工程より前、又は、前記第2の工程と同時に、前記転炉スラグ100質量%に対して1.0質量%以上10.0質量%未満のAlを前記溶銑予備処理容器内に投入する第3の工程を有する。
また、本実施形態に係る溶銑予備処理方法は、前記溶銑予備処理容器内に、前記転炉スラグ100質量%に対して0.3質量%以上10.0質量%未満のMnOを投入する第4の工程を有する。
これにより、溶銑予備処理容器内のスラグの粘度を上昇させることなく転炉スラグの滓化を促進することができるため、スラグの系外排出量の削減を図るとともに、スロッピングの発生を回避し、精錬剤として使用する生石灰の使用量を削減することができる。
As described above, the hot metal preliminary treatment method according to the present embodiment recycles the converter slag obtained when the hot metal having undergone the hot metal pretreatment process is refined as a refining agent for hot metal pretreatment. It is.
In the hot metal preliminary treatment method according to the present embodiment, the particle size of the converter slag is in a range of 3 mm or more and less than 25 mm, and the ratio of the converter slag having a particle size of 20 mm or more and less than 25 mm among the converter slag is the converter. It has the 1st process of sizing the said converter slag so that it may become 10 to 15 mass% with respect to the whole quantity of slag.
Moreover, the hot metal pretreatment method according to the present embodiment includes a second step of charging the converter slag after sizing into a hot metal pretreatment container.
Further, the hot metal preliminary treatment method according to the present embodiment is based on 100% by mass of the converter slag after the first step and before the second step, or simultaneously with the second step. There is a third step in which Al 2 O 3 of 1.0% by mass or more and less than 10.0% by mass is charged into the hot metal pretreatment container.
Further, in the hot metal pretreatment method according to the present embodiment, MnO of 0.3% by mass or more and less than 10.0% by mass with respect to 100% by mass of the converter slag is introduced into the hot metal pretreatment container. It has the process of.
As a result, hatching of the converter slag can be promoted without increasing the viscosity of the slag in the hot metal pretreatment vessel, so that the amount of slag discharged outside the system can be reduced and the occurrence of slopping can be avoided. The amount of quicklime used as a refining agent can be reduced.

[実施例]
以下に、本発明に係る溶銑予備処理方法の効果を確認すべく、実施した実験例の結果等について説明する。
先ず、溶銑予備処理工程を経た溶銑を転炉精錬する際に得られる転炉スラグを、冷却した後、細粒化したものを篩い分けて、下記の表1に示す粒径とした転炉スラグの細粒を得た。
[Example]
Below, the result of the experiment example etc. which were implemented in order to confirm the effect of the hot metal preliminary processing method concerning this invention is demonstrated.
First, the converter slag obtained when refining the hot metal that has undergone the hot metal pretreatment process is cooled, and then the finely divided particles are sieved to obtain the converter slag having the particle sizes shown in Table 1 below. Obtained fine granules.

この転炉スラグの細粒100質量%(全量)に対し、下記の表1に示す割合のAlとMnO、並びにその他の副原料を溶銑予備処理容器に投入した。そして、他の精錬条件を同一とした条件下で脱P処理を行った。
尚、表1の中で、「二次精錬スラグ割合(質量%)」の欄に値の記載がある実験例では、投入されるAlは、二次精錬スラグ中に含まれるAlに由来するものである。
With respect to 100% by mass (total amount) of the granule of the converter slag, Al 2 O 3 and MnO in the proportions shown in Table 1 below and other auxiliary materials were charged into the hot metal pretreatment container. And de-P process was performed on the conditions which made other refining conditions the same.
Incidentally, in Table 1, in the experimental examples are described in the column of the value of the "secondary refining slag ratio (wt%)", Al 2 O 3 to be turned on, Al 2 contained in secondary refining slag It is derived from O 3 .

表1には、各実験例に係る、Al投入後の転炉スラグ投入時刻、脱P率(=([%P]初期―[%P]終了後)/[%P]初期)、溶銑予備処理で投入した転炉スラグ100質量%に対する脱炭炉での追加生石灰割合、転炉スラグにAlとMnO、並びにその他の副原料を入れたときの転炉スラグの融点、スロッピングの有無、二次精錬スラグリサイクルによるスラグ系外排出量削減原単位、副原料ホッパー詰まり発生率、転炉スラグ滓化率等を示した。スロッピングの有無は、溶銑予備処理時のスロッピングの発生状況を目視で確認することで判断した。Table 1 shows the converter slag charging time after Al 2 O 3 charging, the de-P ratio (= ([% P] initial -[% P] after completion ) / [% P] initial ) according to each experimental example. The ratio of additional quicklime in the decarburization furnace to 100% by mass of the converter slag charged in the hot metal pretreatment, the melting point of the converter slag when Al 2 O 3 and MnO, and other auxiliary materials are added to the converter slag, It shows the presence or absence of slopping, the basic unit of reduction of slag emissions by secondary refining slag recycling, the occurrence rate of clogging of secondary material hopper, and the conversion rate of converter slag. The presence or absence of slopping was judged by visually confirming the occurrence of slopping during the hot metal preliminary treatment.

尚、脱P率は、製品に許容されるP濃度を満たすため、80%以上が必須である。脱炭炉での追加生石灰は、80%以上の脱P率を達成するために添加量が調整される。本発明を実施しない場合の追加生石灰割合は60〜90%であるため、これが60%未満であれば精錬効率の改善と見做せる。
また、転炉スラグの融点は、本発明を実施しない場合は1400℃程度であった。転炉スラグの融点を溶銑温度である1350℃以下に低下させれば、滓化率が向上して精錬効率の改善が見込める。
Incidentally, the P removal rate must be 80% or more in order to satisfy the P concentration allowed for the product. The amount of additional quicklime in the decarburization furnace is adjusted in order to achieve a de-P ratio of 80% or more. When the present invention is not carried out, the ratio of added quicklime is 60 to 90%.
Further, the melting point of the converter slag was about 1400 ° C. when the present invention was not carried out. If the melting point of the converter slag is lowered to the hot metal temperature of 1350 ° C. or less, the hatching rate is improved and the refining efficiency can be improved.

スラグ系外排出量削減原単位は、本来は系外に排出すべき二次精錬スラグをリサイクル利用するものであるから、Al源として投入した二次精錬スラグ量の原単位と一致する。The basic unit for reducing slag out-of-system emissions is essentially the same as the basic unit for secondary slag slag input as an Al 2 O 3 source because secondary slag that should be discharged outside the system is recycled. .

副原料投入ホッパー詰まりの発生率が10%を超える場合は操業が大きく阻害されるため、副原料投入ホッパー詰まりの発生率が10%未満であることが必須である。
転炉スラグの滓化率は、(精錬終了後のスラグ中CaO濃度)/(転炉スラグが全て溶解したときのCaO濃度)×100(%)として定義され、これが40(%)を超える値であれば精錬材としての生石灰使用量を削減することができるため、精錬効率を改善できたと判断した。
When the occurrence rate of clogging of auxiliary material input hopper exceeds 10%, the operation is greatly hindered. Therefore, it is essential that the occurrence rate of clogging of auxiliary material input hopper is less than 10%.
The hatching rate of converter slag is defined as (CaO concentration in slag after refining) / (CaO concentration when all converter slag is dissolved) × 100 (%), which is a value exceeding 40 (%) Then, it was judged that the amount of quicklime used as a refining material could be reduced, so that the refining efficiency could be improved.

Figure 2017159840
Figure 2017159840

Figure 2017159840
Figure 2017159840

実施例1〜30に示すように、粒径3mm以25mm未満の範囲となり、かつ転炉スラグのうち、粒径20mm以上25mm未満の転炉スラグの比率が転炉スラグの全量に対して10質量%以上15質量%未満となるように整粒した転炉スラグを、1.0質量%以上10.0質量%未満のAlと、0.3質量%以上10.0質量%未満のMnOとともに使用した場合、比較例1〜41と比較して、生石灰(転炉スラグ由来でないCaO)の使用量を削減しつつ、高い脱P率を維持することができることが確認された。また、Al源として二次精錬スラグをリサイクルした場合は、系外排出スラグ量を削減することができた。As shown in Examples 1 to 30, the ratio of the converter slag having a particle diameter of 3 mm or more and less than 25 mm and the converter slag having a particle diameter of 20 mm or more and less than 25 mm is 10 masses with respect to the total amount of the converter slag. The converter slag that has been sized so as to be not less than 15% and less than 15% by mass is composed of Al 2 O 3 that is not less than 1.0% by mass and less than 10.0% by mass, When used together with MnO, it was confirmed that a high P removal rate could be maintained while reducing the amount of quicklime (CaO not derived from converter slag) compared to Comparative Examples 1-41. Moreover, when secondary refining slag was recycled as the Al 2 O 3 source, the amount of slag discharged outside the system could be reduced.

意図的にAlを添加していない比較例1では、転炉スラグの溶融が進まず、脱P率が低下した。脱P率80%を確保するため、追加生石灰量を増大させた結果、追加生石灰割合が66質量%に達した。In Comparative Example 1 in which Al 2 O 3 was not intentionally added, melting of the converter slag did not proceed, and the P removal rate decreased. As a result of increasing the amount of additional quicklime in order to ensure the P removal rate of 80%, the additional quicklime ratio reached 66% by mass.

転炉スラグの最大粒径を51mmとした比較例2でも転炉スラグが溶融し難く、脱P率82%を確保するため、生石灰(転炉スラグ由来でないCaO)の使用量を90質量%にまで増加させる必要があった。 Even in Comparative Example 2 in which the maximum particle size of the converter slag was 51 mm, the converter slag is difficult to melt, and in order to secure a P removal rate of 82%, the amount of quick lime (CaO not derived from converter slag) used is 90% by mass. Needed to be increased.

MnOを添加していない比較例3では、Alによってスラグの粘度が大きく上昇し、スラグが泡立ちやすくなったため、スロッピングの発生が確認された。In Comparative Example 3 in which no MnO was added, the viscosity of the slag was greatly increased by Al 2 O 3 and the slag was easily foamed, so that the occurrence of slopping was confirmed.

転炉スラグの最小粒径を0.8mmとした比較例4では、転炉スラグが集塵機により吸引されて損失したため、溶銑予備処理炉内に十分投入できず、脱P率を維持するために大量の生石灰を使用することとなった。 In Comparative Example 4 in which the minimum particle size of the converter slag was 0.8 mm, the converter slag was sucked and lost by the dust collector, so that it could not be sufficiently charged into the hot metal pretreatment furnace, and a large amount was maintained in order to maintain the P removal rate. It was decided to use quicklime.

Al投入量が12.0質量%であった比較例5では、スラグの粘度上昇が著しく、スロッピングが発生した。In Comparative Example 5 in which the input amount of Al 2 O 3 was 12.0% by mass, the slag viscosity was remarkably increased and slopping occurred.

MnO投入量が17.0質量%であった比較例6では、生石灰使用量、脱P率ともに良好であったが、マンガン鉱石を多量に使用したため、コストが増大して損失が発生した。 In Comparative Example 6 in which the amount of MnO input was 17.0% by mass, both the amount of quicklime used and the P removal rate were good, but since a large amount of manganese ore was used, the cost increased and loss was generated.

粒径20mm以上25mm未満の比率がそれぞれ17質量%、50質量%と高い比較例30、31では、転炉スラグの滓化率が低く、脱P率を維持するために大量の生石灰が必要だった。 In Comparative Examples 30 and 31, in which the ratio of the particle size of 20 mm or more and less than 25 mm is as high as 17% by mass and 50% by mass, respectively, the hatching rate of the converter slag is low, and a large amount of quick lime is necessary to maintain the de-P rate. It was.

Alの添加量が0.2質量%と低い比較例32では、転炉スラグの滓化率が低く、脱P率を維持するために大量の生石灰が必要だった。In Comparative Example 32 where the amount of Al 2 O 3 added was as low as 0.2% by mass, the hatching rate of the converter slag was low, and a large amount of quicklime was required to maintain the de-P rate.

Alの添加量が20.0質量%と高い比較例33では、スラグの粘度が上昇したために著しいスロッピングが発生し、操業が阻害された。In Comparative Example 33, in which the amount of Al 2 O 3 added was as high as 20.0% by mass, significant slopping occurred because the viscosity of the slag increased, and the operation was hindered.

MnOを添加しない比較例34では、MnOによるスラグ粘度低下の効果がないため、スロッピングが発生して操業が阻害された。 In Comparative Example 34 in which MnO was not added, since there was no effect of lowering the slag viscosity by MnO, slopping occurred and operation was inhibited.

MnOの添加量が17.0質量%と多い比較例35は、生石灰使用量、脱P率ともに良好であったが、マンガン鉱石を多量に使用したため、コストが増大して損失が発生した。 In Comparative Example 35, where the amount of MnO added was as large as 17.0% by mass, both the amount of quicklime used and the P removal rate were good, but because a large amount of manganese ore was used, the cost increased and loss was generated.

滓化促進剤であるAlを転炉スラグ投入より78〜257秒後に投入した比較例36〜41では、転炉スラグの滓化率が11〜25%と低い値であり、脱P率を向上させるために脱炭工程で追加の生石灰を使用することになり、コストが増大した。In Comparative Examples 36 to 41 in which Al 2 O 3 as the hatching accelerator was added 78 to 257 seconds after the converter slag was charged, the hatching rate of the converter slag was a low value of 11 to 25%, and the P To increase the rate, additional quicklime was used in the decarburization process, increasing costs.

転炉スラグのうちで粒径20mm以上25mm未満の転炉スラグの比率が低い比較例7〜29では、いずれも生石灰使用量、脱P率ともに良好であったが、副原料ホッパー詰まりの発生比率が高く、操業が阻害された。 In Comparative Examples 7 to 29, in which the ratio of converter slag having a particle size of 20 mm or more and less than 25 mm among converter slags is low, both the amount of quicklime used and the P removal rate were good, but the occurrence ratio of clogging of auxiliary raw material hoppers The operation was hindered.

以上のように、本発明に係る溶銑予備処理方法よれば、溶銑予備処理容器内のスラグの粘度を上昇させることなく転炉スラグの滓化を促進することができる。また、本発明に係る溶銑予備処理方法よれば、投入ホッパーの閉塞という操業阻害要因を避けることができる。 As described above, according to the hot metal pretreatment method according to the present invention, hatching of converter slag can be promoted without increasing the viscosity of the slag in the hot metal pretreatment container. Moreover, according to the hot metal pretreatment method according to the present invention, it is possible to avoid an operation hindering factor such as blocking of the charging hopper.

本発明に係る溶銑予備処理方法は、製鋼工程で発生するスラグを精錬剤として再利用してスラグの系外排出量の削減を図るとともに、精錬剤の使用によるスロッピングの発生を回避し、かつ高純度鋼の製鋼工程において、精錬剤として使用する生石灰(転炉スラグ由来でないCaO)の使用量を削減することができ産業界における価値は極めて高い。 The hot metal preliminary treatment method according to the present invention is intended to reduce slag out of the system by reusing slag generated in the steelmaking process as a refining agent, avoiding the occurrence of slopping due to the use of the refining agent, and In the steelmaking process of high purity steel, the amount of quicklime (CaO not derived from converter slag) used as a refining agent can be reduced, and the value in the industry is extremely high.

Claims (4)

溶銑予備処理工程を経た溶銑を転炉精錬する際に得られる転炉スラグを、溶銑予備処理用の精錬剤としてリサイクルする溶銑予備処理方法であって、
前記転炉スラグの粒径が3mm以上25mm未満の範囲となり、前記転炉スラグのうち、粒径20mm以上25mm未満の転炉スラグの比率が前記転炉スラグの全量に対して10質量%以上15質量%未満となるように前記転炉スラグを整粒する第1の工程と;
整粒後の前記転炉スラグを溶銑予備処理容器内に投入する第2の工程と;
前記第1の工程より後でかつ前記第2の工程より前、又は、前記第2の工程と同時に、前記転炉スラグ100質量%に対して1.0質量%以上10.0質量%未満のAlを前記溶銑予備処理容器内に投入する第3の工程と;
前記溶銑予備処理容器内に、前記転炉スラグ100質量%に対して0.3質量%以上10.0質量%未満のMnOを投入する第4の工程と;
を有することを特徴とする溶銑予備処理方法。
A hot metal pretreatment method for recycling converter slag obtained when refining hot metal after the hot metal pretreatment process as a refining agent for hot metal pretreatment,
The converter slag has a particle size of 3 mm or more and less than 25 mm, and the ratio of converter slag having a particle size of 20 mm or more and less than 25 mm in the converter slag is 10% by mass or more and 15% by mass with respect to the total amount of the converter slag. A first step of sizing the converter slag so as to be less than mass%;
A second step of charging the converter slag after sizing into a hot metal pretreatment container;
It is 1.0 mass% or more and less than 10.0 mass% with respect to 100 mass% of the converter slag after the first process and before the second process or simultaneously with the second process. A third step of charging Al 2 O 3 into the hot metal pretreatment container;
A fourth step of charging 0.3% by mass or more and less than 10.0% by mass of MnO to 100% by mass of the converter slag in the hot metal pretreatment container;
A hot metal pretreatment method characterized by comprising:
前記Alが、転炉精錬工程を経た溶鋼を二次精錬する際に得られる二次精錬スラグに含まれるAlである
ことを特徴とする請求項1に記載の溶銑予備処理方法。
Said Al 2 O 3, molten iron pretreatment according to claim 1, characterized in that the Al 2 O 3 contained molten steel passing through the converter refining step secondary refining slag obtained when the secondary refining Method.
更に、前記第1の工程より後でかつ前記第2の工程より前、又は、前記第2の工程と同時に、前記転炉スラグ100質量%に対し、FeO換算で1.0質量%以上20.0質量%未満の酸化鉄を前記溶銑予備処理容器内に投入する第5の工程を有する
ことを特徴とする請求項1又は2に記載の溶銑予備処理方法。
Further, after the first step and before the second step, or simultaneously with the second step, 1.0% by mass or more in terms of FeO with respect to 100% by mass of the converter slag. The hot metal pretreatment method according to claim 1, further comprising a fifth step of charging less than 0% by mass of iron oxide into the hot metal pretreatment container.
更に、前記第3の工程と同時に、前記溶銑予備処理容器内に、前記転炉スラグ100質量%に対し、KO、LiO、NaO、MgO、CaF、SrOのうち1種又は2種以上をそれぞれ0.3質量%以上5.0質量%未満投入する第6の工程を有する
ことを特徴とする請求項1から3のいずれか1項に記載の溶銑予備処理方法。
Further, at the same time as the third step, one kind of K 2 O, Li 2 O, Na 2 O, MgO, CaF 2 , and SrO with respect to 100% by mass of the converter slag in the hot metal pretreatment container. Alternatively, the hot metal preliminary treatment method according to any one of claims 1 to 3, further comprising a sixth step of adding at least two kinds of them in an amount of 0.3 mass% or more and less than 5.0 mass%.
JP2018506037A 2016-03-17 2017-03-17 Hot metal pretreatment method Active JP6544480B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016053234 2016-03-17
JP2016053234 2016-03-17
PCT/JP2017/010850 WO2017159840A1 (en) 2016-03-17 2017-03-17 Molten-iron pretreatment method

Publications (2)

Publication Number Publication Date
JPWO2017159840A1 true JPWO2017159840A1 (en) 2018-06-28
JP6544480B2 JP6544480B2 (en) 2019-07-17

Family

ID=59851198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018506037A Active JP6544480B2 (en) 2016-03-17 2017-03-17 Hot metal pretreatment method

Country Status (4)

Country Link
JP (1) JP6544480B2 (en)
KR (1) KR102142081B1 (en)
CN (1) CN108350515B (en)
WO (1) WO2017159840A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652510A (en) * 2021-08-17 2021-11-16 中冶东方工程技术有限公司 Steel slag recycling method, final slag and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3836549C1 (en) * 1988-10-27 1990-01-18 Krupp Stahl Ag, 4630 Bochum, De Process for desulphurising molten crude iron
JPH06287615A (en) * 1993-04-01 1994-10-11 Nippon Steel Corp Method for utilizing slag in converter
JPH08157921A (en) * 1994-12-05 1996-06-18 Sumitomo Metal Ind Ltd Dephosphorization of molten iron
JP2008138253A (en) * 2006-12-01 2008-06-19 Nippon Steel Corp Desulfurization refining agent for molten pig iron, and desulfurization method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120209A (en) 1990-09-10 1992-04-21 Sumitomo Metal Ind Ltd Slag forming agent reutilizing converter slag
JP2006274349A (en) 2005-03-29 2006-10-12 Sumitomo Metal Ind Ltd Method for refining steel
JP5170348B2 (en) * 2011-02-10 2013-03-27 新日鐵住金株式会社 Hot metal desiliconization and phosphorus removal methods
JP5807720B2 (en) * 2012-10-30 2015-11-10 Jfeスチール株式会社 Hot metal refining method
KR101592073B1 (en) * 2013-12-24 2016-02-05 주식회사 포스코 Fluorite substitute for fluorite free refining

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3836549C1 (en) * 1988-10-27 1990-01-18 Krupp Stahl Ag, 4630 Bochum, De Process for desulphurising molten crude iron
JPH06287615A (en) * 1993-04-01 1994-10-11 Nippon Steel Corp Method for utilizing slag in converter
JPH08157921A (en) * 1994-12-05 1996-06-18 Sumitomo Metal Ind Ltd Dephosphorization of molten iron
JP2008138253A (en) * 2006-12-01 2008-06-19 Nippon Steel Corp Desulfurization refining agent for molten pig iron, and desulfurization method

Also Published As

Publication number Publication date
CN108350515A (en) 2018-07-31
KR102142081B1 (en) 2020-08-06
WO2017159840A1 (en) 2017-09-21
JP6544480B2 (en) 2019-07-17
CN108350515B (en) 2020-03-06
KR20180057701A (en) 2018-05-30

Similar Documents

Publication Publication Date Title
CN103627837B (en) Iron and the method for phosphorus is reclaimed from copper smelter slag
US5397379A (en) Process and additive for the ladle refining of steel
RU2671781C2 (en) Fluxing material, method for production thereof, sintering mixture and use of secondary metallurgy slag
JP4848757B2 (en) Hot metal dephosphorization method
JP5895887B2 (en) Desulfurization treatment method for molten steel
JPWO2017119392A1 (en) Molten iron dephosphorizing agent, refining agent and dephosphorizing method
JP2018178260A (en) Converter steelmaking process
WO2017159840A1 (en) Molten-iron pretreatment method
JP5268019B2 (en) How to remove hot metal
JP2008063645A (en) Steelmaking method
CN111500824B (en) KR desulfurizer, preparation method thereof and desulfurization method adopting KR desulfurizer
JP5341849B2 (en) Manufacturing method of recycled slag
JP2009249723A (en) Method for dephosphorizing molten iron
JP4082365B2 (en) Steel manufacturing method
JP4904858B2 (en) Hot metal dephosphorization method
JP4854933B2 (en) Refining method with high reaction efficiency
KR101078393B1 (en) Method for desulfuring during pre-treating pig iron using waste materials of steel making process
KR101863916B1 (en) Composition of Steelmaking Flux for Desulfurization and Deoxidation Using By-proudut of Magnesium Smelting Process and Waste By-product of Aluminum Smelting Process
JP3742543B2 (en) Hot metal desulfurization method
JP6627642B2 (en) How to reduce iron ore
KR20240045560A (en) Converter process using waste acid sludge
JP2005048268A (en) Method for desiliconizing and desulfurizing molten iron
JP2010255054A (en) Method for dephosphorizing molten iron
CN116024402A (en) Fluxing agent for semisteel steelmaking and slagging method thereof
JP2013167010A (en) Dephosphorization treatment method for molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R151 Written notification of patent or utility model registration

Ref document number: 6544480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151