JP2005300044A - Ice making method and device by supercooling brine - Google Patents

Ice making method and device by supercooling brine Download PDF

Info

Publication number
JP2005300044A
JP2005300044A JP2004117846A JP2004117846A JP2005300044A JP 2005300044 A JP2005300044 A JP 2005300044A JP 2004117846 A JP2004117846 A JP 2004117846A JP 2004117846 A JP2004117846 A JP 2004117846A JP 2005300044 A JP2005300044 A JP 2005300044A
Authority
JP
Japan
Prior art keywords
brine
ice
supercooling
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004117846A
Other languages
Japanese (ja)
Other versions
JP4623995B2 (en
Inventor
Tatsuzo Matsunaga
辰三 松永
Yasuhiko Isayama
安彦 諌山
Mitsuo Seki
光雄 関
Tatsu Ninomiya
達 二宮
Keisuke Aikawa
慶輔 相川
Kazuo Matsubara
一男 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Toyo Seisakusho KK
Original Assignee
Kansai Electric Power Co Inc
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Toyo Seisakusho KK filed Critical Kansai Electric Power Co Inc
Priority to JP2004117846A priority Critical patent/JP4623995B2/en
Publication of JP2005300044A publication Critical patent/JP2005300044A/en
Application granted granted Critical
Publication of JP4623995B2 publication Critical patent/JP4623995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ice making device capable of stably making ice regardless of the variation of concentration of brine supplied to a supercooling heat exchanger in accompany with the variation of ice making quantity, and free from problems such as freezing of brine in the supercooling heat exchanger. <P>SOLUTION: In this ice making method for supercooling the brine by vaporized latent heat of liquid refrigerant supplied from a freezer by the supercooling heat exchanger 1, and then releasing the supercooled state of the brine to make ice slurry 13 in which the brine and small pieces of ice are mixed, the difference between a temperature of the supercooled brine at an outlet of the supercooling heat exchanger 1 and a temperature of ice slurry after releasing the supercooling is kept constant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ブラインを過冷却することによってブラインと氷の細片が混合したシャーベット状の氷スラリを生成する製氷方法および同製氷装置に関する。   The present invention relates to an ice making method and an ice making apparatus for producing a sherbet-like ice slurry in which brine and ice pieces are mixed by supercooling the brine.

真水を過冷却して過冷却水とし、その後過冷却水に振動等の衝撃を与えて過冷却状態を解除することにより、水に氷の細片が混合したシャーベット状の氷スラリを生成する装置や方法は従来から実用に供されており、このような装置、方法によって生成された氷スラリは流動性があって搬送が容易であり、かつ氷の潜熱を利用できるので、エネルギー効率が良好であるという利点があり、ダイナミック式すなわち蓄熱槽(蓄氷槽)外部において生成した氷を蓄熱槽に供給するタイプの氷蓄熱装置用の冷熱源として広く実用に供されている(例えば特許文献1、2参照)。   A device that generates sherbet-like ice slurry in which ice strips are mixed with water by supercooling fresh water into supercooled water and then releasing the supercooled state by applying shocks such as vibration to the supercooled water The ice slurry produced by such an apparatus and method is fluid and easy to convey, and can use the latent heat of ice, so it has good energy efficiency. There is an advantage that there is a dynamic type, that is, widely used as a cold source for an ice heat storage device of a type that supplies ice generated outside the heat storage tank (ice storage tank) to the heat storage tank (for example, Patent Document 1, 2).

ところで、上述のように製氷用水を真水とするのではなくブラインとすれば、真水を使用した場合と同様に顕熱、潜熱が大であるので、ブラインを冷熱の媒体とすれば氷点下温度のブラインを蓄熱槽へ送ることができ、この蓄熱槽に貯留された低温のブラインは、蓄熱槽から例えば低温の空調設備へ送られてその冷熱源として有効に利用できる。   By the way, if the ice making water is not pure water but is brine as described above, the sensible heat and latent heat are large as in the case of using fresh water. Therefore, if the brine is used as a cold medium, Can be sent to the heat storage tank, and the low-temperature brine stored in the heat storage tank is sent from the heat storage tank to, for example, a low-temperature air conditioning facility and can be effectively used as a cold heat source.

しかしながら、従来の真水を製氷用水とする装置、方法では製氷量が大となってもその凍結温度に変化がないが、ブラインの場合はブライン回路内全体におけるブラインの総量に対する氷結部分(固体相)の割合が大になると、未氷結部分(液相)部分の濃度が大となり、ブライン濃度が大になると図3のグラフに示されるように凍結点が低下する。
なお同グラフに示されるデータは、プロピレン・グリコール系水溶液よりなるブラインのブライン濃度と凍結点(凍結温度)との関係を示したものである。
However, in the conventional apparatus and method that uses fresh water as ice making water, the freezing temperature does not change even if the ice making amount is large, but in the case of brine, the frozen portion (solid phase) relative to the total amount of brine in the entire brine circuit When the ratio of γ increases, the concentration of the non-freezing portion (liquid phase) increases, and when the brine concentration increases, the freezing point decreases as shown in the graph of FIG.
The data shown in the graph shows the relationship between the brine concentration of a brine made of a propylene / glycol aqueous solution and the freezing point (freezing temperature).

したがって、氷蓄熱装置のように蓄熱槽と製氷装置との間にブラインを循環せしめて使用する場合、蓄氷量が小である製氷初期段階のブライン凍結点と蓄氷量が大である製氷終期段階のブライン凍結点とでは顕著な温度差がある。すなわち、製氷初期段階においてはブラインを過冷却するために必要な冷熱に比して、製氷終期段階におけるブライン過冷却用として必要な冷熱は大であり、したがって液冷媒の蒸発温度は製氷終期段階においても充分な製氷を行なうことができるよう低い温度に設定する必要がある。   Therefore, when the brine is circulated between the heat storage tank and the ice making device like the ice heat storage device, the brine freezing point in the initial stage of ice making where the ice storage amount is small and the ice making end stage where the ice storage amount is large There is a significant temperature difference from the stage brine freezing point. That is, in the initial stage of ice making, the cooling heat necessary for brine supercooling in the final stage of ice making is large compared to the cold heat required to supercool the brine, and therefore the evaporation temperature of the liquid refrigerant is in the final stage of ice making. However, it is necessary to set the temperature low so that sufficient ice making can be performed.

ところが、液冷媒の蒸発温度を製氷終期において安定した製氷ができるように低い温度に設定すると、製氷初期段階においては冷却能力が過剰な状態となって過冷却熱交換器内におけるブラインの温度が必要以上に低温となり、過冷却状態を維持できずに過冷却熱交換器、より詳しくは過冷却熱交換器の出口における管壁内面の最も温度が低くなる箇所で凍結し、このブラインの凍結によって過冷却用熱交換器のブライン流路が閉塞して製氷が停止するという問題が生じるおそれがある。   However, if the evaporation temperature of the liquid refrigerant is set to a low temperature so that stable ice making is possible at the end of ice making, the cooling capacity becomes excessive in the initial ice making stage, and the temperature of the brine in the supercooling heat exchanger is required. The temperature becomes lower than the above, and the supercooling heat exchanger cannot be maintained, and more specifically, the supercooling heat exchanger is frozen, more specifically, at the outlet of the supercooling heat exchanger where the temperature of the inner surface of the pipe wall becomes the lowest. There is a risk that the brine flow path of the cooling heat exchanger is blocked and ice making stops.

なお、上述のような問題は氷蓄熱装置に利用される製氷方法、装置にだけ生じるものではなく、例えば氷スラリを直接空調用の熱交換器等の負荷側熱交換器に送って冷熱を利用する場合にも同様に生じる問題である。
特開平5−180467(第1〜5頁、図1〜4) 特開平5−296503(第1〜3頁、図1〜3)
The above-mentioned problems do not only occur in the ice making method and apparatus used in the ice heat storage device. For example, the ice slurry is directly sent to a load side heat exchanger such as a heat exchanger for air conditioning to use the cold heat. This is also a problem that occurs in the same way.
Japanese Patent Laid-Open No. 5-180467 (pages 1 to 5, FIGS. 1 to 4) Japanese Patent Laid-Open No. 5-296503 (pages 1 to 3, FIGS. 1 to 3)

本発明の目的とするところは、過冷却用熱交換器に供給されるブラインの濃度が製氷量の変化に伴って変動しても、安定した製氷を行なうことができ、したがって過冷却用熱交換器内におけるブラインの凍結のような不具合が生じるおそれのない製氷装置を提供できるようにすることにある。   The object of the present invention is that stable ice making can be performed even if the concentration of brine supplied to the supercooling heat exchanger fluctuates with changes in the ice making amount, and therefore heat exchange for supercooling. An object of the present invention is to provide an ice making device that does not cause a problem such as freezing of a brine in a vessel.

上記課題を解決するために、本発明の請求項1に係る方法は、冷凍機から供給される液冷媒の気化潜熱により過冷却用熱交換器でブラインを過冷却して、その後ブラインの過冷却状態を解除することによりブラインと氷の細片が混合した氷スラリを生成する製氷方法において、前記過冷却用熱交換器出口における過冷却ブラインの温度と過冷却解除後の氷スラリの温度との差を一定の値に保つようにする構成としてある。   In order to solve the above-mentioned problem, the method according to claim 1 of the present invention is such that the brine is supercooled by the supercooling heat exchanger by the latent heat of vaporization of the liquid refrigerant supplied from the refrigerator, and then the brine is supercooled. In the ice making method of generating an ice slurry in which brine and ice chips are mixed by releasing the state, the temperature of the supercooled brine at the outlet of the supercooling heat exchanger and the temperature of the ice slurry after the supercooling is released The difference is maintained at a constant value.

本発明の請求項2に係る方法は、前記過冷却ブラインの温度と氷スラリの温度との差を、前記過冷却熱交換器における液冷媒の蒸発圧力を制御して一定の値に保つようにしたことを特徴としている。   In the method according to claim 2 of the present invention, the difference between the temperature of the supercooling brine and the temperature of the ice slurry is maintained at a constant value by controlling the evaporation pressure of the liquid refrigerant in the supercooling heat exchanger. It is characterized by that.

本発明の請求項3に係る方法は、前記過冷却ブラインの温度と氷スラリの温度との差を、前記過冷却熱交換器への製氷用ブラインの供給量を制御して一定の値に保つようにしたことを特徴としている。   In the method according to claim 3 of the present invention, the difference between the temperature of the supercooling brine and the temperature of the ice slurry is maintained at a constant value by controlling the supply amount of the ice-making brine to the supercooling heat exchanger. It is characterized by doing so.

また、本発明の請求項4に係る装置は、圧縮機とコンデンサを備える冷凍機から供給される液冷媒の気化潜熱により製氷用のブラインを過冷却する過冷却用熱交換器と、同熱交換器にて過冷却されたブラインの過冷却状態を解除してブラインと氷の細片が混合した氷スラリを生成する氷スラリ発生器とをこの順に備え、負荷側からの製氷用ブラインを上記過冷却用熱交換器に送るブライン送管と、上記氷スラリ発生器から負荷側へ氷スラリを送る氷スラリ送管とを備え、かつ、前記過冷却用熱交換器出口における過冷却ブラインの温度と過冷却解除後の氷スラリの温度との差が一定の値に保たれるように、過冷却ブラインの温度を調節する制御回路を備える構成のものとしてある。   According to a fourth aspect of the present invention, there is provided a supercooling heat exchanger for supercooling ice-making brine by latent heat of vaporization of liquid refrigerant supplied from a refrigerator having a compressor and a condenser, and the same heat exchange. An ice slurry generator for generating an ice slurry in which the brine and ice strips are mixed to release the supercooled state of the brine supercooled by the cooler in this order. A brine feed pipe that is sent to the cooling heat exchanger; and an ice slurry feed pipe that sends the ice slurry from the ice slurry generator to the load side, and the temperature of the supercooling brine at the outlet of the supercooling heat exchanger; A control circuit for adjusting the temperature of the supercooled brine is provided so that the difference from the temperature of the ice slurry after the supercooling is released is maintained at a constant value.

本発明の請求項5に係る装置は、前記製氷装置における前記過冷却熱交換器の冷媒出口と圧縮機の吸入口との間の冷媒復管の途中に、前記制御回路からの制御信号に基づいて開度が調節される制御弁を設け、この制御弁の開度調節により前記過冷却ブラインの温度が調節されるようにした構成のものとしてある。   The apparatus according to claim 5 of the present invention is based on a control signal from the control circuit in the middle of the refrigerant return pipe between the refrigerant outlet of the supercooling heat exchanger and the inlet of the compressor in the ice making device. A control valve for adjusting the opening degree is provided, and the temperature of the supercooling brine is adjusted by adjusting the opening degree of the control valve.

本発明の請求項6に係る装置は、前記ブライン送管の途中に、前記制御回路からの制御信号に基づいて送液量が調節されるブラインポンプを設け、このブラインポンプの送液量の調節により過冷却用熱交換器へのブライン供給量を制御して前記過冷却ブラインの温度が調節されるようにした構成のものとしてある。   The apparatus according to claim 6 of the present invention is provided with a brine pump that adjusts the amount of liquid to be fed based on a control signal from the control circuit in the middle of the brine pipe, and adjusts the amount of liquid to be fed by this brine pump. Thus, the temperature of the supercooling brine is adjusted by controlling the amount of brine supplied to the supercooling heat exchanger.

以上、本発明によれば、製氷量に応じてブラインの濃度が変化し、このブライン濃度の変化によりブラインの凍結点すなわち氷スラリの温度が変動しても、この氷スラリの温度と過冷却用熱交換器のブライン出口における過冷却ブラインの温度との差が一定に保たれるように、すなわちブラインの過冷却度が一定に維持されるので、ブラインが過剰に冷却されて過冷却用熱交換器内で氷結するような不具合が生じることがなく、安定した氷スラリの供給を行なうことができる。   As described above, according to the present invention, even if the brine concentration changes according to the ice making amount, and the brine freezing point, that is, the temperature of the ice slurry fluctuates due to the change in the brine concentration, the temperature of the ice slurry and the supercooling temperature are changed. The difference between the temperature of the supercooled brine at the brine outlet of the heat exchanger is kept constant, that is, the degree of supercooling of the brine is kept constant, so the brine is overcooled and heat exchange for supercooling There is no problem of freezing in the vessel, and stable ice slurry can be supplied.

以下、本発明に係る方法および装置の実施例を添付図面に示す具体例に基づいて詳細に説明する。
図1は本発明に係る装置の第1実施例の構成を示している。
同図1において、符号1は過冷却用熱交換器、2は氷スラリ発生器をそれぞれ示し、氷蓄熱槽3の下部(液相側)に一端が接続されたブライン管4がブラインポンプ5を介して過冷却用熱交換器1のブライン入口1aに接続され、同出口1bに一端が接続された氷スラリ送管6の他端が上記氷スラリ発生器2を介して、開口下端7aが氷蓄熱槽内の上部に臨む氷スラリの吐出管7の上端部に接続されている。
Hereinafter, embodiments of the method and apparatus according to the present invention will be described in detail based on specific examples shown in the accompanying drawings.
FIG. 1 shows the configuration of a first embodiment of the apparatus according to the present invention.
In FIG. 1, reference numeral 1 denotes a supercooling heat exchanger, 2 denotes an ice slurry generator, and a brine pipe 4 having one end connected to the lower part (liquid phase side) of the ice heat storage tank 3 is connected to the brine pump 5. The other end of the ice slurry feed pipe 6 connected to the brine inlet 1a of the supercooling heat exchanger 1 and one end connected to the outlet 1b via the ice slurry generator 2, and the lower end 7a of the ice It is connected to the upper end of the ice slurry discharge pipe 7 facing the upper part of the heat storage tank.

また、圧縮機8の吐出口8aに一端が接続された冷媒往管9の他端が、コンデンサ10および膨張弁11を介して過冷却用熱交換器1の冷媒入口1cに接続され、同出口1dに一端が接続された冷媒復管12の他端が圧縮機の吸入口8bに接続されていて、冷媒回路を構成している。   Further, the other end of the refrigerant forward pipe 9 having one end connected to the discharge port 8a of the compressor 8 is connected to the refrigerant inlet 1c of the supercooling heat exchanger 1 via the condenser 10 and the expansion valve 11, and the outlet The other end of the refrigerant return pipe 12 having one end connected to 1d is connected to the suction port 8b of the compressor to constitute a refrigerant circuit.

前記ブラインポンプ5の駆動により氷蓄熱槽3からブライン管4を経て過冷却熱交換器1に送られたブラインは、ブラインの凍結温度よりも2℃程度低温の過冷却状態に冷却され、氷スラリ発生器2に送られる。   The brine sent to the supercooling heat exchanger 1 from the ice heat storage tank 3 through the brine pipe 4 by the drive of the brine pump 5 is cooled to a supercooled state at a temperature lower by about 2 ° C. than the freezing temperature of the brine. It is sent to the generator 2.

上記氷スラリ発生器2において、過冷却状態のブラインは振動、衝撃等の物理的作用を与えられてその過冷却状態が解除され、ブライン(液相)と氷の細片(固体相)とが混合したシャーベット状の氷スラリとなり、氷スラリ送管6によって氷蓄熱槽3へ送られ、同槽内に貯留される。   In the ice slurry generator 2, the supercooled brine is subjected to physical action such as vibration and impact to release the supercooled state, and the brine (liquid phase) and ice flakes (solid phase) are separated. It becomes a mixed sherbet-like ice slurry, is sent to the ice heat storage tank 3 by the ice slurry feed pipe 6, and is stored in the tank.

この氷蓄熱槽3内においては、氷スラリ中の固体相13が液相14の上部に浮かんだ状態で堆積し、固体相13の融解潜熱により液相14のブラインが冷却され、この冷却されたブラインがブライン往管15によって図示を省略した空調器等の負荷側熱交換器に送られ、同熱交換器にて昇温したブラインがブライン復管16によって氷蓄熱槽3内に戻されるようになっており、図1中の符号17は負荷側へブラインを送るためのブラインポンプ、18は昇温したブラインを氷蓄熱槽内の固体相13に散布するためのノズルを示している。   In the ice heat storage tank 3, the solid phase 13 in the ice slurry is deposited in a floating state above the liquid phase 14, and the brine of the liquid phase 14 is cooled by the latent heat of fusion of the solid phase 13. The brine is sent to a load-side heat exchanger such as an air conditioner (not shown) through the brine forward pipe 15 so that the brine heated by the heat exchanger is returned to the ice heat storage tank 3 by the brine return pipe 16. Reference numeral 17 in FIG. 1 denotes a brine pump for sending brine to the load side, and 18 denotes a nozzle for spraying the heated brine to the solid phase 13 in the ice heat storage tank.

しかして本実施例の装置においては、ブライン回路の氷スラリ送管6における氷スラリ発生器2の直後に、氷スラリの温度すなわち過冷却用熱交換器に供給される製氷用ブラインの現在の濃度に対応するブラインの凍結温度を検出する温度センサ19を設けるとともに、冷媒回路の冷媒復管12における過冷却用熱交換器の冷媒出口近傍に、冷媒圧力を検出する圧力センサ20と制御弁21をこの順に設けてあって、これら温度センサ19、圧力センサ20および制御弁21は、温度センサと圧力センサからの信号に基づいて制御弁21の開度を調節する制御回路22に接続されている。   Therefore, in the apparatus of the present embodiment, immediately after the ice slurry generator 2 in the ice slurry feed pipe 6 of the brine circuit, the temperature of the ice slurry, that is, the current concentration of the ice making brine supplied to the supercooling heat exchanger. Is provided with a temperature sensor 19 for detecting the freezing temperature of the brine corresponding to the above, and a pressure sensor 20 for detecting the refrigerant pressure and a control valve 21 in the vicinity of the refrigerant outlet of the supercooling heat exchanger in the refrigerant return pipe 12 of the refrigerant circuit. The temperature sensor 19, the pressure sensor 20, and the control valve 21 are provided in this order, and are connected to a control circuit 22 that adjusts the opening degree of the control valve 21 based on signals from the temperature sensor and the pressure sensor.

具体的には、上記制御回路22は演算部23、圧力/温度変換部24および温度制御部25を備え、前記温度センサ19からの氷スラリ温度信号が演算部23に入力されるとともに、前記圧力センサ20からの圧力信号が圧力/温度変換部24にて温度信号に変換されて冷媒蒸発温度信号として演算部23に入力され、この演算部23においては氷スラリ温度信号と冷媒蒸発温度信号から氷スラリの温度と冷媒蒸発温度の差を演算して温度制御部25に温度差信号を出力し、この温度制御部25はこの温度差信号に基づいて氷スラリ温度と冷媒蒸発温度の差が、外部から入力された設定温度差と等しくなるよう、すなわち氷スラリと冷媒の温度差が一定の値を保つように前記制御弁21に開度調節用の制御信号を出力し、かくすることによって過冷却用熱交換器1における液冷媒の蒸発圧力を調節し、この蒸発圧力に対応して蒸発温度がコントロールされる構成となっている。   Specifically, the control circuit 22 includes a calculation unit 23, a pressure / temperature conversion unit 24, and a temperature control unit 25. An ice slurry temperature signal from the temperature sensor 19 is input to the calculation unit 23, and the pressure The pressure signal from the sensor 20 is converted into a temperature signal by the pressure / temperature conversion unit 24 and is input to the calculation unit 23 as a refrigerant evaporation temperature signal. In the calculation unit 23, the ice slurry temperature signal and the refrigerant evaporation temperature signal are converted into ice. The difference between the slurry temperature and the refrigerant evaporation temperature is calculated and a temperature difference signal is output to the temperature control unit 25. The temperature control unit 25 calculates the difference between the ice slurry temperature and the refrigerant evaporation temperature based on the temperature difference signal. A control signal for adjusting the opening degree is output to the control valve 21 so that the temperature difference between the ice slurry and the refrigerant is kept at a constant value so as to be equal to the set temperature difference inputted from Adjusting the evaporation pressure of the liquid refrigerant in the subcooling heat exchanger 1, the evaporation temperature are configured to be controlled in response to the evaporation pressure.

より詳しくは、氷蓄熱槽における貯氷量が増大して製氷用として過冷却用冷却器に供給されるブラインの濃度が高くなると、ブラインの凍結温度すなわち氷スラリの温度が上昇し、したがって氷スラリ温度と冷媒蒸発温度の差が小となるので、温度制御部は制御弁21の開度を大ならしめて蒸発圧力を小すなわち冷媒の蒸発温度を降下せしめる。   More specifically, as the amount of ice stored in the ice heat storage tank increases and the concentration of brine supplied to the supercooling cooler for ice making increases, the freezing temperature of the brine, i.e., the temperature of the ice slurry, increases, and thus the ice slurry temperature. Therefore, the temperature control unit increases the opening degree of the control valve 21 to decrease the evaporation pressure, that is, to lower the refrigerant evaporation temperature.

また、氷蓄熱槽における貯氷量が減少して製氷用として過冷却用冷却器に供給されるブラインの濃度が低くなると、ブラインの凍結温度すなわち氷スラリの温度が下降し、したがって氷スラリ温度と冷媒蒸発温度の差が大となるので、温度制御部は制御弁21の開度を小ならしめて蒸発圧力を大すなわち冷媒の蒸発温度を上昇せしめる。   In addition, when the amount of ice stored in the ice heat storage tank decreases and the concentration of brine supplied to the supercooling cooler for ice making decreases, the freezing temperature of the brine, that is, the temperature of the ice slurry, decreases, so the ice slurry temperature and the refrigerant Since the difference in evaporation temperature becomes large, the temperature control unit decreases the opening degree of the control valve 21 to increase the evaporation pressure, that is, increase the evaporation temperature of the refrigerant.

上述のように、氷スラリの温度変化に対応して冷媒蒸発温度が調節されることにより、過冷却用熱交換器1のブライン出口における過冷却ブラインの温度すなわちブラインの最低温度も冷媒蒸発温度に対応して変化し、この過冷却ブラインの温度と氷スラリの温度との差が一定となるようにコントロールされる。   As described above, the refrigerant evaporation temperature is adjusted in accordance with the temperature change of the ice slurry, so that the temperature of the supercooled brine at the brine outlet of the supercooling heat exchanger 1, that is, the lowest temperature of the brine is also changed to the refrigerant evaporation temperature. The temperature changes correspondingly, and the difference between the temperature of the supercooled brine and the temperature of the ice slurry is controlled to be constant.

図2は本発明に係る装置の第2実施例の構成を示している。
この第2実施例の装置においては、第1実施例のものが前記制御弁21の開度調節によって過冷却用熱交換器1の冷媒蒸発圧力を調節し、この蒸発圧力に対応して変化する冷媒蒸発温度を制御して過冷却ブラインの温度をコントロールする構成としてあるのに対し、過冷却用熱交換器1への製氷用ブラインの供給量を制御して上記過冷却ブラインの温度をコントロールする構成としてある。
FIG. 2 shows the configuration of a second embodiment of the apparatus according to the present invention.
In the apparatus of the second embodiment, the apparatus of the first embodiment adjusts the refrigerant evaporation pressure of the supercooling heat exchanger 1 by adjusting the opening degree of the control valve 21, and changes in accordance with the evaporation pressure. While the refrigerant evaporating temperature is controlled to control the temperature of the supercooled brine, the supply amount of ice making brine to the supercooling heat exchanger 1 is controlled to control the temperature of the supercooled brine. As a configuration.

すなわち、前記ブライン送管4の途中に設けたブラインポンプ5の送液量を、制御回路22の温度制御部25からの制御信号によって調節し、過冷却用熱交換器へのブライン供給量をコントロールするように構成してある。   That is, the amount of the brine pump 5 provided in the middle of the brine feed pipe 4 is adjusted by a control signal from the temperature control unit 25 of the control circuit 22 to control the amount of brine supplied to the supercooling heat exchanger. It is comprised so that it may do.

このように過冷却用熱交換器へのブライン供給量をコントロールすると過冷却用熱交換器における熱負荷が変化し、したがって上述した第1実施例のもののように冷媒の吸入圧力を制御しなくても、過冷却ブラインの温度を氷スラリとの温度差が一定となるように制御することができる。   When the amount of brine supplied to the supercooling heat exchanger is controlled in this way, the heat load in the supercooling heat exchanger changes, so that the refrigerant suction pressure is not controlled as in the first embodiment described above. However, the temperature of the supercooled brine can be controlled so that the temperature difference from the ice slurry is constant.

なお、この第2実施例のものは第1実施例における制御弁21に相当する構成がないことと、ブラインポンプ5の送液量が制御回路22からの制御信号によって調節される点以外は第1実施例のものと同様である。   The second embodiment is the same as the first embodiment except that there is no configuration corresponding to the control valve 21 and that the amount of liquid fed to the brine pump 5 is adjusted by a control signal from the control circuit 22. This is the same as that of the first embodiment.

上述した各実施例においては、過冷却ブラインの温度を、この過冷却ブラインの温度変化に対応して変化する過冷却用熱交換器の出口近傍にて検出される冷媒蒸発圧力に基づいて間接的に検出する構成としてあるが、過冷却ブラインの温度を、過冷却用熱交換器の出口部におけるブライン送管の管壁温度やブライン送管内の過冷却ブライン温度を直接検出する構成とする場合もある。   In each of the above-described embodiments, the temperature of the supercooling brine is indirectly determined based on the refrigerant evaporation pressure detected in the vicinity of the outlet of the supercooling heat exchanger that changes corresponding to the temperature change of the supercooling brine. However, the temperature of the supercooled brine may be detected directly at the outlet of the heat exchanger for supercooling, such as the wall temperature of the brine feed pipe or the temperature of the supercooled brine in the brine feed pipe. is there.

また、上述した各実施例は、本発明の方法、装置を氷蓄熱装置用の製氷手段として用いる場合の構成についてのものであるが、本発明の方法、装置は、氷スラリを直接空調器等の負荷側熱交換器に送って冷熱源として利用するように構成する場合もある。   In addition, each of the above-described embodiments relates to a configuration in the case where the method and apparatus of the present invention are used as ice making means for an ice heat storage device. It may be configured to be sent to the load side heat exchanger and used as a cold heat source.

本発明に係る装置の第1実施例を示す構成図。The block diagram which shows 1st Example of the apparatus which concerns on this invention. 本発明に係る装置の第2実施例を示す構成図。The block diagram which shows 2nd Example of the apparatus which concerns on this invention. ブラインの濃度と凍結点との関係を示すグラフ。The graph which shows the relationship between the density | concentration of a brine, and a freezing point.

符号の説明Explanation of symbols

1 過冷却用熱交換器
2 氷スラリ発生器
3 氷蓄熱槽
4 ブライン管
5 ブラインポンプ
6 氷スラリ送管
7 氷スラリの吐出管
8 圧縮機
9 冷媒往管
10 コンデンサ
11 膨張弁
12 冷媒復管
13 ブラインの固体相
14 ブラインの液相
15 ブライン往管
16 ブライン復管
17 ブラインポンプ
18 ブライン散布ノズル
19 温度センサ
20 圧力センサ
21 制御弁
22 制御回路
23 演算部
24 圧力/温度変換部
25 温度制御部
DESCRIPTION OF SYMBOLS 1 Supercooling heat exchanger 2 Ice slurry generator 3 Ice heat storage tank 4 Brine pipe 5 Brine pump 6 Ice slurry delivery pipe 7 Ice slurry discharge pipe 8 Compressor 9 Refrigerant forward pipe 10 Capacitor 11 Expansion valve 12 Refrigerant return pipe 13 Brine solid phase 14 Brine liquid phase 15 Brine forward pipe 16 Brine return pipe 17 Brine pump 18 Brine spray nozzle 19 Temperature sensor 20 Pressure sensor 21 Control valve 22 Control circuit 23 Calculation unit 24 Pressure / temperature conversion unit 25 Temperature control unit

Claims (6)

冷凍機から供給される液冷媒の気化潜熱により過冷却用熱交換器でブラインを過冷却して、その後ブラインの過冷却状態を解除することによりブラインと氷の細片が混合した氷スラリを生成する製氷方法において、前記過冷却用熱交換器出口における過冷却ブラインの温度と過冷却解除後の氷スラリの温度との差を一定の値に保つようにすることを特徴とするブラインの過冷却による製氷方法。   The brine is supercooled by the heat exchanger for supercooling by the latent heat of vaporization of the liquid refrigerant supplied from the refrigerator, and then the brine supercooled state is released to generate an ice slurry in which the brine and ice chips are mixed. In the ice making method, the brine subcooling is characterized in that the difference between the temperature of the supercooled brine at the outlet of the supercooling heat exchanger and the temperature of the ice slurry after the supercooling is released is maintained at a constant value. By ice making method. 前記過冷却ブラインの温度と氷スラリの温度との差を、前記過冷却熱交換器における液冷媒の蒸発圧力を制御して一定の値に保つようにしたことを特徴とする請求項1に記載のブラインの過冷却による製氷方法。   The difference between the temperature of the supercooled brine and the temperature of the ice slurry is maintained at a constant value by controlling the evaporation pressure of the liquid refrigerant in the supercooling heat exchanger. Ice making method by supercooling of brine. 前記過冷却ブラインの温度と氷スラリの温度との差を、前記過冷却熱交換器への製氷用ブラインの供給量を制御して一定の値に保つようにしたことを特徴とする請求項1に記載のブラインの過冷却による製氷方法。   2. The difference between the temperature of the supercooling brine and the temperature of the ice slurry is maintained at a constant value by controlling the amount of ice-making brine supplied to the supercooling heat exchanger. The ice-making method by supercooling the brine described in 1. 圧縮機とコンデンサを備える冷凍機から供給される液冷媒の気化潜熱により製氷用のブラインを過冷却する過冷却用熱交換器と、同熱交換器にて過冷却されたブラインの過冷却状態を解除してブラインと氷の細片が混合した氷スラリを生成する氷スラリ発生器とをこの順に備え、負荷側からの製氷用ブラインを上記過冷却用熱交換器に送るブライン送管と、上記氷スラリ発生器から負荷側へ氷スラリを送る氷スラリ送管とを備え、かつ、前記過冷却用熱交換器出口における過冷却ブラインの温度と過冷却解除後の氷スラリの温度との差が一定の値に保たれるように、過冷却ブラインの温度を調節する制御回路を備えてなるブラインの過冷却による製氷装置。   A supercooling heat exchanger that supercools the ice-making brine by the latent heat of vaporization of the liquid refrigerant supplied from the refrigerator that includes the compressor and the condenser, and the subcooling state of the brine that is supercooled by the heat exchanger. An ice slurry generator that generates an ice slurry in which the brine and ice strips are mixed in this order, and a brine feed pipe that sends the ice-making brine from the load side to the supercooling heat exchanger; and An ice slurry feed pipe for sending ice slurry from the ice slurry generator to the load side, and the difference between the temperature of the supercooling brine at the outlet of the supercooling heat exchanger and the temperature of the ice slurry after the supercooling is released is An ice making device by supercooling of brine, comprising a control circuit for adjusting the temperature of the supercooled brine so as to be maintained at a constant value. 前記製氷装置における前記過冷却熱交換器の冷媒出口と圧縮機の吸入口との間の冷媒復管の途中に、前記制御回路からの制御信号に基づいて開度が調節される制御弁を設け、この制御弁の開度調節により前記過冷却ブラインの温度が調節されるようにした請求項4に記載のブラインの過冷却による製氷装置。   A control valve whose opening degree is adjusted based on a control signal from the control circuit is provided in the middle of the refrigerant return pipe between the refrigerant outlet of the supercooling heat exchanger and the suction port of the compressor in the ice making device. 5. The ice making device according to claim 4, wherein the temperature of the supercooled brine is adjusted by adjusting the opening of the control valve. 前記ブライン送管の途中に、前記制御回路からの制御信号に基づいて送液量が調節されるブラインポンプを設け、このブラインポンプの送液量の調節により過冷却用熱交換器へのブライン供給量を制御して前記過冷却ブラインの温度が調節されるようにした請求項4に記載のブラインの過冷却による製氷装置。   Provided in the middle of the brine feed pipe is a brine pump that adjusts the liquid feed amount based on a control signal from the control circuit, and supplies the brine to the supercooling heat exchanger by adjusting the liquid feed amount of the brine pump. The ice making device by supercooling of the brine according to claim 4, wherein the temperature of the supercooled brine is adjusted by controlling the amount.
JP2004117846A 2004-04-13 2004-04-13 Ice making method and ice making apparatus by supercooling brine Expired - Lifetime JP4623995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117846A JP4623995B2 (en) 2004-04-13 2004-04-13 Ice making method and ice making apparatus by supercooling brine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004117846A JP4623995B2 (en) 2004-04-13 2004-04-13 Ice making method and ice making apparatus by supercooling brine

Publications (2)

Publication Number Publication Date
JP2005300044A true JP2005300044A (en) 2005-10-27
JP4623995B2 JP4623995B2 (en) 2011-02-02

Family

ID=35331787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117846A Expired - Lifetime JP4623995B2 (en) 2004-04-13 2004-04-13 Ice making method and ice making apparatus by supercooling brine

Country Status (1)

Country Link
JP (1) JP4623995B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008312A (en) * 2007-06-27 2009-01-15 Takasago Thermal Eng Co Ltd Cold heat utilizing system, ice making device, ice conveying device and cold heat utilizing method
CN102901294A (en) * 2012-09-28 2013-01-30 南京航空航天大学 Frozen steam type ice slurry preparation system by air cycle refrigeration
JP2015194317A (en) * 2014-03-31 2015-11-05 ダイキン工業株式会社 Hot water supply system
CN106500421A (en) * 2016-12-22 2017-03-15 中国科学院理化技术研究所 A kind of direct-type dynamic freezing of supercooled water system
JP2017106712A (en) * 2017-02-09 2017-06-15 三菱重工冷熱株式会社 Supercooling control method for water solution, supercooling control device for water solution, cooling device and cooling system
US20200386462A1 (en) * 2018-01-15 2020-12-10 Daikin Industries, Ltd. Icemaking system and a method of controlling evaporation temperature referred to by the icemaking system
KR102382796B1 (en) * 2020-11-06 2022-04-04 박진섭 Brine indirect cooling system for freezing chamber and refrigerating chamber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094905B2 (en) * 2015-04-13 2017-03-15 三菱重工冷熱株式会社 Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525226U (en) * 1991-09-12 1993-04-02 三菱重工業株式会社 Supercooled water production equipment
JPH0989424A (en) * 1995-09-28 1997-04-04 Kubota Corp Ice thermal storage facility
JP2002048457A (en) * 2000-08-03 2002-02-15 Mayekawa Mfg Co Ltd Slurry storage device and supercooled water utilizing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525226U (en) * 1991-09-12 1993-04-02 三菱重工業株式会社 Supercooled water production equipment
JPH0989424A (en) * 1995-09-28 1997-04-04 Kubota Corp Ice thermal storage facility
JP2002048457A (en) * 2000-08-03 2002-02-15 Mayekawa Mfg Co Ltd Slurry storage device and supercooled water utilizing system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008312A (en) * 2007-06-27 2009-01-15 Takasago Thermal Eng Co Ltd Cold heat utilizing system, ice making device, ice conveying device and cold heat utilizing method
CN102901294A (en) * 2012-09-28 2013-01-30 南京航空航天大学 Frozen steam type ice slurry preparation system by air cycle refrigeration
JP2015194317A (en) * 2014-03-31 2015-11-05 ダイキン工業株式会社 Hot water supply system
CN106500421A (en) * 2016-12-22 2017-03-15 中国科学院理化技术研究所 A kind of direct-type dynamic freezing of supercooled water system
JP2017106712A (en) * 2017-02-09 2017-06-15 三菱重工冷熱株式会社 Supercooling control method for water solution, supercooling control device for water solution, cooling device and cooling system
US20200386462A1 (en) * 2018-01-15 2020-12-10 Daikin Industries, Ltd. Icemaking system and a method of controlling evaporation temperature referred to by the icemaking system
US11614264B2 (en) * 2018-01-15 2023-03-28 Daikin Industries, Ltd. Icemaking system and a method of controlling evaporation temperature referred to by the icemaking system
KR102382796B1 (en) * 2020-11-06 2022-04-04 박진섭 Brine indirect cooling system for freezing chamber and refrigerating chamber

Also Published As

Publication number Publication date
JP4623995B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US7503185B2 (en) Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability
US7124594B2 (en) High efficiency refrigerant based energy storage and cooling system
US8109107B2 (en) Mixed-phase regulator
WO2015008452A1 (en) Refrigeration device
CN104673191A (en) Tetrabutylammonium bromide aqueous solution
JP4623995B2 (en) Ice making method and ice making apparatus by supercooling brine
JP4867851B2 (en) Refrigerator and operation method thereof, air conditioning equipment and operation method thereof
JP6337412B2 (en) Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system
JPH05296503A (en) Ice heat storage device
JP2009168445A (en) Ice thermal storage method
JP2004361053A (en) Ice heat storage device, and ice heat storage method
CA2055553A1 (en) Production and heat storage system for low temperature chilled water
TW201321693A (en) Refrigeration device for fishing vessel
JP3126424B2 (en) Heat source equipment using a heating tower
JP6094905B2 (en) Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system
JP2009222379A (en) Automatic ice maker
JP4399309B2 (en) Ice heat storage device
JP2551817B2 (en) Refrigeration system using ice heat storage
RU2776886C2 (en) Steam compression device
JP2006112652A (en) Ice making method and device for heat storage
JP3215775B2 (en) Ice storage device
JP2020041794A (en) Freezing device system
KR20200012165A (en) Heat pump system and method for using thermal storage energy
JPH086945B2 (en) Supercooled water production equipment for ice heat storage equipment for air conditioning
JPH05332648A (en) Absorption type ice-making and cold reserve device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Ref document number: 4623995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250