JP3126424B2 - Heat source equipment using a heating tower - Google Patents

Heat source equipment using a heating tower

Info

Publication number
JP3126424B2
JP3126424B2 JP03199859A JP19985991A JP3126424B2 JP 3126424 B2 JP3126424 B2 JP 3126424B2 JP 03199859 A JP03199859 A JP 03199859A JP 19985991 A JP19985991 A JP 19985991A JP 3126424 B2 JP3126424 B2 JP 3126424B2
Authority
JP
Japan
Prior art keywords
heat
water
storage tank
pump device
antifreeze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03199859A
Other languages
Japanese (ja)
Other versions
JPH0526481A (en
Inventor
正幸 谷野
時雄 小此木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP03199859A priority Critical patent/JP3126424B2/en
Publication of JPH0526481A publication Critical patent/JPH0526481A/en
Application granted granted Critical
Publication of JP3126424B2 publication Critical patent/JP3126424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,冬期の外気温度で凍結
しない不凍液をヒーティングタワーで外気と気液接触さ
せて外気から採熱し,この加温した不凍液をヒートポン
プ装置の水側熱交換器(蒸発器)に通液してヒートポン
プを運転し,これによって建物の暖房給湯負荷を処理す
るようにした熱源設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antifreeze solution which does not freeze at the outside air temperature in winter, is brought into gas-liquid contact with the outside air in a heating tower to collect heat from the outside air, and the heated antifreeze solution is used as a water-side heat exchanger for a heat pump device. The present invention relates to a heat source facility in which a heat pump is operated by passing a liquid through an (evaporator) to thereby process a heating and hot water supply load of a building.

【0002】[0002]

【従来の技術】ヒートポンプ装置の水側熱交換器に熱源
水を循環させ,冷房時にはこの水側熱交換器を凝縮器,
暖房時には蒸発器として機能させることによって冷暖房
を行ういわゆる水熱源空調方式が普及しているが,この
方式では,冷房運転時には加温された熱源水を冷却塔で
放熱し,暖房運転時には冷却された熱源水を別の熱源装
置で加熱するのが通常である。この水熱源方式は,蓄熱
水槽を用いることによって冷熱または温熱を蓄熱できる
という利点があり,また冷房運転では冷却塔で放熱すれ
ばよいので合理的でもある。しかし暖房運転ではボイラ
ー等による化石燃料の使用,或いは電力による熱源水の
加熱が必要である点において,空気を熱源とする方式よ
りも設備費用やエネルギー消費が大きくなるという問題
がある。
2. Description of the Related Art Heat source water is circulated through a water-side heat exchanger of a heat pump device.
The so-called water heat source air-conditioning system, which performs cooling and heating by functioning as an evaporator during heating, has become widespread, but in this system, the heated heat source water is radiated by a cooling tower during cooling operation, and cooled during heating operation. Usually, the heat source water is heated by another heat source device. This water heat source method has the advantage that cold or warm heat can be stored by using a heat storage water tank, and is also reasonable in cooling operation because heat can be released by a cooling tower. However, the heating operation requires use of fossil fuel by a boiler or the like or heating of a heat source water by electric power, so that there is a problem that equipment cost and energy consumption are larger than a method using air as a heat source.

【0003】一方, 空気を熱源とするヒートポンプ装置
は家庭用や業務用を中心に普及しているが,地域冷暖房
や大型建物の大容量システムでは,大きな空気熱交換器
による設置スペースの問題や,厳冬期における空気熱交
換器での着霜の問題が付随する。除霜運転時の暖房停止
や暖房能力の低下等は事務所ビル設備においては居住環
境の快適性を阻害する。特に,熱供給単価が契約で決め
られる地域冷暖房施設において暖房能力の低下並びに除
霜運転時の暖房停止は経費を圧迫することになる。
On the other hand, heat pump devices using air as a heat source are widely used mainly for home and business use. However, in a district cooling / heating system or a large-capacity system of a large building, there is a problem of an installation space due to a large air heat exchanger. The problem of frost formation in the air heat exchanger during the severe winter is associated. Stopping heating or reducing heating capacity during the defrosting operation impairs the comfort of the living environment in office building equipment. In particular, in a district heating and cooling facility in which the unit price of heat supply is determined by a contract, a decrease in the heating capacity and a stoppage of the heating during the defrosting operation will reduce costs.

【0004】このため,水熱源ヒートポンプ方式で冷房
運転を実施すると同時に,この冷房運転で使用する冷却
塔(クーリングタワー)を暖房運転ではヒーティングタ
ワーとして機能させてヒートポンプ装置を稼働する方式
が提案されている。すなわち冷房運転ではヒートポンプ
装置で加温された熱源水を冷却塔で外気に放熱し,暖房
運転ではヒートポンプ装置で冷却された熱源液をヒーテ
ィングタワーで外気から採熱する方式である。つまり,
全体として冬期でも空気を熱源として暖房給湯負荷を処
理するシステムである。
For this reason, a method has been proposed in which a cooling operation is performed by a water heat source heat pump system, and at the same time, a cooling tower (cooling tower) used in the cooling operation is caused to function as a heating tower in a heating operation to operate a heat pump device. I have. That is, in the cooling operation, the heat source water heated by the heat pump device is radiated to the outside air by the cooling tower, and in the heating operation, the heat source liquid cooled by the heat pump device is collected from the outside air by the heating tower. That is,
As a whole, it is a system that processes heating and hot water supply load using air as a heat source even in winter.

【0005】この場合,暖房運転時期では外気温度が一
般に低いので,この低温の外気から採熱するには,ヒー
ティングタワーに供給する熱源液はこの外気温度よりさ
らに低温にすることが必要であり,零度℃以下となるこ
とも多い。従って,この熱源液は零度℃以下でも凍らな
い不凍液を使用することになる。かような不凍液として
は例えば冷凍機で零度℃以下の冷水を製造する場合のブ
ラインと同種のもの,例えばエチレングリコール,プロ
ピレングリコール,塩化カルシウム等を溶解した水溶液
を使用することになるが,エチレングリコールが適する
と考えられている。この方式ではヒートポンプ装置の水
側熱交換器とヒーティングタワーとの間で不凍液を循環
させることにより低い外気温度から熱エネルギーを回収
することができ,暖房能力の低下並びに除霜運転時の暖
房停止等の不具合を改善できる。なお,この方式では,
夏期や中間期の冷房運転シーズンでは不凍液を使用する
必要はないので,冷房シーズンでは通常の熱源水を使用
し,不凍液の使用は冬期の暖房運転シーズンだけに限ら
れることになる。
In this case, since the outside air temperature is generally low during the heating operation, in order to collect heat from the low temperature outside air, the heat source liquid supplied to the heating tower needs to be lower than the outside air temperature. , Often below zero degrees Celsius. Therefore, this heat source liquid uses an antifreeze liquid that does not freeze even at zero degrees C or lower. As such an antifreeze, for example, the same kind of brine as that used when producing cold water at a temperature of 0 ° C. or lower by a refrigerator, for example, an aqueous solution in which ethylene glycol, propylene glycol, calcium chloride, or the like is dissolved, is used. Is considered suitable. In this method, heat energy can be recovered from a low outside air temperature by circulating antifreeze between the water-side heat exchanger of the heat pump device and the heating tower, reducing the heating capacity and stopping heating during defrosting operation. Etc. can be improved. In this method,
Since it is not necessary to use antifreeze in the cooling operation season in the summer or the middle period, normal cooling water is used in the cooling season, and use of the antifreeze is limited to only the heating operation season in winter.

【0006】[0006]

【発明が解決しようとする課題】冷房シーズンで使用す
る冷却塔は外気と直接気液接触させる開放式のものが効
率がよいので普通にはこれが採用されているが,この開
放式冷却塔を暖房シーズンにおいてヒーティングタワー
として使用すると,不凍液が希釈されるという問題が生
ずる。例えば,零度℃以下に冷却された不凍液を冬期の
低温高湿の外気に直接接触させて外気温度近傍まで加熱
する場合に,不凍液中に外気中の水分が移行し,不凍液
の濃度が徐々に低くなる(不凍液が希釈される)という
現象が生ずる。
As the cooling tower used in the cooling season, an open type in which gas and liquid are brought into direct contact with the outside air is generally used because of its high efficiency. When used as a heating tower in the season, there is a problem that antifreeze is diluted. For example, when the antifreeze liquid cooled to below 0 ° C is brought into direct contact with the low-temperature, high-humidity outdoor air in winter to heat it to near the outside air temperature, the moisture in the external air moves into the antifreeze liquid, and the concentration of the antifreeze liquid gradually decreases. (The antifreeze is diluted).

【0007】不凍液濃度が低くなると不凍液の凝固点が
高くなり,凍結トラブルを惹起することになる。また,
不凍液濃度がおよそ30%以下になると細菌やかびによる
微生物劣化を生じ悪臭の発生源にもなるという問題があ
る。逆に,高濃度の不凍液はその動粘性が急激に増加す
るので必要以上の高濃度で運転をするとポンプ等の搬送
動力が嵩み, 余計なランニングコストが掛かるという問
題もある。
When the concentration of the antifreeze is low, the freezing point of the antifreeze is increased, which causes a freezing trouble. Also,
When the concentration of the antifreeze is reduced to about 30% or less, there is a problem that microorganisms are degraded by bacteria and fungi, and the odor is also generated. Conversely, since the kinematic viscosity of a high-concentration antifreeze rapidly increases, if the operation is performed at a higher concentration than necessary, there is a problem in that the transport power of a pump or the like is increased and extra running costs are required.

【0008】不凍液の濃度管理として,時々不凍液濃度
を監視して濃度が薄くなったと運転員が判断した時, エ
チレングリコール原液を投入するという方式もあるが,
これでは不凍液の液量の管理が出来ないだけでなく, 絶
えず凍結の危険性を抱えることになる。また凍結防止の
ために必要以上に不凍液を高濃度状態で運転することも
動粘性の増加と吸湿力の増加により余計なランニングコ
ストが掛かる。
As a method of controlling the concentration of antifreeze, there is a method in which the concentration of antifreeze is monitored from time to time, and when an operator determines that the concentration has decreased, an ethylene glycol stock solution is supplied.
This not only makes it impossible to control the amount of antifreeze liquid, but also leads to constant freezing. Operating the antifreeze at a higher concentration than necessary to prevent freezing also requires extra running costs due to an increase in kinematic viscosity and an increase in hygroscopicity.

【0009】本発明は,熱源設備としてヒーティングタ
ワーを使用する場合の前記のような問題の解決を課題と
したものである。
An object of the present invention is to solve the above-mentioned problem when a heating tower is used as a heat source facility.

【0010】[0010]

【課題を解決するための手段】本発明によれば,不凍液
を外気と気液接触させるようにしたヒーティングタワー
と,このヒーティングタワーで昇温した不凍液から採熱
する第一ヒートポンプ装置と,該第一ヒートポンプ装置
で採熱された熱を水を媒体して蓄熱する蓄熱槽と,この
蓄熱槽内の水から採熱する第二ヒートポンプ装置とから
なり,第二ヒートポンプの凝縮器に暖房給湯負荷を処理
する熱媒を循環供給すると共にその蒸発器に蓄熱槽内の
水を循環供給し,この蒸発器を零℃以下の過冷却水を作
る過冷却器に構成したヒーティングタワー利用の熱源設
備を提供する。
According to the present invention, there is provided a heating tower for bringing an antifreeze into gas-liquid contact with the outside air, a first heat pump device for collecting heat from the antifreeze heated by the heating tower, A heat storage tank for storing the heat collected by the first heat pump device by using water as a medium, and a second heat pump device for collecting heat from the water in the heat storage tank. A heat source using a heating tower that circulates and supplies the heat medium for processing the load and circulates and supplies the water in the heat storage tank to the evaporator. Provide equipment.

【0011】[0011]

【実施例】図1に本発明設備の実施例を示した。1は開
放式冷却塔と同じような構成のヒーティングタワーであ
る。すなわち,散水装置2から充填物層3に向けて不凍
液が散液され,ファン4の駆動によって充填物層3内を
通過する外気と該不凍液とが直接的に気液接触する。こ
れによって低温の不凍液は外気と熱交換して外気温度近
くまで昇温し,下部水槽5に溜まる。不凍液としては,
冷凍機ブラインと同じエチレングリコール水溶液が使用
されているが,既述のような他の不凍液であってもよ
い。
FIG. 1 shows an embodiment of the equipment of the present invention. Reference numeral 1 denotes a heating tower having the same configuration as the open cooling tower. That is, the antifreeze is sprayed from the water spray device 2 toward the filling layer 3, and the outside air passing through the inside of the filling layer 3 and the antifreeze liquid come into direct gas-liquid contact by the driving of the fan 4. As a result, the low-temperature antifreeze liquid exchanges heat with the outside air, heats up to near the outside air temperature, and accumulates in the lower water tank 5. As antifreeze,
Although the same ethylene glycol aqueous solution as the refrigerator brine is used, other antifreeze as described above may be used.

【0012】6は第一ヒートポンプ装置である。この第
一ヒートポンプ装置6とヒーティングタワー1とによっ
て,空気からの熱回収サイクルを形成する。第一ヒート
ポンプ装置6は,圧縮機7→凝縮器8→膨脹弁9→蒸発
器10→圧縮機7を冷媒が循環するもので,凝縮器8と蒸
発器10は冷媒と液体との熱交換器である。蒸発器10には
ヒーティングタワー1の下部水槽5の不凍液が通液さ
れ,この不凍液から抜熱して冷媒が蒸発し,圧縮機7に
吸い込まれる。他方,冷却された不凍液はヒーティング
タワー1の散液装置3にポンプ11によって循環される。
このヒーティングタワー→第一ヒートポンプ装置の蒸発
器10→ヒーティングタワーを循環する不凍液回路を不凍
液循環路12と呼ぶことにする。圧縮機7から吐出する冷
媒は凝縮器8で凝縮するが,その凝縮熱は,ここを通水
する水に放熱される。
Reference numeral 6 denotes a first heat pump device. The first heat pump device 6 and the heating tower 1 form a heat recovery cycle from air. The first heat pump device 6 is a device in which a refrigerant circulates through a compressor 7 → a condenser 8 → an expansion valve 9 → an evaporator 10 → a compressor 7. The condenser 8 and the evaporator 10 are a heat exchanger between the refrigerant and the liquid. It is. The antifreeze in the lower water tank 5 of the heating tower 1 is passed through the evaporator 10, the heat is removed from the antifreeze, and the refrigerant evaporates and is sucked into the compressor 7. On the other hand, the cooled antifreeze is circulated by the pump 11 to the spraying device 3 of the heating tower 1.
The antifreeze circuit that circulates through the heating tower → the evaporator 10 of the first heat pump device → the heating tower will be referred to as an antifreeze liquid circulation path 12. The refrigerant discharged from the compressor 7 is condensed in the condenser 8, and the heat of condensation is radiated to the water passing therethrough.

【0013】13は水 (場合によって氷−水スラリー) を
蓄えた蓄熱槽である。蓄熱槽13内の水はポンプ14によっ
て第一ヒートポンプ装置6の凝縮器8に送水され,凝縮
器8で加温された水は蓄熱槽13に散水装置15を介して戻
される。この蓄熱槽13→第一ヒートポンプ装置6の凝縮
器8→蓄熱槽13の循環水路を第一循環水路16と呼ぶこと
にする。
Reference numeral 13 denotes a heat storage tank for storing water (in some cases, ice-water slurry). The water in the heat storage tank 13 is sent to the condenser 8 of the first heat pump device 6 by the pump 14, and the water heated in the condenser 8 is returned to the heat storage tank 13 via the water spray device 15. The heat storage tank 13 → the condenser 8 of the first heat pump device 6 → the circulation water path of the heat storage tank 13 will be referred to as a first circulation water path 16.

【0014】以上の不凍液循環路12, 第一ヒートポンプ
装置6および第一循環水路16の一連の稼働によって,空
気を熱源として蓄熱槽13には熱が供給され, ここに蓄熱
されることになる。
By the above-described series of operations of the antifreeze circulation circuit 12, the first heat pump device 6, and the first circulation water path 16, heat is supplied to the heat storage tank 13 using air as a heat source, and heat is stored therein.

【0015】この蓄熱槽に蓄えられる温水を建物の暖房
給湯用に直接使用することもできるが,この場合には負
荷側に供給される水温は少なくとも7℃以上を必要とす
るので,外気条件と負荷の状況によってはこの水温を維
持することが困難になることもある。そこで本発明設備
では,この蓄熱槽13内の水から過冷却水(蓄熱槽13の水
温によっては冷水) を生成し,同時に温水を製造する第
二ヒートポンプ装置18を設ける。
The hot water stored in the heat storage tank can be used directly for heating and supplying hot water to the building. In this case, however, the temperature of the water supplied to the load side needs to be at least 7 ° C. Depending on the load situation, it may be difficult to maintain this water temperature. Therefore, in the facility of the present invention, a second heat pump device 18 for generating supercooled water (cold water depending on the temperature of the heat storage tank 13) from the water in the heat storage tank 13 and simultaneously producing hot water is provided.

【0016】第二ヒートポンプ装置18は,圧縮機19→凝
縮器20→膨脹弁21→蒸発器22→圧縮機19の順に冷媒が循
環するヒートポンプであり,凝縮器20には暖房給湯負荷
側からの戻り水が通水され,ここで加温された温水が暖
房給湯負荷に供される。この負荷側循環水路を23で示
す。
The second heat pump device 18 is a heat pump in which the refrigerant circulates in the order of compressor 19 → condenser 20 → expansion valve 21 → evaporator 22 → compressor 19. The condenser 20 receives heat from the heating / hot water supply load side. Return water is passed, and the warm water heated here is supplied to the heating hot water supply load. This load-side circulation channel is indicated by 23.

【0017】第二ヒートポンプ装置18の蒸発器22は蓄熱
槽13内の水を零℃以下にまで過冷却するものであり,過
冷却水を作ることによって,蓄熱槽13内には微細な氷が
供給される。すなわち, 蒸発器22はシエルアンドチュー
ブ式熱交換器からなる過冷却器に構成され,そのシエル
側に第二ヒートポンプ装置18の膨脹弁21を経た冷媒が供
給され, チユーブ側に蓄熱槽13からの水がポンプ26によ
って通水される。この水 (水道水) が通水するチユーブ
の内壁温度がマイナス5.8 ℃以上で零℃以下に維持され
るならば,チユーブに連続的に導入される水の水温や水
量に拘わらず,チューブ内で凍結させることなく, チユ
ーブ出口端から零℃以下に過冷却された過冷却水24を連
続的に吐出させることができる。
The evaporator 22 of the second heat pump device 18 supercools the water in the heat storage tank 13 to 0 ° C. or less. By making the supercooled water, fine ice is stored in the heat storage tank 13. Supplied. That is, the evaporator 22 is configured as a supercooler composed of a shell-and-tube heat exchanger, the refrigerant of which is passed through the expansion valve 21 of the second heat pump device 18 is supplied to the shell side, and the refrigerant from the heat storage tank 13 is supplied to the tube side. Water is passed by the pump 26. If the inner wall temperature of the tube through which this water (tap water) flows is maintained between -5.8 ° C and 0 ° C or lower, regardless of the temperature and amount of water continuously introduced into the tube, the tube will The supercooled water 24 supercooled to 0 ° C. or less can be continuously discharged from the tube outlet without freezing.

【0018】したがって,蒸発器22のシエル内では,膨
脹弁21を経た冷媒が蒸発するさいの抜熱によって, 各チ
ューブの内壁温度がマイナス5.8 ℃以上で零℃以下に維
持されるように冷却容量が制御される。この制御は蒸発
する冷媒の圧力制御によって簡便に行うことができる。
また,このシエル内に冷媒液が共存した状態で蒸発させ
る満液型の過冷却器とすることもできる。この場合には
沸騰現象によって効果的な過冷却器となる。
Therefore, in the shell of the evaporator 22, the cooling capacity is maintained such that the inner wall temperature of each tube is maintained at minus 5.8 ° C or more and zero ° C or less by heat removal when the refrigerant passing through the expansion valve 21 evaporates. Is controlled. This control can be easily performed by controlling the pressure of the evaporating refrigerant.
In addition, a full liquid type supercooler that evaporates in a state where the refrigerant liquid coexists in the shell may be used. In this case, the boiling phenomenon results in an effective supercooler.

【0019】過冷却水22は, 零℃以下の状態で吐出する
のでその落下衝撃によって微細な氷を析出する。したが
って,蓄熱槽内ではシャーベット状の氷となって溜まる
が,微細氷が水と共存することになるので解氷特性が良
好であり,前記の第一循環水路16の稼働中は直ちに解氷
し槽内水温を下げることになる。場合によっては,製氷
が優先して槽内に氷25が溜まることもあるが,これは水
面近くに浮遊し,底部からは水を取り出すことができ
る。蓄熱槽13→蒸発器22 (過冷却器) →蓄熱槽13を循環
する水路を第二循環水路27で示す。
Since the supercooled water 22 is discharged at a temperature of 0 ° C. or less, fine ice precipitates due to the drop impact. Therefore, in the heat storage tank, the ice accumulates as sherbet-like ice, but since the fine ice coexists with the water, the ice melting property is good, and the ice is immediately melted while the first circulation channel 16 is operating. The water temperature in the tank will be lowered. In some cases, ice making may accumulate in the tank in preference to ice making, which floats near the water surface and allows water to be extracted from the bottom. A water path circulating through the heat storage tank 13 → evaporator 22 (supercooler) → heat storage tank 13 is indicated by a second circulation water path 27.

【0020】以上のようにして,ヒーティングタワー1
から不凍液循環路12を介して第一ヒートポンプ装置6に
外気から採熱された熱は,第一循環水路16の水を介して
蓄熱槽13に温水として供給されるが,この蓄熱槽内の水
は第二ヒートポンプ装置18の過冷却器22によって過冷却
水にまで冷却されて蓄熱槽に戻るので,第一ヒートポン
プ装置6の凝縮器8には低温の水が供給される。この結
果, 第一ヒートポンプ装置6の蒸発器10でもより低温の
不凍液をヒーティングタワー1に送り込むことができ
る。つまり, ヒートポンプの圧縮比が小さくても,低温
の外気から採熱ができる。
As described above, the heating tower 1
The heat taken from the outside air to the first heat pump device 6 through the antifreeze liquid circulation path 12 from the outside is supplied as hot water to the heat storage tank 13 through the water in the first circulation water path 16. Is cooled to supercooled water by the supercooler 22 of the second heat pump device 18 and returns to the heat storage tank, so that low-temperature water is supplied to the condenser 8 of the first heat pump device 6. As a result, the evaporator 10 of the first heat pump device 6 can also send the lower-temperature antifreeze to the heating tower 1. In other words, even if the compression ratio of the heat pump is small, heat can be collected from low-temperature outside air.

【0021】他方, 第二ヒートポンプ装置18において
も,蓄熱槽内の温水を熱源として負荷側循環水路23の熱
媒 (通常は水) に熱を汲み上げるので圧縮比が小さくて
よく,しかも蒸発器が過冷却水を作る過冷却器であるの
で冷熱は氷の形態で蓄熱槽に戻すことができ,槽が小さ
くてもこの蓄熱槽は良好なサーモバンクとなる。この結
果, 負荷側循環水路23への熱の汲み上げは,外気条件の
変動に拘わらず, 安定して行うことができる。
On the other hand, also in the second heat pump device 18, since the heat is pumped to the heat medium (usually water) of the load side circulation water channel 23 by using the hot water in the heat storage tank as a heat source, the compression ratio may be small, and the evaporator may be used. Since it is a supercooler that produces supercooled water, cold heat can be returned to the heat storage tank in the form of ice, and even if the tank is small, this heat storage tank becomes a good thermobank. As a result, the pumping of heat to the load-side circulating water channel 23 can be performed stably irrespective of fluctuations in the outside air condition.

【0022】蓄熱槽13から第一ヒートポンプ装置6の凝
縮器8に至る第一循環水路16に熱交換器を介装すること
によって,本設備を多目的に利用できる。例えば図中の
熱交換器29は,不凍液循環路12の不凍液を適宜通液する
ようにした液・液熱交換器である。適宜とは,第一循環
水路16の水温と外気温度との差が多い場合である。例え
ば外気温度が第一循環水路16の水温よりもかなり高い場
合には,第一ヒートポンプ装置6の運転中または休止中
においても外気から直接的に採熱ができる。また,第一
循環水路16の水温が外気温度より高い温水の場合には,
この温水によって不凍液を加熱することができるので,
不凍液がヒーティングタワー1で外気と接触したとき
に,不凍液中の水分が外気に蒸発する。これによって,
不凍液の濃縮運転ができる。この場合には第一ヒートポ
ンプ装置6の運転は休止させておくことは勿論である。
By arranging a heat exchanger in the first circulating water passage 16 extending from the heat storage tank 13 to the condenser 8 of the first heat pump device 6, the facility can be used for multiple purposes. For example, the heat exchanger 29 in the figure is a liquid / liquid heat exchanger in which the antifreeze in the antifreeze circulation circuit 12 is appropriately passed. The term “appropriate” refers to a case where the difference between the water temperature of the first circulation channel 16 and the outside air temperature is large. For example, when the outside air temperature is significantly higher than the water temperature of the first circulation water passage 16, heat can be directly taken from the outside air even while the first heat pump device 6 is operating or stopped. If the temperature of the first circulation channel 16 is higher than the outside air temperature,
Since this hot water can heat the antifreeze,
When the antifreeze comes into contact with the outside air in the heating tower 1, the water in the antifreeze evaporates to the outside air. by this,
Concentration operation of antifreeze can be performed. In this case, of course, the operation of the first heat pump device 6 is stopped.

【0023】熱交換器30は排熱回収用熱交換器を示して
いる。建物の内部で発生する各種の熱を適切な熱媒を使
ってこの熱交換器30に送ることによって,建物排熱を回
収することができる。
The heat exchanger 30 is a heat exchanger for recovering exhaust heat. By sending various types of heat generated inside the building to the heat exchanger 30 using an appropriate heat medium, the waste heat of the building can be recovered.

【0024】熱交換器31は,冷房負荷を処理する熱交換
器である。これによって,蓄熱槽13内に低温の蓄熱水が
存在する場合に,これを冷房用の冷熱源として利用でき
る。
The heat exchanger 31 is a heat exchanger for processing a cooling load. Thus, when low-temperature heat storage water exists in the heat storage tank 13, it can be used as a cooling heat source for cooling.

【0025】[0025]

【発明の効果】以上の構成になる本発明設備によれば,
次のような優れた効果を発揮する。ヒーティングタワー
で外気から採熱するものの,暖房給湯負荷側では第二ヒ
ートポンプ装置によって蓄熱槽内の水 (過冷却域まで)
を熱源とするので,熱源の急激な変動がなく,外気条件
に左右されずに安定して負荷側の温水を生成させること
ができる。
According to the equipment of the present invention having the above configuration,
It has the following excellent effects. Heat is taken from the outside air in the heating tower, but on the heating and hot water supply load side, the water in the heat storage tank is used by the second heat pump device (up to the supercooling area).
Since the heat source is used as the heat source, there is no sudden change in the heat source, and the hot water on the load side can be generated stably irrespective of the outside air condition.

【0026】過冷却器によってシャーベット状の氷を生
成させ,潜熱で蓄熱できるので蓄熱槽はコンパクト (小
容量) とすることができる。この蓄熱槽に残氷がある場
合にも負荷側の温水の製造が可能である。したがって,
蓄熱槽は良好なサーモバンクとして機能する。またシャ
ーベット状の氷であるから,解氷特性が良好であり,蓄
熱槽内の水温が安定かつ低温となり,この低温の水に不
凍液循環路および第一循環水路を介して熱を付与するの
が容易となり,これは場合によっては冷房負荷に利用で
きるし,低温の排熱からも熱回収ができる。
The sherbet-like ice is generated by the supercooler and the heat can be stored by the latent heat, so that the heat storage tank can be made compact (small capacity). Even if there is residual ice in the heat storage tank, it is possible to produce hot water on the load side. Therefore,
The heat storage tank functions as a good thermobank. Also, since it is sherbet-like ice, it has good thaw characteristics, the water temperature in the heat storage tank is stable and low, and heat is applied to this low-temperature water through the antifreeze circulation path and the first circulation path. This can be used for cooling loads in some cases, and heat can be recovered from low-temperature exhaust heat.

【0027】第一ヒートポンプ装置と第二ヒートポンプ
装置との二つのサイクルが独立しているので,運転に大
きな自由度があり,両者の同時稼働またはいずれか一方
だけの稼働を外気状況, 蓄熱状況, 負荷状況に応じて使
い分けることができる。
[0027] Since the two cycles of the first heat pump device and the second heat pump device are independent, there is a great degree of freedom in operation, and simultaneous operation of both or only one of them can be performed in the open air condition, the heat storage condition, or the like. It can be used properly according to the load situation.

【0028】蓄熱槽の水は一般市水を使用することがで
き,導入が容易であり且つ槽内には特別な冷却部は不要
である。そして,蓄熱槽の水温は0〜7℃付近に安定し
て位置させることができ,零℃以下にはならない。
As the water in the heat storage tank, general city water can be used, introduction is easy, and no special cooling unit is required in the tank. And the water temperature of the heat storage tank can be stably positioned at around 0 to 7 ° C, and does not become lower than 0 ° C.

【0029】加えて,外気条件が良好なとき(外気温度
が高く低湿度のとき)には,不凍液の濃縮運転ができ
る。そして,外気が低温高湿の場合でも,低温の槽内水
を用いることによって外気からの採熱ができる点で,冬
期においてヒーティングタワーを用いて採熱するヒート
ポンプ設備を格段に有利なものとすることができる。
In addition, when the outside air condition is good (when the outside air temperature is high and the humidity is low), the operation of concentrating the antifreeze liquid can be performed. In addition, even when the outside air is at a low temperature and high humidity, heat can be collected from the outside air by using the low-temperature water in the tank. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従うヒーティングタワー利用の熱源設
備の機器配置を示す全体図である。
FIG. 1 is an overall view showing an arrangement of heat source equipment using a heating tower according to the present invention.

【符号の説明】[Explanation of symbols]

1 ヒーティングタワー 6 第一ヒートポンプ装置 7 第一ヒートポンプ装置の圧縮機 8 第一ヒートポンプ装置の凝縮器 9 第一ヒートポンプ装置の膨脹弁 10 第一ヒートポンプ装置の蒸発器 12 不凍液循環路 13 蓄熱槽 16 第一循環水路 18 第二ヒートポンプ装置 19 第二ヒートポンプ装置の圧縮機 20 第二ヒートポンプ装置の凝縮器 21 第二ヒートポンプ装置の膨脹弁 22 第二ヒートポンプ装置の蒸発器 (過冷却器) 23 負荷側循環水路 27 第二循環水路 DESCRIPTION OF SYMBOLS 1 Heating tower 6 First heat pump device 7 Compressor of first heat pump device 8 Condenser of first heat pump device 9 Expansion valve of first heat pump device 10 Evaporator of first heat pump device 12 Antifreeze circulation circuit 13 Heat storage tank 16 One circulation channel 18 Second heat pump device 19 Compressor for second heat pump device 20 Condenser for second heat pump device 21 Expansion valve for second heat pump device 22 Evaporator (supercooler) for second heat pump device 23 Load side circulation water channel 27 Second circulation channel

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不凍液を外気と気液接触させるようにし
たヒーティングタワーと,このヒーティングタワーで昇
温した不凍液から採熱する第一ヒートポンプ装置と,該
第一ヒートポンプ装置で採熱された熱を水を媒体して蓄
熱する蓄熱槽と,この蓄熱槽内の水から採熱する第二ヒ
ートポンプ装置とからなり,該第二ヒートポンプの凝縮
器に暖房給湯負荷を処理する熱媒を循環供給すると共に
その蒸発器に前記蓄熱槽内の水を循環供給し,この蒸発
器を零℃以下の過冷却水を作る過冷却器に構成したこと
を特徴とするヒーティングタワー利用の熱源設備。
1. A heating tower for bringing an antifreeze into gas-liquid contact with the outside air, a first heat pump device for collecting heat from the antifreeze heated by the heating tower, and a heat collected by the first heat pump device. A heat storage tank for storing heat by using water as a medium, and a second heat pump device for collecting heat from the water in the heat storage tank. A heat medium for processing a heating hot water supply load is circulated to a condenser of the second heat pump. And a heat source equipment utilizing a heating tower, wherein the water in the heat storage tank is circulated and supplied to the evaporator, and the evaporator is configured as a supercooler for producing supercooled water of 0 ° C. or less.
【請求項2】 第一ヒートポンプ装置は,圧縮機→凝縮
器→膨脹弁→蒸発器→圧縮機に冷媒が循環され,その蒸
発器に不凍液が循環供給され,その凝縮器に蓄熱槽の水
が循環供給される請求項1に記載の熱源設備。
2. The first heat pump device comprises a refrigerant circulating through a compressor, a condenser, an expansion valve, an evaporator, and a compressor. An antifreeze is circulated and supplied to the evaporator, and the water in the heat storage tank is supplied to the condenser. The heat source equipment according to claim 1, which is circulated and supplied.
【請求項3】 第二ヒートポンプ装置の蒸発器は,シエ
ルアンドチューブ式熱交換器で構成され,シエル内に冷
媒が供給され,チューブ内に水が通水される請求項1ま
たは2に記載の熱源設備。
3. The evaporator of the second heat pump device according to claim 1, wherein the evaporator comprises a shell-and-tube heat exchanger, a coolant is supplied into the shell, and water is passed through the tube. Heat source equipment.
【請求項4】 蓄熱槽内の水は,熱交換器を経たうえ,
第一ヒートポンプ装置の凝縮器を経て蓄熱槽内に戻さ
れ,この熱交換器にはヒーティングタワーからの戻り不
凍液が供給される請求項1,2または3に記載の熱源設
備。
4. The water in the heat storage tank passes through a heat exchanger,
The first heat pump unit of the condenser through the back into the storage tank, the heat source equipment according to claim 1, 2 or 3 this is the heat exchanger returns antifreeze from heating tower is subjected fed.
【請求項5】 蓄熱槽内の水は,熱交換器を経たうえ,
第一ヒートポンプ装置の凝縮器を経て蓄熱槽内に戻さ
れ,この熱交換器で建物の排熱が該水に付与される請求
項1,2,3または4に記載の熱源設備。
5. The water in the heat storage tank passes through a heat exchanger,
The heat source equipment according to claim 1, 2, 3 or 4, wherein the heat is returned to the heat storage tank via the condenser of the first heat pump device, and waste heat of the building is given to the water by the heat exchanger.
【請求項6】 蓄熱槽内の水は,熱交換器を経たうえ,
第一ヒートポンプ装置の凝縮器を経て蓄熱槽内に戻さ
れ,この熱交換器で建物の冷房負荷が処理される請求項
1,2,3,4または5に記載の熱源設備。
6. The water in the heat storage tank passes through a heat exchanger,
The heat source equipment according to claim 1, 2, 3, 4, or 5, wherein the heat load is returned to the heat storage tank via the condenser of the first heat pump device, and the cooling load of the building is processed by the heat exchanger.
JP03199859A 1991-07-16 1991-07-16 Heat source equipment using a heating tower Expired - Fee Related JP3126424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03199859A JP3126424B2 (en) 1991-07-16 1991-07-16 Heat source equipment using a heating tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03199859A JP3126424B2 (en) 1991-07-16 1991-07-16 Heat source equipment using a heating tower

Publications (2)

Publication Number Publication Date
JPH0526481A JPH0526481A (en) 1993-02-02
JP3126424B2 true JP3126424B2 (en) 2001-01-22

Family

ID=16414840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03199859A Expired - Fee Related JP3126424B2 (en) 1991-07-16 1991-07-16 Heat source equipment using a heating tower

Country Status (1)

Country Link
JP (1) JP3126424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170066325A (en) * 2014-08-20 2017-06-14 인텔리핫 그린 테크놀로지스, 인코포레이티드 Combined hot water and air heating and conditioning system including heat pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106524340A (en) * 2016-09-23 2017-03-22 周伟文 Energy-saving method for forest air conditioner
CN109140851B (en) * 2018-09-23 2024-02-09 湖南东尤水汽能热泵制造有限公司 Heating and refrigerating equipment
JP7390182B2 (en) * 2019-12-25 2023-12-01 株式会社前川製作所 Refrigerator floor heating system
CN117190530B (en) * 2023-11-01 2024-03-19 南京磁谷科技股份有限公司 Magnetic suspension centrifugal heat source tower cold and heat source system and application method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170066325A (en) * 2014-08-20 2017-06-14 인텔리핫 그린 테크놀로지스, 인코포레이티드 Combined hot water and air heating and conditioning system including heat pump
KR101942203B1 (en) 2014-08-20 2019-01-24 인텔리핫 그린 테크놀로지스, 인코포레이티드 Combined hot water and air heating and conditioning system including heat pump

Also Published As

Publication number Publication date
JPH0526481A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
CN100419349C (en) Refrigeration system
US6560971B2 (en) Air conditioning and thermal storage systems using clathrate hydrate slurry
JP2512095B2 (en) Cold heat generation method
CN100547323C (en) Have thermal energy storage and cooling system that secondary refrigerant is isolated
CN110118448A (en) Heat storage and cold accumulation type combustion gas assists solar absorption ammonium hydroxide cold supply system
JP4241662B2 (en) Heat pump system
JP3126424B2 (en) Heat source equipment using a heating tower
CA2748027C (en) Cooling-heating device for ice rink facility
WO2007046566A1 (en) Ice making unit of thermal storage medium and thermal storage system equipped thereof
US20090288430A1 (en) Heat pump with thermal energy transfer unit and method
JPH05296503A (en) Ice heat storage device
JP2000205774A (en) Capsulated heat storage apparatus
CA2055553A1 (en) Production and heat storage system for low temperature chilled water
JP2776200B2 (en) Absorption type ice cold storage device
JP3094781B2 (en) Vacuum ice making equipment
JP3888814B2 (en) Ice making cooling system
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP2551817B2 (en) Refrigeration system using ice heat storage
JP3164079B2 (en) Refrigeration equipment
KR102329432B1 (en) Hybrid adsorption chiller having super colling chain with renewable energy and method for operating the same
JPH05118696A (en) Heat pump device
JPH07139847A (en) High/low temperature heat pump system
JP2559817B2 (en) Refrigeration system using ice heat storage

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees