JP5659275B2 - Column and pile connection structure - Google Patents

Column and pile connection structure Download PDF

Info

Publication number
JP5659275B2
JP5659275B2 JP2013158030A JP2013158030A JP5659275B2 JP 5659275 B2 JP5659275 B2 JP 5659275B2 JP 2013158030 A JP2013158030 A JP 2013158030A JP 2013158030 A JP2013158030 A JP 2013158030A JP 5659275 B2 JP5659275 B2 JP 5659275B2
Authority
JP
Japan
Prior art keywords
pca
pile
column
concrete
axial force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013158030A
Other languages
Japanese (ja)
Other versions
JP2013253471A (en
Inventor
伊藤 彰
彰 伊藤
雄二 高岡
雄二 高岡
健治 田野
健治 田野
茂隆 徳武
茂隆 徳武
瑞記 牧田
瑞記 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Mitsui Construction Co Ltd
Priority to JP2013158030A priority Critical patent/JP5659275B2/en
Publication of JP2013253471A publication Critical patent/JP2013253471A/en
Application granted granted Critical
Publication of JP5659275B2 publication Critical patent/JP5659275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Foundations (AREA)

Description

本発明は、プレキャストコンクリート(以下、PCaと記す。)製の柱をより大断面の杭に接合する柱と杭との接合構造に係り、特に、逆打ち工法における構真柱と場所打ちコンクリート杭との接合に好適である。   The present invention relates to a column-to-pile joint structure in which a column made of precast concrete (hereinafter referred to as PCa) is joined to a pile having a larger section, and in particular, a built-up column and a cast-in-place concrete pile in a reverse casting method. It is suitable for joining.

従来、地下階を有する多層建物の構築方法として、全地下階分の地盤掘削後に基礎部から順次上階へ地下躯体を構築していく順打ち工法と、本設の床梁を山留め支保工として利用しながら、上階から下階へと掘削と地下躯体の構築とを繰り返していく逆打ち工法とが広く用いられている。逆打ち工法では、打設したコンクリートが硬化する前に基礎杭の内部に鋼製の構真柱を挿入することで、構真柱と杭とが接合される。そして、建物が鉄筋コンクリート(以下、RCと記す。)造の場合、構真柱の周囲に鉄筋や型枠を組んでRC造の柱を構築しており、構真柱は仮設として取り扱われていた。   Conventionally, as a construction method of a multi-story building with an underground floor, a construction method that constructs an underground frame from the foundation to the upper floor after excavation of all underground floors, and a main construction floor beam as a timber support work The reverse striking method that repeats excavation and construction of underground structures from the upper floor to the lower floor while being used is widely used. In the reverse casting method, the steel column and the pile are joined by inserting a steel steel column into the foundation pile before the cast concrete is hardened. And when the building is reinforced concrete (hereinafter referred to as RC), RC columns are constructed by building reinforcing bars and formwork around the structure pillars, and the structure pillars were treated as temporary structures. .

このようなRC造の建物において、構真柱を仮設材として設置することによる無駄な材料の発生を少なくし、作業の簡略化および工期の短縮化を可能にすべく、下端に鋼材を配設したPCa柱を用いた地下構造物の構築工法が、例えば特許文献1,2に提案されている。このうち、特許文献1に記載の発明では、下端の鋼材を杭コンクリート内に埋め込んで付着力を確保し、更にPCa柱のPCa本体部の下端から延長させた鉄筋と場所打ち杭の上端から延長させた鉄筋とを基礎コンクリートで巻き込むことでPCa柱と杭とを接合させている。一方、特許文献2に記載の発明では、上記接合構造に加え、下端の鋼材の外周面に多数のスタッドジベルを突設して鋼材と杭との付着力を高めている。   In such RC buildings, steel materials are installed at the lower end in order to reduce the generation of useless materials by installing the structural pillar as a temporary material, and to simplify the work and shorten the construction period. For example, Patent Documents 1 and 2 propose a construction method for an underground structure using a PCa pillar. Among them, in the invention described in Patent Document 1, the steel material at the lower end is embedded in the pile concrete to ensure adhesion, and further, the reinforcing bar extended from the lower end of the PCa main body portion of the PCa column and the upper end of the cast-in-place pile is extended. The PCa pillar and the pile are joined by winding the reinforced bar with foundation concrete. On the other hand, in the invention described in Patent Document 2, in addition to the above-described joint structure, a large number of stud dowels are provided on the outer peripheral surface of the steel material at the lower end to enhance the adhesion between the steel material and the pile.

特開平7−82892号公報JP-A-7-82892 特許第3625892号公報Japanese Patent No. 3625892

ところが、建物の高層化に伴ってPCa柱の強度を高くした場合、高強度のPCa柱と低強度の場所打ち杭とを直接接合させると、従来のPCa柱と杭との接合構造ではPCa柱の下面の支圧力(先端軸力/断面積)によって基礎コンクリートに高強度のコンクリートが必要となってしまう。そのため、例えば地下部分についてPCa柱の強度を低下させるとともにPCa柱の断面積を大きくしたり、基礎コンクリートの強度をPCa柱の強度に適合できる程度に高めたりする必要があった。しかしながら、PCa柱の断面積を大きくすると、材料が増大するだけでなく、PCa柱建て込み用の揚重設備が大型化して施工コストが高くなってしまう。一方、基礎コンクリートの強度を高めると、実際には接合部位にのみ必要な高強度コンクリートで基礎全体を構築することとなり、材料コストの上昇に繋がる。   However, when the strength of the PCa column is increased with the increase in the number of buildings, if the high-strength PCa column and the low-strength cast-in-place pile are directly joined, the conventional PCa column-pile joint structure has the PCa column. High-strength concrete is required for the foundation concrete due to the bearing pressure (tip axial force / cross-sectional area) on the lower surface of the steel. Therefore, for example, it is necessary to reduce the strength of the PCa column in the underground portion and increase the cross-sectional area of the PCa column, or to increase the strength of the foundation concrete so as to be compatible with the strength of the PCa column. However, when the cross-sectional area of the PCa column is increased, not only the material is increased, but also the lifting equipment for building the PCa column is enlarged and the construction cost is increased. On the other hand, when the strength of the foundation concrete is increased, the entire foundation is actually constructed with high-strength concrete that is necessary only at the joining portion, leading to an increase in material costs.

本発明は、このような背景に鑑みなされたもので、高層建物に適用される高強度のPCa柱を杭に接合する際に、無駄な材料コストを削減し、施工コストを抑制できる柱と杭との接合構造を提供することを目的とする。   The present invention has been made in view of such a background. When joining a high-strength PCa column applied to a high-rise building to a pile, the column and the pile can reduce useless material costs and suppress construction costs. It aims at providing the junction structure with.

上記課題を解決するために、本発明は、PCa柱を該PCa柱よりも大断面の杭に接合する柱と杭との接合構造であって、閉断面に形成された鋼製柱部材(鋼製円柱部材41)および該鋼製柱部材(41)の内部に充填されたPCaコンクリート部(42)によって構成され、杭(場所打ち杭3)よりも小断面に形成された軸力伝達部(60)を杭(3)の上面近傍に有するPCa柱部材(PCa柱部材52)と、軸力伝達部(60)を巻き込むように杭(3)の直上部に形成された基礎コンクリート(15)とを備え、軸力伝達部(60)は、杭(3)の上面から上方に突出する鉄筋(鉄筋篭19)の内側に配置されるとともに、その直上のPCa柱よりも大断面に形成され、鋼製柱部材(41)は、外側面から突出する外側突起(外側環状突条43)および内側面から突出する内側突起(内側環状突条44)を有することを特徴とする。 In order to solve the above-described problems, the present invention provides a column-to-pile joint structure in which a PCa column is joined to a pile having a larger cross section than the PCa column, and a steel column member (steel formed in a closed section) Axial force transmission composed of a cylindrical member 41) and a PCa concrete portion ( 42) filled in the steel column member ( 41) and having a smaller cross section than a pile (cast-in-place pile 3) parts and (60) PCa columns having in the vicinity of the upper surface of the pile (3) (P Ca columns 5 2), which is formed just above the pile (3) will involve axial force transmitting portion (60) basic The axial force transmission part (60) includes concrete (15), and is disposed inside a reinforcing bar (reinforcing bar 19) that protrudes upward from the upper surface of the pile (3), and is larger than the PCa column directly above it. is formed in cross-section, steel post member (4 1) has an outer projection projecting from the outer surface (outer And having an inner projection projecting from the annular collision Article 4 3) and an inner surface (inner annular collision Article 4 4).

この発明によれば、PCa柱部材の軸力は、内側突起を介して軸力伝達部のPCaコンクリート部から鋼製柱部材へ伝達し、外側突起を介して鋼製柱部材から基礎コンクリートへ伝達する。したがって、PCa柱部材の軸力が、PCa柱部材の下向き面から基礎部材(基礎コンクリートおよび杭)に直接加わる支圧力として伝達だけでなく、軸力伝達部の外側面から基礎コンクリートを介して広がって伝達し、杭の上面のより広い範囲に伝達する。そのため、PCa柱部材の下向き面による支圧力が小さくなり、建物の高層化、つまり重量化に伴って高強度のPCa柱を用いる場合であっても、基礎コンクリートの強度を高めることなく、PCa柱を杭に直接接合させることができ、基礎の材料コストを低減できる。また、地下部のPCa柱の断面を大きくする必要がないため、大型の揚重設備を用いる必要がなくなり、施工コストの低減を図ることを可能にできる。 According to this invention, the axial force of the PCa column member is transmitted from the PCa concrete portion of the axial force transmission portion to the steel column member via the inner protrusion, and is transmitted from the steel column member to the foundation concrete via the outer protrusion. To do. Therefore, the axial force of the PCa column member is not only transmitted as a supporting pressure directly applied to the foundation member (foundation concrete and pile) from the downward surface of the PCa column member, but also spreads from the outer surface of the axial force transmission portion through the foundation concrete. Transmit to a wider area on the top of the pile. Therefore, the support pressure by the downward surface of the PCa column member is reduced, and even when a high-strength PCa column is used as the building becomes taller, that is, with increasing weight, the PCa column does not increase the strength of the foundation concrete. Can be directly joined to the pile, and the material cost of the foundation can be reduced. Moreover, since there is no need to increase the PCa Columns of the cross section of the underground part, it is not necessary to use a large lifting equipment can allow that you reduce the construction cost.

また、この発明によれば、PCa柱の下向き面の面積を大きくして基礎コンクリートや杭に発生する支圧力を低減できるとともに、地震時などにPCa柱に加わる引っ張り方向の軸力が軸力伝達部の上向き面、即ち軸力伝達部におけるPCa柱よりも断面を大きくした面積に相当する段差面によって基礎コンクリート或いは基礎コンクリートを介して杭へ伝達するため、PCa柱と杭との接合部の地震耐力を高めることができる。 Further, according to this invention, it is possible to reduce the bearing capacity force generated largely to foundation concrete and piles the area of the lower surface of PCa Columns, axial force axial force in the direction pulling exerted on PCa column, such as during an earthquake In order to transmit to the pile via the foundation concrete or foundation concrete by the stepped surface corresponding to the upward surface of the transmission part, that is, the area that is larger than the PCa pillar in the axial force transmission part, the joint of the PCa pillar and the pile Seismic capacity can be increased.

また、本発明の一側面によれば、前記柱と杭との接合構造において、鋼製柱部材(41)は、PCa柱部材(52)における軸力伝達部(60)の直上部分と同時に打設されたコンクリートによってPCaコンクリート部(42)と一体とされていることを特徴とする Moreover, according to one aspect of the present invention, in the joint structure between the column and the pile, the steel column member (41) strikes at the same time as the portion directly above the axial force transmission portion (60) in the PCa column member (52). It is characterized by being made integral with the PCa concrete part (42) by the provided concrete .

本発明の一側面によれば、前記柱と杭との接合構造において、基礎コンクリート(15)は、杭(3)の上面に構築された耐圧版(16)と、当該耐圧版(16)の上面に構築されたフーチングコンクリート(17)とを有し、軸力伝達部(60)は、耐圧版(16)の上面に載置された状態で構築されたフーチングコンクリート(17)によって基礎コンクリート(15)に巻き込まれていることを特徴とする According to one aspect of the present invention, in the joint structure between the pillar and the pile, the foundation concrete (15) includes a pressure plate (16) constructed on the upper surface of the pile (3), and the pressure plate (16). A footing concrete (17) constructed on the upper surface, and the axial force transmission part (60) is made of the foundation concrete (17) constructed by the footing concrete (17) placed on the upper surface of the pressure plate (16). 15) .

本発明の一側面によれば、前記柱と杭との接合構造において、耐圧版(16)には差し筋が差し込まれ、PCa柱部材(52)には鉄筋接合手段がインサートされ、当該鉄筋接合手段と当該差し筋とによってPCa柱部材(52)が耐圧版(16)に接合されていることを特徴とする。 According to one aspect of the present invention, in the joint structure between the column and the pile, a reinforcing bar is inserted into the pressure plate (16), and a reinforcing bar connecting means is inserted into the PCa column member (52). The PCa column member (52) is joined to the pressure plate (16) by the means and the incision bar .

このように本発明によれば、高層建物に適用される高強度のPCa柱を杭に接合する際に、無駄な材料コストを削減し、施工コストを抑制できる柱と杭との接合構造を提供することができる。   As described above, according to the present invention, when a high-strength PCa column applied to a high-rise building is joined to a pile, a joint structure between the column and the pile that can reduce useless material cost and suppress construction cost is provided. can do.

第1実施形態に係る建物の要部側面図Side view of the main part of the building according to the first embodiment 図1中のII−II断面図II-II sectional view in FIG. 図1中のIII−III断面図III-III sectional view in FIG. 図1中のIV−IV断面図IV-IV sectional view in Fig. 1 図1中のV−V断面図VV sectional view in FIG. 第1実施形態に係る建物の構築手順の説明図Explanatory drawing of the construction procedure of the building concerning a 1st embodiment 第1実施形態に係る柱と梁との接合構造による作用説明図Action explanatory drawing by the junction structure of a pillar and a beam concerning a 1st embodiment 第2実施形態に係る建物の要部側面図Side view of main part of building according to second embodiment 図8中のIX−IX断面図IX-IX sectional view in FIG. 第2実施形態に係る柱と梁との接合構造による作用説明図Explanatory drawing of the action by the joint structure of pillar and beam according to the second embodiment 第2実施形態の変形例に係る建物の要部側面図Side view of the main part of a building according to a modification of the second embodiment 図11中のXII−XII断面図XII-XII sectional view in FIG. 第2実施形態の変形例に係る柱と梁との接合構造による作用説明図Action explanatory drawing by the junction structure of the pillar and beam concerning the modification of 2nd Embodiment 第3実施形態に係る建物の要部側面図Side view of main part of building according to third embodiment 図14中のXV−XV断面図XV-XV sectional view in FIG. 第3実施形態に係る建物の構築手順の説明図Explanatory drawing of the construction procedure of the building concerning a 3rd embodiment 第3実施形態に係る柱と梁との接合構造による作用説明図Explanatory drawing of the action by the joint structure of pillar and beam according to the third embodiment 第4実施形態に係る柱と梁との接合構造による作用説明図Explanatory drawing by the junction structure of a pillar and a beam concerning a 4th embodiment

以下、図面を参照しながら本発明に係る柱と杭との接合構造の各実施形態について説明する。   Hereinafter, each embodiment of the junction structure of a pillar and a pile concerning the present invention is described, referring to drawings.

≪第1実施形態≫
まず、図1〜図7を参照して、本発明の第1実施形態について説明する。図1は、実施形態に係る建物の要部側面図であり、下半部を破断して示している。なお、各図においては、図が煩雑となることを避けるために、鉄筋やハッチングを一部省略して示している。図1に示すように、第1実施形態に係る柱と杭との接合構造は、PCa構真柱2をPCa構真柱2よりも大断面の場所打ち杭3に接合するものである。本実施形態の建物1は、地下2階、地上30階建ての多層建物であり、地下部分を含む躯体の大部分がPCa部材(PCa柱20やPCa梁24a,28)によって構成される。
<< First Embodiment >>
First, a first embodiment of the present invention will be described with reference to FIGS. Drawing 1 is a principal part side view of the building concerning an embodiment, and has broken and shown the lower half part. In each figure, in order to avoid the figure becoming complicated, some reinforcing bars and hatching are omitted. As shown in FIG. 1, the pillar-to-pile joint structure according to the first embodiment joins the PCa true pillar 2 to the cast-in-place pile 3 having a larger cross section than the PCa true pillar 2. The building 1 of the present embodiment is a multi-layered building having 2 floors below ground and 30 floors above ground, and most of the housing including the underground part is composed of PCa members (PCa pillars 20 and PCa beams 24a and 28).

PCa構真柱2は、地下1階部分の柱をなす上構真柱部材4と地下2階部分の柱をなす下構真柱部材5とから構成される。上構真柱部材4は、図2に併せて示すように、矩形断面を呈し、外縁近傍に柱主筋6が配置されたRC造のPCa柱であり、その下端近傍に地下1階梁24が接合される仕口部2aを備えている。一方、下構真柱部材5は、その軸心に沿って全長にわたって延在し、鉄骨鉄筋コンクリート(以下、SRCと記す。)部5aの下端から下方へ突出する鉄骨柱7を備えたSRC造のPCa柱である。図5に併せて示すように、鉄骨柱7は、H型構を十文字に交差させた断面形状を呈しており、建物1の全長期荷重に耐え得る断面性能とされる。鉄骨柱7の上端にはトッププレート8が取り付けられており(図3では、想像線で示す。)、SRC部5aにおける外側面および下方へ突出した鉄骨部5bにおける下側部分の外側面にはスタットジベル9が突設されている。そして、鉄骨部5bにおけるスタットジベル9が突設された下側部分が場所打ち杭3の内部に突入している。   The PCa true pillar 2 is composed of an upper true pillar member 4 that forms the pillar of the first basement and a lower true pillar member 5 that forms the pillar of the second basement. As shown in FIG. 2, the upright column member 4 is an RC PCa column having a rectangular cross section and having a column main reinforcement 6 disposed in the vicinity of the outer edge. A joint portion 2a to be joined is provided. On the other hand, the lower construction column member 5 extends over the entire length along its axis, and is made of an SRC structure having a steel column 7 projecting downward from the lower end of a steel reinforced concrete (hereinafter referred to as SRC) portion 5a. PCa pillar. As shown in FIG. 5, the steel column 7 has a cross-sectional shape in which an H-shaped structure is crossed in a cross shape, and has a cross-sectional performance that can withstand the entire long-term load of the building 1. A top plate 8 is attached to the upper end of the steel column 7 (indicated by an imaginary line in FIG. 3). The outer surface of the SRC portion 5a and the outer surface of the lower portion of the steel portion 5b protruding downward are provided on the outer surface. A static gibber 9 is projected. The lower portion of the steel frame portion 5 b where the stat gibel 9 is projected protrudes into the cast-in-place pile 3.

下構真柱部材5のSRC部5aは、図3に併せて示すように、上構真柱部材4と同一の矩形断面を呈し、外縁近傍に柱主筋6が配置されるとともに、軸心に鉄骨柱7が配置されている。また、下構真柱部材5のSRC部5aの下端には、場所打ち杭3の上面近傍に所定の間隔をもって配置された軸力伝達部10が設けられている。軸力伝達部10は、図4に併せて示すように、SRC部5aの他の部分と略同一断面形状を呈し、略同一の断面積を有している。つまり、場所打ち杭3よりも小さな断面積の矩形断面を呈している。軸力伝達部10は、縁に配置され、矩形断面となるように鉛直に立設された4つの平面状の鋼板によって閉断面に形成された鋼製四角柱部材11と、鋼製四角柱部材11の中心に鉄骨柱7が配置された状態でその内部に打設されたコンクリートによって形成されるPCaコンクリート部12とを備える。   As shown in FIG. 3, the SRC portion 5a of the lower construction column member 5 has the same rectangular cross section as the upper construction column member 4, and the column main reinforcement 6 is disposed in the vicinity of the outer edge, and the axial center. A steel column 7 is arranged. In addition, an axial force transmission portion 10 disposed at a predetermined interval near the upper surface of the cast-in-place pile 3 is provided at the lower end of the SRC portion 5 a of the lower structure pillar member 5. As shown in FIG. 4 as well, the axial force transmission portion 10 has substantially the same cross-sectional shape as the other portions of the SRC portion 5a and has substantially the same cross-sectional area. That is, it has a rectangular cross section with a smaller cross-sectional area than the cast-in-place pile 3. The axial force transmission part 10 is disposed at the edge, and is formed of a steel square column member 11 having a closed cross section formed by four planar steel plates that are vertically erected so as to have a rectangular cross section, and a steel square column member 11 includes a PCa concrete portion 12 formed of concrete placed inside the steel column 7 in a state where the steel column 7 is disposed at the center.

図1の拡大図に示すように、鋼製四角柱部材11の外側面には、外方へ突出して略水平に延在するように環状に形成された外側環状突条13が適所に形成されている。本実施形態では、外側環状突条13は、鋼製四角柱部材11の上端、中央および下端に3つ形成されている。また、鋼製四角柱部材11の内側面には、内方へ突出して略水平に延在するように環状に形成された内側環状突条14が適所に形成されている。本実施形態では、内側環状突条14は、鋼製四角柱部材11の上半中央部、鋼製四角柱部材11の下端近傍、およびこれらの中間位置に3つ形成されている。なお、内側環状突条14に比べて外側環状突条13の幅寸法および高さ寸法は大きくされており、両環状突状13,14は、ともに全周溶接によって鋼製四角柱部材11に接合されている。   As shown in the enlarged view of FIG. 1, an outer annular ridge 13 formed in an annular shape so as to protrude outward and extend substantially horizontally is formed at an appropriate position on the outer surface of the steel square column member 11. ing. In the present embodiment, three outer annular ridges 13 are formed at the upper end, the center, and the lower end of the steel square column member 11. Further, on the inner side surface of the steel quadrangular column member 11, an inner annular ridge 14 formed in an annular shape so as to protrude inward and extend substantially horizontally is formed at an appropriate position. In the present embodiment, three inner annular ridges 14 are formed in the upper half central portion of the steel square column member 11, in the vicinity of the lower end of the steel square column member 11, and in the middle position thereof. The width and height of the outer annular ridge 13 are larger than those of the inner annular ridge 14, and both the annular protrusions 13 and 14 are joined to the steel square column member 11 by welding all around. Has been.

上構真柱部材4と下構真柱部材5とは、それぞれの内部に配置された柱主筋6がモルタル充填継手などの公知の鉄筋継手手段18で接続され、両部材間にグラウトが充填されることで互いに接合し、PCa柱部材としての1本のPCa構真柱2を構成している。また、PCa構真柱2と場所打ち杭3との接合部、即ち場所打ち杭3の上面上には、軸力伝達部10を巻き込むように基礎コンクリート15が形成されている。なお、ここでは、場所打ち杭3の上面に構築された耐圧版16および耐圧版16の上面に構築されたフーチングコンクリート17を合わせて基礎コンクリート15と称する。また、下構真柱部材5における基礎コンクリート15が構築される部位には、地下2階スラブ21を支持する基礎梁22が接合され、上構真柱部材4の下端に設けられた仕口部2aには、地下1階スラブ23を支持する地下1階梁24が接合され、上構真柱部材4の上方に現場打ちコンクリートで構築されるRC柱25の下端には、1階スラブ26を支持する1階梁27が接合される。   The upper main column member 4 and the lower main column member 5 are connected to each other by a well-known reinforcing bar joint means 18 such as a mortar filling joint, and the grout is filled between both members. As a result, they are joined together to form a single PCa structure pillar 2 as a PCa pillar member. In addition, a foundation concrete 15 is formed on the joint portion between the PCa structural pillar 2 and the cast-in-place pile 3, that is, on the upper surface of the cast-in-place pile 3, so as to entrain the axial force transmitting portion 10. Here, the pressure plate 16 constructed on the upper surface of the cast-in-place pile 3 and the footing concrete 17 constructed on the upper surface of the pressure plate 16 are collectively referred to as foundation concrete 15. In addition, a base beam 22 that supports the second basement slab 21 is joined to a portion of the lower structure column member 5 where the foundation concrete 15 is constructed, and a joint portion provided at the lower end of the upper structure column member 4. 2a is joined with a basement first floor beam 24 that supports a basement first floor slab 23, and a first floor slab 26 is formed at the lower end of an RC pillar 25 constructed of cast-in-place concrete above the upper column member 4. The supporting first floor beam 27 is joined.

次に、このような構成の接合構造を有する建物1の構築手順について図6を参照しながら説明する。先ず、(A)に示すように、図示しない掘削機を用いて地盤Gに場所打ち杭3の断面および深さに応じた杭孔29を穿設する。次に、(B)に示すように、鉄筋篭19を杭孔29内に挿入して杭孔29内にコンクリートを打設した後、コンクリートが未硬化のうちにPCa構真柱2を杭孔29内に建て込み、鉄骨柱7の下側部分がコンクリートに埋設される所定の高さ位置でPCa構真柱2を固定した状態でコンクリートを硬化させて場所打ち杭3を構築する。なお、PCa構真柱2は、予め地上で上構真柱部材4と下構真柱部材5とを接合して一本とされている。また、先にPCa構真柱2を杭孔29に建て込んで所定の位置に固定した状態で杭孔29内にコンクリートを打設して場所打ち杭3を構築してもよい。   Next, the construction procedure of the building 1 having such a joint structure will be described with reference to FIG. First, as shown to (A), the pile hole 29 according to the cross section and the depth of the cast-in-place pile 3 is drilled in the ground G using the excavator which is not shown in figure. Next, as shown in (B), after inserting the reinforcing bar 19 into the pile hole 29 and placing the concrete in the pile hole 29, the PCa frame column 2 is inserted into the pile hole while the concrete is uncured. The cast-in-place pile 3 is constructed by curing the concrete in a state where the PCa frame pillar 2 is fixed at a predetermined height position where the lower portion of the steel column 7 is embedded in the concrete. In addition, the PCa structural pillar 2 is made into a single piece by previously joining the upper structural pillar member 4 and the lower structural pillar member 5 on the ground. Alternatively, the cast-in-place pile 3 may be constructed by placing concrete in the pile hole 29 in a state where the PCa frame column 2 is first built in the pile hole 29 and fixed at a predetermined position.

続いて、(C)に示すように、1次根切作業によって地盤Gを所定の深さまで掘削し、1階部分の柱25、1階梁27および1階スラブ26を構築する。その後、(D)に示すように、2次根切作業によって地盤Gを所定の深さまで掘削し、地下1階梁24および地下1階スラブ23を構築する。また、これと平行して地上部の躯体の構築も行う。なお、地下1階梁24にはPCa梁24aが用いられ、現場打ちされた仕口部24bのコンクリートを介して上構真柱部材4の下端に接合される。また、地上部の躯体には、所定長さのPCa柱20および所定長さのPCa梁28が用いられる。そして、PCa梁28は上記同様の公知の接合方法、すなわち公知の鉄筋継手手段18による鉄筋の接合および部材間の隙間へのグラウト注入によってPCa柱20に直接接合される。   Subsequently, as shown in (C), the ground G is excavated to a predetermined depth by the primary root cutting operation, and the first floor column 25, the first floor beam 27, and the first floor slab 26 are constructed. Thereafter, as shown in (D), the ground G is excavated to a predetermined depth by secondary root cutting work, and the underground first floor beam 24 and the underground first floor slab 23 are constructed. In parallel with this, we will also build a ground structure. Note that a PCa beam 24a is used for the first-floor beam 24 in the basement, and is joined to the lower end of the upright columnar member 4 through the concrete of the joint portion 24b which is hit in the field. In addition, a PCa column 20 having a predetermined length and a PCa beam 28 having a predetermined length are used for the frame of the ground portion. The PCa beam 28 is directly joined to the PCa column 20 by the same known joining method as described above, that is, the joining of the reinforcing bars by the known reinforcing bar joint means 18 and the grouting into the gap between the members.

さらに、(E)に示すように、3次根切作業によって更に地盤Gを掘削して場所打ち杭3の杭頭を露出させ、杭頭を所定長さにわたってはつる杭頭処理を行う。また、余盛部分を除去された場所打ち杭3の上面に耐圧版16を構築するとともに、基礎梁22を構築して隣接する場所打ち杭3同士を連結する。なお、PCa部材(PCa柱20およびPCa梁28)の採用によって地上部の躯体構築速度が速く、この時点で地上30階まで躯体の構築が完了していても、鉄骨柱7が建物1の全長期荷重に耐え得る断面性能を有するため、鉄骨柱7を本設として利用することが可能である。また、上構真柱部材4の下端部には、鉄骨柱7の上面による大きな支圧力が発生するが、上構真柱部材4の下端部近傍に接合された地下1階梁24による突っ張り力が作用するため、当該部分が破壊することはない。   Further, as shown in (E), the ground G is further excavated by the tertiary root cutting operation to expose the pile head of the cast-in-place pile 3, and the pile head processing for hanging the pile head over a predetermined length is performed. Moreover, while constructing | assembling the pressure-resistant plate 16 on the upper surface of the cast-in-place pile 3 from which the extra part was removed, the foundation beam 22 is built and the adjacent cast-in-place pile 3 is connected. By adopting the PCa members (PCa column 20 and PCa beam 28), the building construction speed of the ground part is fast, and at this time, even if the building of the building up to the 30th floor is completed, the steel column 7 is attached to the entire building 1. Since it has a cross-sectional performance that can withstand a long-term load, the steel column 7 can be used as a permanent installation. Further, a large supporting pressure is generated at the lower end portion of the upper structure column member 4 due to the upper surface of the steel column 7, but the tensile force by the underground first floor beam 24 joined in the vicinity of the lower end portion of the upper structure column member 4. Acts, so that part will not be destroyed.

その後、(F)に示すように、耐圧版16の上面に場所打ち杭3と同等の大きさ或いは場所打ち杭3よりも若干大きなフーチングコンクリート17を構築して基礎コンクリート15で軸力伝達部10を巻き込むとともに、地下2階スラブ21を構築し、PCa構真柱2と場所打ち杭3との接合が完了する。   Thereafter, as shown in (F), a footing concrete 17 having the same size as the cast-in-place pile 3 or slightly larger than the cast-in-place pile 3 is constructed on the upper surface of the pressure-resistant plate 16, and the axial force transmission unit 10 is constructed with the foundation concrete 15. In addition, the second-floor slab 21 is constructed, and the joining of the PCa structural pillar 2 and the cast-in-place pile 3 is completed.

このようなPCa構真柱2と場所打ち杭3との接合構造によれば、図7に示すように、PCa構真柱2の軸力Fは、内側環状突条14を介して軸力伝達部10のPCaコンクリート部12から鋼製四角柱部材11へ伝達し、外側環状突条13を介して鋼製四角柱部材11から基礎コンクリート15へ伝達する。したがって、PCa構真柱2の軸力Fは、鉄骨柱7による支持力F1やPCa構真柱2のSRC部5aの下向き面による支持力F2のみならず、基礎コンクリート15を介して場所打ち杭3の上面全体によって支持される軸力伝達部10の外側面による支持力F3によっても大きく支持される。そのため、PCa構真柱2のSRC部5aの下向き面による支圧力が小さくなり、建物1の高層化、つまり重量化に伴ってPCa構真柱2の強度を高めた場合であっても、基礎コンクリート15および場所打ち杭3のコンクリート強度を高めることなく、PCa構真柱2を場所打ち杭3に直接的に接合させることができ、基礎コンクリート15および場所打ち杭3の材料コストを低減できる。また、PCa構真柱2の断面を大きくする必要がないため、大型の揚重設備を用いることなくPCa構真柱2を杭孔29に建て込むことができ、施工コストを低減することができる。或いは、PCa構真柱2を長くすることが可能になるため、逆打ち工法であってもより深い地下部の躯体の構築が可能になる。   According to such a joint structure between the PCa frame true pillar 2 and the cast-in-place pile 3, the axial force F of the PCa frame true pillar 2 is transmitted through the inner annular ridge 14 as shown in FIG. It transmits from the PCa concrete part 12 of the part 10 to the steel square column member 11, and transmits from the steel square column member 11 to the foundation concrete 15 via the outer annular ridge 13. Therefore, the axial force F of the PCa frame column 2 is not limited to the support force F1 by the steel column 7 or the support force F2 by the downward surface of the SRC part 5a of the PCa frame column 2, but also through the foundation concrete 15 3 is also supported by the supporting force F3 by the outer surface of the axial force transmitting portion 10 supported by the entire upper surface of 3. Therefore, even if the support pressure by the downward surface of the SRC portion 5a of the PCa structural column 2 is reduced and the strength of the PCa structural column 2 is increased as the building 1 becomes taller, that is, the weight increases, The PCa structural pillar 2 can be directly joined to the cast-in-place pile 3 without increasing the concrete strength of the concrete 15 and the cast-in-place pile 3, and the material cost of the foundation concrete 15 and the cast-in-place pile 3 can be reduced. Moreover, since it is not necessary to enlarge the cross section of the PCa frame true pillar 2, the PCa frame true pillar 2 can be built in the pile hole 29 without using a large lifting equipment, and the construction cost can be reduced. . Alternatively, since the PCa frame pillar 2 can be lengthened, it is possible to construct a deeper underground structure even by the reverse driving method.

また、複数の外側環状突条13および内側環状突条14がそれぞれ略水平に延在する環状に形成されてシアコネクタとして機能することで、基礎コンクリート15とPCaコンクリート部12とをシアキーで直接接合する場合に比べ、基礎コンクリート15の外側環状突条13への係合面積およびPCaコンクリート部12の内側環状突条14への係合面積が大きくなって当該係合部のせん断破壊が抑制され、軸力伝達部10の外側面によってより大きな支持力F3が発揮される。したがって、基礎コンクリート15および場所打ち杭3のコンクリート強度を、SRC部5aの下向き面による支持力F2に応じたコンクリート強度よりも低くすることができる。換言すれば、同じ強度のコンクリートを基礎コンクリート15および場所打ち杭3に用いた場合に比べて建物1をより高層化することができる。   The plurality of outer annular ridges 13 and inner annular ridges 14 are formed in an annular shape extending substantially horizontally and function as shear connectors, so that the basic concrete 15 and the PCa concrete portion 12 are directly joined with a shear key. Compared with the case where the engagement area to the outer annular ridge 13 of the foundation concrete 15 and the engagement area to the inner annular ridge 14 of the PCa concrete portion 12 are increased, the shear fracture of the engagement portion is suppressed, A larger support force F3 is exhibited by the outer surface of the axial force transmission unit 10. Therefore, the concrete strength of the foundation concrete 15 and the cast-in-place pile 3 can be made lower than the concrete strength corresponding to the supporting force F2 by the downward surface of the SRC portion 5a. In other words, the building 1 can be made higher than the case where concrete having the same strength is used for the foundation concrete 15 and the cast-in-place pile 3.

また、下方へ突出する鉄骨柱7を備えたPCa構真柱2が、コンクリートが未硬化の状態で場所打ち杭3の内部にその一部が挿入され、鉄骨柱7と場所打ち杭3との付着によって軸力伝達がなされる(支持力F1が発揮される)ことで、SRC部5aの下面から伝達する軸力(支持力F2)が小さくなって支圧力が低減し、場所打ち杭3の強度をより低くすることができる。或いは上記の如く建物1をより高層化することができる。   In addition, the PCa frame column 2 including the steel column 7 projecting downward is partially inserted into the cast-in-place pile 3 in a state where the concrete is uncured, and the steel column 7 and the cast-in-place pile 3 are Axial force is transmitted by the attachment (supporting force F1 is exhibited), so that the axial force (supporting force F2) transmitted from the lower surface of the SRC portion 5a is reduced and the supporting pressure is reduced. The strength can be further reduced. Alternatively, the building 1 can be made higher as described above.

さらに、鉄骨柱7が下構真柱部材5の全長にわたって延在することで、鉄骨柱7のSRC部5aのコンクリートに対する付着力が大きくなって鉄骨柱7の上端面による支持力が小さくなり、PCa構真柱2における鉄骨柱7の直上部分、つまり上構真柱部材4の下端部分の破壊を抑制することができ、加えて、上構真柱部材4の下端に仕口部2aが配置されたことで、支圧力によって破壊し易い当該部分に地下1階梁24による突っ張り力が作用するため、鉄骨柱7の上面の支圧力による破壊を防止することができる。   Furthermore, because the steel column 7 extends over the entire length of the lower column member 5, the adhesion force of the steel column 7 to the concrete of the SRC portion 5a is increased, and the supporting force by the upper end surface of the steel column 7 is reduced. It is possible to suppress the destruction of the portion directly above the steel column 7 in the PCa structural column 2, that is, the lower end portion of the upper structural column member 4, and the joint portion 2 a is disposed at the lower end of the upper structural column member 4. As a result, the tensile force caused by the first-floor first-floor beam 24 acts on the portion that is easily broken by the support pressure, so that the upper surface of the steel column 7 can be prevented from being damaged by the support pressure.

≪第2実施形態≫
次に、図8〜図10を参照して本発明の第2実施形態について説明する。なお、第1実施形態と同一の部材や部位には同一の符号を付し、第1実施形態と重複する説明は省略する。以下の実施形態においても同様とする。
<< Second Embodiment >>
Next, a second embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the member and site | part same as 1st Embodiment, and the description which overlaps with 1st Embodiment is abbreviate | omitted. The same applies to the following embodiments.

本実施形態に係る柱と杭との接合構造の第1実施形態と異なる点は、鉄骨柱37と軸力伝達部40とであり、これらを中心に説明する。図8に示すように、本実施形態では、鉄骨柱37が下構真柱部材35の下半のみに配置されている。すなわち、下構真柱部材35が、外縁近傍に柱主筋6が配置されたRC部35aと、RC部35aの下面に接合されて下方へ突出する鉄骨部35bとにより構成されている。そして、下構真柱部材35のRC部35aは、図2に示す上構真柱部材4と同様の断面形状を呈する。   The difference from the first embodiment of the column-pile joint structure according to this embodiment is the steel column 37 and the axial force transmission unit 40, which will be mainly described. As shown in FIG. 8, in this embodiment, the steel column 37 is arranged only in the lower half of the lower true column member 35. That is, the lower true column member 35 includes an RC portion 35a in which the column main reinforcement 6 is disposed in the vicinity of the outer edge, and a steel frame portion 35b that is joined to the lower surface of the RC portion 35a and protrudes downward. And the RC part 35a of the lower construction pillar member 35 exhibits the same cross-sectional shape as the upper construction pillar member 4 shown in FIG.

一方、下構真柱部材35のRC部35aの下端には、第1実施形態よりも大きな断面積を有する軸力伝達部40が形成されている。軸力伝達部40は、図9を併せて参照するように、第1実施形態と同様の軸力伝達部10の周囲に更に筒状に形成された鋼製円柱部材41を配置し、鋼製四角柱部材11と鋼製円柱部材41との間にPCaコンクリートを充填した形態となっている。つまり、鋼製円柱部材41は、軸力伝達部40の外縁に配置され、円形の閉断面となるように鉛直に立設された湾曲状の鋼板によって構成される。また、鋼製円柱部材41は、杭孔29への建て込みが可能なように場所打ち杭3よりも小径とされている。そして、鋼製円柱部材41の内部に配置されたコンクリートや鋼製四角柱部材11等がPCaコンクリート部42を構成する。   On the other hand, the axial force transmission part 40 which has a larger cross-sectional area than 1st Embodiment is formed in the lower end of RC part 35a of the lower structure pillar member 35. As shown in FIG. The axial force transmission part 40 arrange | positions the steel cylindrical member 41 further formed in the cylinder shape around the axial force transmission part 10 similar to 1st Embodiment so that FIG. PCa concrete is filled between the square pillar member 11 and the steel cylindrical member 41. In other words, the steel column member 41 is formed of a curved steel plate that is disposed on the outer edge of the axial force transmission unit 40 and is erected vertically so as to have a circular closed cross section. The steel column member 41 has a smaller diameter than the cast-in-place pile 3 so that it can be built into the pile hole 29. And the concrete arrange | positioned inside the steel cylindrical member 41, the steel square column member 11, etc. comprise the PCa concrete part 42. FIG.

図8の拡大図に示すように、鋼製円柱部材41の外側面には、外方へ突出して略水平に延在するように環状に形成された外側環状突条43が適所に形成されている。また、鋼製円柱部材41の内側面には、内方へ突出して略水平に延在するように環状に形成された内側環状突条44が適所に形成されている。本実施形態でも、内側環状突条44に比べて外側環状突条43の幅寸法および高さ寸法が大きくされており、外側環状突条43は、鋼製円柱部材41の上端、中央および下端に3つ形成され、内側環状突条44は、鋼製四角柱部材11の上半中央部、鋼製四角柱部材11の下端近傍、およびこれらの中間位置に3つ形成されている。   As shown in the enlarged view of FIG. 8, on the outer surface of the steel cylindrical member 41, an outer annular protrusion 43 formed in an annular shape so as to protrude outward and extend substantially horizontally is formed in a proper position. Yes. Further, on the inner side surface of the steel cylindrical member 41, an inner annular protrusion 44 formed in an annular shape so as to protrude inward and extend substantially horizontally is formed in a proper position. Also in this embodiment, the width and height of the outer annular ridge 43 are made larger than those of the inner annular ridge 44, and the outer annular ridge 43 is formed at the upper end, the center and the lower end of the steel cylindrical member 41. Three inner annular ridges 44 are formed at the upper half central portion of the steel square column member 11, near the lower end of the steel square column member 11, and at an intermediate position therebetween.

一方、下構真柱部材35の縁に沿って配置された鋼製四角柱部材11にも、外側環状突条13および内側環状突条14が形成されているが、これら両環状突状13,14は内側環状突条44と同じ幅寸法および高さ寸法とされ、内側環状突条44と同じ高さ位置にそれぞれ3列に配置されている。   On the other hand, an outer annular ridge 13 and an inner annular ridge 14 are also formed on the steel square column member 11 arranged along the edge of the lower true column member 35. 14 has the same width and height as the inner annular ridge 44, and is arranged in three rows at the same height position as the inner annular ridge 44.

建物1の構築手順は第1実施形態と同様であるため説明を省略する。なお、大断面の軸力伝達部40は、工場製作によって予め下構真柱部材35に一体形成されており、上構真柱部材34と下構真柱部材35とを予め地上で接合して1本のPCa構真柱32とした状態で杭孔29内に挿入される。   Since the construction procedure of the building 1 is the same as that of the first embodiment, the description thereof is omitted. The axial force transmission unit 40 having a large cross section is integrally formed with the lower main column member 35 in advance by factory manufacture, and the upper main column member 34 and the lower main column member 35 are joined in advance on the ground. It is inserted into the pile hole 29 in a state where it is a single PCa construction true pillar 32.

このように構成されたPCa構真柱32と場所打ち杭3との接合構造によれば、第1実施形態の作用効果に加え、以下のような作用効果が発揮される。すなわち、図10に示すように、軸力伝達部40がその直上部、すなわちPCa構真柱32の他の部分よりも大断面に形成されたことにより、PCa構真柱32の下向き面の面積を大きくして当該下向き面による支持力F2を高め、基礎コンクリート15や場所打ち杭3に発生する支圧力を低減することができる。また、地震時などにPCa構真柱32に加わる引っ張り方向の軸力が軸力伝達部40の上向き面、即ち軸力伝達部40におけるPCa構真柱32よりも断面を大きくした面積に相当する段差面40aによって基礎コンクリート15或いは基礎コンクリート15を介して場所打ち杭3へ伝達するため、PCa構真柱32と場所打ち杭3との接合部の地震耐力を高めることができる。   According to the joint structure of the PCa true column 32 and the cast-in-place pile 3 configured as described above, the following operational effects are exhibited in addition to the operational effects of the first embodiment. That is, as shown in FIG. 10, the axial force transmission portion 40 is formed in a portion directly above, that is, with a larger cross section than the other part of the PCa true column 32, and thus the area of the downward surface of the PCa true column 32. Can be increased to increase the supporting force F2 by the downward surface, and the bearing pressure generated in the foundation concrete 15 and the cast-in-place pile 3 can be reduced. Further, the axial force in the pulling direction applied to the PCa structural column 32 during an earthquake or the like corresponds to the upward surface of the axial force transmission unit 40, that is, the area of the axial force transmission unit 40 having a larger cross section than the PCa structural column 32. Since the stepped surface 40a transmits the foundation concrete 15 or the foundation concrete 15 to the cast-in-place pile 3, the seismic resistance of the joint portion between the PCa structural column 32 and the cast-in-place pile 3 can be increased.

また、PCa構真柱32における鉄骨柱37の直上部位には大きな支圧力が発生するため当該部位が破壊し易いが、鉄骨柱37の上端が軸力伝達部40の下端に位置することにより、この破壊し易い部位が軸力伝達部40になる。そして、軸力伝達部40は、基礎コンクリート15に巻き込まれるとともに、PCaコンクリート部42を取り囲むようにその外縁に鋼製円柱部材41が配置されているため、支圧力に対する耐力が大きく、鉄骨柱37の上面の支圧力による破壊を防止することができる。さらに、軸力伝達部40には、外縁の鋼製円柱部材41だけでなく、PCa構真柱32の外側面に沿って内部にも鋼製四角柱部材11が設けられているため、PCa構真柱32の軸力Fは軸力伝達部40の下面の全領域に確実に伝達される。また、鉄骨柱37が下構真柱部材35のRC部35aに突入しないため、鉄骨柱37を伝達する軸力が鉄骨柱37の上面(トッププレート8)に集中するが、鋼製四角柱部材11が閉断面に形成されているため、鉄骨柱37の支圧力に対する耐力を高めて軸力伝達部40の破壊防止する機能も果たす。   Further, since a large supporting pressure is generated in the portion directly above the steel column 37 in the PCa frame true column 32, the portion is easy to break, but the upper end of the steel column 37 is positioned at the lower end of the axial force transmission unit 40. This easily breakable portion is the axial force transmission unit 40. The axial force transmission unit 40 is wound around the foundation concrete 15 and the steel column member 41 is disposed on the outer edge so as to surround the PCa concrete unit 42. It is possible to prevent the damage due to the support pressure on the upper surface. Further, the axial force transmitting portion 40 is provided with the steel square column member 11 not only on the outer edge steel column member 41 but also on the inside along the outer surface of the PCa column true column 32. The axial force F of the true pillar 32 is reliably transmitted to the entire area of the lower surface of the axial force transmission unit 40. Further, since the steel column 37 does not enter the RC portion 35a of the lower true column member 35, the axial force that transmits the steel column 37 is concentrated on the upper surface (top plate 8) of the steel column 37. 11 is formed in a closed cross section, it also functions to increase the proof strength against the support pressure of the steel column 37 and prevent the axial force transmission unit 40 from being broken.

≪第2実施形態の変形例≫
次に、図11〜図13を参照して本発明の第2実施形態の変形例について説明する。
<< Modification of Second Embodiment >>
Next, a modification of the second embodiment of the present invention will be described with reference to FIGS.

本変形例に係る柱と杭との接合構造が第2実施形態と異なる点は、軸力伝達部40の構成である。図11および図12に示すように、本変形例の軸力伝達部40’は、第2実施形態と同様の外面形状を有する一方、下構真柱部材35のRC部35aの外側面に沿う鋼製四角柱部材11の代わりに、下構真柱部材35のRC部35aの外側面よりも小さく形成された鋼製小径円柱部材11’をその内部に備えている。鋼製小径円柱部材11’は、下構真柱部材35の内部に配置された柱主筋6の内側に配置され得る大きさであって、鉄骨柱37の上面(トッププレート8)とほぼ同じ大きさに形成される。なお、軸力伝達部40’の外縁に鋼製円柱部材41が配置されている点は、第2実施形態と同様であり、鋼製円柱部材41の内部に配置されたPCコンクリートおよび鋼製小径円柱部材11’がPCaコンクリート部42’を構成する。図11の拡大図に示すように、下構真柱部材35の内部に配置された鋼製小径円柱部材11’にも、第2実施形態と同様に、外側環状突条13’および内側環状突条14’が形成されている   The difference between the column and pile connection structure according to this modification example and the second embodiment is the configuration of the axial force transmission unit 40. As shown in FIGS. 11 and 12, the axial force transmission portion 40 ′ of the present modification has an outer surface shape similar to that of the second embodiment, and is along the outer surface of the RC portion 35 a of the lower structure pillar member 35. Instead of the steel square column member 11, a steel small-diameter columnar member 11 ′ formed smaller than the outer surface of the RC portion 35a of the lower true column member 35 is provided therein. The steel small-diameter columnar member 11 ′ has a size that can be arranged inside the column main reinforcement 6 arranged inside the lower true column member 35, and is almost the same size as the upper surface (top plate 8) of the steel column 37. Formed. In addition, the point by which the steel cylindrical member 41 is arrange | positioned at the outer edge of axial force transmission part 40 'is the same as that of 2nd Embodiment, and the PC concrete and steel small diameter arrange | positioned inside the steel cylindrical member 41 are included. The cylindrical member 11 ′ constitutes the PCa concrete portion 42 ′. As shown in the enlarged view of FIG. 11, the steel small-diameter columnar member 11 ′ disposed inside the lower true column member 35 is also provided with the outer annular ridge 13 ′ and the inner annular ridge, as in the second embodiment. Article 14 'is formed

建物1の構築手順は第1、第2実施形態と同様である。なお、鋼製小径円柱部材11’の内外のコンクリートは、下構真柱部材35の工場製作時に同時に打設される。   The construction procedure of the building 1 is the same as in the first and second embodiments. The concrete inside and outside the steel small-diameter columnar member 11 ′ is placed at the same time as the lower true column member 35 is manufactured at the factory.

このように構成されたPCa構真柱32と場所打ち杭3との接合構造によれば、第2実施形態と同様の作用効果が発揮される。すなわち、図13に示すように、軸力伝達部40’がその直上部よりも大断面に形成されたことにより、PCa構真柱32の下向き面による支持力F2が高まり、基礎コンクリート15や場所打ち杭3に発生する支圧力が低減される。また、軸力伝達部40’が上向き段差面40a’を備えることにより、PCa構真柱32と場所打ち杭3との接合部の地震耐力が高まる。さらに、PCaコンクリート部42’を取り囲むように鋼製円柱部材41が配置され、軸力伝達部40’が基礎コンクリート15に巻き込まれることにより、鉄骨柱37の上面の支圧力による破壊が防止される。   According to the joining structure of the PCa structural pillar 32 and the cast-in-place pile 3 configured as described above, the same effects as those of the second embodiment are exhibited. That is, as shown in FIG. 13, the axial force transmission portion 40 ′ is formed in a larger cross section than the upper part thereof, so that the supporting force F <b> 2 due to the downward surface of the PCa frame column 32 is increased, and the foundation concrete 15 and the place The supporting pressure generated in the pile 3 is reduced. Further, since the axial force transmission portion 40 ′ is provided with the upward step surface 40 a ′, the earthquake resistance of the joint portion between the PCa structural pillar 32 and the cast-in-place pile 3 is increased. Further, the steel columnar member 41 is disposed so as to surround the PCa concrete portion 42 ′, and the axial force transmission portion 40 ′ is caught in the foundation concrete 15, thereby preventing breakage due to the support pressure on the upper surface of the steel column 37. .

さらに、軸力伝達部40’には、外縁の鋼製円柱部材41だけでなく、PCa構真柱32の内部にも、鉄骨柱37の上面と同等の大きさの鋼製小径円柱部材11’が設けられているため、鉄骨柱37の上面の支圧力による破壊が効果的に防止されるとともに、PCa構真柱32の軸力Fが軸力伝達部40の下面の全領域に確実に伝達される。   Further, in the axial force transmission portion 40 ′, not only the outer steel column member 41 but also the inside of the PCa structural column 32, the steel small-diameter column member 11 ′ having the same size as the upper surface of the steel column 37 is provided. Therefore, the damage caused by the support pressure on the upper surface of the steel column 37 is effectively prevented, and the axial force F of the PCa construction true column 32 is reliably transmitted to the entire area of the lower surface of the axial force transmitting portion 40. Is done.

≪第3実施形態≫
次に、図14〜図17を参照して本発明の第3実施形態について説明する。本実施形態では、構真柱を用いた逆打ち工法ではなく、順打ち工法によって建物1が構築される。なお、本実施形態では、上記実施形態と同様に地下2階地上30階建ての建物1として説明するが、地下部を有しない多層建物であってもよい。
«Third embodiment»
Next, a third embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the building 1 is constructed not by the reverse driving method using the structural pillar but by the forward driving method. In addition, although this embodiment demonstrates as the building 1 of the underground 2 floor 30 floors similarly to the said embodiment, the multilayer building which does not have an underground part may be sufficient.

図14に示すように、本実施形態に係る柱と杭との接合構造は、PCa柱部材52をPCa柱部材52よりも大断面の場所打ち杭3に接合するものである。本実施形態の建物1では、柱および梁の全てにPCa部材が使用される。場所打ち杭3の上面には耐圧版16が構築され、耐圧版16の上面にPCa柱部材52が載置される。PCa柱部材52の上方には、地下2階柱55および地下1階柱54が順次接合され、地下1階柱54の上方には、地上階のPCa柱20が順次接合されている。これら地下2階柱55、地下1階柱54およびPCa柱20は、図2に示す上構真柱部材4と同様に、外縁近傍に柱主筋6が配置された矩形断面形状を呈する。   As shown in FIG. 14, the column / pile joint structure according to the present embodiment joins the PCa column member 52 to the cast-in-place pile 3 having a larger cross section than the PCa column member 52. In the building 1 of this embodiment, PCa members are used for all columns and beams. The pressure plate 16 is constructed on the upper surface of the cast-in-place pile 3, and the PCa column member 52 is placed on the upper surface of the pressure plate 16. Above the PCa column member 52, the second basement column 55 and the first basement column 54 are sequentially joined. Above the first basement column 54, the PCa column 20 on the ground floor is joined sequentially. These underground second-floor pillar 55, underground first-floor pillar 54, and PCa pillar 20 have a rectangular cross-sectional shape in which the column main reinforcement 6 is disposed in the vicinity of the outer edge, similarly to the upper true pillar member 4 shown in FIG.

また、PCa柱部材52も同様に、図2に示す上構真柱部材4と同様の断面形状を呈するRC造のPCa柱であり、図15にその断面を示す軸力伝達部60を下端に備えている。なお、本実施形態の軸力伝達部60は、下面に鉄骨柱37が接合されていない点および鋼製四角柱部材11(軸力伝達部10)がない点を除いて図9に示す第2実施形態の軸力伝達部40と同一の構成および同一の形状を有する。つまり、軸力伝達部60は、PCa柱部材52の周囲に筒状に形成された鋼製円柱部材41を配置し、PCa柱部材52と鋼製円柱部材41との間にPCaコンクリートを充填した構成をなし、鋼製円柱部材41の内部に配置されたPCコンクリートがPCaコンクリート部42を構成する。なお、鋼製円柱部材41とPCa柱部材52とは、同時にコンクリートが打設されて一体形成される。そして、鋼製円柱部材41の外側面には上下方向に3列に配置された外側環状突条43が形成され、鋼製円柱部材41の内側面には上下方向に3列に配置された内側環状突条44が適宜形成されている。PCa柱部材52は、軸力伝達部60を耐圧版16の上面に当接させた状態でフーチングコンクリート17を構築して基礎コンクリート15で巻き込むことで、場所打ち杭3に接合される。   Similarly, the PCa column member 52 is an RC PCa column having the same cross-sectional shape as the upper true column member 4 shown in FIG. 2, and the axial force transmission portion 60 whose cross section is shown in FIG. I have. In addition, the axial force transmission part 60 of this embodiment is the 2nd shown in FIG. 9 except the point by which the steel column 37 is not joined to the lower surface, and the point which does not have the steel square pillar member 11 (axial force transmission part 10). The axial force transmission unit 40 of the embodiment has the same configuration and the same shape. That is, the axial force transmission part 60 arrange | positions the steel cylindrical member 41 formed in the cylinder shape around the PCa pillar member 52, and filled PCa concrete between the PCa pillar member 52 and the steel cylindrical member 41. The PC concrete which comprises a structure and is arrange | positioned inside the steel cylindrical member 41 comprises the PCa concrete part 42. FIG. The steel column member 41 and the PCa column member 52 are integrally formed by simultaneously placing concrete. And the outer side annular protrusion 43 arrange | positioned in the up-down direction at 3 rows is formed in the outer side surface of the steel cylindrical member 41, and the inner side arrange | positioned in the up-down direction at the inner side surface of the steel column member 41 An annular ridge 44 is appropriately formed. The PCa column member 52 is joined to the cast-in-place pile 3 by constructing the footing concrete 17 with the axial force transmission portion 60 in contact with the upper surface of the pressure plate 16 and winding it with the foundation concrete 15.

次に、本実施形態の建物1の構築手順について図16を参照しながら説明する。先ず、(A)に示すように、図示しない掘削機を用いて地盤Gに場所打ち杭3の断面および深さに応じた杭孔29を穿設した後、鉄筋篭19を杭孔29内に挿入するとともに、杭孔29内にコンクリートを打設して場所打ち杭3を構築する。次に、(B)に示すように、図示しない土留めを用いて根切り作業によって場所打ち杭3の杭頭が露出する深さまで地盤Gを掘削して床付けし、余盛り部分の杭頭を除去した場所打ち杭3の上面に耐圧版16を構築し、その上面にPCa柱部材52を載置する。なお、PCa柱部材52は、必要に応じて鉄筋接合手段をインサートしておき、耐圧版16および場所打ち杭3に差し込んだ差し筋に接合させる。その後、(C)に示すように、基礎梁22を構築して隣接する場所打ち杭3同士を連結するとともに、耐圧版16の上面に場所打ち杭3と同等の大きさ或いは場所打ち杭3よりも若干大きなフーチングコンクリート17を構築して基礎コンクリート15で軸力伝達部60を巻き込むとともに、地下2階スラブ21を構築し、PCa柱部材52と場所打ち杭3との接合が完了する。   Next, the construction procedure of the building 1 of this embodiment will be described with reference to FIG. First, as shown to (A), after drilling the pile hole 29 according to the cross section and depth of the cast-in-place pile 3 in the ground G using the excavator which is not illustrated, the reinforcing bar 19 is put in the pile hole 29. While inserting, the cast-in-place pile 3 is constructed by placing concrete in the pile hole 29. Next, as shown in (B), the ground G is excavated to a depth at which the pile head of the cast-in-place pile 3 is exposed by root cutting using a soil retaining member (not shown), and the pile head of the surplus portion is piled up. The pressure plate 16 is constructed on the upper surface of the cast-in-place pile 3 from which the PC is removed, and the PCa column member 52 is placed on the upper surface. In addition, the PCa column member 52 inserts a reinforcing bar joining means if necessary, and joins it to the reinforcing bar inserted into the pressure plate 16 and the cast-in-place pile 3. Thereafter, as shown in (C), the foundation beam 22 is constructed and the adjacent cast-in-place piles 3 are connected to each other, and the upper surface of the pressure plate 16 has a size equivalent to the cast-in-place pile 3 or the cast-in-place pile 3. In addition, a slightly larger footing concrete 17 is constructed and the axial force transmission part 60 is wound up with the basic concrete 15, and the second-floor slab 21 is constructed, and the joining of the PCa column member 52 and the cast-in-place pile 3 is completed.

続いて、(D)に示すように、PCa柱部材52の上面に地下2階柱55を接合し、さらにその上面に地下1階柱54を接合するとともに、地下1階柱54の下端に設けられた仕口部に地下1階梁24を接合し、地下1階スラブ23を構築する。さらに、(E)に示すように、地下1階柱54の上面に1階柱20を接合し、1階柱20の下端に1階梁27を接合するとともに1階スラブ26を構築し、順次地上階の躯体を構築していく。   Subsequently, as shown in (D), the second basement column 55 is joined to the upper surface of the PCa pillar member 52, and the first basement column 54 is joined to the upper surface, and provided at the lower end of the first basement column 54. The basement first-floor beam 24 is joined to the formed joint, and the basement first-floor slab 23 is constructed. Furthermore, as shown in (E), the first floor column 20 is joined to the upper surface of the first basement column 54, the first floor beam 27 is joined to the lower end of the first floor column 20, and the first floor slab 26 is constructed. Build a ground floor enclosure.

このようなPCa柱部材52と場所打ち杭3との接合構造によれば、図17に示すように、第1実施形態および第2実施形態での説明と同様に、PCa柱部材52の軸力Fは、内側環状突条44を介して鋼製円柱部材41へ、外側環状突条13を介して鋼製円柱部材41から基礎コンクリート15へ伝達する。したがって、PCa柱部材52の軸力Fは、軸力伝達部60の下向き面による支持力F2としてだけでなく、基礎コンクリート15を介して広がって伝達し、場所打ち杭3の上面全体によって支持される軸力伝達部60の外側面による支持力F3としても基礎コンクリート15および場所打ち杭3に伝達する。そのため、PCa柱部材52の直下の基礎コンクリート15や場所打ち杭3に発生する支圧力を低減することができる。また、軸力伝達部60の上向き段差面60aによってPCa柱部材52と場所打ち杭3との接合部の地震耐力が高まることは、第2実施形態と同様である。   According to such a joint structure of the PCa column member 52 and the cast-in-place pile 3, as shown in FIG. 17, the axial force of the PCa column member 52 is the same as described in the first embodiment and the second embodiment. F is transmitted to the steel cylindrical member 41 via the inner annular ridge 44 and from the steel cylindrical member 41 to the foundation concrete 15 via the outer annular ridge 13. Therefore, the axial force F of the PCa column member 52 is transmitted not only as the supporting force F2 due to the downward surface of the axial force transmitting portion 60 but also through the foundation concrete 15, and is supported by the entire upper surface of the cast-in-place pile 3. Also, the supporting force F3 by the outer surface of the axial force transmitting portion 60 is transmitted to the foundation concrete 15 and the cast-in-place pile 3. Therefore, the supporting pressure generated in the foundation concrete 15 and the cast-in-place pile 3 directly below the PCa column member 52 can be reduced. Moreover, it is the same as that of 2nd Embodiment that the earthquake strength of the junction part of the PCa pillar member 52 and the cast-in-place pile 3 increases with the upward level | step difference surface 60a of the axial force transmission part 60. FIG.

このように、逆打ち工法だけでなく順打ち工法に本発明に係る接合構造を適用した場合でも、相対的に高強度且つ小断面のPCa柱部材52を、相対的に低強度且つ大断面の基礎コンクリート15や場所打ち杭3に直接的に接合することが可能となる。すなわち、基礎コンクリート15や場所打ち杭3のコンクリート強度をPCa柱部材52の強度に適合する程度に高めたり、地上部のPCa柱20のコンクリート強度から地下1階柱54および地下2階柱55へとコンクリート強度を段階的に落として大断面にしたりする必要がない。   As described above, even when the joining structure according to the present invention is applied not only to the reverse driving method but also to the forward driving method, the PCa column member 52 having a relatively high strength and a small cross section has a relatively low strength and a large cross section. It becomes possible to join directly to the foundation concrete 15 and the cast-in-place pile 3. That is, the concrete strength of the foundation concrete 15 and the cast-in-place pile 3 is increased to an extent suitable for the strength of the PCa column member 52, or the concrete strength of the PCa column 20 on the ground is changed to the first basement column 54 and the second basement column 55. There is no need to reduce the concrete strength step by step to make a large section.

≪第4実施形態≫
最後に、図18を参照して本発明の第4実施形態について説明する。本実施形態は、第1実施形態の軸力伝達部10と同様の外形を有する軸力伝達部80を下端に備えたPCa柱部材72を用い、順打ち工法によって建物1を構築するものである。軸力伝達部80は、その中心に鉄骨柱7を備えない点を除いて第1実施形態の軸力伝達部10と同一の構成および同一の形状を有する。他の部材の構成や建物1の構築方法は、第3実施形態と同様であるため、説明を省略する。このような構成のPCa柱部材72と場所打ち杭3との接合構造によっても、上記第1実施形態および第3実施形態で説明したのと同様の効果を得ることができる。
<< Fourth Embodiment >>
Finally, a fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, a building 1 is constructed by a striking method using a PCa column member 72 having an axial force transmission portion 80 having an outer shape similar to that of the axial force transmission portion 10 of the first embodiment at the lower end. . The axial force transmission unit 80 has the same configuration and the same shape as the axial force transmission unit 10 of the first embodiment except that the steel column 7 is not provided at the center thereof. Since the configuration of other members and the construction method of the building 1 are the same as those in the third embodiment, description thereof is omitted. Also by the joining structure of the PCa pillar member 72 and the cast-in-place pile 3 having such a configuration, the same effect as described in the first embodiment and the third embodiment can be obtained.

以上で具体的実施形態についての説明を終えるが、本発明はこれらの実施形態に限定されるものではない。例えば、上記第2実施形態および第3実施形態では、上向き段差面40a,60aが水平面に形成されているが、軸力伝達部40,60により確実に軸力Fを伝達させるために、PCa構真柱32およびPCa柱部材52の軸力伝達部40,60の直上部分を末広がりに拡径するテーパー形状にして上向き段差面40a,60aを台形円錐面状にしてもよい。また、各部材や部位の具体的形状や、配置、数量などは上記実施形態に示したものに限定されるものではなく、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。   This is the end of the description of specific embodiments, but the present invention is not limited to these embodiments. For example, in the second embodiment and the third embodiment, the upward stepped surfaces 40a and 60a are formed in a horizontal plane. However, in order to transmit the axial force F reliably by the axial force transmitting portions 40 and 60, the PCa structure The portions directly above the axial force transmission portions 40, 60 of the true column 32 and the PCa column member 52 may be tapered so as to expand in a divergent shape, and the upward stepped surfaces 40a, 60a may be formed in a trapezoidal conical shape. In addition, the specific shape, arrangement, quantity, and the like of each member and part are not limited to those shown in the above embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

2,32 PCa構真柱(PCa柱部材)
52,72 PCa柱部材
2a 仕口部
3 場所打ち杭(杭)
7,37 鉄骨柱
10,40,40’,60,80 軸力伝達部
11 鋼製四角柱部材(鋼製柱部材)
11’ 鋼製小径円柱部材
41 鋼製円柱部材(鋼製柱部材)
12,42 PCaコンクリート部
13,43 外側環状突条(外側突起)
14,44 内側環状突条(内側突起)
15 基礎コンクリート
16 耐圧版
17 フーチングコンクリート
24 地下1階梁(梁)
2,32 PCa structural column (PCa column member)
52,72 PCa column member 2a Joint part 3 Cast-in-place pile (pile)
7, 37 Steel column 10, 40, 40 ', 60, 80 Axial force transmission part 11 Steel square column member (steel column member)
11 'Steel small diameter cylindrical member 41 Steel cylindrical member (steel column member)
12, 42 PCa concrete part 13, 43 Outer annular protrusion (outer protrusion)
14,44 Inner ring ridge (inner projection)
15 foundation concrete 16 pressure plate 17 footing concrete 24 underground 1st floor beam (beam)

Claims (4)

PCa柱を該PCa柱よりも大断面の杭に接合する柱と杭との接合構造であって、
閉断面に形成された鋼製柱部材および該鋼製柱部材の内部に充填されたPCaコンクリート部によって構成され、前記杭よりも小断面に形成された軸力伝達部を下端に有し、かつ当該軸力伝達部を前記杭の上面よりも上方に有するPCa柱部材と、
前記軸力伝達部を巻き込むように前記杭の直上部に形成された基礎コンクリートと
を備え、
前記軸力伝達部は、前記杭の上面から上方に突出する鉄筋の内側に配置されるとともに、その直上のPCa柱よりも大断面に形成され、
前記鋼製柱部材は、外側面から突出する外側突起および内側面から突出する内側突起を有することを特徴とする柱と杭との接合構造。
It is a joining structure of a pillar and a pile that joins a PCa pillar to a pile having a larger cross section than the PCa pillar,
A steel column member formed in a closed cross-section and a PCa concrete portion filled in the steel column member , and having an axial force transmission portion formed in a smaller cross-section than the pile at the lower end; and and PCa columns having above the upper surface of the pile the axial force transmitting portion,
A foundation concrete formed immediately above the pile so as to involve the axial force transmission part;
The axial force transmission portion is disposed inside the reinforcing bar protruding upward from the upper surface of the pile, and is formed in a larger cross section than the PCa column immediately above the reinforcing bar.
The steel column member has an outer protrusion protruding from an outer surface and an inner protrusion protruding from an inner surface, and the column / pile joint structure.
前記鋼製柱部材は、前記PCa柱部材における前記軸力伝達部の直上部分と同時に打設されたコンクリートによって前記PCaコンクリート部と一体とされていることを特徴とする、請求項1に記載の柱と杭との接合構造。   2. The steel column member according to claim 1, wherein the steel column member is integrated with the PCa concrete portion by concrete placed simultaneously with a portion immediately above the axial force transmission portion of the PCa column member. Joint structure of pillar and pile. 前記基礎コンクリートは、前記杭の上面に構築された耐圧版と、当該耐圧版の上面に構築されたフーチングコンクリートとを有し、
前記軸力伝達部は、前記耐圧版の上面に載置された状態で構築された前記フーチングコンクリートによって前記基礎コンクリートに巻き込まれていることを特徴とする、請求項1または請求項2に記載の柱と杭との接合構造。
The foundation concrete has a pressure plate constructed on the top surface of the pile, and a footing concrete constructed on the top surface of the pressure plate,
The said axial force transmission part is wound in the said foundation concrete by the said footing concrete constructed in the state mounted in the upper surface of the said pressure-resistant plate, The Claim 1 or Claim 2 characterized by the above-mentioned. Joint structure of pillar and pile.
前記耐圧版には差し筋差し込まれ、前記PCa柱部材には鉄筋接合手段がインサートされ、当該鉄筋接合手段と当該差し筋とによって前記PCa柱部材が前記耐圧版に接合されていることを特徴とする、請求項3に記載の柱と杭との接合構造。 A reinforcing bar is inserted into the pressure-resistant plate, a reinforcing bar joining means is inserted into the PCa column member, and the PCa column member is joined to the pressure-resistant plate by the reinforcing bar joining means and the reinforcing bar. The joint structure of a pillar and a pile according to claim 3.
JP2013158030A 2013-07-30 2013-07-30 Column and pile connection structure Active JP5659275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158030A JP5659275B2 (en) 2013-07-30 2013-07-30 Column and pile connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158030A JP5659275B2 (en) 2013-07-30 2013-07-30 Column and pile connection structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009287203A Division JP5358423B2 (en) 2009-12-18 2009-12-18 Column and pile connection structure

Publications (2)

Publication Number Publication Date
JP2013253471A JP2013253471A (en) 2013-12-19
JP5659275B2 true JP5659275B2 (en) 2015-01-28

Family

ID=49951188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158030A Active JP5659275B2 (en) 2013-07-30 2013-07-30 Column and pile connection structure

Country Status (1)

Country Link
JP (1) JP5659275B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107938663B (en) * 2017-09-22 2024-02-06 上海市政工程设计研究总院(集团)有限公司 PHC pipe pile penetrating through main structure part as supporting system lattice column connector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3625892B2 (en) * 1995-04-24 2005-03-02 株式会社鴻池組 Construction method of underground structure using precast concrete column
JPH10311041A (en) * 1997-05-12 1998-11-24 Yutaka Fukuda Column base foundation of precast concrete column
JPH11236713A (en) * 1997-12-15 1999-08-31 Nkk Corp Method of connecting column and pile and connecting structure

Also Published As

Publication number Publication date
JP2013253471A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5358423B2 (en) Column and pile connection structure
JP4812324B2 (en) Retaining wall and its construction method
JP2013256793A (en) Construction method for underground structure, and underground structure
JP2008045370A (en) Method and device for anchoring steel bridge pier and pile
JP2015025292A (en) Building construction method and building
JP6650257B2 (en) Mountain retaining structure and construction method thereof
JP2008075425A (en) Joining structure of pile and column
JP2009007745A (en) Axial-force transmission structure for permanent sub-substructural column and foundation pile, and construction method for permanent sub-substructural column
JP6033139B2 (en) Joint structure of pile and footing
JP5259510B2 (en) Retaining wall and its construction method
JP5659275B2 (en) Column and pile connection structure
JP2016138398A (en) Footing integrated foundation pile structure and footing integrated foundation pile construction method
JP5228862B2 (en) Underground structure, construction method of underground structure
JP6172501B2 (en) Seismic reinforcement structure and seismic reinforcement method
JP6768477B2 (en) How to build an underground structure
JP6461690B2 (en) Foundation structure and foundation construction method
JP2009270358A (en) Structure
JP5512600B2 (en) Retaining wall extension method and retaining wall structure
JP2009019362A (en) Structure for joining pile and column
JP5686414B2 (en) True pillar
JP2008150944A (en) Wall pile structure and its construction method
JP2007051500A (en) Joint structure of column and pile
JP2006188862A (en) Construction method of structure, and foundation structure used for the same
KR101762207B1 (en) The speed up construction method using hemispherical joint
KR101255610B1 (en) Structure construction method and structure of use it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5659275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250