JP2005307734A - Joint structure of column and pile - Google Patents

Joint structure of column and pile Download PDF

Info

Publication number
JP2005307734A
JP2005307734A JP2005071772A JP2005071772A JP2005307734A JP 2005307734 A JP2005307734 A JP 2005307734A JP 2005071772 A JP2005071772 A JP 2005071772A JP 2005071772 A JP2005071772 A JP 2005071772A JP 2005307734 A JP2005307734 A JP 2005307734A
Authority
JP
Japan
Prior art keywords
column
pile
joint
foundation beam
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005071772A
Other languages
Japanese (ja)
Inventor
Koji Oki
晃司 沖
Kazuchika Konno
和近 今野
Nobuyuki Nakamura
信行 中村
Kazuyoshi Fujisawa
一善 藤澤
Toshiaki Miyao
俊明 宮尾
Kunisuke Iitani
邦祐 飯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005071772A priority Critical patent/JP2005307734A/en
Publication of JP2005307734A publication Critical patent/JP2005307734A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To use a steel pipe pile having diameter conforming to structure design in one column one pile integrating construction method. <P>SOLUTION: In this joint structure of the column and the pile composed of the column 2 of a structure, the steel pipe pile 1 erected in the ground, a foundation beam 4 supporting the structure, and a just above beam supporting a story just above the foundation beam, the column 2 has a buried column 2a inserted into a pile head 1a of the steel pipe pile 1 and fixed by concrete 3 and a beam joint part in which the foundation beam 4 is joined with the column 2 in the horizontal direction. The maximum outside diameter of cross section of the buried column 2a is set to be smaller than the maximum outside diameter of a crossing face of an upper face of the foundation beam and the column 2. Rigidity of the foundation beam 4 is set to be double rigidity of the just above beam or less (excepting 0). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鉄骨構造物における柱と杭の接合構造に関するものである。   The present invention relates to a joint structure between a pillar and a pile in a steel structure.

鋼管杭基礎を下部構造とする鋼構造の杭頭接合部において、杭頭にこの杭の外径より大径の鋼管を配置し、鋼管内に柱の下端部を挿入し、鋼管内にコンクリートを充填してフーチングを築造することで杭と柱を緊決する工法(以下、これを二重鋼管式柱杭接合工法と呼ぶ)が提案されている(例えば特許文献1参照)。   At the pile head joint of the steel structure with the steel pipe pile foundation as the lower structure, a steel pipe with a diameter larger than the outer diameter of this pile is placed at the pile head, the lower end of the column is inserted into the steel pipe, and the concrete is placed in the steel pipe. There has been proposed a construction method (hereinafter referred to as a double steel pipe-type pillar pile joint construction method) in which a pile and a column are determined by filling and building a footing (refer to, for example, Patent Document 1).

また、杭基礎を下部構造とする鋼構造の杭頭接合部において、杭頭内に柱鉄骨を挿入し、同杭頭内にコンクリートを充填し、緊結する工法(この様に、杭頭をつなぐ地中梁がなく、杭から直接柱が立ち上がっている構造を実現する工法を、特に1柱1杭一体化工法と呼ぶ)が提案されている(例えば特許文献2参照)。   In addition, in the steel structure pile head joint with the pile foundation as the lower structure, a column steel frame is inserted into the pile head, concrete is filled into the pile head, and the pile head is connected (in this way, the pile head is connected) A construction method that realizes a structure in which there is no underground beam and a column rises directly from a pile has been proposed (particularly referred to as a single pillar-one pile construction method) (see, for example, Patent Document 2).

特開2000−355938号公報JP 2000-355938 A 特開平3−51428号公報Japanese Patent Laid-Open No. 3-51428

ところで、二重鋼管式柱杭接合工法は、鋼管補強式のフーチングを介して杭と柱を接合するようになっているため、杭よりも大きな径のフーチング用鋼管を埋設するための掘削手間と、これに伴う建設廃土の量を抑えることができない。   By the way, in the double steel pipe column pile joining method, the pile and the column are joined via a steel pipe reinforced type footing. Therefore, the amount of construction waste soil accompanying this cannot be suppressed.

一方、1柱1杭一体化工法においては、フーチングを省略することが可能となり、二重鋼管式柱杭接合工法のものと比べて、掘削土削減、工期短縮、といったメリットが得られる。その一方で、鋼管杭は、同一軸耐力で場所打コンクリート杭と比較した場合、鉛直方向の支持力が高く、場所打コンクリート杭よりも径が細い傾向にあるため、埋込柱を鋼管杭頭に挿入するだけの十分な余裕代を確保することが困難で、同接合構造を実現するには、二重鋼管式とするか、鋼管杭径を構造設計上の径よりも大きくするか、あるいは埋込柱を細くする必要がある。   On the other hand, in the one-column / one-pile integrated construction method, it is possible to omit footing, and advantages such as excavation soil reduction and construction period shortening can be obtained compared to the double steel pipe-type column pile joining method. On the other hand, when compared with cast-in-place concrete piles with the same axial strength, steel pipe piles have a higher vertical bearing capacity and tend to be thinner than cast-in-place concrete piles. It is difficult to secure a sufficient margin for insertion into the pipe, and in order to realize the joint structure, a double steel pipe type is used, or the steel pipe pile diameter is made larger than the structural design diameter, or It is necessary to make the embedded pillar thinner.

これを図13乃至図16の梁が柱と杭に及ぼすモーメントの説明図に基づき更に詳述する。なお、ここでは話を簡便にするため、地下室は無いものとする。図14のように基礎梁の無い架構の場合は、地表から地中部へ向って、曲げモーメントが大きくなる傾向があり、地中に位置する杭頭接合部に挿入できるよう、埋込柱を細くすることは、曲げモーメント(以下、この曲げモーメントを単に「モーメント」と称す)に対する耐力(以下、このモーメントに対する耐力を単に「耐力」と称す)低下を招き、同部位が構造上の弱点となるため、設計上望ましくない。   This will be described in more detail based on the explanatory view of the moment that the beam shown in FIGS. Here, for the sake of simplicity, it is assumed that there is no basement. In the case of a frame without a foundation beam as shown in FIG. 14, the bending moment tends to increase from the ground surface to the underground part, and the embedded column is made thin so that it can be inserted into the pile head joint located in the ground. Doing this leads to a decrease in the yield strength (hereinafter referred to simply as “strength”) of the bending moment (hereinafter referred to simply as “moment”), and this part becomes a structural weak point. Therefore, it is not desirable in design.

一方、図13のように、構造物の最下階を支持する基礎梁が付いている架構においては、通常の設計慣行によれば、基礎梁は上下部構造を設計上分離して扱えるほど十分に剛な梁とするため、基礎梁の真上の階を支持する梁(以下、この梁を「真上梁」と呼ぶ。図中では「2階梁」となる。)の少なくとも2倍のせいの高さを有する断面として設計している。これを梁の剛性に換算(=3乗倍)すると、基礎梁剛性は、真上梁(2階梁)の少なくとも23倍の剛性となる。この様な構造では、図15のモーメント図に示すように埋込柱モーメントMptは柱脚モーメントM1bよりも大きくなる傾向にあり、埋込柱は最下階(この図では1階)の柱よりも大きな断面で設計することが必要となり、埋込柱を鋼管杭頭に挿入するために断面上必要な余裕代を確保することが一層困難となる。つまり、鋼管杭の直径も構造設計上は、支持荷重により決定される予条件であるが、鋼管杭は既述したように場所打コンクリート杭よりも径が細い傾向にあるため、構造設計どおりの杭径の鋼管杭を使用した場合、埋込柱を鋼管杭頭に挿入するために必要な断面上の余裕代を確保することが困難となる。このため、従来は構造設計上の杭径より大きな杭径を有する鋼管杭を使用し、これによって埋込柱を鋼管杭頭に挿入するための断面上の余裕代を確保するようにしている。 On the other hand, as shown in FIG. 13, in a frame with a foundation beam that supports the lowest floor of the structure, according to normal design practice, the foundation beam is sufficient to handle the upper and lower structures separated in design. A beam that supports the floor directly above the foundation beam (hereinafter referred to as the “direct beam”. In the figure, it is referred to as the “second floor beam”). It is designed as a cross-section with a crest height. This converted to the stiffness of the beam (= 3 th power), the footing beams stiffness, is at least 2 three times the stiffness of the right above the beam (2 Kaihari). In such a structure, as shown in the moment diagram of FIG. 15, the embedded column moment Mpt tends to be larger than the column base moment M1b, and the embedded column is more than the column on the lowest floor (the first floor in this figure). However, it is necessary to design with a large cross section, and it becomes more difficult to secure a margin for the cross section in order to insert the embedded column into the steel pipe pile head. In other words, the diameter of the steel pipe pile is also a precondition determined by the support load in the structural design, but the steel pipe pile tends to have a smaller diameter than the cast-in-place concrete pile as described above. When a steel pipe pile having a pile diameter is used, it becomes difficult to secure a margin on the cross section necessary for inserting the embedded column into the steel pipe pile head. For this reason, conventionally, a steel pipe pile having a larger pile diameter than the structural design pile diameter is used, thereby securing a margin on the cross section for inserting the embedded column into the steel pipe pile head.

しかしながら、「基礎梁を十分剛とする」通常の設計慣行は、上下部分離設計のための必要条件であって、必ずしも構造的要求を満足するための条件ではない。近年は、上下部の一体解析を行い、その応力について設計する方法や、杭が基礎梁に対して作用する効果を、水平バネ、などに置換して杭の影響を考慮する方法など、架構の挙動をより正確に算定できる解析方法も活用されつつある。これによれば、地盤の影響を適切に考慮できるため、上下部分離設計の必要条件である「十分剛な基礎梁」とする必要がなくなる。そして、本発明者等の検討により、上下部分離設計の必要条件であった「十分剛な基礎梁」よりも基礎梁剛性を柔らかくすることで、図16のモーメント図に示すように埋込柱モーメントMptを柱脚モーメントM1bよりも小さくすることができて、埋込柱を1階の柱断面よりも小さくできることが判明した。   However, the usual design practice of “making the foundation beam stiff enough” is a necessary condition for the upper and lower separation design, not necessarily to satisfy the structural requirements. In recent years, such as a method for designing the upper and lower parts of an integrated analysis and designing the stress, and a method for considering the influence of the pile by replacing the effect of the pile acting on the foundation beam with a horizontal spring, etc. Analysis methods that can calculate behavior more accurately are also being used. According to this, since the influence of the ground can be appropriately taken into consideration, it is not necessary to make a “sufficiently rigid foundation beam” which is a necessary condition for the upper and lower part separation design. Then, by examining the present inventors, by making the foundation beam rigidity softer than the “sufficiently rigid foundation beam”, which is a necessary condition for the upper and lower part separation design, as shown in the moment diagram of FIG. It was found that the moment Mpt can be made smaller than the column base moment M1b, and the embedded column can be made smaller than the column section of the first floor.

本発明の技術的課題は、1柱1杭一体化工法において構造設計どおりの杭径の鋼管杭を使用できるようにすることにある。   The technical subject of this invention is making it possible to use the steel pipe pile of the pile diameter as a structural design in the 1 pillar 1 pile integrated construction method.

(1)本発明に係る柱と杭の接合構造は、以下の構成を有するものである。すなわち、構造物の柱と、地中に立設される鋼管杭と、前記構造物を支持する基礎梁と、前記基礎梁の真上の階を支持する真上梁とからなる柱と杭の接合構造であって、柱は、鋼管杭の杭頭内に挿入されてコンクリートで固定される埋込柱と、当該柱に対し水平方向に基礎梁が接合された梁接合部とを有し、さらに埋込柱断面の最大外径寸法が、基礎梁上面と当該柱との交差面の断面の最大外径寸法より小さく設定されてなり、基礎梁は、その剛性が、真上梁の剛性の2倍以下(0は除く)に設定されてなるものである。
本発明で構造物を上下に分離してとらえる際の「上下部分離設計」に含まれる上部構造物とは、基礎梁を境にしてそれ以高の柱や梁等の構造物を指す。対して下部構造物とは、基礎梁を境にしてそれ以深の杭やフーチング等の構造物を指す。基礎梁は、上部構造物および下部構造物の両方に関わっている。さらに、最大外径寸法とは、断面に外接する円の直径のことを指し、柱断面の大小比較の指標となる。
(1) The column-pile joint structure according to the present invention has the following configuration. That is, a pillar and a pile consisting of a pillar of a structure, a steel pipe pile standing in the ground, a foundation beam that supports the structure, and an upper beam that supports a floor directly above the foundation beam It is a joint structure, and the column has an embedded column that is inserted into a pile head of a steel pipe pile and fixed with concrete, and a beam joint in which a foundation beam is joined in a horizontal direction to the column, Furthermore, the maximum outer diameter dimension of the embedded column cross section is set to be smaller than the maximum outer diameter dimension of the cross section of the crossing surface between the upper surface of the foundation beam and the column, and the rigidity of the foundation beam is equal to that of the upper beam. It is set to 2 times or less (excluding 0).
In the present invention, the upper structure included in the “upper and lower part separation design” when the structure is separated into upper and lower parts refers to structures such as columns and beams that are higher than the foundation beam. On the other hand, the substructure refers to structures such as piles and footings deeper than the foundation beam. The foundation beam is involved in both the superstructure and the substructure. Furthermore, the maximum outer diameter dimension refers to the diameter of a circle circumscribing the cross section, and serves as an index for comparing the sizes of the column cross sections.

(2)本発明に係る柱と杭の接合構造は、以下の構成を有するものである。すなわち、構造物の柱と、地中に立設される鋼管杭と、前記構造物を支持する基礎梁と、前記基礎梁の真上の階を支持する真上梁と、少なくとも、前記柱が接合される柱接合部、基礎梁が水平方向に取付けられて接合される梁接合部、及び鋼管杭の杭頭内に挿入されてコンクリートで固定される埋込柱を有する仕口部材とからなる柱と杭の接合構造であって、仕口部材は、埋込柱断面の最大外径寸法が、前記柱接合部の断面の最大外径寸法より小さく設定されてなり、基礎梁と梁接合部は、その剛性が、真上梁の剛性の2倍以下(0は除く)に設定されてなるものである。 (2) The column-pile joint structure according to the present invention has the following configuration. That is, a pillar of a structure, a steel pipe pile standing in the ground, a foundation beam that supports the structure, an upper beam that supports a floor directly above the foundation beam, and at least the pillar It consists of a column joint part to be joined, a beam joint part to which a foundation beam is attached in a horizontal direction and joined, and a joint member having an embedded pillar inserted into a pile head of a steel pipe pile and fixed with concrete. It is a column-pile joint structure, and the joint member is configured such that the maximum outer diameter dimension of the embedded column cross section is set smaller than the maximum outer diameter dimension of the cross section of the column joint portion, and the foundation beam and the beam joint portion. The rigidity is set to be equal to or less than twice the rigidity of the beam directly above (excluding 0).

(3)本発明に係る柱と杭の接合構造は、以下の構成を有するものである。すなわち、構造物の柱と、地中に立設される鋼管杭と、前記構造物を支持する基礎梁と、前記基礎梁の真上の階を支持する真上梁とからなる柱と杭の接合構造であって、柱は、鋼管杭の杭頭内に挿入されてコンクリートで固定される埋込柱と、当該柱に対し水平方向に基礎梁が接合された梁接合部とを有し、さらに埋込柱断面の最大外径寸法が、基礎梁上面と当該柱との交差面の最大外径寸法より小さく設定されてなり、基礎梁は、その剛性が、真上梁の剛性の2倍以下、1倍以上に設定されてなるものである。 (3) The column-pile joint structure according to the present invention has the following configuration. That is, a pillar and a pile consisting of a pillar of a structure, a steel pipe pile standing in the ground, a foundation beam that supports the structure, and an upper beam that supports a floor directly above the foundation beam It is a joint structure, and the column has an embedded column that is inserted into a pile head of a steel pipe pile and fixed with concrete, and a beam joint in which a foundation beam is joined in a horizontal direction to the column, Furthermore, the maximum outer diameter dimension of the embedded column cross section is set smaller than the maximum outer diameter dimension of the crossing surface between the upper surface of the foundation beam and the column, and the rigidity of the foundation beam is twice that of the upper beam. Hereinafter, it is set to 1 or more times.

(4)本発明に係る柱と杭の接合構造は、以下の構成を有するものである。すなわち、構造物の柱と、地中に立設される鋼管杭と、前記構造物を支持する基礎梁と、前記基礎梁の真上の階を支持する真上梁と、少なくとも、前記柱が接合される柱接合部、基礎梁が水平方向に取付けられて接合される梁接合部、及び鋼管杭の杭頭内に挿入されてコンクリートで固定される埋込柱を有する仕口部材とからなる柱と杭の接合構造であって、仕口部材は、埋込柱断面の最大外径寸法が、前記柱接合部の断面の最大外径寸法より小さく設定されてなり、基礎梁と梁接合部は、その剛性が、真上梁の剛性の2倍以下、1倍以上に設定されてなるものである。 (4) The column-pile joint structure according to the present invention has the following configuration. That is, a pillar of a structure, a steel pipe pile standing in the ground, a foundation beam that supports the structure, an upper beam that supports a floor directly above the foundation beam, and at least the pillar It consists of a column joint part to be joined, a beam joint part to which a foundation beam is attached in a horizontal direction and joined, and a joint member having an embedded pillar inserted into a pile head of a steel pipe pile and fixed with concrete. It is a column-pile joint structure, and the joint member is configured such that the maximum outer diameter dimension of the embedded column cross section is set smaller than the maximum outer diameter dimension of the cross section of the column joint portion, and the foundation beam and the beam joint portion. The rigidity is set to 2 times or less and 1 time or more of the rigidity of the beam directly above.

(5)本発明に係る柱と杭の接合構造は、埋込柱の断面を中空円形断面としたものである。 (5) In the column-pile joint structure according to the present invention, the embedded column has a hollow circular cross section.

(6)本発明に係る柱と杭の接合構造は、埋込柱の断面を中実円形断面としたものである。 (6) In the column-pile joint structure according to the present invention, the embedded column has a solid circular cross section.

(7)本発明に係る柱と杭の接合構造は、鋼管杭頭に埋込柱の抜出し拘束リングを設置したものである。 (7) The column / pile joint structure according to the present invention is a steel pipe pile head provided with an embedded column extraction restraint ring.

(8)本発明に係る柱と杭の接合構造は、鋼管杭頭の内面に複数の突起を設けたものである。 (8) The column-pile joint structure according to the present invention is provided with a plurality of protrusions on the inner surface of the steel pipe pile head.

(1)本発明に係る柱と杭の接合構造においては、従来の上下部分離設計の必要条件であった「十分剛な基礎梁」の剛性、つまり真上梁の少なくとも23倍の剛性をもつ基礎梁と比較して、基礎梁剛性を柔らかく(真上梁の剛性の2倍以下(但し0は除く)の剛性に)しているので、図16のモーメント図に示すように埋込柱モーメントMptを柱脚モーメントM1bよりも小さくすることができて、埋込柱を最下階(図では1階)の柱断面よりも小さくすることができる。このため、埋込柱を鋼管杭頭に挿入するための余裕代の確保が容易となり、1柱1杭一体化工法において構造設計どおりの杭径の鋼管杭を使用することができる。 In the joint structure of columns and piles according to (1) the present invention, the stiffness of a requirement of the conventional upper and lower separation design "sufficient rigid footing beams", i.e. at least two 3-fold stiffness directly above the beam Since the foundation beam stiffness is softer than that of the foundation beam (with a stiffness of twice or less (excluding 0) than that of the directly above beam), the embedded column as shown in the moment diagram of FIG. The moment Mpt can be made smaller than the column base moment M1b, and the embedded column can be made smaller than the column section of the lowest floor (the first floor in the figure). For this reason, it is easy to secure a margin for inserting the embedded column into the steel pipe pile head, and it is possible to use a steel pipe pile having a pile diameter according to the structural design in the one-column / one-pile integrated construction method.

(2)本発明に係る柱と杭の接合構造においても、従来の上下部分離設計の必要条件であった「十分剛な基礎梁」の剛性(真上梁の少なくとも23倍の剛性)と比較して、基礎梁と梁接合部の剛性を真上梁の剛性の2倍以下(但し0は除く)の剛性にしているので、図16のモーメント図に示すように埋込柱モーメントMptを柱脚モーメントM1bよりも小さくすることができて、埋込柱を最下階(図では1階)の柱断面よりも小さくすることができる。このため、仕口部材の埋込柱を鋼管杭頭に挿入するための余裕代の確保が容易となり、1柱1杭一体化工法において構造設計どおりの杭径の鋼管杭を使用することができる。 (2) even in the junction structure of the pillars and piles according to the present invention, the stiffness of a requirement of the conventional upper and lower separation design "sufficient rigid foundation beams" (at least 2 three times the stiffness of the right above the beam) In comparison, since the rigidity of the foundation beam and the beam joint is less than twice the rigidity of the upper beam (except 0), the embedded column moment Mpt is set as shown in the moment diagram of FIG. It can be made smaller than the column base moment M1b, and the embedded column can be made smaller than the column cross section of the lowest floor (the first floor in the figure). For this reason, it is easy to secure a margin for inserting the embedded column of the joint member into the steel pipe pile head, and the steel pipe pile having the pile diameter as the structural design can be used in the one-column / one-pile integrated construction method. .

(3)本発明に係る柱と杭の接合構造においては、基礎梁の剛性を、真上梁の剛性の2倍以下、1倍以上に設定しているので、杭の剛性を確保しつつ、図10の杭頭変位の説明図に示すように杭頭変位の増加を抑制することができる。そして、埋込柱を鋼管杭頭に挿入するための余裕代の確保が容易となり、1柱1杭一体化工法において構造設計どおりの杭径の鋼管杭を使用することができる。 (3) In the column-pile joint structure according to the present invention, since the rigidity of the foundation beam is set to be 2 times or less and 1 time or more of the rigidity of the upper beam, while ensuring the rigidity of the pile, As shown in the explanatory diagram of the pile head displacement in FIG. 10, an increase in the pile head displacement can be suppressed. And it becomes easy to secure a margin for inserting the embedded column into the steel pipe pile head, and the steel pipe pile having the pile diameter as the structural design can be used in the one pillar / one pile integrated construction method.

(4)本発明に係る柱と杭の接合構造においても、基礎梁と梁接合部の剛性を、真上梁の剛性の2倍以下、1倍以上に設定しているので、杭の剛性を確保しつつ、図10の杭頭変位の説明図に示すように杭頭変位の増加を抑制することができる。そして、埋込柱を鋼管杭頭に挿入するための余裕代の確保が容易となり、1柱1杭一体化工法において構造設計どおりの杭径の鋼管杭を使用することができる。 (4) Even in the column-pile joint structure according to the present invention, the rigidity of the foundation beam and the beam joint is set to be 2 times or less and 1 time or more of the stiffness of the upper beam. While ensuring, the increase in pile head displacement can be suppressed as shown in the explanatory diagram of pile head displacement in FIG. And it becomes easy to secure a margin for inserting the embedded column into the steel pipe pile head, and the steel pipe pile having the pile diameter as the structural design can be used in the one pillar / one pile integrated construction method.

(5)本発明に係る柱と杭の接合構造においては、埋込柱の断面を中空円形断面としたので、中心から放射方向の距離が全方向均等となって外周への突出がなく、その最大外径寸法が、同一板厚、同一断面1次モーメントの例えば中空正方形断面と比較して小さくなる。このため、杭施工位置がズレた場合の誤差吸収量が中空正方形断面のものより多くなり、柱と杭の接合作業が容易となる。 (5) In the column-pile joint structure according to the present invention, since the section of the embedded column is a hollow circular section, the radial distance from the center is uniform in all directions, and there is no protrusion to the outer periphery. The maximum outer diameter dimension is smaller than, for example, a hollow square section having the same plate thickness and the same moment of inertia of the same section. For this reason, when the pile construction position is shifted, the amount of error absorption is greater than that of the hollow square cross section, and the joining work between the column and the pile becomes easy.

(6)本発明に係る柱と杭の接合構造においては、埋込柱の断面を中実円形断面としたので、埋込柱の耐力確保が容易となり、より小径化が図れる。 (6) In the column / pile joint structure according to the present invention, since the cross section of the embedded column is a solid circular cross section, it is easy to ensure the yield strength of the embedded column, and the diameter can be further reduced.

(7)本発明に係る柱と杭の接合構造においては、鋼管杭頭に埋込柱挿入部の抜出し拘束リングを設置したので、埋め込み柱脚構造において確認されているコンクリートのせん断割裂や引張り破壊を防止することが可能となって、接合部の脆性破壊を防ぐことができる。その結果、鉄骨架構の十分な塑性変形を促すことができる。 (7) In the column-pile joint structure according to the present invention, since the extraction restraint ring of the embedded column insertion portion is installed at the steel pipe pile head, the shear splitting and tensile fracture of the concrete confirmed in the embedded column base structure Can be prevented, and brittle fracture of the joint can be prevented. As a result, sufficient plastic deformation of the steel frame can be promoted.

(8)本発明に係る柱と杭の接合構造においては、鋼管杭頭の内面に複数の突起を設けたので、コンクリートの付着力が高まり、埋め込み柱脚構造において確認されているコンクリートのせん断割裂や引張り破壊を防止することが可能となって、接合部の脆性破壊を防ぐことができる。その結果、鉄骨架構の十分な塑性変形を促すことができる。 (8) In the column-pile joint structure according to the present invention, since a plurality of protrusions are provided on the inner surface of the steel pipe pile head, the adhesive strength of the concrete is increased, and the concrete shear splitting confirmed in the embedded column base structure And tensile fracture can be prevented, and brittle fracture of the joint can be prevented. As a result, sufficient plastic deformation of the steel frame can be promoted.

実施の形態1.
以下、図示実施形態に基づき本発明を説明する。
図1は本発明の実施の形態1に係る柱と杭の接合構造の一例を模式的に示す縦断面図、図2はその他の例を模式的に示す縦断面図、図3は基礎梁の剛性を変化させた場合の、埋込柱モーメントMptと地盤のN値との関係を示すグラフで、縦軸に埋込柱モーメントMptと「十分剛な基礎梁」での埋込柱モーメントMoとの比を、横軸に地盤のN値をとっている。図4は同一板厚、同一断面1次モーメントの中空円形断面および中空正方形断面における最大外径寸法の説明図、図5は中空正方形断面に対する中空円形断面の有利性を鋼管杭との関係で示す説明図である。
Embodiment 1 FIG.
Hereinafter, the present invention will be described based on illustrated embodiments.
1 is a longitudinal sectional view schematically showing an example of a column-pile joint structure according to Embodiment 1 of the present invention, FIG. 2 is a longitudinal sectional view schematically showing another example, and FIG. A graph showing the relationship between the embedded column moment Mpt and the N value of the ground when the stiffness is changed, with the embedded column moment Mpt on the vertical axis and the embedded column moment Mo on the “sufficiently rigid foundation beam” The horizontal axis is the N value of the ground. FIG. 4 is an explanatory diagram of the maximum outer diameter dimension in the hollow circular section and the hollow square section having the same plate thickness and the same section first moment, and FIG. 5 shows the advantage of the hollow circular section with respect to the hollow square section in relation to the steel pipe pile. It is explanatory drawing.

図1及び図2において、1はオーガー等でボーリングされた縦穴内に立設された鋼管杭、2は構造物の鋼製の柱であり、鋼管杭1の杭頭1a内に、柱2の下端にあり、後述の基礎梁の下端が作る面よりも下方にある鋼製の埋込柱2aを挿入し、コンクリート3を充填して緊決される。つまり、柱2は、その埋込柱2aの上方に、後述の基礎梁が水平方向に取付けられて接合される梁接合部を有する。4は図示しない真上梁の剛性の2倍以下(但し0は除く)の剛性を有し杭頭1a直上に配置されたH形鋼からなる鉄骨基礎梁、5は杭頭1aの上端に設置されて埋込柱挿入部の抜出しを防止する抜出し拘束リングであり、コンクリート3のせん断割裂や引張り破壊、及び接合部の脆性破壊を防止する機能を有し、これによって鉄骨架構の十分な塑性変形が促されるようになっている。6は杭頭1a内の埋込柱挿入位置よりも下方に配置されて杭頭を区画する鋼製の閉じ蓋で、同区画内にコンクリート3が充填されるようになっており、圧縮軸力がコンクリート3から閉じ蓋を介して鋼管杭1に伝達されるようになっている。   1 and 2, reference numeral 1 denotes a steel pipe pile standing in a vertical hole bored by an auger or the like, 2 denotes a steel column of a structure, The steel embedded pillar 2a located at the lower end and below the surface formed by the lower end of the below-mentioned foundation beam is inserted, and the concrete 3 is filled to be decided. In other words, the column 2 has a beam joint portion above the embedded column 2a to which a below-described foundation beam is attached and joined in the horizontal direction. 4 is a steel foundation beam made of H-shaped steel, which is less than twice the stiffness of the upper beam (not shown) (excluding 0) and is placed directly above the pile head 1a, and 5 is installed at the upper end of the pile head 1a. This is an extraction restraint ring that prevents the insertion of the embedded column insertion portion, and has the function of preventing the shear splitting and tensile failure of the concrete 3 and the brittle failure of the joint, thereby sufficiently plastic deformation of the steel frame Has been encouraged. Reference numeral 6 denotes a steel closing lid that is arranged below the position where the embedded pillar is inserted in the pile head 1a and divides the pile head. The concrete 3 is filled in the compartment, and the compression axial force Is transmitted from the concrete 3 to the steel pipe pile 1 through a closing lid.

また、鉄骨基礎梁4の下端である下フランジ4aより下方の埋込柱2aの断面形状は中空円形からなり(図4)、かつその直径(円の場合は、最大外径寸法は直径と等しくなる。)D1はその鉄骨基礎梁4の上端である上フランジ4bより上方の柱2の直径D3よりも小さく設定されており、これによって埋込柱2aを杭頭1aに挿入するための断面での余裕代の確保が容易となっている。   Moreover, the cross-sectional shape of the embedded column 2a below the lower flange 4a, which is the lower end of the steel foundation beam 4, is a hollow circle (FIG. 4), and its diameter (in the case of a circle, the maximum outer diameter is equal to the diameter). D1 is set to be smaller than the diameter D3 of the column 2 above the upper flange 4b, which is the upper end of the steel foundation beam 4, and thereby has a cross section for inserting the embedded column 2a into the pile head 1a. It is easy to secure an allowance.

また、ここでは鉄骨基礎梁4の下フランジ4aまでの柱2の断面は同一の大きさに設定され、その下方に段筒状に埋込柱2aを形成している。なお、柱2から埋込柱2aへの移行部である段筒状の段部で応力集中が懸念される場合には、図2のように柱2から埋込柱2aへの移行部をテーパ(あるいは傾斜面)2bにすることにより、応力集中の緩和が可能となり、より好ましい形態となる。   Further, here, the cross section of the column 2 up to the lower flange 4a of the steel foundation beam 4 is set to the same size, and the embedded column 2a is formed in a stepped cylindrical shape below the cross section. When there is a concern about stress concentration at the stepped cylindrical step portion that is a transition portion from the column 2 to the embedded column 2a, the transition portion from the column 2 to the embedded column 2a is tapered as shown in FIG. By using the (or inclined surface) 2b, the stress concentration can be relaxed, which is a more preferable form.

鉄骨基礎梁剛性低減による埋込柱モーメント低減効果を把握するため、鉄骨基礎梁剛性をパラメータとして、鉄骨基礎梁の剛性を真上梁と同等とした場合(−●−で示す線)、その2倍とした場合(−□−で示す線)、その3倍とした場合(−*−で示す線)、あるいはその0.5倍とした場合(−△−で示す線)について、従来方法(即ち、「十分剛な基礎梁」として設計)の場合の埋込柱モーメントMoと、基礎梁の剛性を変えた場合の埋込柱モーメントMptの応力比率(Mpt/Mo)を、現実的に使用される3種類の条件下で調査した。結果は図3のとおりであった。これによれば、表層地盤N値を5とした湯合、2倍剛性の梁は応力比率平均0.85(図16参照)、1倍剛性の梁は応力比率平均0.77である。また、3倍剛性の基礎梁では応力比率平均0.90であり、2倍剛性の梁と3倍剛性の梁とでは、その埋込柱モーメントは、ほとんど相対的に差がないことが明らかになった。となると、梁剛性を極力小さくするという設計思想からは、2倍剛性の梁とすれば良く、それ以上剛な梁としても、モーメントの低減効果は低いということになる。ここで、鉄骨基礎梁4が柔らかい程、埋込柱モーメントは小さくなるが、鋼管杭1の鉛直方向の負担は大きくなる傾向が現れる。これは鉄骨基礎梁4が硬いと曲げ(モーメント)に対しては負荷が埋込柱に流れ、鉄骨基礎梁4が柔らかい場合は曲げ(モーメント)に対して負荷が縦(杭の方)に流れることを意味している。
さらに、真上梁の2倍の剛性を有する鉄骨基礎梁4と0.5倍の剛性を有する鉄骨基礎梁4における、埋込柱の断面と最下階の柱断面との大きさを比較した。図17は最下階の柱の柱脚モーメントM1bと埋込柱モーメントMptとの応力比率(Mpt/M1b)を、現実的に使用される3種類の条件下で調査した結果を示すグラフである。
この結果によれば、地盤N値がおよそ7以上でMpt/M1bが1.0以下となっている。即ち、地盤N値がおよそ7以上で、埋込柱の断面は最下階の柱断面より小さくすることが可能となる。一般的に、表層地盤のN値は軟弱地盤を除き平均7以上確保される。よってこの結果より、通常地盤であれば、本発明のごとく、鉄骨基礎梁4の剛性を真上梁の剛性の2倍以下の剛性に制限することで、最下階の柱に対する埋込柱の小径化が達成でき、埋込柱を鋼管杭頭に挿入するための余裕代の確保が容易となる。
In order to grasp the effect of reducing the embedded column moment by reducing the steel foundation beam stiffness, the steel foundation beam stiffness is set as the parameter and the steel foundation beam stiffness is equivalent to that of the directly above beam (line indicated by-●-), part 2 When it is doubled (line indicated by-□-), when it is tripled (line indicated by-*-), or when it is 0.5 times (line indicated by -Δ-), the conventional method (ie, The stress ratio (Mpt / Mo) of the embedded column moment Mo in the case of “designed as“ sufficiently rigid foundation beam ”and the embedded column moment Mpt when the stiffness of the foundation beam is changed is actually used. The investigation was conducted under three kinds of conditions. The result was as shown in FIG. According to this, the surface layer ground N value is 5 and the double rigidity beam has an average stress ratio of 0.85 (see FIG. 16), and the single rigidity beam has an average stress ratio of 0.77. In addition, the stress ratio average 0.90 for the 3x rigid foundation beam, and the embedded column moment between the 2x rigid beam and the 3x rigid beam is almost the same. . Then, from the design philosophy of making the beam rigidity as small as possible, it is sufficient to make the beam twice as rigid, and even if the beam is more rigid, the effect of reducing the moment is low. Here, the softer the steel foundation beam 4 is, the smaller the embedded column moment is, but the vertical load of the steel pipe pile 1 tends to increase. If the steel foundation beam 4 is hard, the load flows to the embedded column for bending (moment), and if the steel foundation beam 4 is soft, the load flows vertically (to the pile) against bending (moment). It means that.
Furthermore, the size of the cross section of the embedded column and the cross section of the bottom floor was compared in the steel foundation beam 4 having twice the rigidity of the upper beam and the steel foundation beam 4 having 0.5 times the rigidity. FIG. 17 is a graph showing the results of investigating the stress ratio (Mpt / M1b) between the column base moment M1b and the embedded column moment Mpt of the column on the lowest floor under three kinds of conditions that are actually used. .
According to this result, the ground N value is about 7 or more and Mpt / M1b is 1.0 or less. That is, the ground N value is about 7 or more, and the section of the embedded column can be made smaller than the column section of the lowest floor. In general, the average N value of the surface ground is secured 7 or more except for soft ground. Therefore, from this result, in the case of normal ground, as in the present invention, the rigidity of the steel foundation beam 4 is limited to a rigidity less than twice the rigidity of the upper beam, so that The diameter can be reduced, and it is easy to secure a margin for inserting the embedded column into the steel pipe pile head.

したがって、以上のような鉄骨基礎梁剛性と埋込柱モーメントの関係を活用し、鉄骨基礎梁剛性を真上梁の剛性の2倍以下(0は除く)の剛性として制限すれば、埋込柱2aの相対的なモーメントの低減が可能で、これにより埋込柱2aの小径化を達成することができる。そして、埋込柱を鋼管杭頭に挿入するための余裕代の確保が容易となり、1柱1杭一体化工法において構造設計どおりの杭径の鋼管杭を使用することができる。   Therefore, if the relationship between the steel foundation beam stiffness and the embedded column moment as described above is utilized, and the steel foundation beam stiffness is limited to a stiffness that is twice or less (excluding 0) the stiffness of the upper beam, The relative moment of 2a can be reduced, and thereby the diameter of the embedded pillar 2a can be reduced. And it becomes easy to secure a margin for inserting the embedded column into the steel pipe pile head, and the steel pipe pile having the pile diameter as the structural design can be used in the one pillar / one pile integrated construction method.

埋込柱2aは、前述した中空円形断面のものに限らず、中空正方形断面のもの(図4)の使用も可能であるが、中空円形断面とすることが好ましい。その理由を以下に述べる。
すなわち、中空円形断面は、同一板厚、同一断面1次モーメントの中空正方形断面と比較して、円心から外周までの距離が全方向均等で、突出がないため、その最大外径寸法は直径D1となる。一方、中空正方形断面の場合、その最大外径寸法は対角距離D2となる。ここで、各断面の断面1次モーメント1Zx,yと2Zx,yは、最大外形寸法D1,D2および中空の内径と外径の比率α(図4に示すように板厚tではない)より、後述の式にて求められる。これらより、中空円形断面と中空正方形断面が同一断面1次モーメントだった場合、D1/D2について解くと、
D1/D2=0.807
となる。
ここで、
円形断面1次モーメント1Zx,yfは1Zx,y=(π/64)(1−α)(D1)4
正方形断面1次モーメント2Zx,yは2Zx,y={(1−α)/48}(D2)4
である。
すなわち、中空円形断面であれば同一板厚、同一断面1次モーメントの中空正方形断面よりも最大外径寸法が見かけ20%程度小さくなる。
ここで、鉄骨断面の耐力は、上記断面1次モーメントに材料強度を乗じた値であるため、断面1次モーメントを同一とすることは耐力を同一とすることと同じ意味を持つ。
The embedded pillar 2a is not limited to the hollow circular cross section described above, but may have a hollow square cross section (FIG. 4), but preferably has a hollow circular cross section. The reason is described below.
That is, the hollow circular cross section has the same thickness and the same moment of inertia, and the distance from the center to the outer periphery is uniform in all directions and has no protrusion. It becomes. On the other hand, in the case of a hollow square cross section, the maximum outer diameter dimension is a diagonal distance D2. Here, the cross-sectional primary moments 1 Zx, y and 2 Zx, y of each cross-section are the maximum outer dimensions D1, D2 and the hollow inner / outer diameter ratio α (not the plate thickness t as shown in FIG. 4). Therefore, it is calculated | required by the formula mentioned later. From these, when the hollow circular cross section and the hollow square cross section have the same cross-sectional first moment, when solving for D1 / D2,
D1 / D2 = 0.807
It becomes.
here,
Circular section primary moment 1 Zx, yf is 1 Zx, y = (π / 64) (1-α) (D1) 4
Square section primary moment 2 Zx, y is 2 Zx, y = {(1-α) / 48} (D2) 4
It is.
That is, the maximum outer diameter is apparently about 20% smaller than that of a hollow square section having the same plate thickness and the same moment of inertia in a hollow circular section.
Here, since the proof stress of the steel cross section is a value obtained by multiplying the cross-sectional primary moment by the material strength, having the same cross-sectional primary moment has the same meaning as making the proof strength the same.

この中空正方形断面に対する中空円形断面の有利性を活用すれば、図5のように鋼管杭施工位置がズレた場合であっても、中空円形断面であれば誤差吸収量が多くなる。つまり、耐力を落とすことなく、埋込柱2aを見かけ上、小径化することができる。このため、柱2と鋼管杭1の接合作業が容易となる。なお、ここでは埋込柱2aとして中空円形断面のものを用いる場合の有利性について説明したが、埋込柱2aとして耐力確保が容易な中実円形断面のものを使用すれば、より小径化が図れる。すなわち、使用する埋込柱の鋼管断面形状に関わらず、埋込柱が中空の場合、内にコンクリートやモルタル等を充填して中実にすることは、好ましい。   If the advantage of the hollow circular cross section with respect to this hollow square cross section is utilized, even if the steel pipe pile construction position is shifted as shown in FIG. That is, the embedded pillar 2a can be apparently reduced in diameter without reducing the proof stress. For this reason, the joining operation | work of the pillar 2 and the steel pipe pile 1 becomes easy. Here, the advantage of using a hollow circular cross section as the embedded column 2a has been described. However, if the embedded column 2a has a solid circular cross section that can easily ensure the yield strength, the diameter can be further reduced. I can plan. In other words, regardless of the steel pipe cross-sectional shape of the embedded column used, when the embedded column is hollow, it is preferable to fill it with concrete, mortar, or the like to make it solid.

なお、ここでは柱2と埋込柱2aを鋼材から構成したものを例に挙げて説明したが、設計上の要件を満たすのであれば他の材料を用いてもよいことは言うまでもない。このことは後述する他の実施の形態でも同様である。   In this example, the column 2 and the embedded column 2a are made of steel. However, it is needless to say that other materials may be used as long as the design requirements are satisfied. The same applies to other embodiments described later.

実施の形態2.
図6は本発明の実施の形態2に係る柱と杭の接合構造の一例を模式的に示す縦断面図、図7はその他の例を模式的に示す縦断面図であり、各図中、前述の実施の形態1の図1及び図2に相当する部分には同一符号を付してある。
Embodiment 2. FIG.
FIG. 6 is a longitudinal sectional view schematically showing an example of a column-pile joint structure according to Embodiment 2 of the present invention, and FIG. 7 is a longitudinal sectional view schematically showing another example. Portions corresponding to those in FIG. 1 and FIG. 2 of the first embodiment are given the same reference numerals.

この実施の形態2の柱と杭の接合構造は、構造物の鋼製の柱2と地中に立設される鋼管杭1と構造物の最下階を支持する鉄骨基礎梁4とを仕口部材10を介して接合するようにした点が前述の実施の形態1のものと異なっている。すなわち、鋼製の仕口部材10は、柱2が接合される柱接合部2Aと、鉄骨基礎梁4が水平方向に取付けられて接合される梁接合部4Aと、鋼管杭1の杭頭1a内に挿入されてコンクリートで固定される埋込柱2aとを有し、埋込柱2aの断面の最大外径寸法が、柱接合部2Aの断面の最大外径寸法より小さく設定されている。また、鉄骨基礎梁4は、前述の実施の形態1のものと同様にその剛性が真上梁の剛性の2倍以下(0は除く)に設定されている。なお、柱2と柱接合部2Aは溶接により、また鉄骨基礎梁4と梁接合部4Aはボルトあるいは溶接にて、それぞれ接合される。それ以外の、閉じ蓋6、柱2から埋込柱2aへの移行部を段筒状の段部やテーパ(あるいは傾斜面)2bに形成する構成は、前述の実施の形態1の図1及び図2のものと同様である。   The column / pile joint structure of the second embodiment comprises a steel column 2 of a structure, a steel pipe pile 1 standing in the ground, and a steel foundation beam 4 that supports the lowest floor of the structure. The point which joined via the mouth member 10 differs from the thing of above-mentioned Embodiment 1. FIG. That is, the steel joint member 10 includes a column joint portion 2A to which the column 2 is joined, a beam joint portion 4A to which the steel foundation beam 4 is attached and joined in the horizontal direction, and a pile head 1a of the steel pipe pile 1. The embedded column 2a is inserted into and fixed with concrete, and the maximum outer diameter of the cross section of the embedded column 2a is set smaller than the maximum outer diameter of the cross section of the column joint 2A. Further, the steel foundation beam 4 is set to have a rigidity equal to or less than twice the rigidity of the upper beam (excluding 0), as in the first embodiment. The column 2 and the column joint 2A are joined by welding, and the steel foundation beam 4 and the beam joint 4A are joined by bolts or welding, respectively. The other configuration in which the closed lid 6 and the transition portion from the column 2 to the embedded column 2a are formed in a stepped cylindrical step or a taper (or inclined surface) 2b is the same as that shown in FIG. It is the same as that of FIG.

すなわち、ここでも鉄骨基礎梁4と梁接合部4Aは、その剛性が真上梁の剛性の2倍以下(0は除く)の剛性に制限され、これによって埋込柱2aの相対的なモーメントMptが低減され、埋込柱2aが小径化されている。   That is, the rigidity of the steel foundation beam 4 and the beam joint 4A is also limited to a rigidity that is not more than twice the rigidity of the upper beam (excluding 0), thereby the relative moment Mpt of the embedded column 2a. Is reduced, and the diameter of the embedded pillar 2a is reduced.

したがって、この実施の形態2においても、前述の実施の形態1と同様に埋込柱2aを鋼管杭頭1aに挿入するための余裕代の確保が容易となり、1柱1杭一体化工法において構造設計どおりの杭径の鋼管杭を使用することができる。   Therefore, also in the second embodiment, as in the first embodiment, it is easy to secure a margin for inserting the embedded column 2a into the steel pipe pile head 1a. Steel pipe piles with a pile diameter as designed can be used.

実施の形態3.
図8乃至図10はいずれも本発明の実施の形態3に係る柱と杭の接合構造を説明するための説明図で、図8は柔らかすぎる基礎梁が杭に及ぼすモーメントと塑性ヒンジ(符号J)の説明図、図9は基礎梁を小断面とした場合の杭頭変位の説明図、図10は基礎梁を真上梁(2階梁)以上の断面とした場合の杭頭変位の説明図である。
Embodiment 3 FIG.
8 to 10 are explanatory diagrams for explaining the column-pile joint structure according to Embodiment 3 of the present invention. FIG. 8 is a diagram illustrating the moment and plastic hinge (reference symbol J 9 is an explanatory diagram of the pile head displacement when the foundation beam is a small cross section, and FIG. 10 is an explanation of the pile head displacement when the foundation beam is a cross section of the upper beam (second floor beam) or more. FIG.

前述の実施の形態1及び実施の形態2では、鉄骨基礎梁4の剛性、又は鉄骨基礎梁4と梁接合部4Aの剛性を、真上梁の剛性の2倍以下の剛性に制限することで、埋込柱2aの相対的なモーメントMptの低減化を図り、埋込柱2aを小径化するようにしている。その意味で、鉄骨基礎梁4の剛性、又は鉄骨基礎梁4と梁接合部4Aの剛性の上限値を規定することに意義がある。一方、鉄骨基礎梁を真上梁(2階梁)の1倍未満の剛性、すなわち2階梁よりも小さい断面として設計した場合、図8のように断面性能の小さい鉄骨基礎梁とその杭頭接合部は真上梁(2階梁)よりも先に降伏して塑性ヒンジJとなり、その結果、杭地中部のモーメントの増加を招き、図9のように杭頭変位が増加し、最下階(図の場合1階)部分の層間変形増大を招いてしまうことが考えられる。この杭の剛性不足の問題は、杭の断面性能を増大させることでも解決できるが、この場合には、材料コストの増加を招くことになり、好ましくない。   In the first embodiment and the second embodiment described above, the rigidity of the steel foundation beam 4 or the rigidity of the steel foundation beam 4 and the beam joint 4A is limited to a rigidity equal to or less than twice the rigidity of the upper beam. The relative moment Mpt of the embedded column 2a is reduced to reduce the diameter of the embedded column 2a. In that sense, it is meaningful to define the upper limit value of the rigidity of the steel foundation beam 4 or the rigidity of the steel foundation beam 4 and the beam joint 4A. On the other hand, when the steel foundation beam is designed to have a rigidity that is less than 1 times that of the directly above beam (second floor beam), that is, a smaller cross section than the second floor beam, the steel foundation beam and its pile head with low section performance as shown in FIG. The joint yields before the top beam (2nd floor beam) and becomes a plastic hinge J. As a result, the moment in the middle of the pile is increased, and the pile head displacement increases as shown in FIG. It is conceivable that the interlayer deformation of the floor (the first floor in the figure) increases. The problem of insufficient rigidity of the pile can be solved by increasing the cross-sectional performance of the pile, but in this case, the material cost is increased, which is not preferable.

したがって、本実施の形態3の柱と杭の接合構造では、前述の実施の形態1で説明した鉄骨基礎梁4の剛性の下限値、又は前述の実施の形態2で説明した鉄骨基礎梁4と梁接合部4Aの剛性の下限値を規定し、これらの剛性を、真上梁(2階梁)の剛性の2倍以下、1倍以上とする。これにより、杭の剛性を確保しつつ、図10のように杭頭変位の増加を抑制することができる。そして、前述の実施の形態1及び実施の形態2と同様に埋込柱2aの小径化が図れ、埋込柱2aを鋼管杭頭1aに挿入するための余裕代の確保が容易となり、1柱1杭一体化工法において構造設計どおりの杭径の鋼管杭を使用することができる。   Therefore, in the column-pile joint structure of the third embodiment, the lower limit value of the rigidity of the steel foundation beam 4 described in the first embodiment or the steel foundation beam 4 described in the second embodiment. The lower limit value of the rigidity of the beam joint 4A is defined, and the rigidity is set to be 2 times or less and 1 time or more of the rigidity of the directly above beam (second-floor beam). Thereby, the increase of pile head displacement can be suppressed like FIG. 10, ensuring the rigidity of a pile. As in the first and second embodiments described above, the diameter of the embedded column 2a can be reduced, and it is easy to secure a margin for inserting the embedded column 2a into the steel pipe pile head 1a. Steel pipe piles with the same pile diameter as the structural design can be used in the 1 pile integrated construction method.

実施の形態4.
図11は本発明の実施の形態4に係る柱と杭の接合構造の一例を模式的に示す縦断面図、図12はその他の例を模式的に示す縦断面図であり、各図中、前述の実施の形態1の図1及び図2、及び実施の形態2の図6及び図7に相当する部分には同一符号を付してある。
Embodiment 4 FIG.
FIG. 11 is a longitudinal sectional view schematically showing an example of a column-pile joint structure according to Embodiment 4 of the present invention, and FIG. 12 is a longitudinal sectional view schematically showing another example. Parts corresponding to those in FIGS. 1 and 2 of the first embodiment and FIGS. 6 and 7 of the second embodiment are denoted by the same reference numerals.

この実施の形態4の柱と杭の接合構造は、前述の実施の形態1及び実施の形態2の拘束リング5に代えて、鋼管杭頭の内面に、同心円状に複数の突起7を設けたものであり、それ以外の、柱2、埋込柱2a、鉄骨基礎梁4、閉じ蓋6、柱2から埋込柱2aへの移行部を段筒状の段部やテーパ(あるいは傾斜面)2bに形成する構成は、前述の実施の形態1の図1、図2、及び実施の形態2の図6、図7のものと同様である。   In this fourth embodiment, the pillar-to-pile joint structure is provided with a plurality of concentric protrusions 7 concentrically on the inner surface of the steel pipe pile head instead of the restraining ring 5 of the first and second embodiments. Other than that, the column 2, the embedded column 2 a, the steel foundation beam 4, the closing lid 6, and the transition part from the column 2 to the embedded column 2 a are stepped cylindrical or tapered (or inclined surface). The structure formed in 2b is the same as that of FIGS. 1 and 2 of the first embodiment and FIGS. 6 and 7 of the second embodiment.

すなわち、鉄骨基礎梁4は、その剛性が真上梁の剛性の2倍以下(0は除く)、好ましくは1〜2倍の剛性に制限されている。これにより、埋込柱2aの相対的なモーメントMptが低減され、埋込柱2aが小径化されている。   That is, the rigidity of the steel foundation beam 4 is limited to 2 times or less (excluding 0), preferably 1 to 2 times that of the directly above beam. Thereby, the relative moment Mpt of the embedded pillar 2a is reduced, and the diameter of the embedded pillar 2a is reduced.

したがって、この実施の形態4おいても、前述の実施の形態1及び実施の形態2と同様に埋込柱を鋼管杭頭に挿入するための余裕代の確保が容易となり、1柱1杭一体化工法において構造設計どおりの杭径の鋼管杭を使用することができる。   Therefore, also in this fourth embodiment, as in the first and second embodiments described above, it is easy to secure a margin for inserting the embedded column into the steel pipe pile head, and one pillar and one pile are integrated. In the chemical method, steel pipe piles with the same pile diameter as the structural design can be used.

また、鋼管杭頭の内面に設けた複数の突起7により、コンクリート3の付着力が高まり、コンクリート3のせん断割裂や引張り破壊を防止することが可能となって、接合部の脆性破壊を防ぐことができる。その結果、鉄骨架構の十分な塑性変形を促すことができる。
さらに、突起7を埋込柱より下方にも設けることで、埋込柱に作用する鉛直荷重を、鋼管とコンクリートの付着力によって杭へと伝達することが可能となる。なお、突起の数は任意としている。
閉じ蓋6は、コンクリート3を、充填時に杭頭に閉じ込めておく為のものである。
In addition, the plurality of protrusions 7 provided on the inner surface of the steel pipe pile head increase the adhesion force of the concrete 3 and can prevent the shear splitting and tensile fracture of the concrete 3 and prevent brittle fracture of the joint. Can do. As a result, sufficient plastic deformation of the steel frame can be promoted.
Furthermore, by providing the protrusions 7 below the embedded columns, it is possible to transmit the vertical load acting on the embedded columns to the pile by the adhesion between the steel pipe and the concrete. The number of protrusions is arbitrary.
The closing lid 6 is for keeping the concrete 3 in the pile head when filling.

本発明の実施の形態1に係る柱と杭の接合構造の一例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically an example of the joining structure of the pillar and pile concerning Embodiment 1 of this invention. 実施の形態1に係る柱と杭の接合構造の他の例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the other example of the joining structure of the pillar which concerns on Embodiment 1, and a pile. 実施の形態1に係る柱と杭の接合構造の基礎梁の剛性を変化させた場合の、埋込柱モーメントと地盤のN値との関係を示すグラフである。It is a graph which shows the relationship between the embedding column moment and the N value of the ground at the time of changing the rigidity of the foundation beam of the column-pile joint structure concerning Embodiment 1. FIG. 同一板厚、同一断面係数の中空円形断面と中空正方形断面における最大外径寸法の説明図である。It is explanatory drawing of the largest outer diameter dimension in the hollow circular cross section and hollow square cross section of the same board thickness and the same section modulus. 中空正方形断面に対する中空円形断面の有利性を鋼管杭との関係で示す説明図である。It is explanatory drawing which shows the advantage of a hollow circular cross section with respect to a hollow square cross section in relation to a steel pipe pile. 本発明の実施の形態2に係る柱と杭の接合構造の一例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically an example of the junction structure of the pillar and pile concerning Embodiment 2 of this invention. 実施の形態2に係る柱と杭の接合構造の他の例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the other example of the junction structure of the pillar which concerns on Embodiment 2, and a pile. 本発明の実施の形態3に係る柱と杭の接合構造の説明図で、柔らかすぎる基礎梁が杭に及ぼすモーメント図である。It is explanatory drawing of the junction structure of the pillar which concerns on Embodiment 3 of this invention, and a pile, and is a moment figure which a foundation beam too soft exerts on a pile. 実施の形態3に係る柱と杭の接合構造の説明図で、基礎梁を小断面とした場合の杭頭変位図である。It is explanatory drawing of the junction structure of the pillar which concerns on Embodiment 3, and a pile head displacement at the time of making a foundation beam into a small cross section. 実施の形態3に係る柱と杭の接合構造の説明図で、基礎梁を真上梁(2階梁)以上の断面とした場合の杭頭変位図である。It is explanatory drawing of the junction structure of the pillar which concerns on Embodiment 3, and is a pile head displacement figure at the time of making a foundation beam into a cross section more than a direct upper beam (2nd floor beam). 本発明の実施の形態4に係る柱と杭の接合構造の一例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically an example of the joining structure of the pillar and pile concerning Embodiment 4 of this invention. 実施の形態4に係る柱と杭の接合構造の他の例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the other example of the junction structure of the pillar which concerns on Embodiment 4, and a pile. 梁が柱と杭に及ぼすモーメントの説明図である。It is explanatory drawing of the moment which a beam exerts on a pillar and a pile. 梁が柱と杭に及ぼすモーメントの説明図である。It is explanatory drawing of the moment which a beam exerts on a pillar and a pile. 十分剛な基礎梁が柱と杭に及ぼすモーメントの説明図である。It is explanatory drawing of the moment which a sufficiently rigid foundation beam exerts on a column and a pile. 柔らかい剛性の基礎梁が柱と杭に及ぼすモーメントの説明図である。It is explanatory drawing of the moment which a soft rigid foundation beam exerts on a column and a pile. 最下階の柱の柱脚モーメントと埋込柱モーメントとの応力比率と、地盤のN値との関係を示すグラフである。It is a graph which shows the relationship between the stress ratio of the column base moment and the embedded column moment of the column of the lowest floor, and the N value of the ground.

符号の説明Explanation of symbols

1 鋼管杭
1a 杭頭
2 柱
2a 埋込柱
2A 柱接合部
3 コンクリート
4 鉄骨基礎梁
4a 下フランジ
4b 上1フランジ
4A 梁接合部
5 拘束リング
7 突起
10 仕口部材
DESCRIPTION OF SYMBOLS 1 Steel pipe pile 1a Pile head 2 Column 2a Embedded column 2A Column joint 3 Concrete 4 Steel foundation beam 4a Lower flange 4b Upper 1 flange 4A Beam joint 5 Restraint ring 7 Protrusion 10 Joint member

Claims (8)

構造物の柱と、
地中に立設される鋼管杭と、
前記構造物を支持する基礎梁と、
当該基礎梁の真上の階を支持する真上梁とからなる柱と杭の接合構造であって、
前記柱は、
前記鋼管杭の杭頭内に挿入されてコンクリートで固定される埋込柱と、
当該柱に対し水平方向に前記基礎梁が接合された梁接合部とを有し、
さらに、前記埋込柱断面の最大外径寸法が、前記基礎梁上面と当該柱との交差面の最大外径寸法より小さく設定されてなり、
前記基礎梁は、
その剛性が、前記真上梁の剛性の2倍以下(0は除く)に設定されてなることを特徴とする柱と杭の接合構造。
The pillars of the structure,
Steel pipe piles standing in the ground,
A foundation beam supporting the structure;
It is a joint structure between a pillar and a pile consisting of an upper beam that supports the floor directly above the foundation beam,
The pillar is
Embedded pillars inserted into the pile head of the steel pipe pile and fixed with concrete;
A beam joint in which the foundation beam is joined in a horizontal direction to the column;
Furthermore, the maximum outer diameter dimension of the embedded column cross section is set to be smaller than the maximum outer diameter dimension of the intersection surface between the upper surface of the foundation beam and the column,
The foundation beam is
A column-pile joint structure characterized in that its rigidity is set to be twice or less (excluding 0) that of the beam directly above.
構造物の柱と、
地中に立設される鋼管杭と、
前記構造物を支持する基礎梁と、
当該基礎梁の真上の階を支持する真上梁と、
少なくとも、前記柱が接合される柱接合部、前記基礎梁が水平方向に取付けられて接合される梁接合部、及び前記鋼管杭の杭頭内に挿入されてコンクリートで固定される埋込柱を有する仕口部材とからなる柱と杭の接合構造であって、
前記仕口部材は、
前記埋込柱断面の最大外径寸法が、前記柱接合部の断面の最大外径寸法より小さく設定されてなり、
前記基礎梁と前記梁接合部は、
その剛性が、前記真上梁の剛性の2倍以下(0は除く)に設定されてなることを特徴とする柱と杭の接合構造。
The pillars of the structure,
Steel pipe piles standing in the ground,
A foundation beam supporting the structure;
An upper beam supporting the floor directly above the foundation beam;
At least a column joint part to which the pillar is joined, a beam joint part to which the foundation beam is attached and joined in a horizontal direction, and an embedded pillar that is inserted into a pile head of the steel pipe pile and fixed with concrete. It is a joining structure of a pillar and a pile made of a joint member having,
The joint member is
The maximum outer diameter dimension of the embedded column cross section is set smaller than the maximum outer diameter dimension of the cross section of the column joint,
The foundation beam and the beam joint are:
A column-pile joint structure characterized in that its rigidity is set to be twice or less (excluding 0) that of the beam directly above.
構造物の柱と、
地中に立設される鋼管杭と、
前記構造物を支持する基礎梁と、
当該基礎梁の真上の階を支持する真上梁とからなる柱と杭の接合構造であって、
前記柱は、
前記鋼管杭の杭頭内に挿入されてコンクリートで固定される埋込柱と、
当該柱に対し水平方向に前記基礎梁が接合された梁接合部とを有し、
さらに、前記埋込柱断面の最大外径寸法が、前記基礎梁上面と当該柱との交差面の最大外径寸法より小さく設定されてなり、
前記基礎梁は、
その剛性が、前記真上梁の剛性の2倍以下、1倍以上に設定されてなることを特徴とする柱と杭の接合構造。
The pillars of the structure,
Steel pipe piles standing in the ground,
A foundation beam supporting the structure;
It is a joint structure between a pillar and a pile consisting of an upper beam that supports the floor directly above the foundation beam,
The pillar is
Embedded pillars inserted into the pile head of the steel pipe pile and fixed with concrete;
A beam joint in which the foundation beam is joined in a horizontal direction to the column;
Furthermore, the maximum outer diameter dimension of the embedded column cross section is set to be smaller than the maximum outer diameter dimension of the intersection surface between the upper surface of the foundation beam and the column,
The foundation beam is
The column-pile joint structure is characterized in that its rigidity is set to be 2 times or less and 1 time or more of the rigidity of the overhead beam.
構造物の柱と、
地中に立設される鋼管杭と、
前記構造物を支持する基礎梁と、
当該基礎梁の真上の階を支持する真上梁と、
少なくとも、前記柱が接合される柱接合部、前記基礎梁が水平方向に取付けられて接合される梁接合部、及び前記鋼管杭の杭頭内に挿入されてコンクリートで固定される埋込柱を有する仕口部材とからなる柱と杭の接合構造であって、
前記仕口部材は、
前記埋込柱断面の最大外径寸法が、前記柱接合部の断面の最大外径寸法より小さく設定されてなり、
前記基礎梁と前記梁接合部は、
その剛性が、前記真上梁の剛性の2倍以下、1倍以上に設定されてなることを特徴とする柱と杭の接合構造。
The pillars of the structure,
Steel pipe piles standing in the ground,
A foundation beam supporting the structure;
An upper beam supporting the floor directly above the foundation beam;
At least a column joint part to which the pillar is joined, a beam joint part to which the foundation beam is attached and joined in a horizontal direction, and an embedded pillar that is inserted into a pile head of the steel pipe pile and fixed with concrete. It is a joining structure of a pillar and a pile made of a joint member having,
The joint member is
The maximum outer diameter dimension of the embedded column cross section is set smaller than the maximum outer diameter dimension of the cross section of the column joint,
The foundation beam and the beam joint are:
The column-pile joint structure is characterized in that its rigidity is set to be 2 times or less and 1 time or more of the rigidity of the overhead beam.
前記埋込柱の断面を中空円形断面としたことを特徴とする請求項1乃至請求項4のいずれかに記載の柱と杭の接合構造。   The column-pile joint structure according to any one of claims 1 to 4, wherein a cross-section of the embedded column is a hollow circular cross-section. 前記埋込柱の断面を中実円形断面としたことを特徴とする請求項1乃至請求項4のいずれかに記載の柱と杭の接合構造。   The column-pile joint structure according to any one of claims 1 to 4, wherein the embedded column has a solid circular cross section. 前記鋼管杭頭に前記埋込柱の抜出し拘束リングを設置したことを特徴とする請求項1乃至請求項6のいずれかに記載の柱と杭の接合構造。   The column and pile joint structure according to any one of claims 1 to 6, wherein an extraction restraining ring for the embedded column is installed on the steel pipe pile head. 前記鋼管杭頭の内面に複数の突起を設けたことを特徴とする請求項1乃至請求項6のいずれかに記載の柱と杭の接合構造。
The column-pile joint structure according to any one of claims 1 to 6, wherein a plurality of protrusions are provided on an inner surface of the steel pipe pile head.
JP2005071772A 2004-03-25 2005-03-14 Joint structure of column and pile Pending JP2005307734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071772A JP2005307734A (en) 2004-03-25 2005-03-14 Joint structure of column and pile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004089981 2004-03-25
JP2005071772A JP2005307734A (en) 2004-03-25 2005-03-14 Joint structure of column and pile

Publications (1)

Publication Number Publication Date
JP2005307734A true JP2005307734A (en) 2005-11-04

Family

ID=35436806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071772A Pending JP2005307734A (en) 2004-03-25 2005-03-14 Joint structure of column and pile

Country Status (1)

Country Link
JP (1) JP2005307734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020594A (en) * 2014-07-15 2016-02-04 鹿島建設株式会社 Concrete filled steel pipe structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280271A (en) * 1993-03-25 1994-10-04 Nkk Corp Cast-in-place steel pipe concrete pile-column construction and construction method thereof
JPH09291545A (en) * 1996-04-25 1997-11-11 Nkk Corp Joining method of column and pile
JP2000129690A (en) * 1998-10-29 2000-05-09 Nkk Corp Integral structure of column base and pile
JP2003049438A (en) * 2001-08-03 2003-02-21 Sumitomo Metal Ind Ltd Pile head part connection structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280271A (en) * 1993-03-25 1994-10-04 Nkk Corp Cast-in-place steel pipe concrete pile-column construction and construction method thereof
JPH09291545A (en) * 1996-04-25 1997-11-11 Nkk Corp Joining method of column and pile
JP2000129690A (en) * 1998-10-29 2000-05-09 Nkk Corp Integral structure of column base and pile
JP2003049438A (en) * 2001-08-03 2003-02-21 Sumitomo Metal Ind Ltd Pile head part connection structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020594A (en) * 2014-07-15 2016-02-04 鹿島建設株式会社 Concrete filled steel pipe structure

Similar Documents

Publication Publication Date Title
WO2006030893A1 (en) Foundation structure of tower
JP4230533B1 (en) Bonding structure of structure and fixing member for shear force transmission used therefor
JP5358423B2 (en) Column and pile connection structure
JP4743412B2 (en) Pile head seismic isolation structure
JP2006104747A (en) Pier stud connection structure and pier stud connecting method
JP2009007746A (en) Joint structure of pile head
JP2005105531A (en) Foundation structure of building and its construction method
JP2005307734A (en) Joint structure of column and pile
JP2002256571A (en) Reconstructing method for building, using method for existing pile and building
JP2001098542A (en) Soil cement composite taper pile
JP4724680B2 (en) Column base structure
JP4466419B2 (en) Soil cement column wall
KR102394061B1 (en) Earth proof phc hybrid pile using small diameter steel pipe and construction method for the same
KR101838219B1 (en) Variable pile for increasing horizontal force and method for constructing foundation of structure
JP2005061171A (en) Pile head structure of pile foundation and construction method of pile head of the pile foundation
JP2006214201A (en) Composite foundation of piles and continuous underground wall
JP2007051500A (en) Joint structure of column and pile
JP2020066875A (en) Foundation pile, foundation structure, structural body, and installation method of foundation pile
JP2006193977A (en) Construction method for pile draft foundation
KR101762207B1 (en) The speed up construction method using hemispherical joint
JP5659275B2 (en) Column and pile connection structure
JP5399014B2 (en) Bonding structure of structural material and fixed end
JP5684615B2 (en) Composite pile and composite pile construction method
KR100374200B1 (en) Reinforcement method fot tip of still pile
JP2005256546A (en) Foundation structure of building and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080111

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A131 Notification of reasons for refusal

Effective date: 20101109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308