JP2005313120A - Anaerobic treatment apparatus - Google Patents

Anaerobic treatment apparatus Download PDF

Info

Publication number
JP2005313120A
JP2005313120A JP2004136144A JP2004136144A JP2005313120A JP 2005313120 A JP2005313120 A JP 2005313120A JP 2004136144 A JP2004136144 A JP 2004136144A JP 2004136144 A JP2004136144 A JP 2004136144A JP 2005313120 A JP2005313120 A JP 2005313120A
Authority
JP
Japan
Prior art keywords
liquid
anaerobic
sludge
tank
anaerobic digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004136144A
Other languages
Japanese (ja)
Other versions
JP4525161B2 (en
Inventor
Hidenari Yasui
英斉 安井
Kazuya Komatsu
和也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004136144A priority Critical patent/JP4525161B2/en
Publication of JP2005313120A publication Critical patent/JP2005313120A/en
Application granted granted Critical
Publication of JP4525161B2 publication Critical patent/JP4525161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an amount of removed sludge, substantially decrease an organic component in the sludge and also increase a recovery rate of a methane gas by causing a larger amount of inorganic components in the sludge accumulated in an anaerobic digestion tank to migrate to a separated liquid and discharging outside the system. <P>SOLUTION: The anaerobic treatment apparatus has the anaerobic digestion tank 1 for carrying out anaerobic digestion treatment of a liquid to be treated containing an organic waste liquid, a dilution treatment tank 2 for mixing an outflow liquid from the anaerobic digestion tank 1 with diluting water and agitating to elute the inorganic component in water, diluting liquid feeding means for feeding an outflow liquid from the dilution treatment tank 2 to solid-liquid separation means 3, the solid-liquid separation means 3 for carrying out solid-liquid separation of a mixed liquid of the outflow liquid from the anaerobic digestion tank 1 and the diluting liquid to discharge at least a part of the separated liquid outside the system, and sludge recirculation means for recirculating the sludge separated by the solid-liquid separation means 3 to the anaerobic digestion tank 1. A part of the organic waste liquid is fed to the dilution treatment tank 2 as the diluting water and the remnant of the organic waste liquid is fed to the anaerobic digestion tank 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機性排液を、嫌気性微生物を含む汚泥の存在下でメタン発酵により処理する嫌気性消化装置に係り、特に嫌気性消化により、有機成分を大幅に減量化すると共により多くのメタンガスを回収することができる嫌気性処理装置に関する。   The present invention relates to an anaerobic digester that treats organic effluent by methane fermentation in the presence of sludge containing anaerobic microorganisms, and in particular, anaerobic digestion significantly reduces the amount of organic components and more The present invention relates to an anaerobic treatment apparatus capable of recovering methane gas.

有機性汚泥、し尿、食品排水等のスラリー状の高濃度有機性排液を、嫌気性微生物の存在下にメタン発酵によって処理する嫌気性消化方法は、排液の処理と同時に排液から有効利用可能なメタンガスを回収できる方法として、古くから行われている方法である。   The anaerobic digestion method that treats slurry-like high-concentration organic effluents such as organic sludge, human waste, and food wastewater by methane fermentation in the presence of anaerobic microorganisms is effectively used from the effluent at the same time as the effluent treatment. This method has been used for a long time as a method for recovering possible methane gas.

このような嫌気性消化処理においては、未分解物質及び嫌気性微生物を主体とする汚泥(消化汚泥)が生成する。従来、生成した汚泥は機械脱水した後、焼却、埋立等により処理されている。   In such anaerobic digestion treatment, sludge (digested sludge) mainly composed of undegraded substances and anaerobic microorganisms is generated. Conventionally, the produced sludge is treated by incineration, landfill, etc. after mechanical dehydration.

嫌気性消化処理により生成する汚泥を減容化し、有機性排液からメタンガスをより多く回収することができる装置として、特開平9−206785号公報には、消化汚泥をオゾン処理により改質した後、この改質汚泥を嫌気性消化槽に返送する嫌気性消化装置が記載されている。この装置は消化汚泥をオゾン処理して易生物分解性に改質した後、嫌気性消化槽に戻して嫌気性微生物の基質としてさらに分解するものであり、有機性排液からより多くのメタンガスを回収するのに有効な装置である。   As a device capable of reducing the volume of sludge produced by anaerobic digestion treatment and recovering more methane gas from organic waste liquid, JP-A-9-206785 discloses that after digestion sludge is modified by ozone treatment An anaerobic digester that returns this modified sludge to an anaerobic digester is described. In this device, digested sludge is treated with ozone to improve biodegradability, then returned to the anaerobic digester and further decomposed as a substrate for anaerobic microorganisms. More methane gas is removed from the organic effluent. It is an effective device for recovery.

この装置では、メタンガスの回収率を高めるために、嫌気性消化槽での汚泥の滞留時間を保って嫌気性消化処理の効率を低下させないようにしながら、改質処理する汚泥量を増加させる必要がある。そのためには、消化汚泥の一部を固液分離し、分離液を処理水として排出するとともに分離された高濃度汚泥(濃縮汚泥)を嫌気性消化槽に返送するように構成し、固形物の系外流出を抑え、嫌気性消化槽の汚泥保持量及び汚泥濃度を高く保つ必要がある。   In this equipment, in order to increase the recovery rate of methane gas, it is necessary to increase the amount of sludge to be reformed while maintaining the sludge residence time in the anaerobic digestion tank so as not to reduce the efficiency of the anaerobic digestion treatment. is there. For this purpose, a part of the digested sludge is separated into solid and liquid, the separated liquid is discharged as treated water, and the separated high-concentration sludge (concentrated sludge) is returned to the anaerobic digestion tank. It is necessary to suppress outflow from the system and keep the sludge retention and sludge concentration in the anaerobic digestion tank high.

しかし、このように、固液分離した濃縮汚泥を嫌気性消化槽に返送する装置では、汚泥中の有機成分は著しく減量され、メタンガスとして回収されるのに対して、無機成分は減量されないため、液中に溶解しているごく一部の無機成分が分離液中に含まれて系外に排出されるものの、大部分の無機成分は嫌気性消化槽内に蓄積することとなる。また、汚泥中の無機成分が消化により液中に移行し、それが再析出する。従って、有機性排液中の有機物の消化が進行するほど無機物が再析出しやすくなる。無機成分の蓄積により嫌気性消化槽の汚泥濃度が高くなると、槽内液の粘性が急激に増加するため、嫌気性消化槽内が充分に撹拌混合されなくなり、嫌気性消化の効率が低下してしまう。そのため、嫌気性消化槽の汚泥濃度をある範囲(5〜6%以下)で維持するように消化汚泥を余剰汚泥として適宜引き抜く必要がある。そして、この無機成分の蓄積を防ぐための汚泥の引き抜きにより、本来なら減量されメタンガスとして回収されるはずの有機成分が引き抜き汚泥中に含まれて系外へ排出され、このために有機成分の減量効果が制限されるという問題があった。   However, in this way, in the device that returns the solid-liquid separated concentrated sludge to the anaerobic digester, the organic components in the sludge are significantly reduced and recovered as methane gas, whereas the inorganic components are not reduced. Although only a small part of the inorganic component dissolved in the liquid is contained in the separation liquid and discharged out of the system, most of the inorganic component accumulates in the anaerobic digester. Moreover, the inorganic component in sludge transfers to liquid by digestion, and it precipitates again. Therefore, as the digestion of the organic matter in the organic drainage proceeds, the inorganic matter becomes easier to reprecipitate. When the sludge concentration in the anaerobic digestion tank increases due to the accumulation of inorganic components, the viscosity of the liquid in the tank increases rapidly, so the inside of the anaerobic digestion tank is not sufficiently stirred and mixed, and the efficiency of the anaerobic digestion decreases. End up. For this reason, it is necessary to appropriately extract the digested sludge as excess sludge so as to maintain the sludge concentration in the anaerobic digester within a certain range (5 to 6% or less). And by extracting the sludge to prevent the accumulation of inorganic components, the organic components that should have been reduced and recovered as methane gas are extracted and contained in the sludge and discharged out of the system. There was a problem that the effect was limited.

