JP5399014B2 - Bonding structure of structural material and fixed end - Google Patents

Bonding structure of structural material and fixed end Download PDF

Info

Publication number
JP5399014B2
JP5399014B2 JP2008184954A JP2008184954A JP5399014B2 JP 5399014 B2 JP5399014 B2 JP 5399014B2 JP 2008184954 A JP2008184954 A JP 2008184954A JP 2008184954 A JP2008184954 A JP 2008184954A JP 5399014 B2 JP5399014 B2 JP 5399014B2
Authority
JP
Japan
Prior art keywords
groove
fixed end
column
structural material
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008184954A
Other languages
Japanese (ja)
Other versions
JP2010024659A (en
Inventor
久廣 平石
訓祥 杉本
秀尊 舟木
弘幸 都祭
大作 佐野
和則 時本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Penta Ocean Construction Co Ltd
Okumura Corp
Toda Corp
Urban Renaissance Agency
Original Assignee
Obayashi Corp
Penta Ocean Construction Co Ltd
Okumura Corp
Toda Corp
Urban Renaissance Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Penta Ocean Construction Co Ltd, Okumura Corp, Toda Corp, Urban Renaissance Agency filed Critical Obayashi Corp
Priority to JP2008184954A priority Critical patent/JP5399014B2/en
Publication of JP2010024659A publication Critical patent/JP2010024659A/en
Application granted granted Critical
Publication of JP5399014B2 publication Critical patent/JP5399014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構造材とこれが接合される固定端とを考慮に入れて、超高強度コンクリートの採用を前提とすることなく、圧壊の発生原因である曲げモーメントによる応力を、ヒンジが発生する箇所またはヒンジが発生する前にコンクリートの圧壊が顕著に生じ得る箇所に絞って効果的に低減することが可能な構造材と固定端の接合構造に関する。   The present invention takes into account the structural material and the fixed end to which it is joined, and does not assume the use of ultra-high-strength concrete, and places where the hinge generates stress due to bending moment that is the cause of crushing. Alternatively, the present invention relates to a joint structure between a structural member and a fixed end that can be effectively reduced by narrowing down to a portion where concrete collapse may occur significantly before the hinge is generated.

柱部材は、上方からの軸力を負担する構造材である。例えば、建築物一階のRC柱は、材端部である柱脚部が通常、一階の床スラブを含む基礎梁やフーチングなどの固定端に接合される。このRC柱が、上層階から高軸力を受けつつ、横方向の地震力を受けて変形が進むと、図8に示すように、固定端aと接合されたRC柱bの柱脚部c下端縁に、曲げモーメントに起因するヒンジが生じて、コンクリートの圧壊dが発生する。圧壊dが発生すると、RC柱bの曲げ耐力は急激に減少する。また、圧壊による断面欠損は、RC柱bの軸方向耐力を減少させる。   The column member is a structural material that bears an axial force from above. For example, in an RC column on the first floor of a building, a column base which is a material end is usually joined to a fixed end such as a foundation beam or a footing including a floor slab on the first floor. When this RC column receives a high axial force from the upper floor and undergoes a deformation due to a lateral seismic force, as shown in FIG. 8, the column base portion c of the RC column b joined to the fixed end a. A hinge due to a bending moment is generated at the lower end edge, and concrete crushing d occurs. When the crushing d occurs, the bending strength of the RC column b decreases rapidly. Moreover, the cross-sectional defect | deletion by crushing reduces the axial direction yield strength of RC pillar b.

この種の現象は、柱梁仕口部が固定端となる各階の柱部材の柱脚部でも、同様に起こり得る。柱部材については、この他にも、地震力で軸力が小さくなる、いわゆる引張側の柱であったり、コア壁で地震力を負担するようにした建築物の外周柱等にあっても、同様のことが言える。さらに、建築物最上階の柱部材の柱頭部とこれが接合される屋上スラブとの間でも、圧壊は生じ得る。   This kind of phenomenon can also occur in the column base portion of the column member on each floor where the column beam joint is a fixed end. For pillar members, in addition to this, the axial force is reduced by seismic force, so-called tension side pillars, even in outer peripheral pillars of buildings that are designed to bear seismic force on the core wall, etc. The same can be said. Furthermore, crushing can also occur between the column head of the column member on the top floor of the building and the roof slab to which it is joined.

また、柱部材以外で、上方からの軸力を負担する構造材として、杭部材や壁杭部材、壁部材がある。杭部材や壁杭部材では、材端部となる杭頭部が基礎梁やフーチングなどの固定端に接合される。壁部材では、上端部や下端部が梁や床スラブなどの固定端に接合される。これら柱部材以外の構造材であっても、上方からの軸力を受けつつ、横方向の地震力を受けると、曲げモーメントに起因するヒンジが材端部に生じて、コンクリートの圧壊が発生し得る。   In addition to the pillar member, there are a pile member, a wall pile member, and a wall member as a structural material that bears an axial force from above. In a pile member or a wall pile member, a pile head as a material end is joined to a fixed end such as a foundation beam or a footing. In a wall member, an upper end part and a lower end part are joined to fixed ends, such as a beam and a floor slab. Even with structural materials other than these pillar members, when receiving a lateral seismic force while receiving an axial force from above, hinges due to bending moments occur at the end of the material, causing concrete collapse. obtain.

この種の問題に対処すべく、コンクリート柱のみを対象とした技術として、特許文献1の「鉄筋コンクリート柱構造」や特許文献2の「プレキャストコンクリート部材」が知られている。   In order to deal with this type of problem, “reinforced concrete column structure” in Patent Document 1 and “precast concrete member” in Patent Document 2 are known as techniques targeting only concrete columns.

特許文献1は、地震時のかぶりコンクリートの圧壊、剥離を防止するとともに材料費を低減することを目的として、柱の下端部のかぶりコンクリートと、その他の部分のコンクリートとが異なる配合のコンクリートで形成されている鉄筋コンクリート柱構造であって、前記下端部のかぶりコンクリートは、超高強度高靭性コンクリート製のプレキャスト筒体で形成されており、前記その他の部分のコンクリートは、超高強度コンクリートで形成されているものである。   Patent Document 1 is formed of concrete with a different mix of cover concrete at the lower end of the column and concrete at other parts for the purpose of preventing crushing and peeling of the cover concrete during an earthquake and reducing material costs. The cover concrete at the lower end is formed of a precast cylinder made of ultra-high strength and high-toughness concrete, and the other parts of concrete are formed of ultra-high-strength concrete. It is what.

特許文献2は、耐震性および耐久性に優れ、経済的で工期を短縮することができる高強度・高靭性・高耐久性のプレキャストコンクリート柱として使用することを目的として、超高強度コンクリートまたは超高強度モルタルで中空の外殻体を形成し、該外殻体の中空部を必要な耐震性能に応じた形状にし、大きな応力が作用する箇所を厚肉にし、小さな応力が作用する箇所を薄肉にするものである。
特開2005−146601号公報 特開2006−233548号公報
Patent Document 2 is intended to be used as a high-strength, high-toughness, high-durability precast concrete column that is excellent in earthquake resistance and durability, and is economical and can shorten the construction period. A hollow shell is formed with high-strength mortar, the hollow part of the shell is shaped according to the required seismic performance, the part where large stress is applied is thick, and the part where small stress is applied is thin. It is to make.
JP 2005-146601 A JP 2006-233548 A

これら特許文献では、構造材単体で、圧壊を防止したり、靭性や耐久性の向上を狙って対策を施したものであって、構造材が接合される相手である固定端まで考慮したものではなく、得られる構造性能に限界があるという課題があった。また、これら特許文献は、超高強度コンクリートを採用することを前提としていて、材料費が嵩んでしまうという課題があった。   In these patent documents, the structural material alone is used to prevent crushing or to take measures to improve toughness and durability, and it does not consider the fixed end to which the structural material is joined. However, there was a problem that the obtained structural performance was limited. Moreover, these patent documents are based on the premise that ultra-high strength concrete is adopted, and there is a problem that material costs increase.

本発明は上記従来の課題に鑑みて創案されたものであって、構造材とこれが接合される固定端とを考慮に入れて、超高強度コンクリートの採用を前提とすることなく、圧壊の発生原因である曲げモーメントによる応力を、ヒンジが発生する箇所またはヒンジが発生する前にコンクリートの圧壊が顕著に生じ得る箇所に絞って効果的に低減することが可能な構造材と固定端の接合構造を提供することを目的とする。   The present invention was devised in view of the above-mentioned conventional problems, taking into consideration the structural material and the fixed end to which it is joined, without causing the use of ultra-high-strength concrete, and the occurrence of crushing Bonding structure between structural material and fixed end that can effectively reduce the stress caused by the bending moment by focusing on the location where the hinge occurs or the location where concrete collapse can occur significantly before the hinge occurs The purpose is to provide.

本発明にかかる構造材と固定端の接合構造は、構造材の材端部と接合される固定端に、該構造材の材端部の外回りに沿って溝を形成し、該溝は、上記固定端を区分けしてその内側に、上記構造材の材端部を取り囲む材端部周辺部を形成し、該材端部周辺部の変形を許容して当該構造材と該固定端との間に生じる応力の一部を解放することを特徴とする。 The joint structure of the structural material and the fixed end according to the present invention is such that a groove is formed along the outer periphery of the material end portion of the structural material at the fixed end joined to the material end portion of the structural material. A fixed end is divided, and a material end peripheral portion surrounding the material end portion of the structural material is formed inside the fixed end, and deformation of the material end peripheral portion is allowed to be allowed between the structural material and the fixed end. It is characterized in that a part of the stress generated in is released .

前記溝には、前記固定端よりも低圧縮強度の充填材が充填されることを特徴とする。   The groove is filled with a filler having a compressive strength lower than that of the fixed end.

前記溝には、前記固定端よりも低剛性の充填材が充填されることを特徴とする。   The groove is filled with a filler having a rigidity lower than that of the fixed end.

本発明にかかる構造材と固定端の接合構造にあっては、構造材とこれが接合される固定端とを考慮に入れて、超高強度コンクリートの採用を前提とすることなく、圧壊の発生原因である曲げモーメントによる応力を、ヒンジが発生する箇所またはヒンジが発生する前にコンクリートの圧壊が顕著に生じ得る箇所に絞って効果的に低減することができる。詳細には、曲げモーメントに起因するヒンジ発生により、圧縮側の構造材の材端部が材端部周辺部にめり込む挙動を呈すると、構造材材端部と固定端の接合境界で応力が増加し、これに伴って溝よりも内側の材端部周辺部の応力も増加する。材端部周辺部は溝に面しているため、増加した応力に応じた膨らむ変形が生じる。すなわち、溝は、材端部周辺部の膨らむ変形を許容する。材端部周辺部の膨らむ変形を許容できることにより、構造材材端部と固定端の接合境界、ひいては構造材材端部で増加する曲げモーメントに起因する応力を部分的に解放することができる。
In the joining structure of the structural material and the fixed end according to the present invention, taking into account the structural material and the fixed end to which the structural material is joined, without causing the use of ultra-high-strength concrete, the cause of the occurrence of crushing It is possible to effectively reduce the stress caused by the bending moment by focusing on a portion where the hinge is generated or a portion where the concrete collapse may occur significantly before the hinge is generated. Specifically, when the end of the structural material on the compression side sinks into the periphery of the end of the material due to the occurrence of a hinge caused by a bending moment, the stress increases at the boundary between the end of the structural material and the fixed end. As a result, the stress at the periphery of the material end inside the groove also increases. Since the peripheral portion of the material end faces the groove, a deformation that swells according to the increased stress occurs. That is, the groove allows the deformation of the peripheral portion of the material end to swell. By allowing the bulging deformation of the peripheral portion of the material end portion, it is possible to partially release the stress caused by the bending boundary that increases at the boundary between the structural material end portion and the fixed end, and hence the structural material end portion.

以下に、本発明にかかる構造材と固定端の接合構造の好適な実施形態を、添付図面を参照して詳細に説明する。図1および図2には、本発明にかかる構造材と固定端の接合構造の第1実施形態が示されている。第1実施形態にあっては、上方から軸力を受ける構造材として、上層階からの荷重を負担する建築物1階のRC柱1を例示して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a structure for joining a structural member and a fixed end according to the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 show a first embodiment of a structure for joining a structural member and a fixed end according to the present invention. In the first embodiment, the RC pillar 1 on the first floor of the building that bears the load from the upper floor will be described as an example of the structural material that receives the axial force from above.

RC柱1自体の構造は従来周知のものであって、柱コンクリート2の内部に、柱の周方向に間隔を隔てて配筋した柱主筋3と、これら柱主筋3を取り囲んで柱の高さ方向に間隔を隔てて配筋したフープ筋4とを埋設して形成される。コンクリート材料としては、普通コンクリートでも、高強度・超高強度コンクリートであってもよく、また補強材として鋼繊維やカーボン繊維、樹脂繊維等を混入したものであってもよい。また、RC柱1は、中空外殻プレキャストコンクリート柱部材に中詰めコンクリートを充填したものであっても、中実プレキャストコンクリートであっても、コンクリートを現場打ちして構築されるものであってもよい。   The structure of the RC column 1 itself is well known in the art, and the column main reinforcement 3 arranged in the column concrete 2 at intervals in the circumferential direction of the column, and the height of the column surrounding the column main reinforcement 3 It is formed by burying hoop muscles 4 arranged at intervals in the direction. The concrete material may be ordinary concrete, high-strength / ultra-high-strength concrete, or steel fiber, carbon fiber, resin fiber or the like mixed as a reinforcing material. Further, the RC pillar 1 may be a hollow shell precast concrete pillar member filled with filling concrete, solid precast concrete, or built by casting concrete on-site. Good.

図示にあっては、RC柱1の材軸端部である柱脚部1a周辺が示されている。建築物1階のRC柱1の柱脚部1a周辺には、縦横に配設される基礎梁5の交差部に、杭部材6上に位置させてフーチング7が設けられる。基礎梁5上には、建築物1階の床スラブ8が敷設される。これら基礎梁5や杭部材6、フーチング7、床スラブ8はRC構造で構築される。床スラブ8上には、基礎梁5と結合しつつフーチング7上に立ち上げて、RC柱1が設けられる。RC柱1の材軸端部である柱脚部1aは、床スラブ8を含む基礎梁5を固定端として接合してもよいし、フーチング7を固定端として接合してもよい。本実施形態にあっては、床スラブ8を含む基礎梁5を固定端としている。   In the figure, the periphery of the column base 1a which is the material shaft end of the RC column 1 is shown. In the vicinity of the column base 1a of the RC column 1 on the first floor of the building, a footing 7 is provided on the pile member 6 at the intersection of the foundation beams 5 arranged vertically and horizontally. A floor slab 8 on the first floor of the building is laid on the foundation beam 5. The foundation beam 5, the pile member 6, the footing 7, and the floor slab 8 are constructed with an RC structure. On the floor slab 8, the RC pillar 1 is provided by being raised on the footing 7 while being coupled to the foundation beam 5. The column base 1a which is the material shaft end of the RC column 1 may be joined using the foundation beam 5 including the floor slab 8 as a fixed end, or may be joined using the footing 7 as a fixed end. In the present embodiment, the foundation beam 5 including the floor slab 8 is a fixed end.

固定端となる床スラブ8の上面には、RC柱1の柱脚部1aの外周縁に沿って、RC柱1と床スラブ8との間に生じる応力の一部を解放するための応力緩和部として、溝9が形成される。柱脚部1aの外周縁は具体的には、床スラブ8上面に現れる柱脚部1aとの接合境界B(図3参照)である。溝9は、柱脚部1aの外回り、詳細には接合境界Bよりも外側に、当該接合境界Bに沿って配置される。   On the upper surface of the floor slab 8 serving as a fixed end, along the outer peripheral edge of the column base 1a of the RC column 1, stress relaxation for releasing a part of the stress generated between the RC column 1 and the floor slab 8 is provided. As a part, a groove 9 is formed. Specifically, the outer peripheral edge of the column base 1a is a junction boundary B (see FIG. 3) with the column base 1a that appears on the upper surface of the floor slab 8. The groove 9 is arranged along the joint boundary B around the column base 1a, specifically, outside the joint boundary B.

溝9は、これにより床スラブ8上面を区分けしてその内側に、柱脚部1aを取り囲む床スラブ8の柱脚部周辺部8aを形成する(図3参照)。そして溝9は、軸力を負担しつつ横方向の地震力を受けることでRC柱1に発生する曲げモーメントに起因するヒンジが柱脚部周辺部8aに生じた際に、このヒンジ発生によって柱脚部周辺部8aがRC柱1で押圧されて僅かながら膨れる変形D(図3参照)を許容し、これによりRC柱1と床スラブ8との間で発生する応力の一部を解放する空隙となる。柱脚部周辺部8aが膨れる変形量は、応力解析により推定可能である。   The groove 9 thereby divides the upper surface of the floor slab 8 and forms the column base portion peripheral portion 8a of the floor slab 8 surrounding the column base portion 1a (see FIG. 3). The groove 9 is formed by the occurrence of a hinge when a hinge caused by a bending moment generated in the RC column 1 by receiving a seismic force in the lateral direction while bearing an axial force is generated in the column base portion 8a. The space | gap which accept | permits the deformation | transformation D (refer FIG. 3) which a leg part peripheral part 8a presses with the RC pillar 1 and expands slightly, and thereby releases one part of the stress which generate | occur | produces between the RC pillar 1 and the floor slab 8 It becomes. The amount of deformation in which the column base portion peripheral portion 8a swells can be estimated by stress analysis.

溝9の内回りの内径寸法は、柱脚部周辺部8aに発生する膨れる変形Dを、溝9内方へ向けて生じさせ、これにより応力をスムーズに解放するために、柱脚部1aの外径寸法よりも僅かに大きく設定される。溝9の深さ寸法は、膨らむ変形Dを許容できる適宜深さに設定される。溝9の外径寸法は、内径寸法との関係で溝幅を決定するもので、柱脚部周辺部8aの膨れる変形Dを妨げず、床スラブ8の必要強度を損なわずかつRC柱1回りへの接近を過度に妨げないように、適宜に設定される。溝9の形成については、高い寸法精度が得られるように、型枠などを用いて予め床スラブ8に形成しておくことが好ましいが、RC柱1設置後に斫るなどして形成してもよい。また、柱脚部周辺部8aには、鉄筋などの補強材は配筋されない。   The inner diameter dimension of the inner periphery of the groove 9 causes the swelling deformation D generated in the column base peripheral portion 8a to be generated toward the inside of the groove 9, and thereby the stress is smoothly released. It is set slightly larger than the diameter dimension. The depth dimension of the groove 9 is set to an appropriate depth that allows the deformation D to expand. The outer diameter dimension of the groove 9 determines the groove width in relation to the inner diameter dimension, does not hinder the swelling D of the column leg peripheral portion 8a, does not impair the required strength of the floor slab 8, and is around the RC column 1. It is set as appropriate so as not to hinder the approach to. The groove 9 is preferably formed in advance on the floor slab 8 using a mold or the like so as to obtain high dimensional accuracy, but may be formed by rolling after the RC pillar 1 is installed. Good. Further, reinforcing materials such as reinforcing bars are not arranged in the column base portion peripheral portion 8a.

溝9は、本実施形態にあっては図2に示すように、床スラブ8上面位置におけるRC柱1の平断面外形輪郭に沿って、当該RC柱1の全周に亘り環状に連続して形成される。図示例にあっては、RC柱1の平断面外形輪郭が四角形状であるので、溝9も四角形状に形成されている。RC柱1の平断面外形輪郭が円形状あるいは多角形状である場合には、溝9も円形状もしくは多角形状に形成される。   In the present embodiment, as shown in FIG. 2, the groove 9 continues in an annular shape over the entire circumference of the RC column 1 along the flat cross-sectional outline of the RC column 1 at the upper surface position of the floor slab 8. It is formed. In the illustrated example, the RC pillar 1 has a rectangular cross-sectional outline, and therefore the groove 9 is also formed in a square shape. When the outer cross-sectional outline of the RC pillar 1 is circular or polygonal, the groove 9 is also formed in a circular or polygonal shape.

本実施形態にあっては、溝9は単一の連続する環状に形成されているが、RC柱1の回りに断続的に形成される複数の溝9であってもよい。溝9が断続的に形成される場合には、連続的に形成する場合に比べて、溝9を分断する箇所により、柱脚部1a回りが補強される。   In the present embodiment, the groove 9 is formed in a single continuous annular shape, but may be a plurality of grooves 9 formed intermittently around the RC pillar 1. When the groove 9 is intermittently formed, the periphery of the column base portion 1a is reinforced by the portion where the groove 9 is divided, as compared with the case where the groove 9 is formed continuously.

床スラブ8の強度は、応力の一部が溝9によって解放されたRC柱1に残る応力によって当該RC柱1に圧壊が生じない強度に設定される。   The strength of the floor slab 8 is set to such a strength that the RC column 1 is not crushed by the stress remaining in the RC column 1 in which a part of the stress is released by the groove 9.

次に、本実施形態にかかる構造材と固定端の接合構造の作用について説明する。図3(a)に示すように、通常時は、上層階から加わる軸力は、建築物1階のRC柱1からそのまま直下の杭部材6へ向かって流れて、地盤で支持される。従って、この通常時には、床スラブ8に形成した応力緩和部としての溝9が機能することはなく、一般的な建築物と同様である。   Next, the effect | action of the joining structure of the structural material concerning this embodiment and a fixed end is demonstrated. As shown in FIG. 3A, in the normal state, the axial force applied from the upper floor flows from the RC pillar 1 on the first floor of the building as it is toward the pile member 6 directly below, and is supported by the ground. Therefore, at this normal time, the groove 9 as the stress relaxation portion formed in the floor slab 8 does not function and is the same as a general building.

他方、図3(b)に示すように、軸力を負担している状態で横方向の地震力を受けると、RC柱1の柱脚部1aには、曲げモーメントに起因するヒンジが生じる。このヒンジ発生により、圧縮側の柱脚部1aが柱脚部周辺部8aにめり込む挙動を呈すると、柱脚部1aと床スラブ8の接合境界Bで応力が増加し、これに伴って溝9よりも内側の柱脚部周辺部8aの応力も増加する。柱脚部周辺部8aは空隙である溝9に面しているため、増加した応力に応じた膨らむ変形Dが生じる。すなわち、溝9は、柱脚部周辺部8aの膨らむ変形Dを許容する。   On the other hand, as shown in FIG. 3 (b), when a lateral seismic force is received while bearing an axial force, a hinge due to a bending moment is generated in the column base 1 a of the RC column 1. When this compression occurs, the compression-side column base part 1a exhibits a behavior of sinking into the column base part peripheral part 8a, so that stress increases at the joint boundary B between the column base part 1a and the floor slab 8, and accordingly, the groove 9 Further, the stress of the inner column base portion 8a also increases. Since the column base portion peripheral portion 8a faces the groove 9 which is a gap, a swelling deformation D corresponding to the increased stress occurs. That is, the groove 9 allows the deformation D that the column base portion peripheral portion 8a swells.

このように、溝9によって柱脚部周辺部8aの膨らむ変形Dを許容できることにより、柱脚部1aと床スラブ8の接合境界B、ひいてはRC柱1の柱脚部1aで増加する曲げモーメントに起因する応力を部分的に解放することができる。膨れる変形Dを呈する床スラブ8側の柱脚部周辺部8aは、弾性域もしくは塑性域での変形により、応力をスムーズに解放することができる。   In this way, by allowing the groove 9 to allow the deformation D in which the column base portion peripheral portion 8a swells to be allowed to occur, the bending boundary increases at the junction boundary B of the column base portion 1a and the floor slab 8, and consequently the column base portion 1a of the RC column 1. The resulting stress can be partially released. The column base portion peripheral portion 8a on the floor slab 8 side exhibiting the swelling deformation D can release stress smoothly by deformation in the elastic region or plastic region.

そして、柱脚部1aで増加する応力を部分的に解放することができるので、図4に示すように、溝がない場合と対比して、RC柱1の水平変位が進行しても、RC柱1の曲げ耐力を維持することができ、当該柱脚部1aでの圧壊発生を遅延させたり、圧壊発生を防止することができる。これにより、RC柱1の曲げ耐力をより長く維持することができる。また圧壊発生を防止できるので、RC柱1に断面欠損が生じることもなく、RC柱1の軸方向耐力も維持することができる。   And since the stress which increases in the column base part 1a can be partially released, even if the horizontal displacement of the RC column 1 proceeds as shown in FIG. The bending strength of the column 1 can be maintained, and the occurrence of crushing at the column base 1a can be delayed or the occurrence of crushing can be prevented. Thereby, the bending strength of RC pillar 1 can be maintained longer. In addition, since the occurrence of crushing can be prevented, the RC pillar 1 can be maintained in the axial direction yield strength without causing a cross-sectional defect.

以上説明したように、本実施形態にかかる構造材と固定端の接合構造にあっては、RC柱1とこれが接合される床スラブ8とを考慮に入れて、背景技術で述べられているような超高強度コンクリートの採用を前提とすることなく、圧壊の発生原因である曲げモーメントによる応力を、ヒンジが発生する箇所またはヒンジが発生する前にコンクリートの圧壊が顕著に生じ得る箇所に絞って効果的に低減することができる。   As described above, in the joint structure of the structural material and the fixed end according to the present embodiment, it is described in the background art in consideration of the RC pillar 1 and the floor slab 8 to which the RC pillar 1 is joined. Without stressing the use of ultra-high-strength concrete, the stress due to the bending moment, which is the cause of crushing, is limited to the location where the hinge occurs or where the concrete can be significantly collapsed before the hinge occurs It can be effectively reduced.

溝9を、RC柱1の外回りに沿って配置するようにしたので、RC柱1回りのいかなる方向にヒンジが発生しても、圧壊発生を防止することができる。溝9を断続的に複数形成した場合には、連続的に形成する場合に比べて、溝9を分断する箇所によって、柱脚部1a回りを補強することができる。   Since the groove 9 is arranged along the outer periphery of the RC column 1, the occurrence of crushing can be prevented even if the hinge is generated in any direction around the RC column 1. When a plurality of grooves 9 are intermittently formed, the periphery of the column base portion 1a can be reinforced by a portion where the grooves 9 are divided, as compared with a case where the grooves 9 are formed continuously.

上記実施形態にあっては、床スラブ8を含む基礎梁5を固定端とした場合について説明したが、フーチング7を固定端とした場合であっても、同様に溝9を形成することで、同様の作用効果を得ることができる。   In the above embodiment, the case where the foundation beam 5 including the floor slab 8 is used as the fixed end has been described, but even if the footing 7 is used as the fixed end, the groove 9 is formed in the same manner, Similar effects can be obtained.

図5には、上記実施形態の変形例が示されている。上記実施形態では、空隙を形成する溝9について説明したが、溝9には、固定端となる床スラブ8やフーチング7の圧縮強度よりも低圧縮強度あるいは低剛性の充填材10を充填してもよい。低圧縮強度の充填材10としては例えば、固定端に用いられるものよりも強度が低いモルタルや木材などがある。低剛性の充填材10としては例えば、発泡ポリエチレンや塩ビ製中空パイプなどがある。   FIG. 5 shows a modification of the above embodiment. In the above embodiment, the groove 9 that forms a gap has been described. However, the groove 9 is filled with a filler 10 having a compressive strength or rigidity that is lower than the compressive strength of the floor slab 8 or the footing 7 serving as a fixed end. Also good. Examples of the low compressive strength filler 10 include mortar and wood whose strength is lower than that used for the fixed end. Examples of the low-rigidity filler 10 include foamed polyethylene and PVC hollow pipe.

これら充填材10を溝9に充填すれば、柱脚部周辺部8aで増加する応力の一部をこれら充填材10で負担させることができ、溝9を空隙のままとする場合に比べて、膨れる変形Dを生じる柱脚部周辺部8aの構造健全性を向上することができる。また、溝9を充填材10で埋めることにより、RC柱1へ自由に接近することができる。   If these fillers 10 are filled in the grooves 9, a part of the stress that increases in the column base portion peripheral portion 8a can be borne by these fillers 10, and compared with the case where the grooves 9 are left as gaps, It is possible to improve the structural integrity of the column base portion peripheral portion 8a that causes the swelling deformation D. Further, by filling the groove 9 with the filler 10, the RC pillar 1 can be freely approached.

図6および図7には、本発明にかかる構造材と固定端の接合構造の第2実施形態が示されている。第2実施形態にあっては、上方から軸力を受ける構造材として、杭部材6が示されている。杭部材6としては、既製杭や場所打ち杭など、従来周知のどのような構造形式・施工形式のものであってもよい。   6 and 7 show a second embodiment of the structure for joining a structural member and a fixed end according to the present invention. In 2nd Embodiment, the pile member 6 is shown as a structural material which receives axial force from upper direction. The pile member 6 may be of any conventionally known structure type / construction type, such as a ready-made pile or a cast-in-place pile.

図示にあっては、杭部材6の材軸端部である杭頭部6a周辺が示されている。杭頭部6a上には、基礎梁5と連結されたフーチング7が接合されていて、このフーチング7を杭部材6の固定端としている。固定端であるフーチング7の下面には、杭部材6の杭頭部6aの外周縁に沿って、杭部材6とフーチング7との間に生じる応力の一部を解放するための応力緩和部として、第1実施形態と同様の溝9が形成される。   In the drawing, the periphery of a pile head 6a that is a material shaft end portion of the pile member 6 is shown. A footing 7 connected to the foundation beam 5 is joined on the pile head 6 a, and the footing 7 serves as a fixed end of the pile member 6. On the lower surface of the footing 7 that is a fixed end, as a stress relaxation part for releasing a part of the stress generated between the pile member 6 and the footing 7 along the outer peripheral edge of the pile head 6a of the pile member 6 A groove 9 similar to that of the first embodiment is formed.

杭頭部6aの外周縁は具体的には、フーチング7下面に現れる杭頭部6aとの接合境界Cである。溝9は、杭頭部6aの外回り、詳細には接合境界Cよりも外側に、当該接合境界Cに沿って配置される。   Specifically, the outer peripheral edge of the pile head 6a is a joint boundary C with the pile head 6a that appears on the lower surface of the footing 7. The groove 9 is arranged along the joint boundary C, around the pile head 6a, specifically outside the joint boundary C.

溝9は、これによりフーチング7下面を区分けしてその内側に、杭頭部6aを取り囲むフーチング7の杭頭部周辺部7aを形成する。そして溝9は、軸力を負担しつつ横方向の地震力を受けることで杭部材6に発生する曲げモーメントに起因するヒンジが杭頭部周辺部7aに生じた際に、このヒンジ発生によって杭頭部周辺部7aが杭部材6から押圧されて僅かながら膨れる変形を許容し、これにより杭部材6とフーチング7との間で発生する応力の一部を解放する空隙となる。杭頭部周辺部7aが膨れる変形量は、応力解析により推定可能である。   The groove 9 forms a pile head peripheral portion 7a of the footing 7 surrounding the pile head 6a by dividing the lower surface of the footing 7 thereby. When the hinge 9 is generated in the peripheral portion 7a of the pile head due to the bending moment generated in the pile member 6 by receiving the lateral seismic force while bearing the axial force, The head peripheral portion 7 a is allowed to deform slightly swelled by being pressed from the pile member 6, thereby forming a space for releasing a part of the stress generated between the pile member 6 and the footing 7. The amount of deformation that the pile head peripheral portion 7a swells can be estimated by stress analysis.

溝9に設定される寸法は、上記第1実施形態と同様である。すなわち、溝9の内径寸法は、杭頭部周辺部7aに発生する膨れる変形を、溝9内方へ向けて生じさせ、これにより応力をスムーズに解放するために、杭頭部6aの外径寸法よりも僅かに大きく設定される。溝9の深さ寸法は、膨らむ変形を許容できる適宜深さに設定される。溝9の外径寸法は、内径寸法との関係で溝幅を決定するもので、杭頭部周辺部7aの膨れる変形を妨げず、フーチング7の必要強度を損なわないように、適宜に設定される。   The dimensions set in the groove 9 are the same as those in the first embodiment. In other words, the inner diameter dimension of the groove 9 is such that the swelling deformation generated in the pile head peripheral portion 7a is generated toward the inside of the groove 9, and thereby the stress is smoothly released, thereby the outer diameter of the pile head 6a. It is set slightly larger than the dimensions. The depth dimension of the groove 9 is set to an appropriate depth that allows the swelling deformation. The outer diameter dimension of the groove 9 determines the groove width in relation to the inner diameter dimension, and is appropriately set so as not to hinder the swelling deformation of the pile head peripheral portion 7a and not to impair the required strength of the footing 7. The

溝9は、本実施形態にあっては図7に示すように、フーチング7下面位置における杭部材6の平断面外形輪郭に沿って、当該杭部材6の全周に亘り環状に連続して形成される。図示例にあっては、杭部材6の平断面外形輪郭が円形状であるので、溝9も円形状に形成されている。   In this embodiment, as shown in FIG. 7, the groove 9 is continuously formed in an annular shape over the entire circumference of the pile member 6 along the flat cross-sectional outline of the pile member 6 at the bottom surface position of the footing 7. Is done. In the example of illustration, since the cross-sectional outline outline of the pile member 6 is circular, the groove 9 is also formed in a circular shape.

本実施形態にあっては、溝9は単一の連続する環状に形成されているが、杭部材6の回りに断続的に形成される複数の溝9であってもよい。溝9が断続的に形成される場合には、杭頭部6a回りが補強される。   In the present embodiment, the groove 9 is formed in a single continuous annular shape, but may be a plurality of grooves 9 formed intermittently around the pile member 6. When the groove 9 is formed intermittently, the periphery of the pile head 6a is reinforced.

フーチング7の強度は、応力の一部が溝9によって解放された杭部材6に残る応力によって当該杭部材6に圧壊が生じない強度に設定される。   The strength of the footing 7 is set to such a strength that the pile member 6 is not crushed by the stress remaining in the pile member 6 in which a part of the stress is released by the groove 9.

第2実施形態にかかる構造材と固定端の接合構造の作用は、上記第1実施形態と同様であって、溝9によって杭頭部周辺部7aの膨らむ変形を許容できることにより、杭頭部6aとフーチング7の接合境界C、ひいては杭部材6の杭頭部6aで増加する曲げモーメントに起因する応力を部分的に解放することができ、杭頭部6aでの圧壊発生を遅延させたり、圧壊発生を防止することができる。また圧壊発生を防止できるので、杭部材6に断面欠損が生じることもなく、杭部材6の軸方向耐力も維持することができる。   The effect | action of the joining structure of the structural material concerning 2nd Embodiment and a fixed end is the same as that of the said 1st Embodiment, By allowing the deformation | transformation which the pile head periphery part 7a swells by the groove | channel 9, the pile head 6a The stress caused by the bending moment increasing at the joint boundary C of the footing 7 and the pile head 6a of the pile member 6 can be partially released, and the occurrence of the collapse at the pile head 6a can be delayed or collapsed. Occurrence can be prevented. Moreover, since crushing generation | occurrence | production can be prevented, a cross-sectional defect | deletion does not arise in the pile member 6, but the axial direction yield strength of the pile member 6 can also be maintained.

第2実施形態にあっても、溝9には、フーチング7よりも低圧縮強度もしくは低剛性の充填材10を充填して構成することができ、これにより上記変形例と同様の作用効果を得ることができる。   Even in the second embodiment, the groove 9 can be configured by being filled with a filler 10 having a lower compressive strength or rigidity than the footing 7, thereby obtaining the same effects as the above-described modification. be able to.

以上の実施形態にあっては、構造材として、建築物1階のRC柱1および杭部材6を例示して説明したが、各階の柱部材の場合には柱梁仕口部回りに、建築物最上階の柱部材の柱頭部と屋上スラブとの間では屋上スラブに、溝9を形成すればよい。また柱部材の材軸端部を固定端に接合する箇所であれば、いわゆる引張側の柱や、コア壁で地震力を負担するようにした建築物の外周柱等にあっても、溝9によって有効に応力を解放して、建築物の健全性を向上することができる。   In the above embodiment, the RC pillar 1 and the pile member 6 on the first floor of the building have been illustrated and described as the structural material. However, in the case of the pillar member on each floor, What is necessary is just to form the groove | channel 9 in a roof slab between the pillar head of the pillar member of a thing top floor, and a roof slab. In addition, if it is a place where the material shaft end portion of the column member is joined to the fixed end, the groove 9 can be provided even on a so-called tension-side column, an outer peripheral column of a building that bears a seismic force on the core wall, etc. By effectively releasing stress, the soundness of the building can be improved.

例えば節付きの壁杭など、壁杭部材の場合には、材軸端部が接合される基礎梁5やフーチング7などの固定端に、当該壁杭部材の表裏に沿って溝9を形成すればよい。壁部材であっても、上端部や下端部が接合される梁や床スラブに、当該壁部材の表裏に沿って溝9を形成すればよい。これらいずれの例にあっても、上記実施形態と同様に、構造材と固定端との間に生じる応力の一部を溝9で解放することができ、圧壊など損傷発生を効果的に防止することができる。   For example, in the case of a wall pile member such as a wall pile with a knot, a groove 9 is formed along the front and back of the wall pile member at a fixed end such as a foundation beam 5 or a footing 7 to which the end portions of the material shaft are joined. That's fine. Even if it is a wall member, the groove | channel 9 should just be formed in the beam and floor slab to which an upper end part and a lower end part are joined along the front and back of the said wall member. In any of these examples, as in the above-described embodiment, a part of the stress generated between the structural material and the fixed end can be released by the groove 9, and the occurrence of damage such as crushing is effectively prevented. be able to.

さらに、上記実施形態にあっては、構造材としてRC造の部材を例示して説明したが、SRC造の部材であってもよい。またさらに、S造の構造材であっても、露出された材軸端部の固定端への接合箇所で発生する曲げモーメントに対して、溝9で応力の一部を解放することができて、その損傷を防止することができる。   Furthermore, in the said embodiment, although the member made from RC was illustrated and demonstrated as a structural material, the member made from SRC may be sufficient. Furthermore, even in the case of the S-structured material, a part of the stress can be released by the groove 9 against the bending moment generated at the joint portion of the exposed material shaft end to the fixed end. Can prevent its damage.

本発明にかかる構造材と固定端の接合構造の第1実施形態を示すRC柱の柱脚部周辺の概略正面断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic front cross-sectional view of a periphery of a column base portion of an RC column showing a first embodiment of a joint structure between a structural member and a fixed end according to the present invention. 図1に示したRC柱の柱脚部周辺の概略平面図である。It is a schematic plan view of the column base part periphery of RC pillar shown in FIG. 図1に示したRC柱の柱脚部周辺における応力緩和作用を説明するための説明図である。It is explanatory drawing for demonstrating the stress relaxation effect | action in the column base part periphery of RC pillar shown in FIG. 本発明にかかる構造材と固定端の接合構造による曲げ耐力と水平変位の関係を示すグラフ図である。It is a graph which shows the relationship between the bending strength by the joining structure of the structural material concerning this invention, and a fixed end, and a horizontal displacement. 第1実施形態の変形例を説明する説明図である。It is explanatory drawing explaining the modification of 1st Embodiment. 本発明にかかる構造材と固定端の接合構造の第2実施形態を示す杭部材の杭頭部周辺の概略正面断面図である。It is a schematic front sectional drawing of the pile head periphery of the pile member which shows 2nd Embodiment of the joining structure of the structural material concerning this invention, and a fixed end. 図6に示した杭部材の杭頭部周辺をフーチング下から見上げた概略見上げ図である。It is the schematic look-up figure which looked up the pile head periphery of the pile member shown in FIG. 6 from the footing bottom. 背景技術における課題を説明するための説明図である。It is explanatory drawing for demonstrating the subject in background art.

符号の説明Explanation of symbols

1 RC柱
1a 柱脚部
6 杭部材
6a 杭頭部
7 フーチング
8 床スラブ
9 溝
10 充填材
1 RC column 1a Column base 6 Pile member 6a Pile head 7 Footing 8 Floor slab 9 Groove 10 Filler

Claims (3)

構造材の材端部と接合される固定端に、該構造材の材端部の外回りに沿って溝を形成し、該溝は、上記固定端を区分けしてその内側に、上記構造材の材端部を取り囲む材端部周辺部を形成し、該材端部周辺部の変形を許容して当該構造材と該固定端との間に生じる応力の一部を解放することを特徴とする構造材と固定端の接合構造。 A groove is formed in the fixed end to be joined to the material end of the structural material along the outer circumference of the material end of the structural material . The groove divides the fixed end and has an inner portion of the structural material. Forming a material end peripheral portion surrounding the material end portion, allowing deformation of the material end peripheral portion and releasing a part of the stress generated between the structural material and the fixed end Bonding structure between structural material and fixed end. 前記溝には、前記固定端よりも低圧縮強度の充填材が充填されることを特徴とする請求項1に記載の構造材と固定端の接合構造。 2. The structure-joining structure of a fixed end according to claim 1, wherein the groove is filled with a filler having a compressive strength lower than that of the fixed end. 前記溝には、前記固定端よりも低剛性の充填材が充填されることを特徴とする請求項1に記載の構造材と固定端の接合構造。 2. The structure-joining structure of a fixed end according to claim 1, wherein the groove is filled with a filler having a rigidity lower than that of the fixed end.
JP2008184954A 2008-07-16 2008-07-16 Bonding structure of structural material and fixed end Active JP5399014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184954A JP5399014B2 (en) 2008-07-16 2008-07-16 Bonding structure of structural material and fixed end

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184954A JP5399014B2 (en) 2008-07-16 2008-07-16 Bonding structure of structural material and fixed end

Publications (2)

Publication Number Publication Date
JP2010024659A JP2010024659A (en) 2010-02-04
JP5399014B2 true JP5399014B2 (en) 2014-01-29

Family

ID=41730739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184954A Active JP5399014B2 (en) 2008-07-16 2008-07-16 Bonding structure of structural material and fixed end

Country Status (1)

Country Link
JP (1) JP5399014B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582885B2 (en) * 2010-06-24 2014-09-03 大成建設株式会社 Junction structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546617B2 (en) * 2000-06-19 2010-09-15 株式会社竹中工務店 Pre-cast concrete beam and column PC pressure bonding structure
JP2002061282A (en) * 2000-08-18 2002-02-28 Rikogaku Shinkokai Columnar reinforced concrete construction member
JP3545710B2 (en) * 2001-01-29 2004-07-21 株式会社ピーエス三菱 Seismic columnar structure
JP4339179B2 (en) * 2004-05-13 2009-10-07 固志 千代 Pile head structure of foundation pile

Also Published As

Publication number Publication date
JP2010024659A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
KR101827846B1 (en) Joint structure for steel bridge pier and concrete pile foundation
JP2005105531A (en) Foundation structure of building and its construction method
JP2005344388A (en) Pile head connection structure
JP5399014B2 (en) Bonding structure of structural material and fixed end
JP5340661B2 (en) Reinforced concrete member joint structure and building using the same
JP5509374B1 (en) Seismic strengthening structure and seismic strengthening method for existing buildings
JP2006257710A (en) Joint structure of cast-in-situ concrete pile to foundation
JP5207108B2 (en) Structure and method for joining pier and footing
JP5527932B2 (en) Design method of pier joint structure
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP6432764B2 (en) Column connection structure
JP2009007746A (en) Joint structure of pile head
JP5424761B2 (en) Seismic reinforcement method for existing buildings
JP4724680B2 (en) Column base structure
JP6774774B2 (en) Pile foundation structure
JP6860381B2 (en) Reinforcement method and structure of steel pipe pile using multiple fine crack type fiber reinforced cement composite material
JP2005256546A (en) Foundation structure of building and its construction method
JP2011017246A (en) Foundation structure of building
JP6710137B2 (en) Structure of pile head joint
JP2006214201A (en) Composite foundation of piles and continuous underground wall
JP4713218B2 (en) Foundation structure
JP4451699B2 (en) Pile head joint structure
JP2018096188A (en) Junction structure of seismic isolator to steel-pipe column, and base isolated building
KR102394061B1 (en) Earth proof phc hybrid pile using small diameter steel pipe and construction method for the same
JP2018003308A (en) Seismic reinforcement structure of pile foundation and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5399014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250