JP2006104747A - Pier stud connection structure and pier stud connecting method - Google Patents

Pier stud connection structure and pier stud connecting method Download PDF

Info

Publication number
JP2006104747A
JP2006104747A JP2004292031A JP2004292031A JP2006104747A JP 2006104747 A JP2006104747 A JP 2006104747A JP 2004292031 A JP2004292031 A JP 2004292031A JP 2004292031 A JP2004292031 A JP 2004292031A JP 2006104747 A JP2006104747 A JP 2006104747A
Authority
JP
Japan
Prior art keywords
base structure
pile head
cylindrical
joining
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004292031A
Other languages
Japanese (ja)
Other versions
JP4691690B2 (en
Inventor
Masahiro Takeguchi
昌弘 竹口
Takeshi Umehara
剛 梅原
Yasumi Wakabayashi
保美 若林
Yuji Mishima
雄士 美島
Setsuo Iwata
節雄 岩田
Yoshikazu Kobayashi
義和 小林
Terumasa Sasaya
輝勝 笹谷
Kenichiro Sakamoto
健一郎 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Hitachi Zosen Corp
National Research and Development Agency Public Works Research Institute
Original Assignee
Fujita Corp
Public Works Research Institute
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp, Public Works Research Institute, Hitachi Zosen Corp filed Critical Fujita Corp
Priority to JP2004292031A priority Critical patent/JP4691690B2/en
Priority to PCT/JP2005/018357 priority patent/WO2006038620A1/en
Publication of JP2006104747A publication Critical patent/JP2006104747A/en
Application granted granted Critical
Publication of JP4691690B2 publication Critical patent/JP4691690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/10Deep foundations
    • E02D27/12Pile foundations
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
    • E02D5/385Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds with removal of the outer mould-pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Bridges Or Land Bridges (AREA)
  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pier stud connection structure which occupies a small construction area, contributes to a shortened construction period and reduced construction costs, and exerts sufficient durability at a connection, and to provide a pier stud connecting method. <P>SOLUTION: The pier stud connection structure for connecting between a pile head 3a of an RC pile 3 and a base structure 4b of a steel square cylindrical pier 4, is implemented by a connection unit 5 which is formed of the base structure 4b; an extended plate 15 extended from each flange 12 of the base structure 4b; connecting reinforcements 8 protruded upward form the pile head 4b; and a cylindrical steel shell 21 externally fitted onto the base structure 4b and the connecting reinforcements 8, and rigidly connected to the base structure 4b via the extended portions 15, to thereby restrain poured joining concrete 31 from the periphery. According to the pier stud connection structure, a number of deviation preventive holes 16 are formed in webs 11, the flanges 12, ribs 13, 14, and the extended portions 15 of the base structure 4b, for transmitting shearing force from the base structure 4b via the joining concrete 31 to the pile head 3a. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、立体交差橋や高架橋、高架構造体、一般橋梁、鉄道橋などのコンクリート製杭と鋼製脚とを接合する脚柱の接合部構造および接合方法に関する。   The present invention relates to a junction structure and a joining method for a pedestal that joins a steel pile and a concrete pile such as a three-dimensional intersection bridge, a viaduct, an elevated structure, a general bridge, and a railway bridge.

従来、地中に打ち込まれたコンクリート製杭(以下RC杭という)と、鋼製の脚柱とを接合する橋脚の接合部は、単数または複数のRC杭の頂部にフーチングを設け、このフーチングに脚柱の基端部を接合するものが特許文献1および2に開示されている。またアンカーボルトにより杭と脚柱とを接合するものが特許文献3に開示され、さらに杭に脚柱を埋め込んで接合するものが特許文献4に開示されている。
特開平9−71949号公報 特開2004−68338 特開2000−291146 特開2001−348887
Conventionally, the joint of a bridge pier that joins a concrete pile driven into the ground (hereinafter referred to as RC pile) and a steel pedestal is provided with a footing on the top of one or more RC piles. Patent Documents 1 and 2 disclose joining of base ends of pedestals. Moreover, what joins a pile and a pedestal with an anchor bolt is disclosed by patent document 3, and also what embeds a leg column in a pile and joins is disclosed by patent document 4. FIG.
JP-A-9-71949 JP 2004-68338 A JP 2000-291146 A JP 2001-348887 A

しかしながら、特許文献1および2のフーチングによる接合構造の場合、形枠工事など煩雑な現場工事が付随して工期が長くなる傾向にある。また現場施工に必要な占有面積が大きくなるとともに、フーチング形成時にコンクリートの打設面積が大きいと天候の影響を受けやすい。このため、工事用地の確保が困難で、施工期間が短い立体交差橋などの工事に適さない。また特許文献3のアンカーボルトによる接合構造の場合、煩雑な現場工事が付随し、施工工事期間が長いという問題があった。さらに特許文献1〜3では寸法精度の確保が困難であった。また特許文献4の杭に脚柱を埋め込む接合構造の場合、基礎杭を施工した後、脚柱を設置する前に埋め込み部の鉄筋籠やソケット鋼管を施工する必要があるため、施工手順が煩雑となり、工期が長くなる可能性があった。   However, in the case of the joint structure by footing in Patent Documents 1 and 2, complicated construction work such as formwork is accompanied and the construction period tends to be long. In addition, the area required for construction on site increases, and if the concrete placement area is large when footing is formed, it is easily affected by the weather. For this reason, it is difficult to secure a construction site, and it is not suitable for construction such as a multilevel crossing bridge with a short construction period. Moreover, in the case of the joint structure by the anchor bolt of patent document 3, there existed a problem that complicated construction work was accompanied and the construction work period was long. Further, in Patent Documents 1 to 3, it is difficult to ensure dimensional accuracy. In addition, in the case of the joint structure in which the pedestal is embedded in the pile of Patent Document 4, it is necessary to construct the reinforcing bar rod and socket steel pipe in the embedding part after constructing the foundation pile before installing the pedestal, so the construction procedure is complicated As a result, the construction period could be long.

本発明は上記問題点を解決して、現場工事の占有面積も小さく、施工工期を短縮できて工事費の削減が図れ、十分な接合部の耐力を確保できる脚柱の接合部構造および接合方法を提供することを目的とする。   The present invention solves the above-mentioned problems, reduces the construction area occupied by the site construction, shortens the construction period, reduces the construction cost, and ensures the joint structure and joining method of the pedestal that can ensure sufficient joint strength The purpose is to provide.

請求項1記載の発明は、コンクリート製杭の杭頭と、鋼製の筒状脚の基部とを接続する脚柱の接合部構造であって、前記筒状脚の基部構造体と、前記基部構造体の外板に突設された延長部と、前記杭頭から上方に突出された接合用鉄筋と、前記基部構造体および前記接合用鉄筋に外嵌され前記延長部を介して基部構造体に連結固定されて、内部に打設される接合用コンクリートの外周部を拘束する円筒鋼殻とを具備した接合ユニットを設け、前記基部構造体の少なくとも外板に、基部構造体から接合用コンクリートを介して杭頭にせん断力を伝達する多数のずれ止め孔を形成したものである。   The invention according to claim 1 is a joint structure of a pedestal that connects a pile head of a concrete pile and a base of a steel cylindrical leg, the base structure of the cylindrical leg, and the base An extension projecting from the outer plate of the structure, a joint reinforcing bar protruding upward from the pile head, and a base structure externally fitted to the base structure and the joint reinforcing bar via the extension A joining unit comprising a cylindrical steel shell constrained to the outer periphery of the joining concrete that is connected and fixed to the inside, and at least the outer plate of the base structure is provided with the joining concrete from the base structure. A number of slip holes are formed to transmit shearing force to the pile head via

請求項2記載の発明は、筒状脚が矩形断面の角筒脚であり、延長部は、基部構造体の外板から延長して形成されたものである。
請求項3記載の発明は、筒状脚は円形断面の円筒脚であり、延長部は、基部構造体の外板から半径方向に突出されたものである。
According to a second aspect of the present invention, the cylindrical leg is a rectangular tube leg having a rectangular cross section, and the extension portion is formed by extending from the outer plate of the base structure.
According to a third aspect of the present invention, the cylindrical leg is a cylindrical leg having a circular cross section, and the extension portion is projected in the radial direction from the outer plate of the base structure.

請求項4記載の発明は、円筒鋼殻を杭頭の頂部から下方に外嵌させた余入れ部を設け、ずれ止め孔を基部構造体の補強用リブおよび延長部にそれぞれ形成したものである。
請求項5記載の発明は、基部構造体に負荷されるせん断力の大きい部分のずれ止め孔に、ずれ止め部材を配設したものである。
The invention described in claim 4 is provided with an extra insertion portion in which a cylindrical steel shell is externally fitted downward from the top of the pile head, and a slip prevention hole is formed in each of the reinforcing rib and the extension portion of the base structure. .
According to the fifth aspect of the present invention, an anti-slip member is disposed in the anti-slip hole in a portion where the shearing force applied to the base structure is large.

請求項6記載の発明は、コンクリート製杭の杭頭に、鋼製の筒状脚の基部を接続するに際して、外板に多数のずれ止め孔が形成された前記筒状脚の基部構造体に、該基部構造体の外板から突出された延長部を介して基部構造体に外嵌された円筒鋼殻を連結固定した接合ユニットを取り付け、前記杭頭に前記接合ユニットを介して筒状脚を配置して杭頭から突出された接合用鉄筋を円筒鋼殻に内在させ、前記円筒鋼殻内に接合用コンクリートを打設して杭頭と筒状脚とを接合し、前記円筒鋼殻により接合用コンクリートを均等に拘束して前記基部構造体から前記ずれ止め孔を介して杭頭にせん断力を伝達させるものである。   In the invention according to claim 6, when the base of the steel cylindrical leg is connected to the pile head of the concrete pile, the base structure of the cylindrical leg in which a large number of slip holes are formed on the outer plate. A joining unit that connects and fixes a cylindrical steel shell that is externally fitted to the base structure via an extension protruding from the outer plate of the base structure, and a cylindrical leg that is attached to the pile head via the joining unit. The connecting rebar protruding from the pile head is placed in the cylindrical steel shell, the concrete for bonding is placed in the cylindrical steel shell, the pile head and the cylindrical leg are joined, and the cylindrical steel shell Thus, the concrete for bonding is evenly restrained, and shear force is transmitted from the base structure to the pile head through the detent hole.

請求項7記載の発明は、接合ユニットの取り付け時に、円筒鋼殻を杭頭の頂部から下方に外嵌させる余入れ部を形成し、せん断力が大きく負荷される部分のずれ止め孔にずれ止め部材を配置したものである。   According to the seventh aspect of the present invention, when the joining unit is mounted, an extra insertion portion is formed to externally fit the cylindrical steel shell downward from the top of the pile head, and is prevented from slipping in a retaining hole at a portion where a large shear force is applied. The members are arranged.

請求項8記載の発明は、接合ユニットを杭頭に嵌合する時に、少なくとも余入れ部の高さ分の杭頭の外周部を削径して、杭頭を円筒鋼殻の内径より小さくするものである。   In the invention according to claim 8, when the joining unit is fitted to the pile head, the outer peripheral portion of the pile head at least the height of the extra portion is cut to make the pile head smaller than the inner diameter of the cylindrical steel shell. Is.

請求項1または6記載の発明によれば、基部構造体と円筒鋼殻とを延長部を介して一体に連結固定することにより、基部構造体の挙動にほぼ従って円筒鋼殻が変位され、従来のソケット基礎に比較して支圧や剥離力を大幅に低減することができる。また接合用コンクリートを円形鋼殻により均一に拘束することにより、接合用コンクリートの割裂破壊を防止して接合用コンクリートのひずみを拘束できずれ止め孔によるせん断耐力を十分に発揮することができる。これによりせん断力を、基部構造体から接合用コンクリートを介してコンクリート杭に良好に伝達することができて圧壊などを防止できる。したがって、接合ユニットにより工事の占有面積を小さくできて施工工期を短縮できて工事費を削減することができ、また十分な接合部の耐力を確保することができる。   According to the first or sixth aspect of the present invention, the cylindrical steel shell is displaced substantially in accordance with the behavior of the base structure by integrally connecting and fixing the base structure and the cylindrical steel shell via the extension. The bearing pressure and peeling force can be greatly reduced compared to socket bases. In addition, by constraining the joining concrete uniformly with the circular steel shell, it is possible to prevent the splitting fracture of the joining concrete, restrain the strain of the joining concrete, and sufficiently exert the shear strength due to the anti-displacement hole. As a result, the shearing force can be satisfactorily transmitted from the base structure to the concrete pile through the bonding concrete, and crushing can be prevented. Therefore, the occupation area of the construction can be reduced by the joining unit, the construction period can be shortened, the construction cost can be reduced, and sufficient joint strength can be ensured.

請求項4記載の発明によれば、接合ユニットとコンクリート杭との境界部分で、円筒鋼殻の下部を杭頭に外嵌させる余入れ部を設けたので、この連結部分がコンクリート杭から突出された鉄筋組物だけになるのを避け、断面急変による応力集中を緩和して、水平せん断耐力を向上させることができる。   According to invention of Claim 4, since the extra part which makes the lower part of a cylindrical steel shell externally fit to a pile head was provided in the boundary part of a joining unit and a concrete pile, this connection part protrudes from a concrete pile. Therefore, it is possible to improve the horizontal shear strength by reducing the stress concentration due to the sudden change of the cross section.

請求項5記載の発明によれば、基部構造体の外板に形成されたずれ止め孔が形成された場合、鋼板の剛性により個々のずれ止め孔の変位が異なることによりずれ止め孔が分担するせん断力も異なる。このため、せん断力が大きいずれ止め孔にずれ止め部材を配置することにより、せん断耐力を向上させることができて、せん断力を基部構造体から接合用コンクリートに良好に伝達することができる。   According to the fifth aspect of the present invention, when the anti-slip holes formed on the outer plate of the base structure are formed, the anti-slip holes are shared by the displacement of the individual anti-slip holes depending on the rigidity of the steel plate. Shear force is also different. For this reason, the shear force can be improved by arranging the anti-slip member in the stop hole having a large shearing force, and the shearing force can be satisfactorily transmitted from the base structure to the joining concrete.

請求項7記載の発明によれば、接合ユニットとコンクリート杭との境界部分で、円筒鋼殻の下部を杭頭に外嵌させる余入れ部により、断面急変による応力集中を緩和して、水平せん断耐力を向上させることができる。また、せん断力が大きいずれ止め孔にずれ止め部材を配置することにより、さらにせん断耐力を向上させることができて、せん断力を基部構造体から接合用コンクリートを介してコンクリート杭に良好に伝達することができる。   According to the seventh aspect of the present invention, at the boundary between the joining unit and the concrete pile, the stress concentration due to the sudden change in the cross section is alleviated by the extra portion where the lower part of the cylindrical steel shell is externally fitted to the pile head. Yield can be improved. In addition, the shear force is increased and the slip prevention member is arranged in the stop hole, so that the shear strength can be further improved, and the shear force is transmitted well from the base structure to the concrete pile through the joining concrete. be able to.

請求項8記載の発明によれば、円筒鋼殻を必要以上に大径にすることなく、余入れ部に対応する杭頭を円筒鋼殻の内径より小さく削径することにより、コンクリート杭と角筒脚のずれを吸収して施工時の寸法精度を緩和することができ、施工の容易化と工期の短縮化を図ることができる。   According to the eighth aspect of the present invention, by reducing the diameter of the pile head corresponding to the extra portion smaller than the inner diameter of the cylindrical steel shell without making the cylindrical steel shell larger than necessary, the corners of the concrete pile and corner The displacement of the tube leg can be absorbed to reduce the dimensional accuracy during construction, and the construction can be facilitated and the construction period can be shortened.

以下、本発明の実施の形態を図面に基づいて説明する。
[実施の形態1]
図8に示すように、たとえば径間桁長Lがたとえば約200mの立体交差橋1の橋脚(脚柱)2の接合部構造に係るもので、図1〜図7に示すように、橋脚2はRC杭(コンクリート杭)3の杭頭3aに鋼製の矩形断面の角筒脚4とが接合ユニット(鋼製フーチング)5を介して接合されたものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
As shown in FIG. 8, for example, it relates to the joint structure of the pier (leg column) 2 of the three-dimensional crossing bridge 1 having a span girder length L of about 200 m, for example, as shown in FIGS. 1 to 7. Is a square head 4 a having a rectangular cross section made of steel and joined to a pile head 3 a of an RC pile (concrete pile) 3 via a joining unit (steel footing) 5.

前記RC杭3は、たとえば図9(b)に示すように、所定位置にスクリューオーガなどの穿孔装置45により地盤に形成された削穴44内に、鉄筋組物7を挿入した後、コンクリートを打設して形成される場所打ちコンクリート杭と呼ばれるものである。このRC杭3のコンクリート上端部は、気泡や不純物を含む品質が悪い劣化部がはつって除去された後に、接合ユニット5が接合される。またRC杭3の杭頭3aには、前記鉄筋組物7から一体に延長された多数の接合用鉄筋8が外周部近傍から上方に突出され、これら接合用鉄筋8は接合ユニット5のほぼ高さ分の長さを有している。但し、接合ユニット5内のウェブ11、フランジ12および延長板15の据付が十分可能となるように接合用鉄筋8が配置されている。   For example, as shown in FIG. 9 (b), the RC pile 3 is formed by inserting a reinforcing bar assembly 7 into a drilled hole 44 formed in the ground by a drilling device 45 such as a screw auger at a predetermined position, and then applying concrete. It is called a cast-in-place concrete pile formed by placing. The joint unit 5 is joined to the concrete upper end portion of the RC pile 3 after the deteriorated portion having poor quality including air bubbles and impurities is removed. A large number of reinforcing bars 8 integrally extending from the reinforcing bar assembly 7 protrude upward from the vicinity of the outer periphery of the pile head 3 a of the RC pile 3. It has a length of minutes. However, the joining rebar 8 is arranged so that the web 11, the flange 12 and the extension plate 15 in the joining unit 5 can be installed sufficiently.

前記接合ユニット5は、前記角筒脚4の脚構造体4aの基部に連続して形成された基部構造体4bと、基部構造体4bの外周部に外嵌固定される円筒鋼殻21と、基部構造体4bおよび円筒鋼殻21内に打設される接合用コンクリート31とで構成されている。   The joining unit 5 includes a base structure 4b continuously formed on the base of the leg structure 4a of the square tube leg 4, a cylindrical steel shell 21 that is externally fixed to the outer periphery of the base structure 4b, The base structure 4b and the joining concrete 31 placed in the cylindrical steel shell 21 are configured.

前記角筒脚4の基部構造体4bは、脚構造体4aからそれぞれ一体に連続する前後一対のウェブ(外板)11と左右一対のフランジ(外板)12とにより矩形断面に形成され、たとえばここではウェブ11の幅がフランジ12より広い横長に形成されているが、フランジ12の幅がウェブ11より幅が広い矩形断面でもよい。またウェブ11およびフランジ12の内面に、複数の補強用の板状リブ13,14がそれぞれ上下方向に突設されている。さらにフランジ12には、両側部から外側に突出されて先端部が円筒鋼殻21の内面に連結固定される延長板(延長部)15が一体に設けられている。これら延長板15は基部構造体4bと円筒鋼殻21とを連結して接合ユニット5を一体形成するもので、フランジ12に替えてウェブ11の両側部から延長板を設けてもよいし、また各コーナー部毎にフランジ12とウェブ11の両方に延長板を設けて互いに直角な2枚の延長板を構成してもよい。   The base structure 4b of the square tube leg 4 is formed in a rectangular cross section by a pair of front and rear webs (outer plates) 11 and a pair of left and right flanges (outer plates) 12 which are integrally continuous from the leg structures 4a. Here, the width of the web 11 is formed so as to be wider than the flange 12, but a rectangular cross section in which the width of the flange 12 is wider than that of the web 11 may be used. Further, a plurality of reinforcing plate-like ribs 13 and 14 are provided on the inner surfaces of the web 11 and the flange 12 so as to protrude in the vertical direction. Further, the flange 12 is integrally provided with an extension plate (extension portion) 15 that protrudes outward from both side portions and has a tip portion connected and fixed to the inner surface of the cylindrical steel shell 21. These extension plates 15 connect the base structure 4b and the cylindrical steel shell 21 to integrally form the joining unit 5. The extension plates 15 may be provided from both sides of the web 11 instead of the flange 12, or Two extension plates perpendicular to each other may be formed by providing extension plates on both the flange 12 and the web 11 for each corner portion.

またウェブ11とフランジ12の下端縁部に沿って、RC杭3の杭頭3aに直接または据付ブロック(たとえばH型鋼からなる)を介して着座させる据付台板17が設けられている。また円筒鋼殻21の上端部に対応して脚構造体4aと基部構造体4bとを区画する仕切板18が取付けられ、その中央部に開口部18aが形成されている。   A mounting base plate 17 is provided along the lower edge of the web 11 and the flange 12 to be seated on the pile head 3a of the RC pile 3 directly or via an installation block (for example, made of H-shaped steel). A partition plate 18 for partitioning the leg structure 4a and the base structure 4b corresponding to the upper end of the cylindrical steel shell 21 is attached, and an opening 18a is formed at the center thereof.

そしてウェブ11、フランジ12、板状リブ13,14および延長部15には、それぞれ所定ピッチで多数のずれ止め孔(孔明き鋼板ジベル:PBL)16がそれぞれ貫通形成され、角筒脚4からの軸力、曲げモーメントおよびせん断力などの負荷を接合用コンクリート31を介してRC杭3に伝達するように構成されている。これらずれ止め孔16による接合用コンクリート31に対するせん断力の伝達は、接合用コンクリート31を外周側から均一に拘束する円筒鋼殻21によりさらに効果的におこなわれる。   Each of the web 11, the flange 12, the plate-like ribs 13 and 14, and the extension portion 15 is formed with a large number of anti-slip holes (perforated steel plate gibber: PBL) 16 at predetermined pitches. A load such as an axial force, a bending moment, and a shearing force is transmitted to the RC pile 3 via the bonding concrete 31. Transmission of the shearing force to the joining concrete 31 by these slip prevention holes 16 is more effectively performed by the cylindrical steel shell 21 that uniformly restrains the joining concrete 31 from the outer peripheral side.

前記ずれ止め孔16の特徴は、a)単位面積当りのせん断抵抗が大きいため、ずれ止め用のスタッドのように多く設置する必要も無く、構造的に簡略化することができる、b)疲労耐久性があり、十分な靭性を有するずれ止め構造となる、c)設計法が確立されており、道路橋などに置いて実績があるなどである。また、d)角筒脚4を構成するウェブ11とフランジ12に形成することにより、ずれ止めのための補剛材を省略することができ、e)ずれ止めの荷重を直接角筒脚4のウェブ11とフランジ12に伝達できて荷重あるいは応力の伝達(流れ)が明解になるとともに、補剛材との溶接部に生じる疲労亀裂などの問題が発生しないという点も特徴となる。   The features of the stopper hole 16 are as follows: a) Since the shear resistance per unit area is large, it is not necessary to install as many as the stud for preventing the slip, and the structure can be simplified. B) Fatigue durability And a structure to prevent slippage with sufficient toughness, c) a design method has been established, and it has been put on road bridges. Further, d) by forming the web 11 and the flange 12 constituting the square tube leg 4, it is possible to omit a stiffener for preventing the displacement, and e) directly applying the load of the detent to the square tube leg 4. It can be transmitted to the web 11 and the flange 12, and the transmission (flow) of the load or stress becomes clear, and the feature such as fatigue cracks occurring in the welded portion with the stiffener does not occur.

なお、構造体であるウェブ11とフランジ12にずれ止め孔16を形成することにより、角筒脚4の剛性が減少して鋼板の引張強度が減少するおそれがあるが、ずれ止め孔16の間隔と穴径とを適宜選択することにより、鋼板の引張強度の減少を防止することができる。また座屈に対しては、接合用コンクリート31の周囲が円筒鋼殻21によって拘束され変形が防止されているため、接合用コンクリート31が破壊されない限りは問題がない。もちろん、全断面塑性に対しては、ウェブ11とフランジ12の板厚およびずれ止め孔16の間隔を適切に設定してずれ止め孔16の穴断面が決定される。   In addition, by forming the stopper holes 16 in the web 11 and the flange 12 which are structural bodies, the rigidity of the square tube legs 4 may be reduced and the tensile strength of the steel sheet may be reduced. By appropriately selecting the diameter and the hole diameter, it is possible to prevent a decrease in the tensile strength of the steel sheet. Further, with respect to buckling, since the periphery of the joining concrete 31 is restrained by the cylindrical steel shell 21 and deformation is prevented, there is no problem as long as the joining concrete 31 is not destroyed. Of course, for the entire cross-section plasticity, the plate thickness of the web 11 and the flange 12 and the interval between the stopper holes 16 are set appropriately, and the hole cross section of the stopper holes 16 is determined.

ところで、図12(a)に示すように、主構造体aに取付けられたリブbにずれ止め孔cを形成した場合、主構造体aの母材がかなり大きく高剛性とすると、引張り荷重が負荷された場合、個々のずれ止め孔cはあたかも剛体の上に乗った穴として全体が均等に変位されるため、個々のずれ止め孔cはほぼ等しいせん断耐力を有する仮定して設計することができる。これに対して、図12(b)に示すように、主構造体dである鋼板にずれ止め孔eが形成された場合、引張り荷重が負荷されると、鋼板の剛性により個々のずれ止め孔eの変位量が異なる。これにより、それぞれが分担するせん断力が異なり、全てのずれ止め孔eが等しくせん断力を分担するという設計ができない。たとえば主構造体dを鋼板として複数のずれ止め孔eを上下方向に形成した時には、主構造体dに上方への引張り力が負荷された時には、ずれ止め孔eが支持するせん断力が荷重から遠ざかる下方にいくに従って小さくなる分布となる。この分布は、鋼板の剛性、コンクリートの弾性係数などによって変化するため、予め解析を行ってせん断耐力を確認する必要がある。   By the way, as shown in FIG. 12 (a), when the stopper b c is formed in the rib b attached to the main structure a, if the base material of the main structure a is considerably large and has high rigidity, the tensile load is increased. When loaded, the individual stopper holes c are evenly displaced as if they were on a rigid body, so that the individual stopper holes c can be designed on the assumption that they have approximately the same shear strength. it can. On the other hand, as shown in FIG. 12 (b), when the retaining holes e are formed in the steel sheet as the main structure d, when the tensile load is applied, the individual retaining holes are caused by the rigidity of the steel sheet. The displacement amount of e is different. As a result, the shearing force shared by each is different, and it is impossible to design that all the detent holes e share the shearing force equally. For example, when the main structure d is a steel plate and a plurality of retaining holes e are formed in the vertical direction, when an upward tensile force is applied to the main structure d, the shearing force supported by the retaining holes e is reduced from the load. The distribution becomes smaller as it goes downward. Since this distribution changes depending on the rigidity of the steel plate, the elastic modulus of concrete, and the like, it is necessary to perform an analysis in advance to confirm the shear strength.

前記せん断耐力および破壊靭性を高めるために、図5に示すように、せん断力の大きい上部のずれ止め孔16にずれ止め部材(耐力部材)19を配置している。これらずれ止め部材19にはたとえば鉄筋が使用され、互いに水平方向に対向する位置に形成されたずれ止め孔16間に挿入して掛け渡すことで、特定の支持治具を必要としない。これらずれ止め部材19は、ここでは、ウェブ11間、フランジ12間、リブ13,13間、リブ14,14間および延長板15間の各上部のずれ止め孔16にそれぞれ配置される。   In order to increase the shear strength and fracture toughness, as shown in FIG. 5, a detent member (strength member) 19 is disposed in the upper detent hole 16 having a large shear force. For example, a reinforcing bar is used for the detent members 19 and is inserted between the detent holes 16 formed at positions facing each other in the horizontal direction so that a specific support jig is not required. Here, these anti-slip members 19 are arranged in the anti-slip holes 16 at the upper portions between the webs 11, between the flanges 12, between the ribs 13 and 13, between the ribs 14 and 14 and between the extension plates 15, respectively.

前記円筒鋼殻21は、RC杭3の杭頭3aと内径が同じかまたは大きく形成され、その内面に所定間隔ごとに半径方向のコンクリート剥離防止用のスタッド22が所定間隔ごとに複数本植設されている。   The cylindrical steel shell 21 is formed to have the same or larger inner diameter as the pile head 3a of the RC pile 3, and a plurality of studs 22 for preventing concrete peeling in the radial direction are planted at predetermined intervals on the inner surface thereof. Has been.

ところで、前記ずれ止め孔16はずれ止め用スタッドに比較して2〜3倍のせん断耐力が高く、ずれ止め性能として優れた特性を示すが、この性能を発揮できるのは、ずれ止め孔16が形成された鋼板とコンクリートとの境界面で引張破壊を防止する引張方向のひずみの拘束や、ずれ止め孔16内のコンクリートの割裂破壊を防止するように接合用コンクリート31のひずみを拘束することが必要である。このため、本発明では円形断面で外周部からコンクリートを均等に拘束が可能な円筒鋼殻21が採用され、RC杭などで拘束効果を得るために内装されるフープ鉄筋などに比較して拘束効果が高い。またここで、円筒鋼殻21に代えて矩形断面の角筒鋼殻で囲んでも、接合用コンクリート31の均一な拘束力を得られず、ずれ止め孔16による十分なせん断耐力を確保することができない。   By the way, the anti-slip hole 16 has a high shear strength of 2 to 3 times compared to the anti-slip stud and exhibits excellent characteristics as anti-slipping performance. However, the anti-slipping hole 16 is formed to exhibit this performance. It is necessary to constrain the strain of the concrete 31 for bonding so as to prevent strain in the tensile direction to prevent tensile fracture at the boundary surface between the steel plate and the concrete, and to prevent split fracture of the concrete in the stopper hole 16. It is. For this reason, in this invention, the cylindrical steel shell 21 which can restrain concrete uniformly from outer peripheral part with a circular cross section is employ | adopted, and restraint effect compared with the hoop reinforcement etc. which are equipped in order to acquire restraint effect in RC pile etc. Is expensive. In addition, even if the rectangular steel shell 21 is enclosed in a rectangular cross section instead of the cylindrical steel shell 21, it is not possible to obtain a uniform restraining force of the concrete 31 for joining, and it is possible to ensure a sufficient shear strength by the detent hole 16. Can not.

図13(a)(b)に示すように、従来のソケット基礎では、脚柱UとソケットSとの間に支圧Pが支配的に作用して耐荷構造が形成されるが、この発明では、延長板15を介して基部構造体4bと円筒鋼殻21とが一体に連結固定されるため、円筒鋼殻21は基部構造体4bの挙動にほぼ従って変位する。したがって、若干の支圧と円筒鋼殻21と基部構造体4bの剥離力は生じるが、ソケット基礎に比較してそれほど大きくない。   As shown in FIGS. 13 (a) and 13 (b), in the conventional socket foundation, the bearing pressure P acts dominantly between the pedestal U and the socket S to form a load-bearing structure. Since the base structure 4b and the cylindrical steel shell 21 are integrally connected and fixed via the extension plate 15, the cylindrical steel shell 21 is displaced substantially in accordance with the behavior of the base structure 4b. Therefore, a slight bearing pressure and peeling force between the cylindrical steel shell 21 and the base structure 4b are generated, but not so much as compared with the socket base.

角筒脚4に設けたずれ止め孔16によりせん断力が接合用コンクリート31を介してRC杭3に伝達されるためには、接続用鉄筋8の十分な長さによる付着力が必要であるが、これも計算により求めることができる。   In order for the shearing force to be transmitted to the RC pile 3 through the joining concrete 31 by the displacement preventing holes 16 provided in the square tube legs 4, an adhesive force by a sufficient length of the connecting reinforcing bars 8 is necessary. This can also be obtained by calculation.

次にこの橋脚の現場施工方法を図9〜図10を参照して説明する。
1)施工位置を掘削後、ジブクレーン41等の揚降装置を使用して土留用スタンドパイプ42を施工位置に設置する[図9(a)]。
Next, an on-site construction method for this pier will be described with reference to FIGS.
1) After excavating the construction position, the earth retaining stand pipe 42 is installed at the construction position by using a lifting device such as a jib crane 41 [FIG. 9A].

2)土留用スタンドパイプ42内に小径の杭打ち用スタンドパイプ43を設置し、穿孔装置45により杭打ち用スタンドパイプ43から地中に杭打設用の削穴44を形成する[図9(b)]。   2) A small-diameter pile driving stand pipe 43 is installed in the soil retaining stand pipe 42, and a drilling hole 44 is formed in the ground from the pile driving stand pipe 43 by the drilling device 45 [FIG. b)].

3)削穴44内に鉄筋組物7を挿入設置し[図9(c)]、杭打ち用スタンドパイプ43を撤去後、土留用スタンドパイプ42の下端より所定高さ上方位置までコンクリートを打設してRC杭3を形成する[図10(d)]。   3) Insert and install the reinforcing bar assembly 7 in the drilling hole 44 [FIG. 9 (c)], remove the pile driving stand pipe 43, and cast concrete from the lower end of the soil retaining stand pipe 42 to a position above the predetermined height. It forms and forms RC pile 3 [Drawing 10 (d)].

4)杭頭3aの劣化部が削り取られた後[図10(e)]、脚構造体4bとともに接合ユニット5が搬入され、円筒鋼殻21が杭頭3aに外嵌させる[図10(f)]。
なお、図では基部構造体4bを据付台板17を介して直接杭頭3a頂面に設置しているが、基部構造体4bと杭頭3aとの間に、H型鋼からなる据付ブロック46を配置してもよい。この据付ブロック46により、杭頭3aのハツリ面の凹凸を吸収することができる。
4) After the deteriorated portion of the pile head 3a has been scraped [FIG. 10 (e)], the joining unit 5 is carried in together with the leg structure 4b, and the cylindrical steel shell 21 is externally fitted to the pile head 3a [FIG. ]].
In the figure, the base structure 4b is installed directly on the top surface of the pile head 3a via the installation base plate 17, but an installation block 46 made of H-shaped steel is provided between the base structure 4b and the pile head 3a. You may arrange. By this installation block 46, irregularities on the chipped surface of the pile head 3a can be absorbed.

5)ジャッキや支持部材により接合ユニット21を所定の高さ位置に保持して余入れ部23を形成しつつ、仕切板18の開口部18aおよび基部構造体4bと円筒鋼殻21の間から接合用コンクリート31が注入打設され、RC杭3と角筒脚とが接合ユニット5を介して接合される[図11(g)]。   5) Joining from between the opening 18a and the base structure 4b of the partition plate 18 and the cylindrical steel shell 21 while holding the joining unit 21 at a predetermined height position with a jack or a supporting member to form the extra insertion portion 23. Concrete 31 for injection is poured and the RC pile 3 and the square tube leg are joined via the joining unit 5 [FIG. 11 (g)].

6)埋め戻した後、スタンドパイプ42を撤去する[図11(h)]。
上記実施の形態1によれば、
A.従来のRCフーチングとアンカーフレームを用いない簡単な構造で、基部構造体4bと延長板15とで円筒鋼殻21とを一体化した接合ユニット5により、施工現場での型枠や配筋作業を省略することができ、従来に比較して現場施工工期を短縮することができ、工事費を削減できる。
6) After backfilling, the stand pipe 42 is removed [FIG. 11 (h)].
According to Embodiment 1 above,
A. With a simple structure that does not use a conventional RC footing and anchor frame, the joining unit 5 that integrates the cylindrical steel shell 21 with the base structure 4b and the extension plate 15 allows for the formwork and bar arrangement work at the construction site. The construction period can be shortened compared to the conventional method, and the construction cost can be reduced.

B.円筒鋼殻21により、接合ユニット5の接合用コンクリート31を外周側から均一に拘束して、多数のずれ止め孔16により、基部構造体から接合用コンクリート31を介してRC杭にせん断力を効果的に伝達することができる。これにより、従来必要であったフープ鉄筋やスタッドなど複雑な構造部材を省略でき、またずれ止め孔16を基部構造体4bのウェブ11やフランジ12に直接に形成することで、ずれ止め孔16用のリブを不要にすることができ、構造の簡略化とコストダウンを図ることができる。   B. The cylindrical steel shell 21 uniformly restrains the joining concrete 31 of the joining unit 5 from the outer peripheral side, and the shear force is applied to the RC pile from the base structure through the joining concrete 31 by the large number of displacement preventing holes 16. Can be transmitted. Thereby, complicated structural members such as hoop rebars and studs that have been necessary in the past can be omitted, and by forming the stopper holes 16 directly in the web 11 and the flange 12 of the base structure 4b, the stopper holes 16 can be used. This rib can be eliminated, and the structure can be simplified and the cost can be reduced.

C.基部構造体4bの外板であるウェブ11やフランジ12にずれ止め孔16を形成することで、ずれ止め孔16の位置によりせん断力に差が生じるが、予めせん断力分布を計算して予測し、大きいせん断力が加わるずれ止め孔16に鉄筋からなるずれ止め部材19を配設することにより、せん断耐力をさらに向上してせん断力を効果的に伝達することができる。   C. By forming the anti-slip hole 16 in the web 11 or the flange 12 which is the outer plate of the base structure 4b, a difference occurs in the shearing force depending on the position of the anti-slip hole 16, but the shear force distribution is calculated and predicted in advance. By disposing the stopper member 19 made of a reinforcing bar in the stopper hole 16 to which a large shear force is applied, the shear strength can be further improved and the shear force can be effectively transmitted.

D.現場施工時に、余入れ部23を設けて円筒鋼殻21の下部が杭頭3aに外嵌されるので、断面急変による応力集中を緩和し、水平せん断に抵抗することができる。
なお、図14は実施の形態1の変形例で、施工時の精度緩和のために、杭頭3aの外周部を、後述する余入れ部23に対応する高さ分だけ削り取って段部9を形成したものである。この段部9により、杭頭3aと円形鋼殻21と間に遊び(余裕)を形成して接合ユニット5を杭頭3aに嵌合する作業を容易化し、施工時の寸法精度を緩和することができる。
D. At the time of construction at the site, the extra insertion portion 23 is provided and the lower portion of the cylindrical steel shell 21 is externally fitted to the pile head 3a. Therefore, stress concentration due to sudden change in cross section can be reduced and horizontal shearing can be resisted.
FIG. 14 shows a modification of the first embodiment. In order to reduce accuracy during construction, the outer peripheral portion of the pile head 3a is scraped off by a height corresponding to the extra insertion portion 23 described later, and the step portion 9 is removed. Formed. By this step portion 9, play (margin) is formed between the pile head 3 a and the circular steel shell 21, facilitating the work of fitting the joining unit 5 to the pile head 3 a, and relaxing the dimensional accuracy during construction. Can do.

[実施の形態2]
この実施の形態2は、脚柱を円形断面の円筒脚51としたもので、同一部材には同一符号を付し、図15〜図20を参照して説明する。
[Embodiment 2]
In the second embodiment, the pedestal is a cylindrical leg 51 having a circular cross section, and the same members are denoted by the same reference numerals and will be described with reference to FIGS. 15 to 20.

この接合部は、RC杭(コンクリート杭)3の杭頭3aと鋼製の円形断面の円筒脚51とを接合ユニット(鋼製フーチング)52を介して接合するものである。
前記円筒脚51の脚構造体51aの基部に設けられた基部構造体51bは、円筒状の脚構造体51aに連続して形成された円筒外板53と、この円筒外板53内に軸心位置で90°で接合交差された縦方向の内補強面板54と、円筒外板53の外面で内補強面板54に連続する延長位置に半径方向に突設された4枚の延長板(延長部)15と、円筒外板53の外周面で延長板15の間に所定角度(図では30°)隔てて半径方向に突設された複数枚の補強用板状リブ55とで構成されている。
This joining portion joins the pile head 3 a of the RC pile (concrete pile) 3 and the steel cylindrical leg 51 having a circular cross section via a joining unit (steel footing) 52.
A base structure 51b provided at the base of the leg structure 51a of the cylindrical leg 51 includes a cylindrical outer plate 53 formed continuously with the cylindrical leg structure 51a, and an axial center within the cylindrical outer plate 53. The longitudinal inner reinforcing face plate 54 which is joined and crossed at 90 ° at the position, and four extension plates (extension portions) projecting radially from the outer face of the cylindrical outer plate 53 at an extended position continuous with the inner reinforcing face plate 54 ) 15 and a plurality of reinforcing plate-like ribs 55 projecting in the radial direction at a predetermined angle (30 ° in the figure) between the extension plates 15 on the outer peripheral surface of the cylindrical outer plate 53. .

前記接合ユニット52は、前記基部構造体51bと、基部構造体51bに外嵌され延長板15を介して連結固定された円筒鋼殻21と、基部構造体51bおよび円筒鋼殻21内に打設される接合用コンクリート31とで構成されている。前記延長板15は基部構造体51bと円筒鋼殻21とを連結して接合ユニット52を一体形成するものである。   The joining unit 52 is placed in the base structure 51 b, the cylindrical steel shell 21 that is externally fitted to the base structure 51 b and connected and fixed via the extension plate 15, and the base structure 51 b and the cylindrical steel shell 21. It is comprised with the concrete 31 for joining. The extension plate 15 connects the base structure 51b and the cylindrical steel shell 21 to integrally form the joining unit 52.

また円筒外板53と縦補強面板54の下端縁部に沿って、RC杭3の杭頭3aに直接または据付ブロック(たとえばH型鋼からなる)46を介して着座させる据付台板17が設けられている。また円筒鋼殻21の上端部に対応する円筒脚51の脚構造体51aと基部構造体51bの境界部には、中央部に開口部18aが形成された仕切板18が取付けられている。   Further, along the lower edge of the cylindrical outer plate 53 and the longitudinal reinforcing face plate 54, there is provided an installation base plate 17 that is seated on the pile head 3a of the RC pile 3 directly or via an installation block (for example, made of H-shaped steel) 46. ing. A partition plate 18 having an opening 18a at the center is attached to the boundary between the leg structure 51a and the base structure 51b of the cylindrical leg 51 corresponding to the upper end of the cylindrical steel shell 21.

そして円筒外板53、内補強面板54および板状リブ55および延長板15には、それぞれ所定ピッチで多数のずれ止め孔(孔明き鋼板ジベル:PBL)16がそれぞれ貫通形成され、円筒脚51からの軸力、曲げモーメントおよびせん断力を接合用コンクリート31を介してRC杭3に伝達するように構成されている。これらずれ止め孔16による接合用コンクリート31に対するせん断力の伝達は、接合用コンクリート31を外周側から均一に拘束する円筒鋼殻21により効果的に行われる。   The cylindrical outer plate 53, the inner reinforcing face plate 54, the plate-like rib 55, and the extension plate 15 are each formed with a large number of anti-slip holes (perforated steel plate gibber: PBL) 16 at predetermined pitches. The axial force, the bending moment and the shearing force are transmitted to the RC pile 3 via the joining concrete 31. Transmission of the shearing force to the joining concrete 31 by these slip prevention holes 16 is effectively performed by the cylindrical steel shell 21 that uniformly restrains the joining concrete 31 from the outer peripheral side.

また、せん断耐力および破壊靭性を高めるために、円筒外板53、内補強面板54および板状リブ55および延長板15でせん断力の大きい上部のずれ止め孔16には、ずれ止め部材(せん断耐力補強部材)19が配置されている。これらずれ止め部材19にはたとえば鉄筋が使用され、互いに水平方向に対向する位置に形成されたずれ止め孔16間に挿入して図示するように井桁状や放射状、円弧状などに掛け渡すことで、特定の支持治具を必要としない。   Further, in order to increase the shear strength and fracture toughness, the cylindrical outer plate 53, the inner reinforcing face plate 54, the plate-like rib 55, and the extension plate 15 have an anti-slip member (shear strength) in the upper detent hole 16 having a large shear force. (Reinforcing member) 19 is arranged. These detent members 19 are made of, for example, reinforcing bars, and are inserted between detent holes 16 formed at positions opposite to each other in the horizontal direction so as to be hung in a cross-beam shape, a radial shape, an arc shape or the like as shown in the figure. Does not require a specific support jig.

現場における脚柱の接合部の施工手順も、実施の形態1と同様の手順で実施することができる。
上記実施の形態2によれば、実施の形態1と同様の効果を奏する。
The construction procedure of the joint portion of the pedestal on the site can also be performed in the same procedure as in the first embodiment.
According to the second embodiment, the same effects as in the first embodiment are obtained.

本発明に係る脚柱の接合部の実施の形態1を示す平面図である。It is a top view which shows Embodiment 1 of the junction part of the pedestal based on this invention. 同接合部の接合ユニット設置状態を示す図1に示すA−A断面図である。It is AA sectional drawing shown in FIG. 1 which shows the joining unit installation state of the junction part. 同接合部の接合ユニット設置状態を示す図2に示すC−C断面図である。It is CC sectional drawing shown in FIG. 2 which shows the joining unit installation state of the junction part. 同接合部の接合状態を示す図1に示すB−B断面図である。It is BB sectional drawing shown in FIG. 1 which shows the joining state of the junction part. 同ずれ止め孔とずれ止め部材を示す部分拡大斜視図である。It is a partial expansion perspective view which shows the same slip prevention hole and a slip prevention member. 同ずれ止め部材を省略した接合ユニットを示す斜視図である。It is a perspective view which shows the joining unit which abbreviate | omitted the slip prevention member. 同接合ユニットの設置状態を示す斜視図である。It is a perspective view which shows the installation state of the joining unit. 同接合部を使用する高架橋を示す全体図である。It is a general view which shows the viaduct which uses the junction part. (a)〜(c)はそれぞれ同接合部の現場施工手順を示す説明図である。(A)-(c) is explanatory drawing which shows the site construction procedure of the said junction part, respectively. (d)〜(f)はそれぞれ同接合部の現場施工手順を示す説明図である。(D)-(f) is explanatory drawing which shows the site construction procedure of the said junction part, respectively. (g)および(h)はそれぞれ同接合部の現場施工手順を示す説明図である。(G) And (h) is explanatory drawing which shows the site construction procedure of the said junction part, respectively. (a)および(b)はそれぞれずれ止め孔のせん断力を示す説明図である。(A) And (b) is explanatory drawing which shows the shear force of a slip prevention hole, respectively. (a)および(b)はそれぞれ従来のソケット基礎の応力を説明する説明図である。(A) And (b) is explanatory drawing explaining the stress of the conventional socket foundation, respectively. 実施の形態1の変形例を示し、接合部の接合ユニット設置状態を示す図1のA−A断面図である。FIG. 8 is a cross-sectional view taken along the line AA of FIG. 1 showing a modification of the first embodiment and showing a joint unit installation state of the joint portion. 本発明に係る脚柱の接合部の実施の形態2を示す平面図である。It is a top view which shows Embodiment 2 of the junction part of the pedestal based on this invention. 接合ユニット設置状態の図15に示すE−E断面図である。It is EE sectional drawing shown in FIG. 15 of a joining unit installation state. 図16に示すF−F断面図である。It is FF sectional drawing shown in FIG. 図16に示すG−G断面図である。It is GG sectional drawing shown in FIG. 接合用コンクリート充填状態の図15に示すE−E断面図である。It is EE sectional drawing shown in FIG. 15 of the concrete filling state for joining. 図16に示すH−H断面図である。It is HH sectional drawing shown in FIG.

符号の説明Explanation of symbols

3 RC杭
3a 杭頭
4 角筒脚
4a 脚構造体
4b 基部構造体
5 接合ユニット
8 接合用鉄筋
9 段部
11 ウェブ
12 フランジ
13,14 リブ
15 延長板
16 ずれ止め孔
17 据付台板
19 ずれ止め部材
21 円筒鋼殻
22 スタッド
23 余入れ部
31 接合用コンクリート
51 円筒脚
51a 脚構造体
51b 基部構造体
52 接合ユニット
53 円筒外板
54 内補強面板
55 リブ
DESCRIPTION OF SYMBOLS 3 RC pile 3a Pile head 4 Square tube leg 4a Leg structure 4b Base structure 5 Joining unit 8 Joining rebar 9 Step 11 Web 12 Flange 13, 14 Rib 15 Extension plate 16 Slip hole 17 Installation base plate 19 Slip stopper Member 21 Cylindrical steel shell 22 Stud 23 Extra portion 31 Concrete for joining 51 Cylindrical leg 51a Leg structure 51b Base structure 52 Joining unit 53 Cylindrical outer plate 54 Inner reinforcing face plate 55 Rib

Claims (8)

コンクリート製杭の杭頭と、鋼製の筒状脚の基部とを接続する脚柱の接合部構造であって、
前記筒状脚の基部構造体と、前記基部構造体の外板に突設された延長部と、前記杭頭から上方に突出された接合用鉄筋と、前記基部構造体および前記接合用鉄筋に外嵌され前記延長部を介して基部構造体に連結固定されて、内部に打設される接合用コンクリートの外周部を拘束する円筒鋼殻とを具備した接合ユニットを設け、
前記基部構造体の少なくとも外板に、基部構造体から接合用コンクリートを介して杭頭にせん断力を伝達する多数のずれ止め孔を形成した
脚柱の接合部構造。
A joint structure of a pedestal that connects a pile head of a concrete pile and a base of a steel cylindrical leg,
To the base structure of the cylindrical leg, an extension projecting on the outer plate of the base structure, a reinforcing bar protruding upward from the pile head, the base structure and the reinforcing bar Provided with a joining unit comprising a cylindrical steel shell that is externally fitted and connected and fixed to the base structure through the extension, and restrains the outer periphery of the joining concrete to be placed inside;
A pedestal joint structure in which a large number of slip holes for transmitting shearing force from the base structure to the pile head are formed on at least the outer plate of the base structure via the joining concrete.
筒状脚が矩形断面の角筒脚であり、
延長部は、基部構造体の外板から延長して形成された
請求項1記載の脚柱の接合部構造。
The cylindrical leg is a rectangular tube leg with a rectangular cross section,
The limbal joint structure according to claim 1, wherein the extension portion is formed by extending from the outer plate of the base structure.
筒状脚は円形断面の円筒脚であり、
延長部は、基部構造体の外板から半径方向に突出された
ことを特徴とする請求項1記載の脚柱の接合部構造。
The cylindrical leg is a cylindrical leg with a circular cross section,
The extension structure protrudes in the radial direction from the outer plate of the base structure.
円筒鋼殻を杭頭の頂部から下方に外嵌させた余入れ部を設け、
ずれ止め孔を基部構造体の補強用リブおよび延長部にそれぞれ形成した
請求項1乃至3のいずれかに記載の脚柱の接合部構造。
An extra insertion part is provided in which a cylindrical steel shell is externally fitted downward from the top of the pile head.
The junction structure of the pedestal according to any one of claims 1 to 3, wherein a slip prevention hole is formed in each of the reinforcing rib and the extension of the base structure.
基部構造体に負荷されるせん断力の大きい部分のずれ止め孔に、ずれ止め部材を配設した
請求項1乃至4のいずれかに記載の脚柱の接合部構造。
The junction structure of the pedestal according to any one of claims 1 to 4, wherein a detent member is disposed in a detent hole in a portion having a large shearing force applied to the base structure.
コンクリート製杭の杭頭に、鋼製の筒状脚の基部を接続するに際して、
外板に多数のずれ止め孔が形成された前記筒状脚の基部構造体に、該基部構造体の外板から突出された延長部を介して基部構造体に外嵌された円筒鋼殻を連結固定した接合ユニットを取り付け、
前記杭頭に前記接合ユニットを介して筒状脚を配置して杭頭から突出された接合用鉄筋を円筒鋼殻に内在させ、
前記円筒鋼殻内に接合用コンクリートを打設して杭頭と筒状脚とを接合し、
前記円筒鋼殻により接合用コンクリートを均等に拘束して前記基部構造体から前記ずれ止め孔を介して杭頭にせん断力を伝達させる
脚柱の接合方法。
When connecting the base of a steel cylindrical leg to the pile head of a concrete pile,
A cylindrical steel shell that is externally fitted to the base structure via an extension protruding from the outer plate of the base structure is attached to the base structure of the cylindrical leg in which a large number of slip prevention holes are formed in the outer plate. Attach the fixed unit
A cylindrical leg is arranged on the pile head via the joining unit, and a joining rebar protruding from the pile head is contained in the cylindrical steel shell,
Placing the joining concrete in the cylindrical steel shell to join the pile head and the cylindrical leg,
A joining method of pedestals in which the concrete for bonding is uniformly restrained by the cylindrical steel shell and shear force is transmitted from the base structure to the pile head via the detent hole.
接合ユニットの取り付け時に、円筒鋼殻を杭頭の頂部から下方に外嵌させる余入れ部を形成し、
せん断力が大きく負荷される部分のずれ止め孔にずれ止め部材を配置した
請求項6記載の脚柱の接合方法。
At the time of attaching the joining unit, an extra insertion part is formed to externally fit the cylindrical steel shell downward from the top of the pile head,
The joining method of the pedestal according to claim 6, wherein an anti-slip member is disposed in an anti-slip hole in a portion to which a large shear force is applied.
接合ユニットを杭頭に嵌合する時に、少なくとも余入れ部の高さ分の杭頭の外周部を削径して、杭頭を円筒鋼殻の内径より小さくする
請求項7記載の脚柱の接合方法。


The pedestal according to claim 7, wherein when the joining unit is fitted to the pile head, the outer circumference of the pile head at least the height of the extra portion is reduced to make the pile head smaller than the inner diameter of the cylindrical steel shell. Joining method.


JP2004292031A 2004-10-05 2004-10-05 Joint structure and joining method of pedestal Active JP4691690B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004292031A JP4691690B2 (en) 2004-10-05 2004-10-05 Joint structure and joining method of pedestal
PCT/JP2005/018357 WO2006038620A1 (en) 2004-10-05 2005-10-04 Joined part structure of pedestal and method of joining pedestal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292031A JP4691690B2 (en) 2004-10-05 2004-10-05 Joint structure and joining method of pedestal

Publications (2)

Publication Number Publication Date
JP2006104747A true JP2006104747A (en) 2006-04-20
JP4691690B2 JP4691690B2 (en) 2011-06-01

Family

ID=36142693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292031A Active JP4691690B2 (en) 2004-10-05 2004-10-05 Joint structure and joining method of pedestal

Country Status (2)

Country Link
JP (1) JP4691690B2 (en)
WO (1) WO2006038620A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297861A (en) * 2006-05-02 2007-11-15 Hitachi Zosen Corp Joint part structure of bridge pier with pile
JP2008045370A (en) * 2006-08-21 2008-02-28 Ihi Corp Method and device for anchoring steel bridge pier and pile
JP2010216075A (en) * 2009-03-13 2010-09-30 Daiwa House Industry Co Ltd Joint structure of reinforced concrete column and steel frame beam
CN102995572A (en) * 2012-12-03 2013-03-27 河海大学 Connecting method and device for bridge-lifted thin-wall hollow pier and original pier column
JP2013163967A (en) * 2013-04-10 2013-08-22 Ohbayashi Corp Junction structure of steel pipe and footing and steel pipe/concrete composite structural pier using the same
CN103452040A (en) * 2013-09-18 2013-12-18 中交公路长大桥建设国家工程研究中心有限公司 Bridge tower or bridge pier with lower portion of steel-concrete composite structure
JP2015028290A (en) * 2013-06-28 2015-02-12 清水建設株式会社 Joining structure of mutual columns and building
JP2015063889A (en) * 2013-08-29 2015-04-09 清水建設株式会社 Column jointed structure
JP6021993B1 (en) * 2015-05-08 2016-11-09 日立造船株式会社 Rigid connection structure of lower end of support and concrete pile
CN106836264A (en) * 2017-01-09 2017-06-13 国网山东省电力公司烟台供电公司 A kind of pole and tower foundation construction method
KR101827846B1 (en) * 2012-02-23 2018-02-09 히다치 조센 가부시키가이샤 Joint structure for steel bridge pier and concrete pile foundation
US10047485B2 (en) * 2015-09-18 2018-08-14 Honhai University Assembled type pier column member with steel-concrete composite structure
JP2020183640A (en) * 2019-05-07 2020-11-12 日本製鉄株式会社 Joint structure of pile head portion, and foundation structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831867B (en) * 2010-05-11 2011-05-04 天津市市政工程设计研究院 Steel-concrete combination section structure of steel main tower or steel main arch
KR101191742B1 (en) 2010-11-16 2012-10-15 재단법인 포항산업과학연구원 Steel plate for structure and column structure using it
CN105735113B (en) * 2016-04-20 2018-03-09 四川省交通运输厅公路规划勘察设计研究院 Pier stake transition connecting construction and its construction method for concrete filled steel tube bridge
CN108360370B (en) * 2018-05-11 2019-11-12 重庆大学 A kind of prefabricated steel tube confinement reinforced concrete bridge pier and cushion cap connecting node
CN108918233B (en) * 2018-09-25 2023-07-18 山东科技大学 Using method of column head reinforcement positioning device for mould bag concrete column bias test

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726568A (en) * 1993-07-09 1995-01-27 Kawasaki Steel Corp Jointing structure for steel frame column, pile and footing beam
JPH07247556A (en) * 1994-03-03 1995-09-26 Nippon Steel Corp Structure for fixing base of column in steel column member
JP2001220755A (en) * 2000-02-10 2001-08-17 Masanao Isozaki Column base fixing structure
JP2002188154A (en) * 2000-12-20 2002-07-05 Shimizu Corp Foundation structure for building and execution method for foundation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146303A (en) * 1992-11-11 1994-05-27 Kajima Corp Structural central-pillar
JP4129663B2 (en) * 1999-09-30 2008-08-06 清水建設株式会社 Building using ground improvement body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726568A (en) * 1993-07-09 1995-01-27 Kawasaki Steel Corp Jointing structure for steel frame column, pile and footing beam
JPH07247556A (en) * 1994-03-03 1995-09-26 Nippon Steel Corp Structure for fixing base of column in steel column member
JP2001220755A (en) * 2000-02-10 2001-08-17 Masanao Isozaki Column base fixing structure
JP2002188154A (en) * 2000-12-20 2002-07-05 Shimizu Corp Foundation structure for building and execution method for foundation

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297861A (en) * 2006-05-02 2007-11-15 Hitachi Zosen Corp Joint part structure of bridge pier with pile
JP2008045370A (en) * 2006-08-21 2008-02-28 Ihi Corp Method and device for anchoring steel bridge pier and pile
JP2010216075A (en) * 2009-03-13 2010-09-30 Daiwa House Industry Co Ltd Joint structure of reinforced concrete column and steel frame beam
KR101827846B1 (en) * 2012-02-23 2018-02-09 히다치 조센 가부시키가이샤 Joint structure for steel bridge pier and concrete pile foundation
KR101842642B1 (en) 2012-02-23 2018-03-27 히다치 조센 가부시키가이샤 Joint structure for steel bridge pier and concrete pile foundation
CN102995572A (en) * 2012-12-03 2013-03-27 河海大学 Connecting method and device for bridge-lifted thin-wall hollow pier and original pier column
CN102995572B (en) * 2012-12-03 2015-09-23 河海大学 The method of attachment of Thin-wall Hollow Pier and former pier stud and device thereof after bridge jacking
JP2013163967A (en) * 2013-04-10 2013-08-22 Ohbayashi Corp Junction structure of steel pipe and footing and steel pipe/concrete composite structural pier using the same
JP2015028290A (en) * 2013-06-28 2015-02-12 清水建設株式会社 Joining structure of mutual columns and building
JP2015063889A (en) * 2013-08-29 2015-04-09 清水建設株式会社 Column jointed structure
CN103452040A (en) * 2013-09-18 2013-12-18 中交公路长大桥建设国家工程研究中心有限公司 Bridge tower or bridge pier with lower portion of steel-concrete composite structure
CN103452040B (en) * 2013-09-18 2015-11-18 中交公路长大桥建设国家工程研究中心有限公司 A kind of bottom adopts bridge tower or the bridge pier of steel-concrete combined structure
JP6021993B1 (en) * 2015-05-08 2016-11-09 日立造船株式会社 Rigid connection structure of lower end of support and concrete pile
KR20170131604A (en) * 2015-05-08 2017-11-29 히다치 조센 가부시키가이샤 Rigid connection structure for bottom end of pillar and concrete pile
CN107532398A (en) * 2015-05-08 2018-01-02 日立造船株式会社 Lower rod end portion and the tectosome that is rigidly connected of concrete-pile
JP2016211215A (en) * 2015-05-08 2016-12-15 日立造船株式会社 Rigidly-joined structure of column lower end part and concrete pile
WO2016181669A1 (en) * 2015-05-08 2016-11-17 日立造船株式会社 Rigid connection structure for bottom end of pillar and concrete pile
KR102079692B1 (en) * 2015-05-08 2020-02-20 히다치 조센 가부시키가이샤 Rigid connection structure for bottom end of pillar and concrete pile
CN107532398B (en) * 2015-05-08 2020-08-07 日立造船株式会社 Rigid connection structure for lower end of support and concrete pile
US10047485B2 (en) * 2015-09-18 2018-08-14 Honhai University Assembled type pier column member with steel-concrete composite structure
CN106836264A (en) * 2017-01-09 2017-06-13 国网山东省电力公司烟台供电公司 A kind of pole and tower foundation construction method
JP2020183640A (en) * 2019-05-07 2020-11-12 日本製鉄株式会社 Joint structure of pile head portion, and foundation structure
JP7233295B2 (en) 2019-05-07 2023-03-06 日本製鉄株式会社 Pile head connection structure and foundation structure

Also Published As

Publication number Publication date
WO2006038620A1 (en) 2006-04-13
JP4691690B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4691690B2 (en) Joint structure and joining method of pedestal
JP4812324B2 (en) Retaining wall and its construction method
JP4739175B2 (en) Pier structure and pier construction method
JP3844743B2 (en) Box girder bridge structure and its construction method
JP2006132303A (en) Fixing structure of steel frame stud to reinforced concrete beam
JP2008025221A (en) Elevated structure constructed by jointing pier stud of pc structure and steel box girder together
JP4912030B2 (en) Junction structure between pier and pile
JP3700102B2 (en) Building basic structure
JP6543077B2 (en) Construction method of structure
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP2019127822A (en) Earth retaining structure and earth retaining method
JP2010261270A (en) Composite structure and method for constructing composite structure building
JP3671344B2 (en) Joint structure between foundation pile and column base and its construction method
JP2002256571A (en) Reconstructing method for building, using method for existing pile and building
JP2006063711A (en) Foundation reinforcing technique for existing structure with press-in of steel pipe pile
JP2009007818A (en) Joint structure of column and pile
JP4612422B2 (en) Construction method of structure and foundation structure used for it
JP2021076002A (en) Base structure, steel segment used for base structure, and construction method of base structure
JP2007218086A (en) Steel tower foundation structure
JPH108422A (en) Reinforcement structure of bridge pier
JP2006207306A (en) Frame body, and connection structure of frame body and pile
JP2005325603A (en) Construction method of foundation in inverted construction method and support structure of concrete foundation
JP4449595B2 (en) Column-beam joint structure, method for constructing column-beam joint structure, method for constructing underground structure, and building
JP2006194036A (en) Fixation structure of steel stud to reinforced concrete beam
JP2006169837A (en) Column-beam joint structure of reinforced concrete construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070626

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4691690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250