また、特開2002−361291号公報には、消化汚泥と有機性排液の一部を混合して固液分離する処理方法が記載されている。この方法は、消化汚泥の固液分離性を改善するのに有効な方法ではあるが、無機成分の溶解に充分な反応時間がとれないため、嫌気性消化槽内への無機成分の蓄積を防ぐことはできなかった。
特開平9−206785号公報 特開2002−361291号公報
Japanese Patent Application Laid-Open No. 2002-361291 describes a processing method in which a part of digested sludge and organic drainage are mixed and solid-liquid separated. Although this method is an effective method for improving the solid-liquid separation property of digested sludge, it does not take enough reaction time to dissolve the inorganic components, thus preventing the accumulation of inorganic components in the anaerobic digester. I couldn't.
JP-A-9-206785 JP 2002-361291 A

本発明の目的は、上記従来の問題点を解決し、嫌気性消化槽内に蓄積する汚泥中の無機成分をより多く分離液に移行させて系外に排出することによって、汚泥の引き抜きを不要とするか又は汚泥の引き抜き量を低減することができる嫌気性処理装置を提供することにある。   The object of the present invention is to solve the above-mentioned conventional problems, and transfer more inorganic components in the sludge accumulated in the anaerobic digestion tank to the separation liquid and discharge it outside the system, thereby eliminating the need for sludge extraction. Or providing an anaerobic treatment apparatus capable of reducing the amount of sludge withdrawn.

本発明(請求項1)の嫌気性処理装置は、有機性排液を含む被処理液を嫌気性消化処理する嫌気性消化槽と、該嫌気性消化槽の流出液を固液分離し、分離液の少なくとも一部を系外へ排出する固液分離手段と、該固液分離手段で分離された汚泥を前記嫌気性消化槽に返送する汚泥返送手段とを備える嫌気性消化装置において、前記嫌気性消化槽の流出液を希釈水と混合攪拌して水中に無機成分を溶出させる希釈処理槽と、該希釈処理槽の流出液を前記固液分離手段へ送給する希釈液送給手段とを具備することを特徴とする。   The anaerobic treatment apparatus of the present invention (Claim 1) performs solid-liquid separation on an anaerobic digestion tank for anaerobic digestion treatment of a liquid to be treated containing organic drainage liquid, and an effluent from the anaerobic digestion tank. An anaerobic digester comprising: solid-liquid separation means for discharging at least part of the liquid out of the system; and sludge return means for returning sludge separated by the solid-liquid separation means to the anaerobic digestion tank. A dilution treatment tank for mixing and stirring the effluent of the digestive digestion tank with dilution water to elute inorganic components in the water, and a dilution liquid feeding means for feeding the effluent of the dilution treatment tank to the solid-liquid separation means It is characterized by comprising.

嫌気性消化槽の流出液を希釈水と単に合流させて固液分離するのみでは、嫌気性消化槽の流出汚泥中の無機成分を液側に移行させることは殆どできず、無機成分は固液分離手段から嫌気性消化槽に返送される分離汚泥(濃縮汚泥)中に含まれて嫌気性消化槽内に蓄積することとなるが、嫌気性消化槽の流出液を希釈水と所定の時間混合攪拌することにより、無機成分を水中に溶出させることができ、これにより、無機成分を固液分離手段の分離液中に移行させて系外へ排出することができる。このため、無機成分の蓄積防止のために汚泥を引き抜く必要はなくなり、汚泥引き抜き量を低減ないし汚泥の引き抜きを不要として、系内の汚泥中の有機成分を大幅に減量化することができる。また、メタンガスの回収率を高めることもできる。   By simply joining the effluent of the anaerobic digestion tank with the dilution water and solid-liquid separation, the inorganic component in the sewage sludge of the anaerobic digestion tank can hardly be transferred to the liquid side. It is contained in the separated sludge (concentrated sludge) returned to the anaerobic digester from the separation means and accumulates in the anaerobic digester, but the effluent of the anaerobic digester is mixed with the diluted water for a predetermined time. By stirring, the inorganic component can be eluted in water, and thereby the inorganic component can be transferred into the separation liquid of the solid-liquid separation means and discharged out of the system. For this reason, it is not necessary to extract sludge to prevent the accumulation of inorganic components, and the amount of organic components in the sludge in the system can be greatly reduced by reducing the amount of sludge extraction or making it unnecessary to extract sludge. In addition, the recovery rate of methane gas can be increased.

請求項2の嫌気性処理装置は、請求項1において、前記有機性排液の一部を前記嫌気性消化槽に供給する手段と、残部の少なくとも一部を希釈水として前記希釈処理槽に送給する手段とを具備することを特徴とするものである。このように、希釈水として有機性排液の一部を用いることにより、有機性排液の処理効率を高めると共に、固液分離手段における固液分離効率を高めることができる。   An anaerobic treatment apparatus according to a second aspect is the method according to the first aspect, wherein a part of the organic drainage is supplied to the anaerobic digestion tank and at least a part of the remaining part is supplied as dilution water to the dilution treatment tank. And a means for supplying. Thus, by using a part of the organic drainage as the dilution water, it is possible to increase the processing efficiency of the organic drainage and increase the solid-liquid separation efficiency in the solid-liquid separation means.

請求項3の嫌気性処理装置は、請求項1において、有機性排液の全量を前記希釈処理槽に送給するようにしたことを特徴とするものであり、この態様でも上記と同様に汚泥の減量化、メタンガス回収効率の向上を図ることができる。   The anaerobic treatment apparatus according to claim 3 is characterized in that, in claim 1, the whole amount of the organic drainage is fed to the dilution treatment tank. Can be reduced, and methane gas recovery efficiency can be improved.

請求項4の嫌気性処理装置は、請求項1ないし3のいずれか1項において、前記嫌気性消化槽の流出液の一部を改質処理する改質手段と、該改質手段の改質液を前記嫌気性消化槽に返送する改質液返送手段とを具備することを特徴とするものであり、嫌気性消化槽の流出液の一部を改質して嫌気性消化槽に返送することにより、より一層の有機成分の減量化とメタンガス回収量の増加を図ることができる。   An anaerobic treatment apparatus according to claim 4 is the anaerobic treatment apparatus according to any one of claims 1 to 3, wherein a reforming means for reforming a part of the effluent of the anaerobic digester, and reforming of the reforming means And a reforming liquid returning means for returning the liquid to the anaerobic digestion tank, and a part of the effluent of the anaerobic digestion tank is modified and returned to the anaerobic digestion tank. As a result, it is possible to further reduce the amount of organic components and increase the amount of methane gas recovered.

請求項5の嫌気性処理装置は、請求項4において、改質手段がオゾン処理手段であることを特徴とするものであり、オゾン処理により、嫌気性消化槽の流出液を効率的に改質することができる。   An anaerobic treatment apparatus according to claim 5 is characterized in that, in claim 4, the reforming means is an ozone treatment means, and the effluent of the anaerobic digester is efficiently reformed by ozone treatment. can do.

本発明の嫌気性処理装置によれば、嫌気性消化槽内に蓄積する汚泥中の無機成分をより多く分離液に移行させて系外に排出することによって、汚泥の引き抜き量を低減し、汚泥中の有機成分を大幅に減量化すると共にメタンガスの回収率を高めることができる。   According to the anaerobic treatment apparatus of the present invention, more inorganic components in the sludge accumulated in the anaerobic digester are transferred to the separation liquid and discharged out of the system, thereby reducing the amount of sludge withdrawn and sludge It is possible to greatly reduce the amount of organic components contained therein and increase the recovery rate of methane gas.

以下に本発明の嫌気性処理装置の実施の形態を詳細に説明する。   Hereinafter, embodiments of the anaerobic treatment apparatus of the present invention will be described in detail.

本発明において処理の対象となる有機性排液は、嫌気性消化処理によって処理される有機物を含有する排液(汚泥を含む)であり、固形物を含むスラリー状のものでも、固形物を含まない液状のものでもよい。また、難生物分解性の有機物、無機物、セルロース、紙、綿、ウール、布、し尿中の固形物などが含有されていてもよい。このような有機性排液としては下水、下水初沈汚泥、し尿、浄化槽汚泥、食品工場排水、ビール廃酵母、その他の産業排液、これらの排液を処理した際に生じる余剰汚泥等の汚泥が挙げられる。   The organic drainage to be treated in the present invention is a drainage (including sludge) containing an organic substance to be treated by an anaerobic digestion treatment, and even a slurry-like solid containing a solid contains a solid. There may be no liquid. In addition, non-biodegradable organic substances, inorganic substances, cellulose, paper, cotton, wool, cloth, solid matter in human waste may be contained. Such organic effluents include sewage, sewage initial settling sludge, human waste, septic tank sludge, food factory effluent, beer waste yeast, other industrial effluents, and sludge such as excess sludge generated when these effluents are treated. Is mentioned.

嫌気性消化槽は嫌気性微生物を含む汚泥の存在下に、上記有機性排液をメタン発酵させる槽である。嫌気性微生物を含む汚泥は酸生成菌とメタン生成菌を含む。嫌気性消化槽において有機成分は嫌気性微生物により液化→低分子化→有機酸生成→メタン生成のステップによりメタンガスに転換される。   An anaerobic digestion tank is a tank in which the organic waste liquid is subjected to methane fermentation in the presence of sludge containing anaerobic microorganisms. Sludge containing anaerobic microorganisms contains acid-producing bacteria and methanogens. In the anaerobic digester, the organic components are converted to methane gas by anaerobic microorganisms by the steps of liquefaction → low molecular weight → organic acid production → methane production.

メタン発酵の条件としては、35℃付近に最適温度がある中温メタン生成菌、及び55℃付近に最適温度を有する高温メタン生成菌が増殖するいずれの温度条件も可能である。中温メタン生成菌は増殖が遅いため滞留時間(SRT)を長くする、すなわち、嫌気性消化槽を大きくする必要があるが、比較的低温での処理が可能なため加温及び保温のための設備が簡単になる。これに対し高温メタン生成菌の場合は加温及び保温の設備が必要になるが、増殖が速いため滞留時間が短くてよく、嫌気性消化槽を小さくすることができる。   As conditions for methane fermentation, any temperature condition in which a medium temperature methanogen having an optimum temperature around 35 ° C. and a high temperature methanogen having an optimum temperature around 55 ° C. are allowed to grow. Since mesophilic methanogens grow slowly, the residence time (SRT) needs to be increased, that is, an anaerobic digester must be enlarged, but because it can be processed at a relatively low temperature, facilities for warming and keeping warm Becomes easier. On the other hand, in the case of a high-temperature methanogen, warming and heat retention facilities are required, but since the growth is fast, the residence time may be short, and the anaerobic digester can be made small.

中温メタン生成菌を主体とする場合は嫌気性消化槽での汚泥の滞留時間は10日以上、好ましくは15〜30日程度必要である。これに対して高温メタン生成菌を主体とする場合は上記範囲よりも短い滞留時間(2日以上)とすることも可能である。嫌気性消化槽における処理は、通常、有機物負荷0.5〜2.0kg−VSS/m・日、嫌気性消化槽内のSS濃度5,000〜100,000mg/L、好ましくは30,000〜80,000mg/L、温度30〜38℃または45〜60℃の条件で実施される。 In the case of mainly mesophilic methanogens, the sludge residence time in the anaerobic digester is 10 days or longer, preferably about 15 to 30 days. On the other hand, when a high-temperature methanogen is mainly used, a residence time (2 days or more) shorter than the above range can be used. The treatment in the anaerobic digester is usually carried with an organic load of 0.5 to 2.0 kg-VSS / m 3 · day, and the SS concentration in the anaerobic digester is 5,000 to 100,000 mg / L, preferably 30,000. It is carried out under conditions of ˜80,000 mg / L, temperature 30 to 38 ° C. or 45 to 60 ° C.

希釈処理槽は、嫌気性消化槽の消化汚泥を希釈水と攪拌混合して無機成分を水中に溶出させる槽である。希釈水としては上水、工水、有機性排液の生物処理水などを用いることもできるが、本発明においては、嫌気性消化槽へ導入される有機性排液の一部又は全部を用いてもよい。希釈処理槽の滞留時間は30分〜2日とすることが好ましい。希釈処理槽の滞留時間が短か過ぎると無機成分を十分に水中に溶出させることができない。滞留時間は過度に長くても、それ以上の無機成分の溶出効果は得られず、槽容量、処理効率の面で不利である。   A dilution processing tank is a tank which stirs and mixes the digested sludge of an anaerobic digestion tank with dilution water, and elutes an inorganic component in water. As the dilution water, clean water, industrial water, biologically treated water of organic effluent can be used, but in the present invention, part or all of the organic effluent introduced into the anaerobic digester is used. May be. The residence time in the dilution treatment tank is preferably 30 minutes to 2 days. If the residence time of the dilution treatment tank is too short, the inorganic component cannot be sufficiently eluted in water. Even if the residence time is excessively long, no further elution effect of inorganic components can be obtained, which is disadvantageous in terms of tank capacity and processing efficiency.

このように希釈処理槽において、消化汚泥を希釈水と攪拌混合して希釈することによって、消化汚泥中に炭酸塩、リン酸塩、水酸化物などの形態で存在する無機化合物がそれらの物質の溶解度に合わせて水中に溶解してくる。   In this way, in the dilution treatment tank, the digested sludge is stirred and mixed with the dilution water to dilute the inorganic compounds present in the digested sludge in the form of carbonate, phosphate, hydroxide, etc. It dissolves in water according to its solubility.

固液分離手段は、希釈処理槽の流出液を固液分離し、分離液を処理水として排出すると共に分離汚泥(濃縮汚泥)を排出し、汚泥返送手段により嫌気性処理槽に返送する装置であり、本発明の嫌気性処理装置では、希釈処理槽で水中に溶解した無機成分は、固液分離手段の分離液中に含まれて系外に排出される。この固液分離手段としては、遠心分離装置(遠心濃縮装置)、浮上分離装置、沈殿槽、膜分離装置、濾過装置などを用いることができる。   The solid-liquid separation means is an apparatus that separates the effluent from the dilution treatment tank into solid, discharges the separated liquid as treated water, discharges the separated sludge (concentrated sludge), and returns it to the anaerobic treatment tank by the sludge return means. In the anaerobic treatment apparatus of the present invention, the inorganic component dissolved in water in the dilution treatment tank is contained in the separation liquid of the solid-liquid separation means and discharged out of the system. As the solid-liquid separation means, a centrifugal separator (centrifugal concentrator), a flotation separator, a sedimentation tank, a membrane separator, a filtration device, or the like can be used.

嫌気性処理槽での無機成分や難生物分解性有機成分の蓄積を防ぐため、この濃縮汚泥の一部または、嫌気性消化槽の消化汚泥の一部を余剰汚泥として排出し、脱水、焼却、埋立等の処分を行ってもよい。また、固液分離手段で分離された分離液は処理水としてそのまま下水等へ放流することができるが、好気性生物処理、その他の後処理を行った後放流してもよい。   In order to prevent the accumulation of inorganic components and non-biodegradable organic components in the anaerobic treatment tank, a part of this concentrated sludge or a part of the digested sludge in the anaerobic digestion tank is discharged as excess sludge for dehydration, incineration, Disposal such as landfill may be performed. Further, the separated liquid separated by the solid-liquid separation means can be discharged as sewage directly into sewage or the like, but may be discharged after aerobic biological treatment or other post-treatment.

改質手段は、上記嫌気性消化槽から引き抜いた嫌気性消化汚泥をオゾン処理、熱処理、ミルによる破砕、酸/アルカリ処理など、好ましくはオゾン処理により易生物分解性に改質する手段である。消化汚泥を改質して嫌気性消化槽に返送することにより、改質汚泥を更に分解して汚泥を高度に減量化することができる。   The reforming means is means for reforming the anaerobic digested sludge extracted from the anaerobic digestion tank to be readily biodegradable, preferably by ozone treatment, such as ozone treatment, heat treatment, milling, acid / alkali treatment, and the like. By reforming the digested sludge and returning it to the anaerobic digester, the reformed sludge can be further decomposed and the sludge can be highly reduced.

改質処理としてのオゾン処理は嫌気性消化汚泥をオゾンと接触させることにより行う。オゾンの使用量はオゾン処理する嫌気性消化汚泥の有機固形物(VSS)あたり、0.01〜0.08g−O/g−VSS、好ましくは0.02〜0.05g−O/g−VSSである。上記のようなオゾン処理を行うことにより、嫌気性消化汚泥中の菌体は死滅し、その他の有機物と共に易生物分解性に改質される。これら易生物分解性成分が嫌気性消化槽で消化され、より多くのメタンガスが回収されるようになる。 The ozone treatment as the reforming treatment is performed by bringing anaerobic digested sludge into contact with ozone. The amount of ozone organic solids anaerobic digestion sludge ozonation (VSS) per, 0.01~0.08g-O 3 / g- VSS, preferably 0.02~0.05g-O 3 / g -VSS. By performing the ozone treatment as described above, the microbial cells in the anaerobic digested sludge are killed and are easily biodegradable together with other organic substances. These readily biodegradable components are digested in an anaerobic digester and more methane gas is recovered.

嫌気性消化槽から引き抜いてオゾン処理する嫌気性消化汚泥の量は嫌気性微生物による充分な分解効率を維持するため、嫌気性消化汚泥中に含まれる有機固形物(VSS)の量として、嫌気性消化槽へ導入される有機固形物(VSS)量の1/3〜5倍、好ましくは1/2〜3倍に相当する範囲とするのが好ましい。また、一日当たりにオゾン処理する嫌気性消化汚泥の量は嫌気性消化槽の全保有汚泥量の1/15〜1/100に相当する量とするのが好ましい。一日当たりのオゾン処理汚泥量を上記の量にすることにより、嫌気性消化処理に必要な微生物量を嫌気性消化槽内に十分に保持することができ、処理効率を高く保つことができる。   The amount of anaerobic digested sludge that is extracted from the anaerobic digestion tank and treated with ozone is sufficient to maintain sufficient decomposition efficiency by anaerobic microorganisms. Therefore, the amount of organic solids (VSS) contained in the anaerobic digested sludge is anaerobic. A range corresponding to 1/3 to 5 times, preferably 1/2 to 3 times the amount of organic solids (VSS) introduced into the digester is preferable. The amount of the anaerobic digested sludge to be ozone-treated per day is preferably set to an amount corresponding to 1/15 to 1/100 of the total retained sludge amount in the anaerobic digester. By setting the amount of the ozone treatment sludge per day to the above amount, the amount of microorganisms necessary for the anaerobic digestion treatment can be sufficiently retained in the anaerobic digestion tank, and the treatment efficiency can be kept high.

次に、図面を参照して本発明の嫌気性処理装置の好適な実施の形態をより詳細に説明する。   Next, a preferred embodiment of the anaerobic treatment apparatus of the present invention will be described in more detail with reference to the drawings.

図1〜4は本発明の嫌気性処理装置の実施の形態を示す系統図である。図1〜4において、同一機能を奏する部材には同一符号を付してある。   1-4 is a systematic diagram showing an embodiment of an anaerobic treatment apparatus of the present invention. 1-4, the same code | symbol is attached | subjected to the member which show | plays the same function.

図1の嫌気性処理装置は、有機性排液の一部を希釈水として用いるものであり、配管11より導入される有機性排液の一部は配管12より希釈処理槽2に送給され、残部が嫌気性消化槽1に導入される。嫌気性消化槽1からの消化汚泥は配管13より希釈処理槽2に導入され、希釈水である有機性排液と十分に攪拌、混合され、希釈混合液は配管16より固液分離3に送給されて固液分離され、分離液は系外へ排出される。この分離液中には、希釈処理槽2における希釈混合により、消化汚泥中の無機成分が溶解しており、無機成分が分離液中に溶解して系外へ排出されることにより、系内での無機成分の蓄積は防止される。   The anaerobic treatment apparatus of FIG. 1 uses part of the organic waste liquid as dilution water, and part of the organic waste liquid introduced from the pipe 11 is fed to the dilution treatment tank 2 from the pipe 12. The remainder is introduced into the anaerobic digester 1. Digested sludge from the anaerobic digestion tank 1 is introduced into the dilution treatment tank 2 through the pipe 13 and is sufficiently stirred and mixed with the organic waste liquid as dilution water. The diluted mixture is sent to the solid-liquid separation 3 through the pipe 16. It is fed and separated into solid and liquid, and the separated liquid is discharged out of the system. In the separated liquid, the inorganic components in the digested sludge are dissolved by the dilution mixing in the dilution treatment tank 2, and the inorganic components are dissolved in the separated liquid and discharged out of the system. Accumulation of inorganic components is prevented.

固液分離手段3の分離汚泥(濃縮汚泥)は配管18より嫌気性消化槽1に返送される。なお、濃縮汚泥の一部は必要に応じて配管19より余剰汚泥として系外へ排出される。汚泥の引き抜きは、嫌気性消化槽1から配管15を経て直接行っても良い。   The separated sludge (concentrated sludge) of the solid-liquid separation means 3 is returned to the anaerobic digester 1 through the pipe 18. A part of the concentrated sludge is discharged out of the system as excess sludge from the pipe 19 as necessary. The sludge extraction may be performed directly from the anaerobic digester 1 through the pipe 15.

嫌気性消化槽1の消化汚泥は配管14よりその一部が引き抜かれ、オゾン反応槽4等の汚泥改質手段で改質された後配管21,18を経て嫌気性消化槽1に返送される。5はオゾン発生器であり、オゾン化空気等を配管20よりオゾン反応槽4に送給する。   A part of the digested sludge in the anaerobic digestion tank 1 is pulled out from the pipe 14, reformed by sludge reforming means such as the ozone reaction tank 4, and then returned to the anaerobic digester 1 through the pipes 21 and 18. . Reference numeral 5 denotes an ozone generator that feeds ozonized air or the like to the ozone reaction tank 4 through the pipe 20.

このように、有機性排液の一部を希釈水として用いる場合、希釈処理槽2に送給する有機性排液量と嫌気性消化槽1に直接導入する有機性排液量との比には特に制限はなく、任意の比率を採用することができるが、消化汚泥中の無機成分を効率的に溶解させるために、希釈処理槽2に導入される消化汚泥に対して同量以上、例えば2〜10倍の有機性排液を希釈処理槽2に導入するようにすることが好ましい。   As described above, when a part of the organic drainage is used as the dilution water, the ratio of the organic drainage supplied to the dilution treatment tank 2 and the organic drainage introduced directly into the anaerobic digestion tank 1 is used. There is no particular limitation, and any ratio can be adopted, but in order to efficiently dissolve the inorganic components in the digested sludge, the same amount or more with respect to the digested sludge introduced into the dilution treatment tank 2, for example, It is preferable to introduce 2 to 10 times more organic drainage into the dilution treatment tank 2.

図2の嫌気性処理装置は、有機性排液とは別に上水、工水、有機性排液の生物処理水等の希釈水を用いるものであり、有機性排液はその全量が配管11より嫌気性消化槽1に導入され、希釈水は配管22より希釈処理槽2に導入される。   The anaerobic treatment apparatus of FIG. 2 uses dilution water such as clean water, industrial water, and organic wastewater biologically treated water in addition to the organic wastewater, and the total amount of the organic wastewater is the pipe 11. More introduced into the anaerobic digestion tank 1, the dilution water is introduced into the dilution treatment tank 2 through the pipe 22.

この場合においても、消化汚泥中の無機成分を効率的に溶解させるために、希釈水はその種類(水質)によっても異なるが、希釈処理槽2に導入される消化汚泥に対して同量以上、例えば2〜10倍を希釈処理槽2に導入するようにすることが好ましい。   Even in this case, in order to efficiently dissolve the inorganic components in the digested sludge, the dilution water differs depending on the type (water quality), but the same amount or more with respect to the digested sludge introduced into the dilution treatment tank 2, For example, it is preferable to introduce 2 to 10 times into the dilution treatment tank 2.

図3の嫌気性処理装置は、有機性排液を希釈水としてその全量を配管12より希釈処理槽2に導入するものであり、この場合においても、有機性排液を含む希釈混合液が固液分離手段3で固液分離され、分離汚泥が嫌気性消化槽1に返送されるため、消化汚泥中の無機成分の溶解と共に、有機性排液の嫌気性消化処理を支障なく行うことができる。   The anaerobic treatment apparatus shown in FIG. 3 uses organic waste liquid as dilution water and introduces the entire amount thereof into the dilution treatment tank 2 through the pipe 12. In this case as well, the diluted mixed liquid containing the organic waste liquid is solid. Solid-liquid separation is performed by the liquid separation means 3 and the separated sludge is returned to the anaerobic digestion tank 1, so that the anaerobic digestion treatment of the organic effluent can be performed without hindrance together with the dissolution of the inorganic components in the digested sludge. .

この図3の嫌気性処理装置においても、図1の嫌気性処理装置と同様に、消化汚泥中の無機成分を効率的に溶解させるために、希釈処理槽2に導入される消化汚泥に対して同量以上、例えば2〜10倍の有機性排液を希釈処理槽2に導入するようにすることが好ましい。   In the anaerobic treatment apparatus of FIG. 3, as in the anaerobic treatment apparatus of FIG. 1, in order to efficiently dissolve the inorganic components in the digested sludge, the digested sludge introduced into the dilution treatment tank 2 is used. It is preferable to introduce the organic waste liquid of the same amount or more, for example, 2 to 10 times, into the dilution treatment tank 2.

図4の嫌気性処理装置は、図3において、更に別途上水、工水、有機性排液の生物処理水等の希釈水を配管22より希釈処理槽2に導入するものである。この場合においても、希釈処理槽2に導入される有機性排液と希釈水との合計が希釈処理槽2に導入される消化汚泥に対して同量以上、例えば2〜10倍となるようにすることが好ましい。   The anaerobic treatment apparatus shown in FIG. 4 further introduces dilution water such as clean water, industrial water, and biological treatment water of organic drainage into the dilution treatment tank 2 through the pipe 22 in FIG. Even in this case, the total amount of the organic waste liquid and the dilution water introduced into the dilution treatment tank 2 is equal to or more than the digested sludge introduced into the dilution treatment tank 2, for example, 2 to 10 times. It is preferable to do.

図2、図4の嫌気性処理装置のように、系外から水質の良好な希釈水を導入することにより、消化汚泥中の無機成分の溶解を促進することができる。一方、有機性排液を希釈水として用いた場合には系外から希釈水を導入する手間とコストが省かれ、また、有機性排液中の繊維分が消化汚泥に混合して含まれることで、固液分離手段3における汚泥の沈降性、脱水性が改善されるという効果を得ることができ、好ましい。   Like the anaerobic treatment apparatus of FIG. 2, FIG. 4, melt | dissolution of the inorganic component in digested sludge can be accelerated | stimulated by introduce | transducing dilution water with favorable water quality from the outside of the system. On the other hand, when organic drainage is used as dilution water, the labor and cost of introducing dilution water from the outside of the system are saved, and the fiber content in organic drainage is included in digested sludge. Thus, the effect that the sedimentation property and dewatering property of the sludge in the solid-liquid separation means 3 can be improved is preferable.

図1〜4の嫌気性処理装置は、本発明の嫌気性処理装置の実施の形態の一例であって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。例えば、図1の嫌気性処理装置において、希釈処理槽2に更に別途系外から希釈水を導入しても良い。また、有機性排液又はその他の希釈水と嫌気性消化槽1からの消化汚泥とは配管内で合流させた後、希釈処理槽2で所定の滞留時間攪拌混合しても良い。   The anaerobic processing apparatus of FIGS. 1-4 is an example of embodiment of the anaerobic processing apparatus of this invention, Comprising: This invention is not limited to what is shown in figure, unless the summary is exceeded. For example, in the anaerobic treatment apparatus of FIG. 1, dilution water may be further introduced into the dilution treatment tank 2 from outside the system. Further, the organic waste liquid or other dilution water and the digested sludge from the anaerobic digestion tank 1 may be combined in the pipe and then stirred and mixed in the dilution treatment tank 2 for a predetermined residence time.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
下水処理場の嫌気性消化汚泥を遠心濃縮機で濃縮したものを種汚泥(TS濃度78g/L、TVS/TS比0.61)として、図1に示す嫌気性処理装置により、90日間、混合生汚泥の嫌気性消化処理を行った。
Example 1
Mixing anaerobic digested sludge from a sewage treatment plant with a centrifugal concentrator as seed sludge (TS concentration 78 g / L, TVS / TS ratio 0.61), mixing for 90 days using the anaerobic treatment device shown in FIG. Anaerobic digestion of raw sludge was performed.

投入した混合生汚泥は、下水処理場の余剰汚泥(TS濃度9.8g/L、TVS/TS比0.80、120L/day)であり、一部30L/dayを嫌気性消化槽1へ、残部90L/dayを容積100Lの希釈処理槽2に送給し、希釈処理槽2において、嫌気性消化槽1から流量60L/dayで引き抜いた消化汚泥と混合した。希釈処理槽2の滞留時間は16時間とした。また、嫌気性消化槽1からは40L/dayで汚泥を引き抜き、容積20Lのジャー型オゾン反応槽4内でオゾン濃度140g−O/Nmのオゾン化空気と反応させてオゾン処理した(オゾン反応率0.035g−O/g−TVS)。この嫌気性消化槽(容積2m)1は温度35℃で、槽内TS濃度80g/Lを維持するように適宜汚泥を系外に引き抜いた。 The mixed raw sludge input is surplus sludge from the sewage treatment plant (TS concentration 9.8 g / L, TVS / TS ratio 0.80, 120 L / day), and a part of 30 L / day to the anaerobic digester 1 The remaining 90 L / day was fed to a dilution treatment tank 2 having a volume of 100 L, and mixed in the dilution treatment tank 2 with digested sludge extracted from the anaerobic digestion tank 1 at a flow rate of 60 L / day. The residence time of the dilution treatment tank 2 was 16 hours. Also, sludge was extracted from the anaerobic digestion tank 1 at 40 L / day, and ozone treatment was performed by reacting with ozone-containing air having an ozone concentration of 140 g-O 3 / Nm 3 in a jar-type ozone reaction tank 4 having a volume of 20 L (ozone). Reaction rate 0.035 g-O 3 / g-TVS). The anaerobic digestion tank (volume 2 m 3 ) 1 was at a temperature of 35 ° C., and the sludge was appropriately drawn out of the system so as to maintain the TS concentration in the tank of 80 g / L.

希釈処理槽2の希釈混合液は固液分離手段(遠心濃縮機)3で2,000Gの条件で遠心濃縮し、その分離液110〜120L/dayを系外へ排出し、濃縮汚泥を嫌気性消化槽1に返送することにより嫌気性消化槽1の液量を一定に維持した。   The diluted mixed solution in the dilution processing tank 2 is centrifugally concentrated under the condition of 2,000 G in the solid-liquid separation means (centrifugal concentrator) 3, and the separated liquid 110 to 120 L / day is discharged out of the system, and the concentrated sludge is anaerobic. By returning to the digester 1, the liquid amount of the anaerobic digester 1 was kept constant.

実施例2
実施例1において、図3の嫌気性処理装置により、混合生汚泥120L/dayをすべて希釈処理槽2に導入したこと以外は同様にして処理を行った。
Example 2
In Example 1, the treatment was performed in the same manner except that all of the mixed raw sludge 120L / day was introduced into the dilution treatment tank 2 by the anaerobic treatment apparatus of FIG.

比較例1
実施例1において、希釈処理槽2を省略し、混合生汚泥120L/dayをすべて嫌気性消化槽1に導入し、嫌気性消化槽から流量240L/dayで消化汚泥を引き抜いて遠心濃縮機で遠心濃縮したこと以外は同様にして処理を行った。
Comparative Example 1
In Example 1, the diluting tank 2 is omitted, and all of the mixed raw sludge 120L / day is introduced into the anaerobic digester 1, and the digested sludge is extracted from the anaerobic digester at a flow rate of 240 L / day and centrifuged with a centrifugal concentrator. The treatment was performed in the same manner except that it was concentrated.

上記の実施例1,2及び比較例1において、投入汚泥中の無機物の積算量と分離液から系外に排出された無機物の積算量との関係を図5に、投入汚泥の積算量と生成したメタンガスの積算量との関係を図6に示す。   In the above-described Examples 1 and 2 and Comparative Example 1, the relationship between the integrated amount of the inorganic substance in the input sludge and the integrated amount of the inorganic substance discharged out of the system from the separation liquid is shown in FIG. The relationship with the accumulated amount of methane gas is shown in FIG.

図5,6から明らかなように、実施例1,2では、分離液に含まれて系外に排出された無機分が比較例1のそれぞれ約1.8倍、約1.9倍となった。嫌気性消化槽内の汚泥濃度は実施例1,2、比較例1のいずれも35〜37g/Lであり、比較例1では槽内に蓄積し、余剰汚泥として排出されていた無機物が、実施例1,2では分離液中に含まれて系外へ排出されていることが分かる。   As is apparent from FIGS. 5 and 6, in Examples 1 and 2, the inorganic content contained in the separation liquid and discharged out of the system is about 1.8 times and about 1.9 times that of Comparative Example 1, respectively. It was. The sludge concentration in the anaerobic digestion tank is 35 to 37 g / L in each of Examples 1 and 2 and Comparative Example 1. In Comparative Example 1, the inorganic substances accumulated in the tank and discharged as excess sludge were implemented. In Examples 1 and 2, it can be seen that they are contained in the separation liquid and discharged out of the system.

その結果、実施例1,2ではメタンガス量を比較例1のそれぞれ1.18倍、1.25倍に増加させ、メタンガス回収率を65%からそれぞれ76%、81%まで高めることができた。   As a result, in Examples 1 and 2, the amount of methane gas was increased 1.18 times and 1.25 times that of Comparative Example 1, respectively, and the methane gas recovery rate was increased from 65% to 76% and 81%, respectively.

実施例3
下水処理場の嫌気性消化汚泥を遠心濃縮機で濃縮したものを種汚泥(TS濃度78g/L、TVS/TS比0.61)として、図2に示す嫌気性処理装置により、90日間、混合生汚泥の嫌気性消化処理を行った。
Example 3
Mixing anaerobic digested sludge from a sewage treatment plant with a centrifugal concentrator as seed sludge (TS concentration 78 g / L, TVS / TS ratio 0.61), mixing for 90 days using the anaerobic treatment device shown in FIG. Anaerobic digestion of raw sludge was performed.

投入した混合生汚泥は、下水処理場の余剰汚泥(TS濃度34g/L、TVS/TS比0.80、45L/day)であり、その全量を嫌気性消化槽1へ導入した。また、希釈処理槽(容積100L)2には、下水二次処理水400L/dayを希釈水として導入し、嫌気性消化槽1から流量90L/dayで引き抜いた消化汚泥と混合した。希釈処理槽2の滞留時間は2.5時間とした。また、嫌気性消化槽1からは40L/dayで汚泥を引き抜き、容積20Lのジャー型オゾン反応槽4内でオゾン濃度140g−O/Nmのオゾン化空気と反応させてオゾン処理した(オゾン反応率0.035g−O/g−TVS)。この嫌気性消化槽(容積2m)1は温度35℃で、槽内TS濃度80g/Lを維持するように適宜汚泥を系外に引き抜いた。 The mixed raw sludge that was input was excess sludge (TS concentration 34 g / L, TVS / TS ratio 0.80, 45 L / day) of the sewage treatment plant, and the entire amount was introduced into the anaerobic digester 1. Further, 400 L / day of sewage secondary treated water was introduced as dilution water into the dilution treatment tank (volume 100 L) 2 and mixed with digested sludge extracted from the anaerobic digestion tank 1 at a flow rate of 90 L / day. The residence time of the dilution treatment tank 2 was 2.5 hours. Further, sludge was extracted from the anaerobic digestion tank 1 at 40 L / day, and ozone treatment was performed by reacting with ozonized air having an ozone concentration of 140 g-O 3 / Nm 3 in a jar-type ozone reaction tank 4 having a volume of 20 L (ozone). Reaction rate 0.035 g-O 3 / g-TVS). The anaerobic digestion tank (volume 2 m 3 ) 1 was at a temperature of 35 ° C., and the sludge was appropriately drawn out of the system so as to maintain the TS concentration in the tank of 80 g / L.

希釈処理槽2の希釈混合液は固液分離手段(遠心濃縮機)3で2,000Gの条件で遠心濃縮し、その分離液435〜445L/dayを系外へ排出し、濃縮汚泥を嫌気性消化槽1に返送することにより嫌気性消化槽1の液量を一定に維持した。   The diluted mixed solution in the dilution processing tank 2 is centrifugally concentrated under the condition of 2,000 G by the solid-liquid separation means (centrifugal concentrator) 3, the separated liquid 435 to 445 L / day is discharged out of the system, and the concentrated sludge is anaerobic. By returning to the digester 1, the liquid amount of the anaerobic digester 1 was kept constant.

比較例2
実施例3において、希釈処理槽2を省略し、希釈水を用いず、嫌気性消化槽1から流量90L/dayで消化汚泥を引き抜いて遠心濃縮機で遠心濃縮し、分離液35〜45L/dayを系外に排出したこと以外は同様にして処理を行った。
Comparative Example 2
In Example 3, the dilution treatment tank 2 is omitted, the dilution water is not used, the digested sludge is extracted from the anaerobic digestion tank 1 at a flow rate of 90 L / day, and is concentrated by centrifugation with a centrifugal concentrator, and the separation liquid is 35 to 45 L / day. The same treatment was performed except that was discharged out of the system.

比較例3
実施例3において、希釈処理槽2を省略し、希釈水を嫌気性消化槽1から遠心濃縮機への汚泥移送配管に直接導入し、配管中で希釈、混合したこと以外は同様にして処理を行った。
Comparative Example 3
In Example 3, the diluting tank 2 is omitted, and the diluting water is directly introduced into the sludge transfer pipe from the anaerobic digester 1 to the centrifugal concentrator, and the treatment is performed in the same manner except that the diluting and mixing is performed in the pipe. went.

上記の実施例3及び比較例2,3において、投入汚泥中の無機物の積算量と分離液から系外に排出された無機物の積算量との関係を図7に、投入汚泥の積算量と生成したメタンガスの積算量との関係を図8に示す。   In the above Example 3 and Comparative Examples 2 and 3, the relationship between the integrated amount of the inorganic substance in the input sludge and the integrated amount of the inorganic substance discharged out of the system from the separation liquid is shown in FIG. The relationship with the accumulated amount of methane gas is shown in FIG.

図7,8から明らかなように、実施例3では、分離液に含まれて系外に排出された無機分が比較例2,3の約5倍となった。嫌気性消化槽内の汚泥濃度は実施例3、比較例2,3のいずれも30〜32g/Lであり、比較例2,3では槽内に蓄積し、余剰汚泥として排出されていた無機物が、実施例3では分離液中に含まれて系外へ排出されたことが分かる。   As is apparent from FIGS. 7 and 8, in Example 3, the inorganic content contained in the separation liquid and discharged out of the system was about five times that of Comparative Examples 2 and 3. The sludge concentration in the anaerobic digestion tank is 30 to 32 g / L in both Example 3 and Comparative Examples 2 and 3. In Comparative Examples 2 and 3, the inorganic substances accumulated in the tank and discharged as excess sludge In Example 3, it can be seen that it was contained in the separation liquid and discharged out of the system.

その結果、実施例3ではメタンガス量を比較例2,3の1.2倍に増加させ、メタンガス回収率を71%から85%まで高めることができた。   As a result, in Example 3, the amount of methane gas was increased to 1.2 times that of Comparative Examples 2 and 3, and the methane gas recovery rate was increased from 71% to 85%.

本発明の嫌気性処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the anaerobic processing apparatus of this invention. 本発明の嫌気性処理装置の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the anaerobic processing apparatus of this invention. 本発明の嫌気性処理装置の別の実施の形態を示す系統図である。It is a systematic diagram which shows another embodiment of the anaerobic processing apparatus of this invention. 本発明の嫌気性処理装置の異なる実施の形態を示す系統図である。It is a systematic diagram which shows different embodiment of the anaerobic processing apparatus of this invention. 実施例1,2及び比較例1における、投入汚泥中の無機物の積算量と分離液中に含まれて系外に排出された無機物の積算量との関係を示すグラフである。It is a graph which shows the relationship between the integrated amount of the inorganic substance in input sludge and the integrated amount of the inorganic substance contained in the separation liquid and discharged | emitted out of the system in Examples 1, 2 and Comparative Example 1. 実施例1,2及び比較例1における、投入汚泥積算量と生成したメタンガスの積算量との関係を示すグラフである。It is a graph which shows the relationship between input sludge integration amount and the integration amount of produced | generated methane gas in Examples 1, 2 and Comparative Example 1. FIG. 実施例3及び比較例2,3における、投入汚泥中の無機物の積算量と分離液中に含まれて系外に排出された無機物の積算量との関係を示すグラフである。It is a graph which shows the relationship between the integrated amount of the inorganic substance in input sludge in Example 3 and Comparative Examples 2 and 3 and the integrated amount of the inorganic substance contained in the separation liquid and discharged | emitted out of the system. 実施例3及び比較例2,3における、投入汚泥積算量と生成したメタンガスの積算量との関係を示すグラフである。It is a graph which shows the relationship between the amount of input sludge integration in Example 3 and Comparative Examples 2 and 3 and the integration amount of produced | generated methane gas.

符号の説明Explanation of symbols

1 嫌気性消化槽
2 希釈処理槽
3 固液分離手段
4 オゾン反応槽
5 オゾン発生器
DESCRIPTION OF SYMBOLS 1 Anaerobic digestion tank 2 Dilution processing tank 3 Solid-liquid separation means 4 Ozone reaction tank 5 Ozone generator

Claims (5)

有機性排液を含む被処理液を嫌気性消化処理する嫌気性消化槽と、
該嫌気性消化槽の流出液を固液分離し、分離液の少なくとも一部を系外へ排出する固液分離手段と、
該固液分離手段で分離された汚泥を前記嫌気性消化槽に返送する汚泥返送手段と
を備える嫌気性消化装置において、
前記嫌気性消化槽の流出液を希釈水と混合攪拌して水中に無機成分を溶出させる希釈処理槽と、
該希釈処理槽の流出液を前記固液分離手段へ送給する希釈液送給手段とを具備することを特徴とする嫌気性処理装置。
An anaerobic digester that anaerobically digests the liquid to be treated, including organic drainage;
Solid-liquid separation means for solid-liquid separation of the effluent of the anaerobic digestion tank, and discharging at least a part of the separation liquid out of the system;
In an anaerobic digester comprising a sludge return means for returning the sludge separated by the solid-liquid separation means to the anaerobic digester,
A dilution treatment tank for mixing and stirring the effluent of the anaerobic digestion tank with dilution water to elute inorganic components in the water;
An anaerobic treatment apparatus comprising: a diluting liquid feeding means for feeding the effluent of the diluting treatment tank to the solid-liquid separation means.
前記有機性排液の一部を前記嫌気性消化槽に供給する手段と、残部の少なくとも一部を希釈水として前記希釈処理槽に送給する手段とを具備することを特徴とする請求項1に記載の嫌気性処理装置。   2. A means for supplying a part of the organic drainage liquid to the anaerobic digestion tank and a means for supplying at least a part of the remaining part as dilution water to the dilution treatment tank. The anaerobic processing apparatus described in 1. 有機性排液の全量を前記希釈処理槽に送給するようにしたことを特徴とする請求項1に記載の嫌気性処理装置。   The anaerobic treatment apparatus according to claim 1, wherein the whole amount of organic drainage is fed to the dilution treatment tank. 前記嫌気性消化槽の流出液の一部を改質処理する改質手段と、該改質手段の改質液を前記嫌気性消化槽に返送する改質液返送手段とを具備することを特徴とする請求項1ないし3のいずれか1項に記載の嫌気性処理装置。   A reforming means for reforming a part of the effluent of the anaerobic digestion tank, and a reforming liquid returning means for returning the reformed liquid of the reforming means to the anaerobic digestion tank. The anaerobic processing apparatus according to any one of claims 1 to 3. 改質手段がオゾン処理手段であることを特徴とする請求項4に記載の嫌気性処理装置。   The anaerobic treatment apparatus according to claim 4, wherein the reforming means is ozone treatment means.
JP2004136144A 2004-04-30 2004-04-30 Anaerobic treatment equipment Expired - Fee Related JP4525161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136144A JP4525161B2 (en) 2004-04-30 2004-04-30 Anaerobic treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136144A JP4525161B2 (en) 2004-04-30 2004-04-30 Anaerobic treatment equipment

Publications (2)

Publication Number Publication Date
JP2005313120A true JP2005313120A (en) 2005-11-10
JP4525161B2 JP4525161B2 (en) 2010-08-18

Family

ID=35441111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136144A Expired - Fee Related JP4525161B2 (en) 2004-04-30 2004-04-30 Anaerobic treatment equipment

Country Status (1)

Country Link
JP (1) JP4525161B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154126A (en) * 2007-12-27 2009-07-16 Osaka Gas Co Ltd Method for improving settleability of sludge
JP2009214043A (en) * 2008-03-11 2009-09-24 Kurita Water Ind Ltd Biological treatment method for organic waste liquid, and treatment device therefor
JP2014184355A (en) * 2013-03-21 2014-10-02 Metawater Co Ltd Sludge treatment system
US9944893B2 (en) 2012-11-06 2018-04-17 Renew Technologies Ltd Method for organic waste hydrolysis and acidification and an apparatus thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107298511B (en) * 2017-07-20 2019-11-19 上海麒高投资有限公司 Sensor-based energy-saving water processing unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186499A (en) * 1982-04-27 1983-10-31 Sumitomo Jukikai Envirotec Kk Methane fermentation treatment
JPH04326994A (en) * 1991-04-26 1992-11-16 Meidensha Corp Methane fermentation method and apparatus
JPH0538499A (en) * 1991-08-07 1993-02-19 Kurita Water Ind Ltd Treatment of waste water in production of beet sugar
JPH06142685A (en) * 1992-11-13 1994-05-24 Kurita Water Ind Ltd Method and device for treating waste fluid containing organic nitrogen
JPH10249384A (en) * 1997-03-11 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd Treatment of concentrated suspended matter-containing waste water
JP2001070915A (en) * 1999-09-01 2001-03-21 Sumitomo Heavy Ind Ltd Device and method for organic waste disposal
JP2002361291A (en) * 2001-06-01 2002-12-17 Kurita Water Ind Ltd Anaerobic digesting apparatus
JP2003088895A (en) * 2001-09-19 2003-03-25 Mitsubishi Heavy Ind Ltd Method for treating organic waste and method for manufacturing biogas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186499A (en) * 1982-04-27 1983-10-31 Sumitomo Jukikai Envirotec Kk Methane fermentation treatment
JPH04326994A (en) * 1991-04-26 1992-11-16 Meidensha Corp Methane fermentation method and apparatus
JPH0538499A (en) * 1991-08-07 1993-02-19 Kurita Water Ind Ltd Treatment of waste water in production of beet sugar
JPH06142685A (en) * 1992-11-13 1994-05-24 Kurita Water Ind Ltd Method and device for treating waste fluid containing organic nitrogen
JPH10249384A (en) * 1997-03-11 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd Treatment of concentrated suspended matter-containing waste water
JP2001070915A (en) * 1999-09-01 2001-03-21 Sumitomo Heavy Ind Ltd Device and method for organic waste disposal
JP2002361291A (en) * 2001-06-01 2002-12-17 Kurita Water Ind Ltd Anaerobic digesting apparatus
JP2003088895A (en) * 2001-09-19 2003-03-25 Mitsubishi Heavy Ind Ltd Method for treating organic waste and method for manufacturing biogas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154126A (en) * 2007-12-27 2009-07-16 Osaka Gas Co Ltd Method for improving settleability of sludge
JP2009214043A (en) * 2008-03-11 2009-09-24 Kurita Water Ind Ltd Biological treatment method for organic waste liquid, and treatment device therefor
US9944893B2 (en) 2012-11-06 2018-04-17 Renew Technologies Ltd Method for organic waste hydrolysis and acidification and an apparatus thereof
JP2014184355A (en) * 2013-03-21 2014-10-02 Metawater Co Ltd Sludge treatment system

Also Published As

Publication number Publication date
JP4525161B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP5211769B2 (en) Biological treatment method and treatment apparatus for organic waste liquid
JP2002361291A (en) Anaerobic digesting apparatus
JP4075946B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP2003033780A (en) Method for wastewater treatment
JP4525161B2 (en) Anaerobic treatment equipment
JP2014008491A (en) Organic waste treatment apparatus, and organic waste treatment method using the same
JP4507712B2 (en) Anaerobic digester for organic waste liquid
JP2007050387A (en) Apparatus for treating organic waste liquor
JP2006075730A (en) Anaerobic treatment device
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
WO2007083456A1 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP2000246280A (en) Treatment apparatus of organic waste water
JP4298602B2 (en) Method and apparatus for anaerobic digestion treatment of organic sludge
JP2007050386A (en) Apparatus for treating organic waste liquor
JP5140980B2 (en) Biological treatment equipment
JP2002186996A (en) Treatment method of organic waste
JP3969144B2 (en) Biological treatment method and biological treatment apparatus
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP2009195783A (en) Organic wastewater treatment method
JP2008030008A (en) Methane fermentation method of organic waste
JP2008073613A (en) Biological treatment apparatus for organic waste liquid
JP4148286B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JPH09155384A (en) Anaerobic treatment process for organic discharge
JP2004344782A (en) Method and apparatus for treating organic waste fluid
JP4288975B2 (en) Organic waste liquid digester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees