JP2005298871A - Aluminum alloy for plastic working, and its manufacturing method - Google Patents
Aluminum alloy for plastic working, and its manufacturing method Download PDFInfo
- Publication number
- JP2005298871A JP2005298871A JP2004114211A JP2004114211A JP2005298871A JP 2005298871 A JP2005298871 A JP 2005298871A JP 2004114211 A JP2004114211 A JP 2004114211A JP 2004114211 A JP2004114211 A JP 2004114211A JP 2005298871 A JP2005298871 A JP 2005298871A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- weight
- room temperature
- plastic working
- modulus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Forging (AREA)
Abstract
Description
この発明は、例えば、自転車部品,釣具,ゴルフクラブやスノーボード等の高機能部材として有用な高引張強度,高ヤング率及び高延性の塑性加工用アルミニウム合金及びその製造方法に関するものである。 The present invention relates to a high tensile strength, high Young's modulus and high ductility aluminum alloy for plastic working, which is useful as a high-functional member such as bicycle parts, fishing gear, golf clubs and snowboards, and a method for producing the same.
近年、急冷凝固法により得られたアルミニウム合金粉末にセラミックスを添加分散させて、その特性、特に剛性の向上を図る試みがされている。例えば、Al−高Si系、Al−Fe−Mo系、Al−Cu系、Al−Si−Mg系あるいはAl−Zn−Mg系の組成で検討されている(例えば、特許文献1参照)。 In recent years, attempts have been made to improve the characteristics, particularly the rigidity, by adding and dispersing ceramics to an aluminum alloy powder obtained by a rapid solidification method. For example, Al-high Si-based, Al-Fe-Mo-based, Al-Cu-based, Al-Si-Mg-based, or Al-Zn-Mg-based compositions have been studied (for example, see Patent Document 1).
また、アルミニウム合金を押出しや鍛造等の熱間成形加工する場合、それに先立って冷間で圧粉成形された粉末成形体の内部や表面には水和物や空気が含まれており、そのまま熱間加工すると、熱間加工時やその後の熱処理工程においてブリスタ(膨れ)等の欠陥が発生する場合がある。そのため、欠陥を発生させないために、熱間加工の前に脱ガスを行うのが一般的である。
しかしながら、従来のアルミニウム合金においては、例えば、自転車部品,釣具,ゴルフクラブやスノーボード等の高機能部材として有用な高引張強度,高ヤング率及び高延性が十分に得られないという問題があった。 However, conventional aluminum alloys have a problem that high tensile strength, high Young's modulus, and high ductility, which are useful as high-functional members such as bicycle parts, fishing gear, golf clubs and snowboards, cannot be obtained sufficiently.
この発明は、上記事情に鑑みてなされたもので、自転車部品,釣具,ゴルフクラブやスノーボード等の高機能部材として有用な高引張強度,高ヤング率及び高延性が得られる塑性加工用アルミニウム合金及びその製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and has a high tensile strength, a high Young's modulus and a high ductility that are useful as high-functional members such as bicycle parts, fishing gear, golf clubs and snowboards, and a plastic working aluminum alloy and It is an object to provide a manufacturing method thereof.
上記課題を解決するために、請求項1記載の発明は、Si:0.4〜2.0重量%、Mg:0.4〜2.0重量%と、更にFe,Mn,Crから選ばれた1種以上を合計で0.5〜2.0重量%を含み、残部が不可避的不純物を含むAlからなるアルミニウム合金粉末と、アルミナを10〜25重量%とを混合した固化成形材であって、室温でのヤング率が80GPa以上であり、水焼入れ処理後の室温引張強度が300MPa以上であり、かつ、伸びが5%以上であることを特徴とする。 In order to solve the above problems, the invention according to claim 1 is selected from Si: 0.4 to 2.0 wt%, Mg: 0.4 to 2.0 wt%, and further Fe, Mn, and Cr. Further, it is a solidified molding material obtained by mixing aluminum alloy powder composed of Al containing 0.5 to 2.0% by weight in total with the remainder containing inevitable impurities and 10 to 25% by weight of alumina. The Young's modulus at room temperature is 80 GPa or more, the room temperature tensile strength after water quenching treatment is 300 MPa or more, and the elongation is 5% or more.
請求項2記載の発明は、請求項1記載の塑性加工用アルミニウム合金において、上記アルミニウム合金粉末が、Si:0.4〜2.0重量%、Mg:0.4〜2.0重量%、Fe:0.10〜0.3重量%、Mn:0.05〜0.6重量%、Cr:0.05〜0.6重量%を含有するAlからなる合金粉末である、ことを特徴とする。 The invention according to claim 2 is the aluminum alloy for plastic working according to claim 1, wherein the aluminum alloy powder is Si: 0.4 to 2.0 wt%, Mg: 0.4 to 2.0 wt%, Fe: 0.10 to 0.3 wt%, Mn: 0.05 to 0.6 wt%, Cr: alloy powder made of Al containing 0.05 to 0.6 wt% To do.
ここで、Siの添加量を0.4〜2.0重量%としたのは、Siの添加はMgと化合物Mg2Siを形成してアルミニウムマトリックスの熱処理後の強度を300MPa以上とするのに最低0.4重量%の添加が必要であり、Siの添加量が2.0重量%を超えると5%以上の伸びが得られず鍛造加工に支障をきたすからである。 Here, the addition amount of Si is set to 0.4 to 2.0% by weight because the addition of Si forms Mg and the compound Mg 2 Si to increase the strength of the aluminum matrix after heat treatment to 300 MPa or more. This is because the addition of at least 0.4% by weight is necessary, and if the addition amount of Si exceeds 2.0% by weight, an elongation of 5% or more cannot be obtained, which hinders forging.
また、Mgの添加量を0.4〜2.0重量%としたのは、Mgの添加は熱処理後の強度を高めるためSiとの化合物Mg2Siの形成に必要であり、300MPa以上の引張強度を得るには最低0.4重量%の添加が必要であり、Mgの添加量が2.0重量%を超えると塑性加工性が低下するからである。 Further, the amount of Mg added is set to 0.4 to 2.0% by weight because the addition of Mg is necessary for forming the compound Mg 2 Si with Si in order to increase the strength after the heat treatment, and the tensile strength of 300 MPa or more. This is because, in order to obtain the strength, the addition of at least 0.4% by weight is necessary, and if the amount of Mg exceeds 2.0% by weight, the plastic workability deteriorates.
Feは、SiとAl−Fe−Siの化合物を形成して、余分なSiの悪影響である伸びの減少を低減させる。Feの添加量を0.10〜0.3重量%としたのは、添加量が0.10重量%未満ではアトマイズ粉の組織微細化効果がなくなり、添加量が0.3重量%を超えると伸びの低下をきたすからである。 Fe forms a compound of Si and Al—Fe—Si to reduce the decrease in elongation, which is an adverse effect of excess Si. The addition amount of Fe was set to 0.10 to 0.3% by weight. When the addition amount was less than 0.10% by weight, the effect of refining the structure of the atomized powder was lost, and when the addition amount exceeded 0.3% by weight. This is because the elongation decreases.
Mn及びCrは、適量加えることによって、熱間加工による組織の粗大化を抑える効果がある。Mn及びCrの添加量をそれぞれ0.05〜0.6重量%としたのは、0.05重量%未満では上記効果がなく、添加量が0.6重量%を超えると延性を低下させるからである。 By adding appropriate amounts of Mn and Cr, there is an effect of suppressing the coarsening of the structure due to hot working. The reason why the amount of Mn and Cr added is 0.05 to 0.6% by weight is that, if the amount is less than 0.05% by weight, the above effect is not obtained, and if the amount added exceeds 0.6% by weight, the ductility is lowered. It is.
また、アルミナの添加量を10〜25重量%としたのは、ヤング率と耐摩耗性を向上させるためであり、添加量が10重量%未満になるとヤング率が低下し、25重量%を超えると伸びが低下するからである。 The reason why the amount of alumina added is 10 to 25% by weight is to improve the Young's modulus and wear resistance. When the amount added is less than 10% by weight, the Young's modulus decreases and exceeds 25% by weight. This is because the elongation decreases.
請求項3記載の発明は、請求項1又は2記載の塑性加工用アルミニウム合金において、上記アルミニウム合金粉末の平均粒径が10〜150μm、アルミナの平均粒径が5〜20μmである、ことを特徴とする。 The invention according to claim 3 is the aluminum alloy for plastic working according to claim 1 or 2, wherein the average particle size of the aluminum alloy powder is 10 to 150 μm, and the average particle size of alumina is 5 to 20 μm. And
ここで、アルミニウム合金粉末の平均粒径を10〜150μmとしたのは、10μm未満ではアルミニウム合金粉末同士で凝集が起こり、アルミナと均一に混合することが困難となり、強度及び伸びのバラツキが大きくなり塑性加工性に支障をきたし、150μmを超えると粗い粒子のものが多くなり、アルミナの均一な分散が困難となり、強度及び伸びのバラツキが大きくなり塑性加工性に支障をきたすからである。 Here, the average particle diameter of the aluminum alloy powder is set to 10 to 150 μm. When the average particle diameter is less than 10 μm, aggregation occurs between the aluminum alloy powders, and it becomes difficult to uniformly mix with alumina, resulting in large variations in strength and elongation. This is because the plastic workability is hindered, and if it exceeds 150 μm, the number of coarse particles increases, and it becomes difficult to uniformly disperse alumina, resulting in large variations in strength and elongation, thereby hindering plastic workability.
また、アルミナの平均粒径を5〜20μmとしたのは、アルミナはヤング率と耐摩耗性を向上させるためであり、平均粒径が5μm未満では均一な混合ができなくなり、20μmを超えると粗大なアルミナが多くなって、伸び及び塑性加工性を低下させるからである。 The average particle size of alumina is set to 5 to 20 μm in order to improve the Young's modulus and wear resistance of alumina. When the average particle size is less than 5 μm, uniform mixing cannot be performed. This is because a large amount of alumina reduces the elongation and plastic workability.
請求項4記載の発明は、上記塑性加工用アルミニウム合金の製造方法であって、Si:0.4〜2.0重量%、Mg:0.4〜2.0重量%と、更にFe,Mn,Crから選ばれた1種以上を合計で0.5〜2.0重量%を含み、残部が不可避的不純物を含むAlからなるアルミニウム合金粉末に、10〜25重量%のアルミナを混合した混合粉末を室温で加圧成形し、この成形体を200〜450℃にて真空脱ガスし、更に、500〜600℃の高温で焼結した成形体を、加圧焼結し、その後、鍛造加工して、室温でのヤング率が80GPa以上であり、水焼入れ処理後の室温引張強度が300MPa以上であり、かつ、伸びが5%以上であり、ブリスタの生じない完成品の構造部材を得る、ことを特徴とする。 Invention of Claim 4 is the manufacturing method of the said aluminum alloy for plastic working, Comprising: Si: 0.4-2.0 weight%, Mg: 0.4-2.0 weight%, Furthermore, Fe, Mn 1 or more selected from Cr, a total of 0.5 to 2.0% by weight of aluminum alloy powder composed of Al containing inevitable impurities in the balance, and 10 to 25% by weight of alumina mixed The powder is pressure-molded at room temperature, the compact is vacuum degassed at 200 to 450 ° C., and further, the compact that is sintered at a high temperature of 500 to 600 ° C. is pressure-sintered, and then forged. Then, the Young's modulus at room temperature is 80 GPa or more, the room temperature tensile strength after water quenching treatment is 300 MPa or more, and the elongation is 5% or more to obtain a finished structural member free from blistering. It is characterized by that.
この発明によれば、自転車部品,釣具,ゴルフクラブやスノーボード等の高機能部材として有用な高引張強度,高ヤング率であって、伸びも、従来品はアルミナの含有量が10重量%であっても5%未満であるのに対し、この発明ではアルミナの含有量が10重量%以上であっても8%に達し、延性に優れ、塑性加工性に適している。また、脱ガス後もガスの再吸着を抑制し、ブリスタ(膨れ)等の加工欠陥を生じさせない、塑性加工用アルミニウム合金を得ることができる。 According to the present invention, high tensile strength and high Young's modulus are useful as high-functional members such as bicycle parts, fishing gear, golf clubs and snowboards, and the conventional product has an alumina content of 10% by weight. However, in the present invention, even if the content of alumina is 10% by weight or more, it reaches 8%, which is excellent in ductility and suitable for plastic workability. In addition, it is possible to obtain an aluminum alloy for plastic working that suppresses gas re-adsorption even after degassing and does not cause processing defects such as blistering (blowing).
以下に、この発明に係る塑性加工用アルミニウム合金の製造方法の最良の実施形態について、図1を参照して詳細に説明する。 Below, the best embodiment of the manufacturing method of the aluminum alloy for plastic working which concerns on this invention is described in detail with reference to FIG.
まず、重量%で(以下、単に%で表示する)、Si:0.4〜2.0%(例えば、0.8%)、Mg:0.4〜2.0%(例えば、1.0%)と、更にFe,Mn,Crから選ばれた1種以上を合計で0.5〜2.0%(例えば、Fe:015%,Mn:0.05%,Cr:0.3%)を含み、残部が不可避的不純物を含むAlからなるアルミニウム合金急冷凝固粉末を作製する{ステップ1−1、アルミニウム合金粉末作製工程}。急冷凝固粉末を作製する方法としては、アトマイズ法,メルトスピニング法,回転円盤法,回転電極法等の公知の製造方法で行えばよく、この発明では、工業的生産に適しているという点でアトマイズ法(特に、ガスアトマイズ法)が適している。なお、このアルミニウム合金粉末作製に当って、均一な混合や強度及び伸びのバラツキを考慮して、アルミニウム合金粉末の平均粒径を好ましくは10〜150μmとする。その理由は、アルミニウム合金粉末の平均粒径が10μm未満であると、アルミニウム合金粉末同士で凝集が起こり、アルミナと均一に混合することが困難となり、また、アルミニウム合金粉末の平均粒径が150μmを超えると粗い粒子のものが多くなり、アルミナの均一な分散が困難となり、強度及び伸びのバラツキが大きくなり塑性加工性に支障をきたすからである。 First, by weight% (hereinafter simply expressed as%), Si: 0.4 to 2.0% (for example, 0.8%), Mg: 0.4 to 2.0% (for example, 1.0) %) And at least one selected from Fe, Mn, and Cr in a total of 0.5 to 2.0% (for example, Fe: 015%, Mn: 0.05%, Cr: 0.3%) Aluminum alloy rapidly solidified powder made of Al containing the inevitable impurities in the balance {step 1-1, aluminum alloy powder production step}. As a method for producing the rapidly solidified powder, a known manufacturing method such as an atomizing method, a melt spinning method, a rotating disk method, or a rotating electrode method may be used. In this invention, the atomizing method is suitable because it is suitable for industrial production. The method (particularly the gas atomization method) is suitable. In preparation of the aluminum alloy powder, the average particle size of the aluminum alloy powder is preferably 10 to 150 μm in consideration of uniform mixing and variations in strength and elongation. The reason is that if the average particle size of the aluminum alloy powder is less than 10 μm, the aluminum alloy powders aggregate together, making it difficult to mix uniformly with alumina, and the average particle size of the aluminum alloy powder is 150 μm. This is because if the average particle size is exceeded, the number of coarse particles increases, making it difficult to uniformly disperse alumina, resulting in large variations in strength and elongation, which hinders plastic workability.
次に、上記アルミニウム合金急冷凝固粉末中に、平均粒径が5〜20μm(例えば、15μm)のアルミナ(Al2O3)をポットミルにて10〜25%(例えば、15%)混合分散させて得られた混合粉末を、冷間静水圧成形(CIP)して仮成形する{ステップ1−2、加圧成形工程}。ここで、Al2O3の平均粒径を5〜20μmとした理由は、平均粒径が5μm未満では均一な混合ができなくなり、20μmを超えると粗大なAl2O3が多くなって、伸び及び塑性加工性を低下させるからである。 Next, alumina (Al 2 O 3 ) having an average particle diameter of 5 to 20 μm (for example, 15 μm) is mixed and dispersed in the aluminum alloy rapidly solidified powder in a pot mill by 10 to 25% (for example, 15%). The obtained mixed powder is cold isostatically pressed (CIP) and temporarily formed {step 1-2, pressure forming step}. Here, the reason why the average particle size of Al 2 O 3 is 5 to 20 μm is that uniform mixing cannot be performed when the average particle size is less than 5 μm, and when the average particle size exceeds 20 μm, coarse Al 2 O 3 increases and elongation occurs. This is because the plastic workability is lowered.
次に、仮成形した混合粉末を真空吸引によって脱ガス処理を行う{ステップ1−3、脱ガス処理工程}。脱ガス処理は、加熱しながら行うとガスも抜けやすく、一部焼結も進行するので、200〜450℃によって真空脱ガスする。炉内温度が200℃を超えると、仮成形体に吸収されている空気や水分が除去され、炉内温度が300℃を超えると、水和物が分解除去される。これらの現象は、450℃以上でも起こるが、仮成形体の温度が450℃を超えると次第に焼結が起こり、空気や水分が抜ける仮成形体内部の粉末間の隙間が塞がり始める。そこで、この発明では、焼結が始まる前に脱ガスを十分に行うために炉内温度400℃の炉内で成形体を1〜6時間(例えば、1.5時間)保持している。 Next, degassing treatment is performed on the temporarily formed mixed powder by vacuum suction {step 1-3, degassing treatment step}. When the degassing treatment is performed while heating, the gas is easily released and partial sintering also proceeds, so vacuum degassing is performed at 200 to 450 ° C. When the furnace temperature exceeds 200 ° C, air and moisture absorbed by the temporary molded body are removed, and when the furnace temperature exceeds 300 ° C, hydrates are decomposed and removed. These phenomena occur even at 450 ° C. or higher, but when the temperature of the temporary molded body exceeds 450 ° C., sintering gradually occurs, and the gaps between the powders inside the temporary molded body from which air and moisture are released begin to close. Therefore, in the present invention, the molded body is held for 1 to 6 hours (for example, 1.5 hours) in a furnace having a furnace temperature of 400 ° C. in order to sufficiently perform degassing before the sintering starts.
次いで、更に、500〜600℃(例えば、550℃)の高温で保持時間1〜6時間(例えば4時間)の焼結した成形体を、熱間押出又は熱間圧延により加圧焼結する{ステップ1−4、加圧焼結工程}。この加圧焼結工程において、温度が500℃未満であると、粉末表面を覆っている酸化物等が邪魔をして、焼結速度は遅く焼結はあまり進行しないので、上記温度(550℃)以上に加熱する方が好ましい。この温度(550℃)以上になると、粉末自身が柔らかくなり、表面の一部が溶融する。溶融してできた溶湯は、粉末表面を覆っている酸化物等の破れ目等から染み出して、粉末間の隙間を埋め、焼結が急速に進行するようになる。なお、600℃を超える温度で保持すると合金粉末の溶融が起こり、熱間加工材の機械的特性が著しく低下する。また、保持時間が1時間より短いと、焼結が十分に進まないので、保持時間は1時間以上にする必要がある。逆に、保持時間が6時間よりも長いと、合金粉末中の晶・析出物の粗大化が起こり、熱間加工材の機械的性質が低下する。よって、保持時間を1〜6時間とする方が好ましい。 Subsequently, the sintered compact which has been further sintered at a high temperature of 500 to 600 ° C. (for example, 550 ° C.) for 1 to 6 hours (for example, 4 hours) is subjected to pressure sintering by hot extrusion or hot rolling { Step 1-4, Pressure Sintering Step}. In this pressure sintering process, if the temperature is less than 500 ° C., the oxide covering the powder surface is obstructed, the sintering speed is slow and the sintering does not proceed so much. It is preferable to heat the above. If it becomes this temperature (550 degreeC) or more, powder itself will become soft and a part of surface will fuse | melt. The molten metal that has melted oozes out from breaks such as oxide covering the powder surface, fills the gaps between the powders, and sintering proceeds rapidly. In addition, when it hold | maintains at the temperature exceeding 600 degreeC, melting of alloy powder will occur and the mechanical characteristic of a hot work material will fall remarkably. Further, if the holding time is shorter than 1 hour, sintering does not proceed sufficiently, so the holding time needs to be 1 hour or longer. On the other hand, if the holding time is longer than 6 hours, the crystals / precipitates in the alloy powder become coarse and the mechanical properties of the hot-worked material deteriorate. Therefore, the holding time is preferably 1 to 6 hours.
加圧焼結した後、鍛造加工して完成品の構造部材を得る{ステップ1−5、鍛造加工工程}。 After pressure sintering, forging is performed to obtain a finished structural member {step 1-5, forging process}.
以下に、上記工程を経て得られた完成品の構造部材である塑性加工用アルミニウム合金の特性と表面観察の実験について説明する。 Hereinafter, characteristics of the aluminum alloy for plastic working, which is a structural member of the finished product obtained through the above steps, and an experiment for surface observation will be described.
まず、表1に示す成分の元素とAl2O3を含むアルミニウム合金急冷凝固粉末をガスアトマイズ法で製造(作製)する。得られたアルミニウム合金粉末を冷間静水圧成形で、直径325mmのビレットに成形する。得られたビレットを真空炉中で380℃の温度で1時間保持し、脱ガス処理し、その後560℃の高温(但し、表1のNo.20とNo.21のみ480℃)で2時間焼結した成形体を常温まで冷却した後、誘導加熱で500℃まで加熱し、丸棒に押出加圧し、水焼入れ(T6)処理、すなわち、540℃で2時間保持後水冷、180℃で6時間人工時効を行ったところ、表2に示すような結果が得られた。
上記実験の結果、発明合金(No.1〜No.4)は、引張強度が305〜367MPaであり、ヤング率が80〜87GPaであり、伸びが5.2〜8.5%であり、十分高い引張強度、ヤング率及び伸びを示した。更に、脱ガス後もガスの再吸着を抑制し、ブリスタ等の加工欠陥が生じない塑性加工用アルミニウム合金を得ることができた。これに対し、比較合金(No.5〜No.23)は、アルミニウム合金粉末とAl2O3の成分量と平均粒径及び焼結温度が適切でないため、引張強度、ヤング率及び伸びが不足しているかバラツキが大きく、又はブリスタが生じることが判った。 As a result of the above experiments, the inventive alloys (No. 1 to No. 4) have a tensile strength of 305 to 367 MPa, a Young's modulus of 80 to 87 GPa, and an elongation of 5.2 to 8.5%, which is sufficient. It showed high tensile strength, Young's modulus and elongation. Furthermore, the re-adsorption of gas was suppressed even after degassing, and an aluminum alloy for plastic working that did not cause processing defects such as blisters could be obtained. On the other hand, the comparative alloys (No. 5 to No. 23) are insufficient in tensile strength, Young's modulus, and elongation because the component amounts, average particle diameter, and sintering temperature of the aluminum alloy powder and Al 2 O 3 are not appropriate. It was found that there was large variation or blistering.
よって、重量%(以下、同じ)で、Si:0.4〜2.0%、Mg:0.4〜2.0%と、更にFe,Mn,Crから選ばれた1種以上を合計で0.5〜2.0%(具体的には、Fe:0.10〜0.3%、Mn:0.05〜0.6%、Cr:0.05〜0.6%)を含み、残部が不可避的不純物を含むAlからなるアルミニウム合金粉末中に、Al2O3を10〜25%分散させることにより、室温でのヤング率が80GPa以上であり、水焼入れ処理後の室温引張強度が300MPa以上であり、かつ、伸びが5%以上であり、ブリスタの生じない塑性加工用アルミニウム合金を得ることができる。 Therefore, by weight% (hereinafter the same), Si: 0.4-2.0%, Mg: 0.4-2.0%, and at least one selected from Fe, Mn, Cr in total 0.5 to 2.0% (specifically, Fe: 0.10 to 0.3%, Mn: 0.05 to 0.6%, Cr: 0.05 to 0.6%), By dispersing Al 2 O 3 in an aluminum alloy powder composed of Al containing the inevitable impurities in the balance, 10 to 25%, the Young's modulus at room temperature is 80 GPa or more, and the room temperature tensile strength after water quenching treatment is An aluminum alloy for plastic working that is 300 MPa or more and has an elongation of 5% or more and does not generate blisters can be obtained.
Claims (4)
上記アルミニウム合金粉末が、Si:0.4〜2.0重量%、Mg:0.4〜2.0重量%、Fe:0.10〜0.3重量%、Mn:0.05〜0.6重量%、Cr:0.05〜0.6重量%を含有するAlからなる合金粉末である、ことを特徴とする塑性加工用アルミニウム合金。 In the aluminum alloy for plastic working according to claim 1,
The said aluminum alloy powder is Si: 0.4-2.0 weight%, Mg: 0.4-2.0 weight%, Fe: 0.10-0.3 weight%, Mn: 0.05-0. An aluminum alloy for plastic working, which is an alloy powder made of Al containing 6% by weight and Cr: 0.05 to 0.6% by weight.
上記アルミニウム合金粉末の平均粒径が10〜150μm、アルミナの平均粒径が5〜20μmである、ことを特徴とする塑性加工用アルミニウム合金。 In the aluminum alloy for plastic working according to claim 1 or 2,
An aluminum alloy for plastic working, wherein the aluminum alloy powder has an average particle size of 10 to 150 μm and alumina has an average particle size of 5 to 20 μm.
Si: 0.4 to 2.0% by weight, Mg: 0.4 to 2.0% by weight, and at least one selected from Fe, Mn, and Cr in total 0.5 to 2.0% by weight A mixed powder obtained by mixing 10 to 25% by weight of alumina into an aluminum alloy powder containing Al, the balance of which contains inevitable impurities, is pressure-molded at room temperature, and the compact is vacuum degassed at 200 to 450 ° C. Gas, and then press-sinter the molded body sintered at a high temperature of 500 to 600 ° C., then forging, the Young's modulus at room temperature is 80 GPa or more, and room temperature tensile after water quenching treatment A method for producing an aluminum alloy for plastic working, comprising obtaining a finished structural member having a strength of 300 MPa or more and an elongation of 5% or more.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004114211A JP3870380B2 (en) | 2004-04-08 | 2004-04-08 | Aluminum alloy for plastic working and manufacturing method thereof |
TW094106839A TW200533763A (en) | 2004-04-08 | 2005-03-07 | Aluminum alloy for plastic working, and its manufacturing method |
CNB2005100648833A CN100371483C (en) | 2004-04-08 | 2005-04-08 | Aluminum alloy for plastic working and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004114211A JP3870380B2 (en) | 2004-04-08 | 2004-04-08 | Aluminum alloy for plastic working and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005298871A true JP2005298871A (en) | 2005-10-27 |
JP3870380B2 JP3870380B2 (en) | 2007-01-17 |
Family
ID=35067355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004114211A Expired - Fee Related JP3870380B2 (en) | 2004-04-08 | 2004-04-08 | Aluminum alloy for plastic working and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3870380B2 (en) |
CN (1) | CN100371483C (en) |
TW (1) | TW200533763A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100732195B1 (en) * | 2005-02-15 | 2007-06-27 | 주식회사동양강철 | Al-alloy for extrusion forming |
KR101476284B1 (en) * | 2014-09-30 | 2014-12-24 | 유선상 | Al-Si-Mg Aluminum alloy and manufacturing method thereof |
JP2018083987A (en) * | 2018-02-09 | 2018-05-31 | 株式会社中山アモルファス | Anticorrosive sprayed coating, formation method thereof, and spraying device for formation thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104060136A (en) * | 2014-06-19 | 2014-09-24 | 广西中才铝业有限公司 | Aluminum alloy for preparation of triangular frame of bicycle and production method thereof |
CN107695339A (en) * | 2017-10-10 | 2018-02-16 | 浙江跃进机械有限公司 | A kind of preparation method of aluminum base powder metallurgy forging engine link |
CN109468570A (en) * | 2018-12-28 | 2019-03-15 | 深圳市金中瑞通讯技术有限公司 | A kind of preparation method and spraying equipment of composition metal alloy-coated layer |
CN109702185B (en) * | 2019-01-23 | 2021-04-06 | 宁波合盛新材料有限公司 | Aluminum-based composite material forged piece and preparation method thereof |
TWI781858B (en) * | 2021-12-20 | 2022-10-21 | 常琪鋁業股份有限公司 | Manufacturing method of high thermal conductivity aluminum alloy and products thereof |
CN114438354A (en) * | 2021-12-24 | 2022-05-06 | 常琪铝业股份有限公司 | Method for manufacturing high heat conduction aluminum alloy and product thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04120237A (en) * | 1990-09-07 | 1992-04-21 | Furukawa Alum Co Ltd | Aluminum base high damping material and its manufacture |
GB9804599D0 (en) * | 1998-03-05 | 1998-04-29 | Aeromet International Plc | Cast aluminium-copper alloy |
-
2004
- 2004-04-08 JP JP2004114211A patent/JP3870380B2/en not_active Expired - Fee Related
-
2005
- 2005-03-07 TW TW094106839A patent/TW200533763A/en unknown
- 2005-04-08 CN CNB2005100648833A patent/CN100371483C/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100732195B1 (en) * | 2005-02-15 | 2007-06-27 | 주식회사동양강철 | Al-alloy for extrusion forming |
KR101476284B1 (en) * | 2014-09-30 | 2014-12-24 | 유선상 | Al-Si-Mg Aluminum alloy and manufacturing method thereof |
JP2018083987A (en) * | 2018-02-09 | 2018-05-31 | 株式会社中山アモルファス | Anticorrosive sprayed coating, formation method thereof, and spraying device for formation thereof |
Also Published As
Publication number | Publication date |
---|---|
TW200533763A (en) | 2005-10-16 |
CN1680610A (en) | 2005-10-12 |
CN100371483C (en) | 2008-02-27 |
JP3870380B2 (en) | 2007-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010122960A1 (en) | High-strength copper alloy | |
US20190024214A1 (en) | Method for manufacturing quasicrystal and alumina mixed particulate reinforced magnesium-based composite material | |
JPH02503331A (en) | Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy | |
CN100371483C (en) | Aluminum alloy for plastic working and manufacture thereof | |
WO2007111342A1 (en) | High-strength high-toughness magnesium alloy and method for producing the same | |
CN107338369A (en) | Monel bar and preparation method thereof | |
KR20160021765A (en) | Aluminum alloy composition with improved elevated temperature mechanical properties | |
JP3548709B2 (en) | Method for producing semi-solid billet of Al alloy for transportation equipment | |
JP2005272966A (en) | Aluminum alloy for semisolid casting and method for manufacturing casting | |
JP4141207B2 (en) | High strength aluminum alloy casting and manufacturing method thereof | |
JP3845035B2 (en) | Method for manufacturing piston for internal combustion engine and piston for internal combustion engine | |
JP3940022B2 (en) | Method for producing sintered aluminum alloy | |
JP4925028B2 (en) | Aluminum alloy molding material | |
JPS60208443A (en) | Aluminum alloy material | |
JPH04325648A (en) | Production of sintered aluminum alloy | |
JPH0578708A (en) | Production of aluminum-based grain composite alloy | |
JPH0635602B2 (en) | Manufacturing method of aluminum alloy sintered forgings | |
JP2005048285A (en) | RAW MATERIAL POWDER FOR Al-Si BASED ALLOY SINTERED COMPONENT, METHOD OF PRODUCING Al-Si BASED ALLOY SINTERED COMPONENT, AND Al-Si BASED ALLOY SINTERED COMPONENT | |
JP4704720B2 (en) | Heat-resistant Al-based alloy with excellent high-temperature fatigue properties | |
JP2021008651A (en) | Aluminum alloy working material and method for manufacturing the same | |
JP2005082855A (en) | Al ALLOY MATERIAL | |
JP3691399B2 (en) | Method for producing hot-worked aluminum alloy powder | |
JP2798709B2 (en) | Manufacturing method of aluminum alloy powder sintered parts | |
WO2021193536A1 (en) | Aluminum powder for metal laminate molding, manufacturing method thereof, and metal laminate molded product | |
CN115927932B (en) | High-strength die-casting aluminum alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061005 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151027 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |