JP2005312208A - Recoilless displacement enlarging/positioning apparatus - Google Patents

Recoilless displacement enlarging/positioning apparatus Download PDF

Info

Publication number
JP2005312208A
JP2005312208A JP2004126880A JP2004126880A JP2005312208A JP 2005312208 A JP2005312208 A JP 2005312208A JP 2004126880 A JP2004126880 A JP 2004126880A JP 2004126880 A JP2004126880 A JP 2004126880A JP 2005312208 A JP2005312208 A JP 2005312208A
Authority
JP
Japan
Prior art keywords
displacement
arm
arms
pzt
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004126880A
Other languages
Japanese (ja)
Other versions
JP4623547B2 (en
Inventor
Goro Ohigata
五郎 大日方
Tsugi Shibuya
嗣 渋谷
Akita Osanawa
明大 長縄
Hideki Mori
英季 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004126880A priority Critical patent/JP4623547B2/en
Publication of JP2005312208A publication Critical patent/JP2005312208A/en
Application granted granted Critical
Publication of JP4623547B2 publication Critical patent/JP4623547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a recoilless displacement enlarging/positioning apparatus having a displacement mechanism with a symmetry property, improving a displacement enlargement ratio, hardly generating an unnecessary resonance, and enabling a fast and accurate displacement. <P>SOLUTION: First and second arms 21, 22 are coupled to a link 41 through hinges. Ends of third and fourth arms are coupled to a link 42 through hinges. The other ends of the first and third arms are coupled to a link 43 through hinges. The other ends of the second and fourth arms are coupled to a link 44 through hinges. A silhouette has a symmetric lozenge. A first PZT 56 is attached between an attaching section 55 and the link 41. A second PZT is attached between the attaching section 55 attached to a body and the link 42. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、例えば、磁気ディスクへの磁気記録の評価を行う磁気記録評価装置に利用されて有効であり、この場合、磁気ヘッドを磁気ディスク上の所定のトラック位置へ高速・高精度で位置決めすることができる無反動型変位拡大位置決め装置に関する。   The present invention is effective when used, for example, in a magnetic recording evaluation apparatus that evaluates magnetic recording on a magnetic disk. In this case, the magnetic head is positioned at a predetermined track position on the magnetic disk with high speed and high accuracy. TECHNICAL FIELD The present invention relates to a reactionless displacement magnifying positioning device.

ハードディスクドライブの著しい高記録密度化および高速化に伴い、磁気ディスクへの磁気記録の記録再生評価を行う磁気記録評価装置は、磁気ヘッドの高速・高精度な位置決め技術が要求されている。また、この磁気記録評価装置では、多様なヘッドジンバルスアッセンブリ(HGA)に対応するためのアライメント機構が要求されるが、大きなシーク動作は必要とされていない。   Along with a marked increase in recording density and speed of a hard disk drive, a magnetic recording evaluation apparatus that performs recording / reproduction evaluation of magnetic recording on a magnetic disk is required to have a high-speed and high-precision positioning technology for the magnetic head. In addition, this magnetic recording evaluation apparatus requires an alignment mechanism for dealing with various head gimbal assemblies (HGA), but does not require a large seek operation.

これらの要求に対して、最大変位は小さいが高い応答性を有するPZT(圧電素子)と、PZTの変位を拡大する機構とで構成されるPZTアクチュエータを搭載し、HGA近傍でこのアクチュエータを駆動して制御帯域を上げることによって、トラック追従性を向上させる方式の変位拡大機構が採用されている。   In response to these requirements, a PZT actuator composed of a PZT (piezoelectric element) with a small maximum displacement but high response and a mechanism for expanding the displacement of the PZT is mounted, and this actuator is driven in the vicinity of the HGA. Thus, a displacement magnifying mechanism that improves track followability by increasing the control band is employed.

図1には、従来の変位拡大機構を示している。1はPZT、2は取り付け部、3はHGA支持部、4は変位拡大部、5、6はアーム(リンク)、7、8はPZT支持部、9は切り欠き部である。   FIG. 1 shows a conventional displacement enlarging mechanism. 1 is a PZT, 2 is a mounting portion, 3 is an HGA support portion, 4 is a displacement enlargement portion, 5 and 6 are arms (links), 7 and 8 are PZT support portions, and 9 is a notch portion.

この機構は、平行リンク機構を採用したものである。装置本体への取り付けは、取り付け部2の二つの穴2a、2bにボルトなどを挿入して装置本体への取り付け部へ取り付ける。HGA支持部3には、HGAがネジを利用して固定される。この機構は、平行リンク形状のバネにテコの機構を組み合わせたもので、弾性変形を応用したヒンジが採用されている。PZT1の微小変位は、HGA支持部3においてA/B倍に拡大されて現われる。しかし、この機構は以下に示す四つの問題点がある。   This mechanism employs a parallel link mechanism. For attachment to the apparatus main body, bolts or the like are inserted into the two holes 2a, 2b of the attachment part 2 and attached to the attachment part to the apparatus main body. The HGA is fixed to the HGA support 3 using screws. This mechanism is a combination of a lever mechanism and a parallel link spring, and a hinge using elastic deformation is employed. The minute displacement of PZT1 appears to be magnified A / B times in the HGA support 3. However, this mechanism has the following four problems.

(1)PZT1の伸縮力はアーム5の切り欠き部9の位置に集中して働く。アーム5の剛性はこの力に対して十分に高くとることができないため、アーム5は弾性変形する。また、PZT1に伸縮力を直接受けるPZT支持部8の剛性も、PZT支持部8が片持ち梁の形状をしているため、PZT1の発生力に対して十分に高くとることができず、PZT支持部8は弾性変形する。これにより、変位拡大率が想定した値A/Bより小さくなってしまい、PZT1の微小な変位を効率的に拡大することができない。   (1) The expansion and contraction force of PZT 1 is concentrated on the position of the notch 9 of the arm 5. Since the rigidity of the arm 5 cannot be sufficiently high with respect to this force, the arm 5 is elastically deformed. Further, the rigidity of the PZT support portion 8 that directly receives the expansion / contraction force on the PZT 1 cannot be sufficiently high with respect to the generated force of the PZT 1 because the PZT support portion 8 has a cantilever shape. The support portion 8 is elastically deformed. As a result, the displacement magnification rate becomes smaller than the assumed value A / B, and the minute displacement of PZT1 cannot be efficiently expanded.

(2)PZT1を高速に動作させると、PZT取り付け部8は振動し、その反力が装置本体への取り付け部2を加振し、機構全体の振動を誘発し、高速・高精度な位置決めの大きな障害となる。   (2) When the PZT 1 is operated at high speed, the PZT attachment portion 8 vibrates, and the reaction force vibrates the attachment portion 2 to the apparatus body, inducing vibration of the entire mechanism, and high-speed and high-precision positioning. It becomes a big obstacle.

(3)PZT1の伸縮力により運動するHGA支持部3へ作用する慣性力は、PZT1を高速に動作させることにより極めて大きくなり、この慣性力を受ける装置本体の直動ステージへの取り付け部2は加振され,機構全体の振動を誘発し、高速・高精度な位置決めの大きな障害となる。   (3) The inertial force acting on the HGA support portion 3 that moves due to the expansion and contraction force of the PZT1 becomes extremely large by operating the PZT1 at high speed, and the attachment portion 2 to the linear motion stage of the apparatus main body that receives this inertial force When excited, it induces vibration of the entire mechanism and becomes a major obstacle to high-speed and high-precision positioning.

(4)機構の変位拡大率と共振周波数が二律背反の関係にあり、制御性の向上のための共振周波数の飛躍的向上が望めない。
特開2003−157632
(4) The displacement expansion ratio of the mechanism and the resonance frequency are in a trade-off relationship, and a dramatic improvement in the resonance frequency for improving controllability cannot be expected.
JP 2003-157632 A

上記したように従来の機構であると、アーム5、PZT支持部8が弾性変形することがある。この場合、変位拡大率が想定した値A/Bより小さくなってしまい、PZT1の微小な変位を効率的に拡大することができない。PZT1の高速で、PZT取り付け部8の振動が、取り付け部2を加振し、機構全体の振動を誘発し、高速・高精度な位置決めの大きな障害となることがある。PZT1を高速に動作させると、HGA支持部3へ作用する慣性力が極めて大きくなり、装置本体の直動ステージへの取り付け部2が加振され,機構全体の振動を誘発し、高速・高精度な位置決めの大きな障害となることがある。機構の変位拡大率と共振周波数が二律背反の関係にあり、制御性の向上のための共振周波数の飛躍的向上が望めない。   As described above, with the conventional mechanism, the arm 5 and the PZT support portion 8 may be elastically deformed. In this case, the displacement magnification rate becomes smaller than the assumed value A / B, and the minute displacement of PZT1 cannot be efficiently expanded. The vibration of the PZT attachment portion 8 vibrates the attachment portion 2 at the high speed of the PZT 1 and induces vibration of the entire mechanism, which may be a major obstacle to high-speed and high-accuracy positioning. When the PZT 1 is operated at high speed, the inertial force acting on the HGA support part 3 becomes extremely large, and the attachment part 2 to the linear motion stage of the apparatus main body is vibrated, inducing vibration of the entire mechanism, and high speed and high accuracy. Can be a major obstacle to proper positioning. The displacement expansion ratio of the mechanism and the resonance frequency are in a trade-off relationship, and it is not possible to expect a dramatic improvement in the resonance frequency to improve controllability.

そこでこの発明は、上記の問題点を解決すべくなされたもので、変位機構に対称性を持たせて、変位拡大率を向上し、且つ、不要な共振が発生しにくいようにし、高速・高精度の変位が可能な無反動型変位拡大位置決め装置を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems. By providing symmetry to the displacement mechanism, the displacement magnification rate is improved and unnecessary resonance is less likely to occur. It is an object of the present invention to provide a reactionless displacement magnifying positioning device capable of accurate displacement.

この発明は、上記の課題を解決するために、第1と第2のアームが鋭角を作る配置関係にあり、それぞれの一端部がそれぞれヒンジ部を介して結合した第1の連結部分と、第3のアームと第4のアームが鋭角を作る配置関係であり、それぞれの一端部がそれぞれヒンジ部を介して結合した第2の連結部と、前記第1のアームと前記第3のアームが鈍角を作る配置関係であり、それぞれの他端部がそれぞれヒンジ部を介して結合した第3の連結部分と、前記第2のアームと前記第4のアームが鈍角を作る配置関係であり、それぞれの他端部がそれぞれヒンジ部を介して結合した第4の連結部と、前記第1、第2の連結部を結ぶ線と、前記第3、第4の連結部を結ぶ線の交点を含む位置に配置された装置本体への取り付け部と、この装置本体への取り付け部と前記第1の連結部との間に取り付けられた第1のPZT,前記装置本体への取り付け部と前記第2の連結部との間に取り付けられた第2のPZTとを具備している。   In order to solve the above-mentioned problem, the present invention has an arrangement relationship in which the first and second arms form an acute angle, and each of the one end portions is connected via a hinge portion, The third arm and the fourth arm form an acute angle, each of which has an end portion coupled via a hinge portion, and the first arm and the third arm have an obtuse angle. Each of the other end portions of the third connecting portions connected via hinges, and the second arm and the fourth arm are obtuse angles. A position including an intersection of a fourth connecting part, the other end part of which is connected via a hinge part, a line connecting the first and second connecting parts, and a line connecting the third and fourth connecting parts The attachment part to the device main body and the attachment to the device main body A first PZT attached between the attaching portion and the first connecting portion, and a second PZT attached between the attaching portion to the apparatus main body and the second connecting portion. ing.

上記の手段によると、第1と第2のPZTの伸縮に応じて、前記第3と第4の連結部が拡大変位することができる。   According to said means, the said 3rd and 4th connection part can carry out expansion displacement according to expansion-contraction of 1st and 2nd PZT.

以下、本発明の一実施の形態を図面を参照して説明する。図2(A)、図2(B)はこの発明の一実施の形態である。図2(A)は、平面図、図2(B)は外観斜視図である。図に示すように、第1〜第4のアーム21,22,23,24を有し、これらはほぼひし形の配置関係にある。そして、X軸,Y軸に対称な形状である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 2A and 2B are one embodiment of the present invention. 2A is a plan view, and FIG. 2B is an external perspective view. As shown in the figure, the first to fourth arms 21, 22, 23, and 24 have a substantially rhombic arrangement relationship. The shape is symmetrical with respect to the X axis and the Y axis.

ここで、第1と第2のアーム21、22が鋭角(例えば36.87度)を作る配置関係にあり、それぞれの一端部がそれぞれヒンジ部31,32を介して第1の連結部分41に結合している。また、第3のアーム23と第4のアーム24が鋭角(例えば36.87度)を作る配置関係であり、それぞれの一端部がそれぞれヒンジ部33、34を介して第2の連結部42に結合している。   Here, the first and second arms 21 and 22 are in an arrangement relationship that forms an acute angle (for example, 36.87 degrees), and one end portions of the first and second arms 21 and 22 are connected to the first connecting portion 41 via the hinge portions 31 and 32, respectively. Are connected. Further, the third arm 23 and the fourth arm 24 are in an arrangement relationship that forms an acute angle (for example, 36.87 degrees), and one end portion of each of the third arm 23 and the fourth arm 24 is connected to the second connection portion 42 via the hinge portions 33 and 34, respectively. Are connected.

さらに第1のアーム21と第3のアーム23が鈍角を作る配置関係であり、それぞれの他端がそれぞれヒンジ部31a,33aを介して第3の連結部分43に結合している。そして、第2のアーム22と第4のアーム24が鈍角を作る配置関係であり、それぞれ一端部がそれぞれヒンジ部32a,34aを介して第4の連結部44に結合している。   Further, the first arm 21 and the third arm 23 are arranged to form an obtuse angle, and the other ends of the first arm 21 and the third arm 23 are coupled to the third connecting portion 43 via hinges 31a and 33a, respectively. Then, the second arm 22 and the fourth arm 24 are arranged to form an obtuse angle, and one end portions of the second arm 22 and the fourth arm 24 are coupled to the fourth connecting portion 44 via hinge portions 32a and 34a, respectively.

第1、第2の連結部41,42を結ぶ線(Y軸)と、第3、第4の連結部43、44を結ぶ線(X軸)の交点を含むように、装置本体への取り付け部55が配置されている。この装置本体への取り付け部55と第1の連結部41との間には、第1のPZT56が取り付けられ、装置本体への取り付け部55と第2の連結部42との間には、第2のPZT57が取り付けられている。また、上記の装置で、長手方向の最大長は、例えば49.96mm、短辺方向の最大長は例えば26.0mmである。またヒンジ部を形成するために設けられた切り欠き幅は1mm程度である。アーム21−24の各長さは同じ長さである。   Mounting to the apparatus body so as to include the intersection of the line connecting the first and second connecting portions 41 and 42 (Y axis) and the line connecting the third and fourth connecting portions 43 and 44 (X axis) The part 55 is arranged. A first PZT 56 is attached between the attachment portion 55 to the apparatus main body and the first connection portion 41, and a first PZT 56 is provided between the attachment portion 55 to the apparatus main body and the second connection portion 42. Two PZTs 57 are attached. In the above apparatus, the maximum length in the longitudinal direction is, for example, 49.96 mm, and the maximum length in the short side direction is, for example, 26.0 mm. Moreover, the notch width provided in order to form a hinge part is about 1 mm. The lengths of the arms 21-24 are the same.

上記のようにこの実施の形態では、弾性変形を応用したヒンジを採用し、PZT微動アクチュエータの形状として、機構全体が直交する対角軸X,Yに対して対称となる形状(菱形)を採用している点に特徴がある。装置本体への取り付け部55の中心は、対角軸の交点の位置とし、装置本体への取り付け部55の形状は直行するX,Y軸に対して対称としている。   As described above, this embodiment employs a hinge that applies elastic deformation, and adopts a shape (diamond) that is symmetrical with respect to the diagonal axes X and Y that are orthogonal to each other as the shape of the PZT fine actuator. There is a feature in the point. The center of the attachment portion 55 to the apparatus main body is the position of the intersection of the diagonal axes, and the shape of the attachment portion 55 to the apparatus main body is symmetric with respect to the orthogonal X and Y axes.

特性の等しい二つのPZT56,57は、Y軸を中心線とし、装置本体への取り付け部55を挟むように対向させて配置している。PZT56,57の微小変位を拡大する変位拡大部(第1乃至第4のアーム及び第1乃至第4の連結部を結ぶ線で囲むエリア)の形状は,直行するX,Y軸に対して対称な機構である。   Two PZTs 56 and 57 having the same characteristics are arranged so as to face each other with the Y axis as the center line and the attachment portion 55 to the apparatus main body sandwiched therebetween. The shape of the displacement enlarging part (area surrounded by the line connecting the first to fourth arms and the first to fourth connecting parts) for enlarging the minute displacement of the PZTs 56 and 57 is symmetrical with respect to the orthogonal X and Y axes. Mechanism.

これにより,特性の等しい二つのPT56,57に等しい電圧を印加するとき、PZT56,57の伸縮による機構各部の変位はX軸,Y軸に対して対称となり,Y軸上の機構各部のX軸方向変位およびX軸上の機構各部のY軸方向変位はそれぞれ振動の節となり、振動の節では現代制御理論で言うところの不可制御な点となっている(制御の影響を受けない)。したがって、PZT56,57を高速に動作させても、(HGA支持部(例えば第3の連結部43)はX軸方向にのみ変位し、PZT56,57の発生力や機構各部が発生する慣性力は相殺され、装置本体への取り付け部55に不要な力を及ぼし難い機構となっており、上記した従来の変位拡大機構の問題点(2)、(3)を回避した機構になっている。   As a result, when an equal voltage is applied to two PTs 56 and 57 having the same characteristics, the displacement of each part of the mechanism due to the expansion and contraction of the PZTs 56 and 57 is symmetric with respect to the X axis and the Y axis. The directional displacement and the Y-axis direction displacement of each part of the mechanism on the X-axis become vibration nodes, which are uncontrollable points in modern control theory (not affected by control). Therefore, even if the PZTs 56 and 57 are operated at high speed, the (HGA support part (for example, the third connecting part 43) is displaced only in the X-axis direction, and the generated force of the PZTs 56 and 57 and the inertial force generated by each part of the mechanism are not It is a mechanism that is offset and hardly exerts an unnecessary force on the attachment portion 55 to the apparatus main body, and is a mechanism that avoids the problems (2) and (3) of the conventional displacement enlarging mechanism described above.

また,機構の対称性により成立する不可制御の実現により、PZT56,57の曲げモードを伴うX,Y軸に非対称な低次の振動モードをPZT56,57の発生力から不可制御にすることにより、機構の共振周波数を飛躍的に向上させた機構となっており、上記した従来の変位拡大機構の問題点(4)を回避した機構になっている.さらに,本発明の機構(軸対称(菱形)機構)は、PZT56,57発生力を直接受ける部分55,41,42に十分な剛性をもたせることができ,弾性変形による変位拡大率の減少を及ぼし難い機構となっており,上記した従来の変位拡大機構の問題点(1)を回避した機構になっている。   In addition, by realizing the uncontrollable control established by the symmetry of the mechanism, the low-order vibration mode asymmetrical to the X and Y axes with the bending modes of the PZTs 56 and 57 is disabled from the generated force of the PZTs 56 and 57, It is a mechanism that dramatically improves the resonance frequency of the mechanism, and avoids the problem (4) of the conventional displacement enlargement mechanism described above. Furthermore, the mechanism of the present invention (axisymmetric (diamond) mechanism) can give the portions 55, 41, and 42 that directly receive the PZT 56, 57 generated force sufficient rigidity, thereby reducing the displacement magnification rate due to elastic deformation. This is a difficult mechanism, and is a mechanism that avoids the problem (1) of the conventional displacement enlarging mechanism.

本発明の構成についてのさらに具体的な説明を行う。本発明は、装置本体への取り付け部55、特性の等しい二つのPZT56,57、変位拡大部を有する。装置本体への取り付けは,X軸とY軸の交点付近で装置本体への取り付け部55の二つの円形の穴にボルトなどを用いて行い、HGA支持部(第3の連結部43)にHGAをネジで固定する。   A more specific description of the configuration of the present invention will be given. The present invention has an attachment portion 55 for the apparatus main body, two PZTs 56 and 57 having the same characteristics, and a displacement enlargement portion. The attachment to the apparatus main body is performed using bolts or the like in the two circular holes of the attachment part 55 to the apparatus main body near the intersection of the X axis and the Y axis, and the HGA support part (third connection part 43) is connected to the HGA. Secure with screws.

この構成は、軸対称(菱形)リンク形状のバネにテコの機構を組み合わせたもので、弾性変形を応用したヒンジが採用されている。PZT56,57は、電極にリード線を介して電圧を印加することにより、Y軸方向に伸縮する。PZT56,57の変位に対するHGAの変位は,変位拡大部によりA/B倍に拡大される。本発明は、特性の等しい二つのPZT56,57が装置本体直動ステージへの取り付け部55を挟んで直列に配置され、機構全体がY,X軸に対して対称な機構となっている。HGA支持部(第3の連結部43)にHGAを取り付ける際には、Y軸に対して質量の対称性を保つため、HGAと同質量のCounterweight(カウンターウエイト)をCounterweight取り付け部(第4の連結部44)にネジで固定する。   In this configuration, a lever mechanism is combined with an axisymmetric (rhombus) link-shaped spring, and a hinge using elastic deformation is employed. The PZTs 56 and 57 expand and contract in the Y-axis direction by applying a voltage to the electrodes via the lead wires. The displacement of the HGA with respect to the displacement of the PZTs 56 and 57 is enlarged A / B times by the displacement enlargement unit. In the present invention, two PZTs 56 and 57 having the same characteristics are arranged in series with an attachment portion 55 to the apparatus main body linear motion stage interposed therebetween, and the whole mechanism is a symmetric mechanism with respect to the Y and X axes. When attaching the HGA to the HGA support (third connecting portion 43), in order to maintain the symmetry of the mass with respect to the Y axis, the Counterweight (counterweight) of the same mass as the HGA is attached to the Counterweight attaching portion (the fourth weight). Fastened to the connecting part 44) with screws.

上記の装置のさらに具体的動作、具体的作用について説明する。今、A/B=3として作製した本アクチュエータの静特性の測定結果として、PZT56,57に周波数100Hzで入力電圧50Vの台形波を入力した際のPZT56,57の発生力を直接受ける部分(第1の連結部41又は第2の連結部42)のY方向変位を図3(A)に示し、HGA支持部(第3の連結部43)のX方向変位を図3(B)に示す。   More specific operation and specific action of the above apparatus will be described. As a result of measuring the static characteristics of this actuator manufactured with A / B = 3, the part directly receiving the generated force of PZT 56, 57 when a trapezoidal wave with an input voltage of 50 V is input to PZT 56, 57 at a frequency of 100 Hz (first) FIG. 3A shows the displacement in the Y direction of the first connecting portion 41 or the second connecting portion 42), and FIG. 3B shows the displacement in the X direction of the HGA support portion (third connecting portion 43).

PZT56,57の発生力を直接受ける部分(第1の連結部41又は第2の連結部42)のY方向変位は2μmであり、HGA支持部(第3の連結部43)のX方向変位は5.8μmであった。これにより変位拡大率は2.9であり、想定した値A/Bとほぼ等しい値となった。   The displacement in the Y direction of the portion (the first coupling portion 41 or the second coupling portion 42) that directly receives the generated force of the PZTs 56 and 57 is 2 μm, and the displacement in the X direction of the HGA support portion (the third coupling portion 43) is It was 5.8 μm. As a result, the displacement enlargement ratio was 2.9, which was substantially equal to the assumed value A / B.

図4は、また、本アクチュエータの動特性の測定結果として、図2中のPZT56,57への入力電圧からHGA支持部(第3の連結部43)のX方向変位までの伝達関数の周波数特性を示している。共振周波数9.9kHzの典型的な1自由度2次遅れ要素の性質を有していることがわかる。図4の上の段は、周波数対位相特性であり、下の段は周波数対振幅特性である。   FIG. 4 also shows the frequency characteristics of the transfer function from the input voltage to the PZTs 56 and 57 in FIG. 2 to the X-direction displacement of the HGA support part (third connection part 43) as a measurement result of the dynamic characteristics of this actuator. Is shown. It can be seen that it has the characteristics of a typical one-degree-of-freedom second-order lag element having a resonance frequency of 9.9 kHz. The upper stage of FIG. 4 shows frequency vs. phase characteristics, and the lower stage shows frequency vs. amplitude characteristics.

PZT56,57には、50Vのオフセット電圧を加えた状態で、周波数100Hz−50kHzでスイープする振幅±5Vの正弦波を入力したときの振幅±5Vの1/100の値を入力信号とし、HGA支持部のX軸方向変位(μm)の1/17.5の値を出力信号としたときの入出力間の周波数応答である。   The PZTs 56 and 57 have an HGA support with an input signal that is 1/100 of the amplitude ± 5V when a sine wave with an amplitude of ± 5V sweeping at a frequency of 100Hz-50kHz is applied with an offset voltage of 50V. This is a frequency response between input and output when a value of 1 / 17.5 of the X-axis direction displacement (μm) of the part is used as an output signal.

図5には、本発明の装置の使用例を示している。PZT56,57としては、積層型のものが使用されている。リード線61、62、63、64を介して入力信号が与えられ、HGA支持部(第3の連結部43)のX方向変位が得られる。HGA支持部43には、HGA71が取り付けられ、この先端に磁気ヘッド72が取り付けられている。この磁気ヘッド72は、磁気ディスク74の記録トラック75上に対向している。取り付け部55は、ネジ81、82により装置本体の固定部に取り付けられている。   FIG. 5 shows an example of use of the apparatus of the present invention. As the PZTs 56 and 57, stacked types are used. An input signal is given through the lead wires 61, 62, 63, 64, and an X-direction displacement of the HGA support portion (third connecting portion 43) is obtained. An HGA 71 is attached to the HGA support 43, and a magnetic head 72 is attached to the tip. The magnetic head 72 faces the recording track 75 of the magnetic disk 74. The attachment portion 55 is attached to the fixing portion of the apparatus main body by screws 81 and 82.

上記したように本実施例は、従来の平行リンク機構の共振周波数が3.3kHzなのに対して、本実施例の軸対称(菱形)機構の共振周波数は従来の3倍と飛躍的な向上を実現した。本実施例によると、先に述べたようにヘッドを高速駆動した際に,運動部が発生する全ての慣性力は、機構の完全な対称性により、機構内部で全てキャンセルされ(合力がゼロとなる)、装置本体への取り付け部には、駆動による力は一切作用しないという無反動駆動が実現されている。   As described above, in this embodiment, the resonance frequency of the conventional parallel link mechanism is 3.3 kHz, whereas the resonance frequency of the axially symmetric (diamond) mechanism of this embodiment is three times that of the conventional structure. did. According to the present embodiment, as described above, when the head is driven at a high speed, all the inertial force generated by the moving part is canceled inside the mechanism due to the complete symmetry of the mechanism (the resultant force is zero). Thus, a reactionless drive in which no driving force is applied to the attachment portion to the apparatus main body is realized.

なおこの発明は、上記の実施の形態に限定されるものではなく、種々の変形実施が可能であるが、この変形の範囲も本発明の範疇である。例えば、必ずしも完全なY軸対称の形状をとらなくてもよい。拡大率、カウンターウエイト、使用条件などにより対称性が完全になるとはかぎらない。   The present invention is not limited to the above-described embodiment, and various modifications can be made. The scope of this modification is also within the scope of the present invention. For example, it is not always necessary to take a perfect Y-axis symmetrical shape. The symmetry may not be perfect due to factors such as magnification, counterweight, and usage conditions.

従来の変位拡大機構を示す図。The figure which shows the conventional displacement expansion mechanism. 本発明の一実施の形態を示す図であり、図2(A)が平面図、図2(B)が斜視図。FIGS. 2A and 2B are diagrams illustrating an embodiment of the present invention, in which FIG. 2A is a plan view and FIG. 2B is a perspective view. 本発明の装置の機能を説明するために、連結部41と連結部43の変位を測定して示す図。The figure which measures and shows the displacement of the connection part 41 and the connection part 43 in order to demonstrate the function of the apparatus of this invention. 本発明の装置の動特性の測定結果を示す図。The figure which shows the measurement result of the dynamic characteristic of the apparatus of this invention. 本発明の装置に一使用例を示す説明図。Explanatory drawing which shows an example of 1 use for the apparatus of this invention.

符号の説明Explanation of symbols

21−24…第1〜第4のアーム、31,31,33,34,31a,32a,33a,34a…ヒンジ部、41−44…第1〜第4の連結部、55…装置本体への取り付け部、56,57…PZT(圧電素子)。   21-24 ... 1st to 4th arm, 31, 31, 33, 34, 31a, 32a, 33a, 34a ... Hinge part, 41-44 ... 1st to 4th connecting part, 55 ... to the apparatus main body Attachment part, 56, 57 ... PZT (piezoelectric element).

Claims (5)

第1乃至第4のアームと、
前記第1と第2のアームが鋭角を作る配置関係にあり、それぞれの一端部がそれぞれヒンジ部を介して結合した第1の連結部分と、
前記第3のアームと第4のアームが鋭角を作る配置関係であり、それぞれの一端部がそれぞれヒンジ部を介して結合した第2の連結部と、
前記第1のアームと前記第3のアームが鈍角を作る配置関係であり、それぞれの他端部がそれぞれヒンジ部を介して結合した第3の連結部分と、
前記第2のアームと前記第4のアームが鈍角を作る配置関係であり、それぞれの他端部がそれぞれヒンジ部を介して結合した第4の連結部と、
前記第1、第2の連結部を結ぶ線と、前記第3、第4の連結部を結ぶ線の交点を含む位置に配置された装置本体への取り付け部と、
この装置本体への取り付け部と前記第1の連結部との間に取り付けられた第1の圧電素子,前記装置本体への取り付け部と前記第2の連結部との間に取り付けられた第2の圧電素子とを具備したことを特徴とする無反動型変位拡大位置決め装置。
First to fourth arms;
A first connecting portion in which the first and second arms are in an arrangement relationship that forms an acute angle, and each one end portion is coupled via a hinge portion;
The third arm and the fourth arm are in an arrangement relationship that forms an acute angle, and each of the one end portions is coupled via a hinge portion;
The first arm and the third arm are in an arrangement relationship that makes an obtuse angle, and each of the other end portions is coupled via a hinge portion, a third connecting portion,
The second arm and the fourth arm are in an arrangement relationship that makes an obtuse angle, and each of the other end portions is coupled via a hinge portion, a fourth connecting portion;
An attachment portion to the apparatus main body disposed at a position including an intersection of a line connecting the first and second connecting portions and a line connecting the third and fourth connecting portions;
A first piezoelectric element attached between the attachment portion to the apparatus main body and the first connection portion, and a second piezoelectric element attached between the attachment portion to the apparatus main body and the second connection portion. A non-reaction type displacement enlarging positioning apparatus comprising: a piezoelectric element.
前記第3の連結部には、ヘッドジンバルアッセンブリが取り付けられ、前記第4の連結部には、カウンターウエイトが取り付けられて使用されることを特徴とする請求項1記載の無反動型変位拡大位置決め装置。 2. The reactionless displacement expansion positioning according to claim 1, wherein a head gimbal assembly is attached to the third connecting portion, and a counterweight is attached to the fourth connecting portion. apparatus. 前記第1〜第4のアームは、長さが同じであることを特徴とする請求項1記載の無反動型変位拡大位置決め装置。 The reactionless displacement magnifying positioning device according to claim 1, wherein the first to fourth arms have the same length. 前記第1と第2の圧電素子は、特性の等しいものが選択されていることを特徴とする請求項1記載の無反動型変位拡大位置決め装置。 2. The reactionless displacement magnifying positioning device according to claim 1, wherein the first and second piezoelectric elements have the same characteristics. 前記第1乃至第4のアーム及び各ヒンジ部は、弾性を有することを特徴とする請求項1記載の無反動型変位拡大位置決め装置。 2. The reactionless displacement magnifying positioning device according to claim 1, wherein the first to fourth arms and the hinge portions have elasticity.
JP2004126880A 2004-04-22 2004-04-22 Non-reaction type displacement expansion positioning device Expired - Fee Related JP4623547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126880A JP4623547B2 (en) 2004-04-22 2004-04-22 Non-reaction type displacement expansion positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126880A JP4623547B2 (en) 2004-04-22 2004-04-22 Non-reaction type displacement expansion positioning device

Publications (2)

Publication Number Publication Date
JP2005312208A true JP2005312208A (en) 2005-11-04
JP4623547B2 JP4623547B2 (en) 2011-02-02

Family

ID=35440339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126880A Expired - Fee Related JP4623547B2 (en) 2004-04-22 2004-04-22 Non-reaction type displacement expansion positioning device

Country Status (1)

Country Link
JP (1) JP4623547B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759075B1 (en) * 2006-04-07 2007-09-19 (주)블루포커스 Apparatus for actuator using piezoelectric material
KR101279482B1 (en) * 2012-04-20 2013-06-27 인하대학교 산학협력단 Stroke amplifier for piezoeletric actuator
JP6082494B1 (en) * 2016-09-26 2017-02-15 株式会社シーアイエス Actuator
JP2018011375A (en) * 2016-07-11 2018-01-18 有限会社メカノトランスフォーマ Piezoelectric actuator
KR20190041948A (en) * 2017-10-13 2019-04-23 마르코 시스템애널라이즈 운트 엔트비크룽 게엠베하 Positioning apparatus
JP2019213401A (en) * 2018-06-07 2019-12-12 パナソニックIpマネジメント株式会社 Vibration type actuator and personal care device
JP2019213411A (en) * 2018-06-07 2019-12-12 パナソニックIpマネジメント株式会社 Vibration type actuator and personal care device
JP2019213412A (en) * 2018-06-07 2019-12-12 パナソニックIpマネジメント株式会社 Vibration type actuator and personal care device
CN114123845A (en) * 2020-08-26 2022-03-01 超聚变数字技术有限公司 Piezoelectric actuator and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177481A (en) * 1987-01-17 1988-07-21 Nec Kansai Ltd Method of driving piezoelectric actuator
JPH02139269A (en) * 1987-12-08 1990-05-29 Max Co Ltd Fine displacement and magnification mechanism and printing head using the same mechanism
JPH0889894A (en) * 1994-09-27 1996-04-09 Fanuc Ltd Grip type linear actuator
JP2002025141A (en) * 2000-07-13 2002-01-25 Sharp Corp Magnetic head supporting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177481A (en) * 1987-01-17 1988-07-21 Nec Kansai Ltd Method of driving piezoelectric actuator
JPH02139269A (en) * 1987-12-08 1990-05-29 Max Co Ltd Fine displacement and magnification mechanism and printing head using the same mechanism
JPH0889894A (en) * 1994-09-27 1996-04-09 Fanuc Ltd Grip type linear actuator
JP2002025141A (en) * 2000-07-13 2002-01-25 Sharp Corp Magnetic head supporting device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759075B1 (en) * 2006-04-07 2007-09-19 (주)블루포커스 Apparatus for actuator using piezoelectric material
KR101279482B1 (en) * 2012-04-20 2013-06-27 인하대학교 산학협력단 Stroke amplifier for piezoeletric actuator
JP2018011375A (en) * 2016-07-11 2018-01-18 有限会社メカノトランスフォーマ Piezoelectric actuator
JP6082494B1 (en) * 2016-09-26 2017-02-15 株式会社シーアイエス Actuator
JP2018057083A (en) * 2016-09-26 2018-04-05 株式会社シーアイエス Actuator
KR20190041948A (en) * 2017-10-13 2019-04-23 마르코 시스템애널라이즈 운트 엔트비크룽 게엠베하 Positioning apparatus
KR102106792B1 (en) * 2017-10-13 2020-05-06 마르코 시스템애널라이즈 운트 엔트비크룽 게엠베하 Positioning apparatus
US10886150B2 (en) 2017-10-13 2021-01-05 Weber Machinenbau GmbH Breidenbach Positioning apparatus
JP2019213401A (en) * 2018-06-07 2019-12-12 パナソニックIpマネジメント株式会社 Vibration type actuator and personal care device
JP2019213411A (en) * 2018-06-07 2019-12-12 パナソニックIpマネジメント株式会社 Vibration type actuator and personal care device
JP2019213412A (en) * 2018-06-07 2019-12-12 パナソニックIpマネジメント株式会社 Vibration type actuator and personal care device
CN114123845A (en) * 2020-08-26 2022-03-01 超聚变数字技术有限公司 Piezoelectric actuator and electronic equipment

Also Published As

Publication number Publication date
JP4623547B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US8345336B2 (en) MEMS scanning micromirror with reduced dynamic deformation
JP6891932B2 (en) Piezo Z-axis gyroscope
US8526089B2 (en) MEMS scanning micromirror
JP6627911B2 (en) Piezoelectric rotating MEMS resonator
JP6696530B2 (en) Coupling suspension in a piezoelectric gyroscope
JP2019023618A (en) Piezoelectric gyroscope having horizontal drive converter
US9528830B2 (en) Angular rate sensor
CN102853825A (en) Angular velocity sensor
JP4789162B2 (en) Actuator using comb teeth
JP4623547B2 (en) Non-reaction type displacement expansion positioning device
JP5761350B2 (en) Vibrator and vibratory gyro
EP1508963A1 (en) Bi-directional micro-actuator having an additional large stage
JP4457010B2 (en) Yaw rate sensor
JP5554895B2 (en) Oscillator structure and oscillator device using the oscillator structure
JP2006201520A (en) Mems mirror scanner
JP3166522B2 (en) Acceleration sensor
RU2296302C1 (en) Micro-mechanical vibration gyroscope
JP2004333350A (en) Scanning mechanism of scanning probe microscope
JPH08182351A (en) Ultrasonic actuator
WO2019017277A1 (en) Vibration type angular velocity sensor
WO2018235719A1 (en) Vibration type angular velocity sensor
US20230408256A1 (en) Mems gyroscope sensing in-plane rotations
JP4912644B2 (en) Drive / guide device
JPH0365075A (en) Ultrasonic motor
JP2019203857A (en) MEMS device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees