JP2005297290A - Aluminum plate for electronic device and molding for electronic device using the plate - Google Patents

Aluminum plate for electronic device and molding for electronic device using the plate Download PDF

Info

Publication number
JP2005297290A
JP2005297290A JP2004114682A JP2004114682A JP2005297290A JP 2005297290 A JP2005297290 A JP 2005297290A JP 2004114682 A JP2004114682 A JP 2004114682A JP 2004114682 A JP2004114682 A JP 2004114682A JP 2005297290 A JP2005297290 A JP 2005297290A
Authority
JP
Japan
Prior art keywords
aluminum
aluminum plate
resin film
resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004114682A
Other languages
Japanese (ja)
Other versions
JP4482364B2 (en
Inventor
Nobuo Hattori
伸郎 服部
Satoshi Tsukagoshi
智 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004114682A priority Critical patent/JP4482364B2/en
Publication of JP2005297290A publication Critical patent/JP2005297290A/en
Application granted granted Critical
Publication of JP4482364B2 publication Critical patent/JP4482364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum plate for an electronic device which can effectively prevent the occurrence of a hurt due to agglutination abrasion in the initial period of continuous molding and a hurt due to abrasion while the continuous molding advances to produce wear debris and is excellent in scratch resistance. <P>SOLUTION: The aluminum plate 1 has a lubricative surface formed by laminating an aluminum blank 2 having a center line average height Ra of 0.2-0.6 μm, a corrosion resistant membrane 3, and a resin membrane 4 in turn. Fine projections of the surface of the aluminum blank 2 or the corrosion resistant membrane 3 are exposed to the surface of the resin membrane 4. The corrosion resistant membrane 3 contains Cr or Zr. The amount of adhesion to the aluminum blank 2 is 10-50 mg/m<SP>2</SP>in terms of Cr or Zr. In the resin membrane 4, the average thickness is 0.05-0.9 μm, the glass transition temperature exceeds 30°C, and a lubricant in an amount of 1-25 mass% of the total mass of the membrane 4 is contained. The coefficient of dynamic friction of the surface on the side of the resin membrane 4 is 0.2 or below, and the pencil hardness of the surface is 3 H or above. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子機器用アルミニウム板およびこれを用いた電子機器用成形品に係り、特に、アルミニウム素板の表面に耐食性皮膜および樹脂皮膜を形成したことにより、電子機器の筐体製造に求められる、優れた連続成形性や耐疵付き性、導電性、耐指紋性を確保する電子機器用アルミニウム板およびこれを用いた電子機器用成形品に関する。   The present invention relates to an aluminum plate for electronic equipment and a molded product for electronic equipment using the same, and in particular, is required for manufacturing a casing for electronic equipment by forming a corrosion-resistant film and a resin film on the surface of an aluminum base plate. The present invention relates to an aluminum plate for electronic devices that ensures excellent continuous formability, scratch resistance, electrical conductivity, and fingerprint resistance, and a molded product for electronic devices using the same.

近年、ノートブックタイプのパーソナルコンピュータ(以下、「ノートパソコン」)に代表される携帯型OA機器の部材、例えば、CD−ROMやDVD、FDDなどドライブ装置のカバーや液晶バックライト背面板に、アルミニウム素板の表面に耐食性皮膜や樹脂皮膜を形成したプレコートアルミニウム材(以下、「電子機器用アルミニウム板」という)を採用することが多くなっている。   In recent years, aluminum is used for members of portable OA equipment represented by notebook type personal computers (hereinafter referred to as “notebook personal computers”), such as covers of drive devices such as CD-ROM, DVD, FDD, and liquid crystal backlight back plates. A pre-coated aluminum material (hereinafter referred to as “aluminum plate for electronic equipment”) in which a corrosion-resistant film or a resin film is formed on the surface of the base plate is often employed.

携帯型OA機器に使用される電子機器用アルミニウム板には、その用途から下記の特性を満足することが要求されている。すなわち、(1)プレス油を洗浄する工程を省略して製造コストを下げることを目的に、洗浄の不要な速乾性プレス油だけでの連続成形を可能とする潤滑性、(2)外観品質を向上するための耐疵付き性および耐指紋性、(3)帯電防止やアースをとるための導電性、(4)ネジ穴を高強度化するため、および、デント防止のための適正な強度、(5)薄肉軽量化を実現するための適正な板厚、(6)異形状成形による後加工を省略するための高成形性、である。   An aluminum plate for electronic equipment used in a portable OA device is required to satisfy the following characteristics depending on its use. (1) Lubricity that enables continuous molding with only quick-drying press oil that does not require cleaning, with the aim of reducing manufacturing costs by omitting the step of cleaning press oil, and (2) Appearance quality Wrinkle resistance and fingerprint resistance to improve, (3) conductivity for antistatic and grounding, (4) proper strength for increasing screw holes and preventing dents, (5) Appropriate plate thickness for realizing thin wall and light weight, and (6) High formability for omitting post-processing by irregular shape molding.

本発明者らは前記の要求のうち、主として(3)の導電性を向上させた電子機器用アルミニウム板を提供することを目的として研究を行った結果、特許文献1に記載の発明を完成するに至った。すなわち、当該特許文献1に記載の発明は、所定の中心線平均粗さRaを有するアルミニウム板の少なくとも一面に、所定の耐食性皮膜と所定の樹脂皮膜とを形成し、その表面抵抗値を規定することで導電性を向上させつつ、その他の要求も満足した電子機器用アルミニウム板に関するものである。   Among the above requirements, the present inventors have studied for the purpose of providing an aluminum plate for electronic equipment with improved electrical conductivity (3). As a result, the invention described in Patent Document 1 is completed. It came to. That is, in the invention described in Patent Document 1, a predetermined corrosion-resistant film and a predetermined resin film are formed on at least one surface of an aluminum plate having a predetermined centerline average roughness Ra, and the surface resistance value is defined. It is related with the aluminum plate for electronic devices which improved the electroconductivity and satisfyed other requirements.

なお、本発明者らは、かかる成果について、「アルミニウム板の導電性、加工疵に及ぼすプレコート皮膜の影響」と題して耐疵付き性と導電性に及ぼす皮膜塗布量並びに導電性微粒子添加量の影響を明らかにし、これを非特許文献1に報告している。   In addition, the inventors of the present invention are entitled “Effects of precoat film on conductivity of aluminum plate and processing flaw”, and the coating amount and conductive fine particle addition amount on wrinkle resistance and conductivity. The influence is clarified and this is reported in Non-Patent Document 1.

また、本発明者らはより優れた電子機器用アルミニウム板を開発するため研究を行った結果、薄膜プレコート材(本願の電子機器用アルミニウム板に該当)の耐疵付き性向上に及ぼす潤滑剤の種類の影響と最適添加量を明らかにし、かかる成果を「アルミニウム板の疵付き防止性に及ぼすプレコート皮膜中への添加剤の影響」と題して非特許文献2に報告している。
特開2003−313684号公報(請求項1、段落0021〜0050、図1) 服部ら、軽金属学会第103回秋期大会講演概要、2002年、189−190頁 塚越ら、軽金属学会第104回春期大会講演概要、2003年、137−138頁
In addition, as a result of studies conducted by the present inventors to develop a better aluminum plate for electronic devices, the effect of the lubricant on the improvement of the scratch resistance of the thin film precoat material (corresponding to the aluminum plate for electronic devices of the present application). The effect of the type and the optimum addition amount are clarified, and this result is reported in Non-Patent Document 2 entitled “Influence of Additives in Precoat Film on Anti-Bratting Property of Aluminum Plate”.
JP 2003-313684 A (Claim 1, paragraphs 0021 to 0050, FIG. 1) Hattori et al., Outline of the 103rd Autumn Meeting of the Japan Institute of Light Metals, 2002, pp. 189-190 Tsukagoshi et al., 104th Spring Meeting of the Japan Institute of Light Metals, 2003, pp. 137-138

特許文献1に係る電子機器用アルミニウム板では、成形加工初期から生じる疵を防止するために当該電子機器用アルミニウム板の中心線平均粗さRaや樹脂皮膜、潤滑剤といったパラメータを規定し、かかる問題を解決している。
しかしながら、特許文献1に記載の電子機器用アルミニウム板を用いた場合であっても、連続成形を行うと連続成形の進行にともない成形品に疵が発生することが確認された。
In the aluminum plate for electronic devices according to Patent Document 1, parameters such as center line average roughness Ra, resin film, and lubricant of the aluminum plate for electronic devices are defined in order to prevent wrinkles that occur from the early stage of the forming process. Has solved.
However, even when the aluminum plate for electronic devices described in Patent Document 1 is used, it has been confirmed that when continuous molding is performed, wrinkles are generated in the molded product as the continuous molding progresses.

本発明者らは、成形開始直後の疵と連続成形が進んだ状況での疵の発生メカニズムの違いを解明したところ、連続成形の進行にともない発生する疵は摩擦面間に連続成形にともなって発生するアルミニウムの摩耗粉が介在する場合に生ずる微小な切削作用によるアブレシブ摩耗をメカニズムとする疵であり、かかる疵には潤滑剤による摩擦抵抗の低減は効果がないことを、後記する実施例によって明らかにすることができた。
なお、特許文献1に記載の電子機器用アルミニウム板において発生していた疵は、摩擦面の間に摩耗粉が介在しない状況での、プレスの金型とアルミニウム板の表面との微視的な凝着や破壊に起因する凝着摩耗をメカニズムとする疵であった。かかる疵の発生は、前記の特許文献1や非特許文献2に記載するように、潤滑剤等を添加して摩擦抵抗を低減することで防止することができたが、このような疵付きの挙動が生じるのは、電子機器の筐体などが実際に製造される連続成形の中では、摩耗粉の清掃などプレスの金型をメンテナンスした直後の一時的な状況だけであり、連続成形での疵発生をモデル化したとは言い難いことが分かった。
The present inventors have elucidated the difference in the generation mechanism of wrinkles immediately after the start of molding and the situation where continuous molding has progressed, and the wrinkles that occur as continuous molding progresses are caused by continuous molding between friction surfaces. It is a saddle that has a mechanism of abrasive wear due to minute cutting action that occurs when the generated aluminum wear powder is present, and such a saddle is ineffective in reducing frictional resistance with a lubricant, according to the examples described later. I was able to clarify.
In addition, the wrinkles which generate | occur | produced in the aluminum plate for electronic devices of patent document 1 are the microscopic of the metal mold | die of a press, and the surface of an aluminum plate in the condition where abrasion powder does not intervene between friction surfaces. It should have been the mechanism of adhesion wear due to adhesion and fracture. Such wrinkles can be prevented by adding a lubricant or the like and reducing the frictional resistance as described in Patent Document 1 and Non-Patent Document 2 described above. The behavior occurs only in a temporary situation immediately after maintenance of the press die, such as cleaning of wear powder, in continuous molding in which the housing of electronic equipment is actually manufactured. It turned out that it was hard to say that the occurrence of soot was modeled.

また、最近では、より高強度の製品を提供するために、従来用いられてきたアルミニウム素板(JIS H4000に規定する合金番号5052のアルミニウム合金板)よりも硬質のアルミニウム素板(JIS H4000に規定する合金番号5182のアルミニウム合金板など)が使用されてきており、その結果連続成形にて発生するアルミニウムの摩耗粉の硬さも硬くなってきていることも、アブレシブ摩耗による疵の発生が顕在化している原因の一つと考えられる。   Recently, in order to provide a product with higher strength, an aluminum base plate (specified in JIS H4000) that is harder than an aluminum base plate (alloy number 5052 specified in JIS H4000) that has been conventionally used. Alloy number 5182, etc.) has been used, and as a result, the hardness of aluminum wear powder generated by continuous forming has also increased, and the occurrence of wrinkles due to abrasive wear has become obvious. One of the causes.

さらに、従来製品よりも導電性を向上させるために樹脂皮膜を薄くすることも求められており、樹脂皮膜による電子機器用アルミニウム板の表面の保護が十分に図れないことも前記のような疵が発生し易い要因となっていると考えられる。   Furthermore, it is also required to make the resin film thinner in order to improve the conductivity than the conventional product, and the fact that the surface of the aluminum plate for electronic devices cannot be sufficiently protected by the resin film also has the above-mentioned defects. This is considered to be a factor that easily occurs.

本発明は前記課題に鑑みてなされたものであり、従来まったく報告されていない連続成形加工時の加工疵の発生を防止することのできる、耐疵付き性に優れた電子機器用アルミニウム板を提供することを目的とする。すなわち、凝着摩耗に起因する疵だけではなく摩耗粉によるアブレシブ摩耗に起因する疵の発生を効果的に防止することができる、耐疵付き性に優れた電子機器用アルミニウム板を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides an aluminum plate for electronic equipment having excellent scratch resistance, which can prevent the occurrence of processing flaws during continuous forming that has not been reported at all. The purpose is to do. That is, to provide an aluminum plate for electronic equipment with excellent scratch resistance that can effectively prevent not only wrinkles due to adhesive wear but also wrinkles due to abrasive wear due to wear powder. Objective.

本発明者らは前記課題を解決するため鋭意研究を行った結果、アルミニウム素板の表面に形成する樹脂皮膜のガラス転移温度を30℃よりも高いものに限定することにより皮膜の硬度が高くなり、その結果、アブレシブ摩耗に起因する疵の発生を防止することが可能であるという知見を得、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have increased the hardness of the coating by limiting the glass transition temperature of the resin coating formed on the surface of the aluminum base plate to a temperature higher than 30 ° C. As a result, the inventors have obtained knowledge that it is possible to prevent wrinkles due to abrasive wear, and have completed the present invention.

すなわち、請求項1に記載の発明は、中心線平均粗さRaが0.2〜0.6μmであるアルミニウム素板の少なくとも片面に、このアルミニウム素板側から順に耐食性皮膜と樹脂皮膜とを積層して形成された潤滑表面を有し、かつ、前記アルミニウム素板、または前記耐食性皮膜が形成された表面の微細な凸部が前記樹脂皮膜の表面に露出したアルミニウム板であって、前記耐食性皮膜は、CrまたはZrを含有し、かつ前記アルミニウム板への付着量がCrまたはZr換算値で10〜50mg/m2であり、前記樹脂皮膜は、平均膜厚が0.05〜0.9μm、かつ、ガラス転移温度が30℃よりも高く、全樹脂皮膜量に対して1〜25質量%の潤滑剤を含有し、前記潤滑表面の動摩擦係数が0.2以下、鉛筆硬度が3H以上であることを特徴とする電子機器用アルミニウム板である。 That is, in the invention described in claim 1, the corrosion resistance film and the resin film are laminated in order from the aluminum base plate side on at least one surface of the aluminum base plate having a center line average roughness Ra of 0.2 to 0.6 μm. And the aluminum base plate or the aluminum plate with the fine protrusions on the surface on which the corrosion-resistant film is formed exposed on the surface of the resin film, the corrosion-resistant film Contains Cr or Zr, and the amount of adhesion to the aluminum plate is 10 to 50 mg / m 2 in terms of Cr or Zr, and the resin film has an average film thickness of 0.05 to 0.9 μm, And glass transition temperature is higher than 30 degreeC, 1-25 mass% lubricant is contained with respect to the total resin film amount, the dynamic friction coefficient of the said lubrication surface is 0.2 or less, and pencil hardness is 3H or more. Specially Aluminum plate for electronic equipment such as.

このように、アルミニウム素板表面の中心線平均粗さRaと、当該素板の表面に形成する耐食性皮膜および樹脂皮膜の膜厚を適切な範囲に規定しているので、アルミニウム素板の凸部または耐食性皮膜の微細な凸部が樹脂皮膜の表面に露出するようになり、高い導電性を損なわずに耐指紋性を良好に保つことができる。また、潤滑表面を形成する樹脂皮膜は適切な量の潤滑剤を含有しているので、動摩擦力(動摩擦係数)を低くすることができる。特に、この樹脂皮膜のガラス転移温度や鉛筆硬度を適切に規定したことで、アブレシブ摩耗による疵の発生を効果的に防止することができ、連続成形を行っても耐疵付き性に優れた電子機器用アルミニウム板を具現することができる。   As described above, the center line average roughness Ra of the surface of the aluminum base plate and the film thickness of the corrosion-resistant film and the resin film formed on the surface of the base plate are regulated within an appropriate range. Or the fine convex part of a corrosion-resistant film comes to be exposed on the surface of a resin film, and can maintain favorable fingerprint resistance, without impairing high electroconductivity. Further, since the resin film forming the lubricating surface contains an appropriate amount of lubricant, the dynamic friction force (dynamic friction coefficient) can be lowered. In particular, by appropriately specifying the glass transition temperature and pencil hardness of this resin film, it is possible to effectively prevent wrinkles due to abrasive wear, and even with continuous molding, an electron with excellent scratch resistance. An aluminum plate for equipment can be embodied.

また、請求項2に記載の発明は、前記樹脂皮膜が、ポリエステル系樹脂よりなることを特徴とする請求項1に記載の電子機器用アルミニウム板である。
ポリエステル系樹脂で樹脂皮膜を形成するので、形成された樹脂皮膜は高いガラス転移温度を有し、その硬度が硬くなるのでアブレシブ摩耗による疵の発生を効果的に防止することができる。
The invention according to claim 2 is the aluminum plate for electronic equipment according to claim 1, wherein the resin film is made of a polyester resin.
Since the resin film is formed of the polyester-based resin, the formed resin film has a high glass transition temperature and the hardness thereof is hard, so that generation of wrinkles due to abrasive wear can be effectively prevented.

請求項3に記載の発明は、前記潤滑表面に、先端が半径10mmの金属製球状端子を、0.4Nの荷重で押付けたときの前記球状端子と前記アルミニウム素板との間の表面抵抗値が100Ω以下であることを特徴とする請求項1または請求項2に記載の電子機器用アルミニウム板である。
このように、潤滑表面における表面抵抗値を適切に規定しているので、電子機器用アルミニウム板に所望の導電性を備えることができる。
The invention according to claim 3 is a surface resistance value between the spherical terminal and the aluminum base plate when a metal spherical terminal having a radius of 10 mm is pressed against the lubricated surface with a load of 0.4 N. The aluminum plate for electronic equipment according to claim 1 or 2, wherein is 100Ω or less.
Thus, since the surface resistance value in the lubrication surface is prescribed | regulated appropriately, desired electroconductivity can be provided in the aluminum plate for electronic devices.

請求項4に記載の発明は、前記潤滑剤が、ポリアルキレン系ワックスおよびフッ素系ワックスのうち少なくとも一種を含むことを特徴とする請求項1から請求項3に記載の電子機器用アルミニウム板である。   The invention according to claim 4 is the aluminum plate for electronic equipment according to claim 1, wherein the lubricant contains at least one of polyalkylene wax and fluorine wax. .

このような潤滑剤を用いれば、樹脂皮膜に適度な潤滑性を与えることができるので、摩耗粉が発生していない連続成形開始直後の様な凝着摩耗に起因する疵の発生を効果的に抑制することができる。また、プレス加工の際における金型との摺動によって樹脂皮膜が剥がれることがなく、優れた耐疵付き性を維持することができる。   If such a lubricant is used, the resin film can be provided with appropriate lubricity, so that generation of wrinkles due to adhesive wear such as immediately after the start of continuous molding in which no abrasion powder is generated is effectively achieved. Can be suppressed. Further, the resin film is not peeled off by sliding with the mold during press working, and excellent scratch resistance can be maintained.

そして、請求項5に記載の発明は、請求項1から請求項4のうちいずれか一項に記載の電子機器用アルミニウム板を用いて成形したことを特徴とする電子機器用成形品である。
このように、請求項1から請求項4のうちいずれか一項に記載の電子機器用アルミニウム板を用いるので、指紋や加工疵、スクラッチ疵のない電子機器成形品を成形することができる。
The invention according to claim 5 is a molded article for electronic equipment, which is formed using the aluminum plate for electronic equipment according to any one of claims 1 to 4.
Thus, since the aluminum plate for electronic devices according to any one of claims 1 to 4 is used, an electronic device molded article free from fingerprints, processed wrinkles, and scratches can be formed.

請求項1から請求項3に記載の発明によれば、成形加工時の加工疵の発生を防止することのできる、耐疵付き性に優れた電子機器用アルミニウム板を提供することができる。特に、高いガラス転移温度を有する樹脂皮膜を用いることで従来成し得なかった連続成形にともない発生する摩耗粉が影響するアブレシブ摩耗に起因する疵の発生を効果的に防止することができる。
請求項4に記載の発明によれば、加工疵のない電子機器用成形品を提供することができる。
According to the first to third aspects of the invention, it is possible to provide an aluminum plate for electronic equipment that can prevent generation of wrinkles at the time of forming and has excellent wrinkle resistance. In particular, by using a resin film having a high glass transition temperature, it is possible to effectively prevent the generation of wrinkles due to abrasive wear, which is affected by wear powder generated by continuous molding, which could not be achieved conventionally.
According to invention of Claim 4, the molded article for electronic devices without a processing flaw can be provided.

以下、適宜図面を参照して本発明に係る電子機器用アルミニウム板および電子機器用成形品を実施するための最良の形態について具体的に説明する。
参照する図面において図1は、本発明に係る電子機器用アルミニウム板の構成を模式的に示す断面図である。図1に示すように、本発明に係る電子機器用アルミニウム板1は、表面粗さ(中心線平均粗さRa)が本発明で規制する範囲内に調整されたアルミニウム素板2の表面に、耐食性を充分に確保するための耐食性皮膜3が被覆され、この耐食性皮膜3の上に潤滑剤を含む樹脂皮膜4が形成されている。以下、本発明に係る電子機器用アルミニウム板1を構成する各要素で数値限定した理由について説明する。
Hereinafter, the best mode for carrying out an aluminum plate for electronic equipment and a molded article for electronic equipment according to the present invention will be specifically described with reference to the drawings as appropriate.
In the drawings to be referred to, FIG. 1 is a cross-sectional view schematically showing a configuration of an aluminum plate for electronic equipment according to the present invention. As shown in FIG. 1, an aluminum plate 1 for electronic equipment according to the present invention has a surface roughness (centerline average roughness Ra) adjusted on the surface regulated by the present invention on the surface of an aluminum base plate 2. A corrosion-resistant film 3 for ensuring sufficient corrosion resistance is coated, and a resin film 4 containing a lubricant is formed on the corrosion-resistant film 3. Hereinafter, the reason why the numerical values are limited for each element constituting the aluminum plate 1 for electronic equipment according to the present invention will be described.

[アルミニウム素板]
本発明で用いられるアルミニウム素板2は、JIS H4000に規定する合金番号5182のアルミニウム合金板や、JIS H4000に規定する合金番号5052のアルミニウム合金板を好適に用いることができるが、これらに限定されるものではなく、必要に応じて各種の成分および調質を行ったアルミニウム板またはアルミニウム合金板を用いることができる。なお、アルミニウム素板の板厚は、例えば、0.3〜0.8mmとするのがよいが、目的に応じて種々の板厚とすることができる。
[Aluminum base plate]
As the aluminum base plate 2 used in the present invention, an aluminum alloy plate having an alloy number of 5182 defined in JIS H4000 or an aluminum alloy plate having an alloy number of 5052 defined in JIS H4000 can be preferably used. The aluminum plate or the aluminum alloy plate which performed various components and tempering as needed can be used. In addition, although the board thickness of an aluminum base plate is good to set it as 0.3-0.8 mm, for example, it can be set as various board thickness according to the objective.

(アルミニウム素板の中心線平均粗さRa:0.2〜0.6μm)
本発明に含まれるアルミニウム素板2の中心線平均粗さRaは、後記の耐食性皮膜3および樹脂皮膜4の平均膜厚とともに、電子機器用アルミニウム板1として要求される耐疵付き性、導電性、成形性および耐指紋性の各特性の発現に寄与する重要なパラメータである。なお、本発明でいう中心線平均粗さRaは、JIS B 0601−1994に規定される算術平均粗さRaに相当するものである。
(Center line average roughness Ra of aluminum base plate: 0.2 to 0.6 μm)
The center line average roughness Ra of the aluminum base plate 2 included in the present invention is, together with the average film thicknesses of the corrosion-resistant coating 3 and the resin coating 4 described later, the scratch resistance and electrical conductivity required for the aluminum plate 1 for electronic equipment. It is an important parameter that contributes to the development of the properties of moldability and fingerprint resistance. The centerline average roughness Ra as used in the present invention corresponds to the arithmetic average roughness Ra defined in JIS B 0601-1994.

すなわち、アルミニウム素板2の中心線平均粗さRaが0.2μm未満であると、その電子機器用アルミニウム板1の表面の光沢度が過剰に大きくなって、表面に付着した指紋および表面に生じた微細な疵が目立ち易くなり、耐疵付き性および耐指紋性に劣ったものとなる。また、この場合には、微細な凹凸を有するアルミニウム素板2の凸部、または、この上に微細な凹凸に沿って形成された耐食性皮膜3の凸部が樹脂皮膜4の表面に露出し難くなるため、所望の導電性を確保することが困難となる。   That is, when the average roughness Ra of the center line of the aluminum base plate 2 is less than 0.2 μm, the glossiness of the surface of the aluminum plate 1 for electronic equipment becomes excessively large and occurs on the fingerprint and the surface attached to the surface. The fine wrinkles are easily noticeable, and the wrinkle resistance and the fingerprint resistance are inferior. In this case, the convex portion of the aluminum base plate 2 having fine irregularities, or the convex portion of the corrosion-resistant film 3 formed along the fine irregularities is not easily exposed on the surface of the resin film 4. Therefore, it becomes difficult to ensure desired conductivity.

一方、アルミニウム素板2の中心線平均粗さRaが0.6μmを超えると、このアルミニウム素板2に曲げ加工を施した際に、このアルミニウム素板2で割れが生じ易くなるため、曲げ加工(成形加工)が施された部分の樹脂皮膜4でスジ模様が目立つようになったり、樹脂皮膜4が剥離し易くなる。したがって、本発明では、アルミニウム素板2の中心線平均粗さRaを0.2〜0.6μm、より望ましくは0.3〜0.5μmの範囲に規制することによって、耐疵付き性、導電性、成形性および耐指紋性が高められた電子機器用アルミニウム板1を得ることができる。   On the other hand, if the center line average roughness Ra of the aluminum base plate 2 exceeds 0.6 μm, the aluminum base plate 2 is likely to be cracked when the aluminum base plate 2 is bent. A streaky pattern becomes conspicuous in the resin film 4 where the (molding) is performed, or the resin film 4 is easily peeled off. Therefore, in the present invention, the center line average roughness Ra of the aluminum base plate 2 is restricted to a range of 0.2 to 0.6 μm, and more preferably 0.3 to 0.5 μm. The aluminum plate 1 for electronic equipment with improved properties, moldability and fingerprint resistance can be obtained.

なお、アルミニウム素板2の中心線平均粗さRaを本発明で規制する範囲内に調整する方法として、例えば、アルミニウム素板2の圧延工程で、表面粗さが適宜設定された圧延ロール(不図示)を用いて仕上げ圧延を行う方法や、圧延後のアルミニウム素板2の表面に適宜条件でエッチング処理を施す方法が挙げられる。   In addition, as a method of adjusting the center line average roughness Ra of the aluminum base plate 2 within the range regulated by the present invention, for example, a rolling roll (non-rolling roll) whose surface roughness is appropriately set in the rolling process of the aluminum base plate 2 is used. The method of performing finish rolling using illustration) and the method of performing an etching process on the surface of the aluminum base plate 2 after rolling under appropriate conditions.

本発明では、このようにして中心線平均粗さRaが調整されて微細な凹凸が形成されたアルミニウム素板2の上に耐食性皮膜3と樹脂皮膜4とが順次積層して形成された潤滑表面を有するが、これらの耐食性皮膜3および樹脂皮膜4の膜厚を本発明で規制する所定の膜厚に設定することにより、アルミニウム素板2の凸部または耐食性皮膜3の微細な凸部が樹脂皮膜4の表面に露出するようになり、優れた耐疵付き性と、所望する導電性、成形性および耐指紋性を備えた電子機器用アルミニウム板1を得ることができる。なお、本発明においては耐食性皮膜3によってアルミニウム素板2の表面が全て覆われていることが望ましいが、その一部においてアルミニウム素板2の凸部が耐食性皮膜3や樹脂皮膜4から露出していても構わない。   In the present invention, the lubricating surface formed by sequentially laminating the corrosion-resistant film 3 and the resin film 4 on the aluminum base plate 2 in which the center line average roughness Ra is adjusted in this way and fine irregularities are formed. However, by setting the film thickness of the corrosion-resistant film 3 and the resin film 4 to a predetermined film thickness regulated by the present invention, the convex part of the aluminum base plate 2 or the fine convex part of the corrosion-resistant film 3 is resin. The aluminum plate 1 for electronic equipment which comes to be exposed on the surface of the film 4 and has excellent scratch resistance and desired conductivity, moldability and fingerprint resistance can be obtained. In the present invention, it is desirable that the entire surface of the aluminum base plate 2 is covered with the corrosion-resistant coating 3, but the convex portions of the aluminum base plate 2 are exposed from the corrosion-resistant coating 3 and the resin coating 4 in a part of the surface. It doesn't matter.

[耐食性皮膜]
本発明に含まれる耐食性皮膜3は、アルミニウム素板2に所要の耐食性を付与するために設けられるものである。本発明では、耐食性皮膜3として、CrまたはZrを含有する従来公知の耐食性皮膜である、リン酸クロメート皮膜、クロム酸クロメート皮膜、リン酸ジルコニウム皮膜、塗布型クロメート皮膜、あるいは塗布型ジルコニウム皮膜等を適宜使用することができる。なお、近年、環境対応の流れから六価クロムを嫌う傾向があり、六価クロムを含まないリン酸クロメート皮膜や、リン酸ジルコニウム皮膜、塗布型ジルコニウム皮膜などを使用するのが望ましい。なお、本発明では膜厚として、CrまたはZrのアルミニウム素板2への付着量(CrまたはZr換算値)を、例えば、従来公知の蛍光X線法を用いて比較的簡便かつ定量的に測定することができるため、生産性を阻害することなく電子機器用アルミニウム板1の品質管理を行うことできる。
[Corrosion resistant coating]
The corrosion-resistant film 3 included in the present invention is provided for imparting the required corrosion resistance to the aluminum base plate 2. In the present invention, as the corrosion-resistant film 3, a conventionally known corrosion-resistant film containing Cr or Zr, such as a phosphate chromate film, a chromate chromate film, a zirconium phosphate film, a coating type chromate film, or a coating type zirconium film, etc. It can be used as appropriate. In recent years, there has been a tendency to disfavor hexavalent chromium from the environmental trend, and it is desirable to use a phosphate chromate film that does not contain hexavalent chromium, a zirconium phosphate film, a coated zirconium film, and the like. In the present invention, as the film thickness, the adhesion amount of Cr or Zr to the aluminum base plate 2 (Cr or Zr converted value) is measured comparatively simply and quantitatively using, for example, a conventionally known fluorescent X-ray method. Therefore, quality control of the aluminum plate 1 for electronic equipment can be performed without impeding productivity.

(耐食性皮膜の付着量:10〜50mg/m2
本発明に含まれる耐食性皮膜3の付着量が、CrまたはZr換算値で10mg/m2より少なくなると、アルミニウム素板2の全面を均一に被覆することができず、耐食性の確保が難しくなって電子機器用アルミニウム板1として長期間の使用に耐えられなくなる。なお、この耐食性皮膜3の主成分たるCrまたはZrは金属元素であるので、これらの耐食性皮膜3がアルミニウム素板2を覆うことによる導電性低下は無い。したがって耐食性皮膜3が本発明に含まれる樹脂皮膜4の表面に露出するようにすれば、本発明に係る電子機器用アルミニウム板1の導電性を高い状態で確保できる。
(Amount of corrosion-resistant coating: 10 to 50 mg / m 2 )
If the adhesion amount of the corrosion resistant coating 3 included in the present invention is less than 10 mg / m 2 in terms of Cr or Zr, the entire surface of the aluminum base plate 2 cannot be uniformly coated, and it becomes difficult to ensure corrosion resistance. The aluminum plate 1 for electronic equipment cannot withstand long-term use. Since Cr or Zr as the main component of the corrosion resistant coating 3 is a metal element, there is no decrease in conductivity due to the corrosion resistant coating 3 covering the aluminum base plate 2. Therefore, if the corrosion-resistant film 3 is exposed on the surface of the resin film 4 included in the present invention, the electrical conductivity of the aluminum plate 1 for electronic equipment according to the present invention can be ensured in a high state.

また、50mg/m2を超えると、導電性は確保されるものの、プレスによる成形加工等において耐食性皮膜3自体に割れ(剥離)が生じ、長期間に渡って高い耐食性を維持することが難しくなるという問題が生じる。このため、本発明では、耐食性皮膜3の付着量を、CrあるいはZr換算値で10〜50mg/m2、より望ましくは15〜30mg/m2の範囲に規制する。 On the other hand, if it exceeds 50 mg / m 2 , conductivity is secured, but cracking (peeling) occurs in the corrosion-resistant coating 3 itself during molding by pressing, etc., making it difficult to maintain high corrosion resistance over a long period of time. The problem arises. For this reason, in this invention, the adhesion amount of the corrosion-resistant film | membrane 3 is regulated in the range of 10-50 mg / m < 2 >, more desirably 15-30 mg / m < 2 > in Cr or Zr conversion value.

[樹脂皮膜]
本発明に含まれる樹脂皮膜4は、電子機器用アルミニウム板1に優れた耐疵付き性、および耐指紋性等の諸特性を付与するために設けられるものである。そして、本発明では、優れた耐疵付き性、および耐指紋性と同時に高い導電性を具備させるべく、樹脂皮膜4の平均膜厚を所定の範囲に規制している。
[Resin film]
The resin film 4 included in the present invention is provided for imparting various characteristics such as scratch resistance and fingerprint resistance to the aluminum plate 1 for electronic equipment. In the present invention, the average film thickness of the resin film 4 is regulated within a predetermined range in order to have excellent anti-fouling resistance and fingerprint resistance as well as high conductivity.

(樹脂皮膜の平均膜厚:0.05〜0.9μm)
すなわち、樹脂皮膜4の平均膜厚が0.05μm未満では、耐疵付き性、耐指紋性に劣り、また、潤滑性も充分でないため、成形加工が難しくなる。そして、樹脂皮膜4の平均膜厚が0.9μmを超えると、アルミニウム素板2の表面粗さが粗い場合でも、樹脂皮膜4がアルミニウム素板2の素地または耐食性皮膜3をほとんど全て覆い隠すため、後記する表面抵抗値が非常に高くなって導電性が適切に確保されなくなる。このため、本発明では、樹脂皮膜4の平均膜厚を0.05〜0.9μmの範囲に規定する。
(Average film thickness of resin film: 0.05 to 0.9 μm)
That is, when the average film thickness of the resin film 4 is less than 0.05 μm, the scratch resistance and fingerprint resistance are inferior, and the lubricity is not sufficient, so that the molding process becomes difficult. If the average film thickness of the resin film 4 exceeds 0.9 μm, the resin film 4 covers almost all of the base of the aluminum base plate 2 or the corrosion-resistant film 3 even when the surface roughness of the aluminum base plate 2 is rough. As a result, the surface resistance value described later becomes very high, and the conductivity is not ensured appropriately. For this reason, in this invention, the average film thickness of the resin film 4 is prescribed | regulated in the range of 0.05-0.9 micrometer.

また、樹脂皮膜4は、成形性の観点からアルミニウム素板2の変形に比較的追従し易く、かつ、高いガラス転移温度(30℃よりも高い温度)を有する樹脂である。かかる樹脂としては、ポリエステル系樹脂を用いるのが最も好ましいが、ウレタン系樹脂、エポキシ系樹脂およびビニル系樹脂を用いることも可能である。なお、これらの樹脂を適宜混合して用いることも可能である。   The resin film 4 is a resin that relatively easily follows the deformation of the aluminum base plate 2 from the viewpoint of formability and has a high glass transition temperature (temperature higher than 30 ° C.). As such a resin, a polyester resin is most preferably used, but a urethane resin, an epoxy resin, and a vinyl resin can also be used. It is also possible to use a mixture of these resins as appropriate.

(ガラス転移温度:30℃よりも高い温度)
ガラス転移温度が高くなるほど樹脂の硬度が高くなり、摩耗粉による切削作用を受け難くすることができることから、アブレシブ摩耗に起因する疵の発生防止を図ることができる。したがって、本発明ではガラス転移温度を30℃よりも高い温度であることを必要とし、より望ましくは35℃以上、さらに望ましくは40℃以上とする。
(Glass transition temperature: temperature higher than 30 ° C)
The higher the glass transition temperature, the higher the hardness of the resin and the less the cutting action caused by the wear powder. Therefore, it is possible to prevent wrinkles due to abrasive wear. Therefore, in the present invention, the glass transition temperature needs to be higher than 30 ° C., more desirably 35 ° C. or higher, and further desirably 40 ° C. or higher.

(樹脂皮膜の形成方法)
また、樹脂皮膜4の形成方法としては、特に限定されるものではないが、例えば、生産性の観点からコイル状のアルミニウム素板2の上に連続的に耐食性皮膜3を形成し、その上に液体状の樹脂を塗布することができるロールコート法を用いるのが望ましい。この場合、ロールコーターによって塗布された液体状の樹脂は、連続式のオーブン内部を通過する際に焼付けが行われて樹脂皮膜4となる。
(Method for forming resin film)
The method for forming the resin film 4 is not particularly limited. For example, the corrosion-resistant film 3 is continuously formed on the coiled aluminum base plate 2 from the viewpoint of productivity, and the resin film 4 is formed thereon. It is desirable to use a roll coat method capable of applying a liquid resin. In this case, the liquid resin applied by the roll coater is baked into the resin film 4 when passing through the continuous oven.

このとき、樹脂皮膜4は、耐食性皮膜3の上に塗布された当初は液体状であるため、まず、アルミニウム素板2の表面粗さをある程度反映している耐食性皮膜3の表面の凹部に優先的に充填され、引き続き行われる焼付け処理によって、より硬質な皮膜に形成される。   At this time, since the resin film 4 is initially in a liquid state when applied on the corrosion-resistant film 3, first, priority is given to the recesses on the surface of the corrosion-resistant film 3 that reflects the surface roughness of the aluminum base plate 2 to some extent. The harder film is formed by the subsequent baking process.

そして、ロールコート法では、予め耐疵付き性、導電性等の諸特性と、樹脂皮膜4の平均膜厚、アルミニウム素板2の表面粗さ(中心線平均粗さRa)並びに耐食性皮膜3の付着量(CrまたはZr換算値)の関係を求めておけば、これらの関係に基づいて、所望の諸特性等が得られるように、樹脂皮膜4の膜厚や耐食性皮膜3の付着量を適宜コントロールすることができる。また、本発明では、樹脂皮膜4の平均膜厚は、この樹脂皮膜4が形成された部分の面積およびその樹脂量と樹脂の比重から比較的容易に求めることができる。   In the roll coating method, various characteristics such as scratch resistance and conductivity, the average film thickness of the resin film 4, the surface roughness of the aluminum base plate 2 (centerline average roughness Ra), and the corrosion resistance film 3 If the relationship between the adhesion amount (Cr or Zr conversion value) is obtained, the film thickness of the resin film 4 and the adhesion amount of the corrosion-resistant film 3 are appropriately set so that desired characteristics and the like are obtained based on these relationships. Can be controlled. Moreover, in this invention, the average film thickness of the resin film 4 can be calculated | required comparatively easily from the area of the part in which this resin film 4 was formed, the resin amount, and the specific gravity of resin.

(全樹脂皮膜量に対する潤滑剤の含有量:1〜25質量%)
本発明に含まれる潤滑剤は、電子機器用アルミニウム板1の成形性を向上させ、結果的に耐疵付き性を向上させる作用を有する。潤滑剤の量が、全樹脂皮膜4の量に対して1質量%未満であると充分な潤滑性が得られなくなり、プレスによる成形加工を施した際に成形品の一部が局部的に変形して、樹脂皮膜4にくびれや割れ(剥離)が発生する原因となり、延いては耐疵付き性が劣ることになる。
(Lubricant content with respect to the total resin film amount: 1 to 25% by mass)
The lubricant included in the present invention has an effect of improving the formability of the aluminum plate 1 for electronic equipment and consequently improving the scratch resistance. If the amount of the lubricant is less than 1% by mass with respect to the total amount of the resin film 4, sufficient lubricity cannot be obtained, and a part of the molded product is locally deformed when molding is performed by a press. As a result, the resin film 4 is constricted and cracked (peeled), and the scratch resistance is inferior.

また、潤滑剤の量が、全樹脂皮膜量に対して25質量%を超えると潤滑性向上の効果は飽和する一方、樹脂皮膜4の造膜性が低下して耐疵付き性を低下させる原因となったり、プレスによる成形加工の際に一部で剥離した樹脂皮膜4の剥離物(かす)がプレスの金型の内部に堆積して電子機器用アルミニウム板1の成形加工時に悪影響を及ぼすこととなる。したがって、本発明では、全樹脂皮膜量に対する潤滑剤の含有量を1〜25質量%、より好ましくは1〜15質量%の範囲に規定する。   Further, when the amount of the lubricant exceeds 25% by mass with respect to the total resin film amount, the effect of improving the lubricity is saturated, while the film forming property of the resin film 4 is lowered and the scratch resistance is reduced. The exfoliation (debris) of the resin film 4 partially peeled off during the molding process by the press deposits inside the press mold and adversely affects the molding process of the aluminum plate 1 for electronic equipment. It becomes. Therefore, in the present invention, the content of the lubricant with respect to the total resin film amount is specified in the range of 1 to 25% by mass, more preferably 1 to 15% by mass.

潤滑剤としては、成形性の向上と経済性とを適度に調和させる観点から、フッ素系ワックスやポリアルキレン系ワックスを用いることが望ましい。フッ素系ワックスとしては、ポリテトラフルオロエチレン(PTFE)を好適に例示することができ、ポリアルキレン系ワックスとしては、ポリエチレンワックスを好適に例示することができる。しかし、本発明で用いることのできる潤滑剤はこれに限定されることはなく、マイクロクリスタリンワックス、ラノリンワックス、カルナウバワックス、パラフィンワックス、グラファイト等を用いることも可能であり、さらに、これらの潤滑剤を適宜混合して用いることも可能である。   As the lubricant, it is desirable to use a fluorine-based wax or a polyalkylene-based wax from the viewpoint of appropriately balancing the improvement of moldability and economy. Polytetrafluoroethylene (PTFE) can be preferably exemplified as the fluorine wax, and polyethylene wax can be suitably exemplified as the polyalkylene wax. However, the lubricant that can be used in the present invention is not limited to this, and microcrystalline wax, lanolin wax, carnauba wax, paraffin wax, graphite, and the like can also be used. It is also possible to mix the agents as appropriate.

なお、潤滑剤を添加したときのアルミニウム素板2との接着強度が、当該潤滑剤を添加しないときの接着強度の80%以上であるのが好ましい。潤滑剤を添加したときの接着強度を適切に規定すれば、プレス加工の際に金型と摺動しても樹脂皮膜4が剥がれることがない。また、凝着摩耗に起因する疵の発生を効果的に抑制することができる。したがって、優れた耐疵付き性を維持することができるほか、成形品とした後もその表面は樹脂皮膜4でコーティングされているため、高い耐指紋性を有することが可能である。   In addition, it is preferable that the adhesive strength with the aluminum base plate 2 when the lubricant is added is 80% or more of the adhesive strength when the lubricant is not added. If the adhesive strength when the lubricant is added is properly defined, the resin film 4 will not be peeled even when sliding with the mold during press working. Moreover, generation | occurrence | production of the wrinkles resulting from adhesive wear can be suppressed effectively. Therefore, it is possible to maintain excellent scratch resistance and to have high fingerprint resistance since the surface is coated with the resin film 4 even after forming a molded product.

(アルミニウム素板の凸部または耐食性皮膜の凸部の樹脂皮膜表面への露出)
本発明に係る電子機器用アルミニウム板1では、電子機器の部材に適用する際に、この電子機器用アルミニウム板1とアースとの接点における導電性を適切に確保すべく、微細な凹凸を有するアルミニウム素板2の凸部または耐食性皮膜3の凸部を樹脂皮膜4の表面に露出させることを必要とする。そして、アルミニウム素板2の凸部または耐食性皮膜3の微細な凸部を樹脂皮膜4の表面に露出させる度合い(分散度)は、基本的には、アルミニウム素板2の中心線平均粗さRaと、樹脂皮膜4の平均膜厚との関係を適宜調整することによって行われる。
(Exposure of the convex part of the aluminum base plate or the convex part of the corrosion-resistant film to the resin film surface)
In the aluminum plate for electronic equipment 1 according to the present invention, when it is applied to a member of an electronic equipment, aluminum having fine irregularities in order to appropriately ensure the conductivity at the contact point between the aluminum board for electronic equipment 1 and the ground. It is necessary to expose the convex part of the base plate 2 or the convex part of the corrosion-resistant film 3 to the surface of the resin film 4. And the degree (dispersion degree) which exposes the convex part of the aluminum base plate 2 or the fine convex part of the corrosion-resistant film 3 on the surface of the resin film 4 is basically the center line average roughness Ra of the aluminum base plate 2. And the average film thickness of the resin film 4 is appropriately adjusted.

そして、このようにアルミニウム素板の凸部または耐食性皮膜の凸部の樹脂皮膜表面への露出を適切に行うと、本発明に係る電子機器用アルミニウム板1は、後記する表面抵抗値を適切に規制することができる。後記するように、表面抵抗値は、100Ω以下とするのが好ましく、10Ω以下とするのがより好ましく、1Ω以下とするのが最も好ましい。ただし、使用される部位によっては導電性は必ずしも必要でない場合もあるため、これに限定されることはなく、表面抵抗値が100Ωを超えた場合であっても電子機器用アルミニウム板1として用いることができることはいうまでもない。   And when the exposure of the convex part of the aluminum base plate or the convex part of the corrosion-resistant film to the resin film surface is appropriately performed in this way, the aluminum plate 1 for an electronic device according to the present invention has an appropriate surface resistance value described later. Can be regulated. As will be described later, the surface resistance value is preferably 100Ω or less, more preferably 10Ω or less, and most preferably 1Ω or less. However, the conductivity may not always be necessary depending on the part to be used. Therefore, the present invention is not limited to this. Even if the surface resistance value exceeds 100Ω, it is used as the aluminum plate 1 for electronic equipment. Needless to say, you can.

[樹脂皮膜が形成された側の表面の動摩擦係数:0.2以下]
本発明に係る電子機器用アルミニウム板1では、樹脂皮膜4が形成された側の表面の動摩擦係数を0.2以下とすることが必要である。動摩擦係数が0.2以上であると、プレスの金型と電子機器用アルミニウム板1との間に働く摩擦力が強くなるので、プレスによる成形加工の際に、摺動時に金型と樹脂皮膜4との凝着が起き易くなり、耐疵付き性が劣化する。
[Dynamic friction coefficient of the surface on which the resin film is formed: 0.2 or less]
In the aluminum plate 1 for electronic equipment according to the present invention, it is necessary that the dynamic friction coefficient of the surface on which the resin film 4 is formed be 0.2 or less. When the dynamic friction coefficient is 0.2 or more, the frictional force acting between the press mold and the aluminum plate 1 for electronic equipment becomes strong. Adhesion with 4 is likely to occur, and the scratch resistance is deteriorated.

なお、かかる動摩擦係数は、例えば、バウデン試験法によって測定するのが好ましい。バウデン試験法は、図2の説明図に示すバウデン試験機6を用いて動摩擦係数を測定する。本試験法では測定環境温度や荷重などの条件を自由に変更することが出来るが、これらの条件が変わると摩擦係数の数字が変化する。したがってここでは、当該試験を行うにあたって測定環境温度は、25±5℃、好ましくは25±3℃とする。そして、十分に脱脂された直径4.8mm(3/16インチ)鋼球61を用いて2N(200gf)の垂直荷重を加え、200mm/分の速度で移動させたときの動摩擦係数を測定する。また測定時に潤滑油やワックスなどは塗布しない。   In addition, it is preferable to measure this dynamic friction coefficient by the Bowden test method, for example. In the Bowden test method, the dynamic friction coefficient is measured using a Bowden test machine 6 shown in the explanatory diagram of FIG. In this test method, conditions such as the measurement environment temperature and load can be changed freely, but the coefficient of friction changes when these conditions change. Therefore, in this case, the measurement environmental temperature is 25 ± 5 ° C., preferably 25 ± 3 ° C. in performing the test. Then, a 2 N (200 gf) vertical load is applied using a sufficiently degreased steel ball 61 having a diameter of 4.8 mm (3/16 inch), and the dynamic friction coefficient is measured when the steel ball 61 is moved at a speed of 200 mm / min. Do not apply lubricating oil or wax during measurement.

かかる試験条件の下、動摩擦係数が0.2以下であると、本発明で所望する潤滑性を有する電子機器用アルミニウム板1とすることができる。したがって、本発明では、樹脂皮膜4が形成された側の表面の動摩擦係数を0.2以下、より望ましくは0.15以下とする。   Under such test conditions, when the dynamic friction coefficient is 0.2 or less, the aluminum plate 1 for electronic equipment having the lubricity desired in the present invention can be obtained. Therefore, in the present invention, the dynamic friction coefficient on the surface on which the resin film 4 is formed is 0.2 or less, more preferably 0.15 or less.

[鉛筆硬度:3H以上]
本発明に係る電子機器用アルミニウム板1では、樹脂皮膜4が形成された側の表面の鉛筆硬度を3H以上とすることが必要である。鉛筆硬度が3H以下であると、樹脂皮膜4の硬度が十分ではなく、連続成形の際に摩耗粉によるアブレシブ摩耗を受けて、耐疵付き性が低下する。
[Pencil hardness: 3H or more]
In the aluminum plate 1 for electronic equipment according to the present invention, the pencil hardness of the surface on which the resin film 4 is formed needs to be 3H or more. When the pencil hardness is 3H or less, the hardness of the resin film 4 is not sufficient, and the wear resistance is deteriorated due to abrasive wear caused by wear powder during continuous molding.

鉛筆硬度の測定は、JIS K5600−5−4:1999に規定される塗料一般試験方法−第5部:塗料の機械的性質−第4節:引っかき硬度(鉛筆法)に準じて行うのが好ましい(JIS K5400:1990に準拠してもよい)。なお、当該試験を行うにあたって測定環境温度は、25±2℃、好ましくは25℃とする。また、測定荷重により結果が変わるので、本発明では、1000gとする。   Pencil hardness is preferably measured according to the paint general test method specified in JIS K5600-5-4: 1999-Part 5: Mechanical properties of paint-Section 4: Scratch hardness (pencil method). (It may conform to JIS K5400: 1990). In performing the test, the measurement environment temperature is 25 ± 2 ° C., preferably 25 ° C. Moreover, since a result changes with measurement loads, in this invention, it is set to 1000 g.

かかる試験条件の下、その鉛筆硬度が3H以上であると、本発明で所望する硬度を有する樹脂皮膜4とすることができ、延いては耐疵付き性に優れた電子機器用アルミニウム板1とすることができる。したがって、本発明では、鉛筆硬度を3H以上、より望ましくは4H以上とする。   Under such test conditions, when the pencil hardness is 3H or more, the resin film 4 having the hardness desired in the present invention can be obtained, and by extension, the aluminum plate 1 for electronic equipment having excellent scratch resistance, can do. Therefore, in the present invention, the pencil hardness is 3H or more, more desirably 4H or more.

[表面抵抗値:100Ω以下]
さらに、本発明に係る電子機器用アルミニウム板1では、後記するような方法で測定される表面抵抗値を100Ω以下とすることが好ましい。すなわち、表面抵抗値が100Ωを超える電子機器用アルミニウム板1を電子機器に適用した場合には、電磁波等に起因するノイズを完全に除去することが困難となる。特に、電子機器がCD−ROM等の光ドライブ装置である場合には、書き込みまたは再生エラーなどの誤動作が誘発され易くなり、また、電子機器が液晶ディスプレーである場合には、画像ノイズなどの誤動作が発生し易くなる。このため、本発明では、表面抵抗値を100Ω以下、より望ましくは10Ω以下、さらに望ましくは1Ω以下に規定することが好ましい。
[Surface resistance value: 100Ω or less]
Furthermore, in the aluminum plate 1 for electronic devices which concerns on this invention, it is preferable that the surface resistance value measured by the method as mentioned later shall be 100 ohms or less. That is, when the aluminum plate 1 for electronic equipment having a surface resistance value exceeding 100Ω is applied to the electronic equipment, it is difficult to completely remove noise caused by electromagnetic waves or the like. In particular, when the electronic device is an optical drive device such as a CD-ROM, a malfunction such as a writing or reproduction error is likely to be induced, and when the electronic device is a liquid crystal display, a malfunction such as an image noise is caused. Is likely to occur. For this reason, in this invention, it is preferable to prescribe | regulate a surface resistance value to 100 ohms or less, More desirably, 10 ohms or less, More desirably, 1 ohms or less.

本発明で表面抵抗値を100Ω以下とするには、本発明で規定するアルミニウム素板2の中心線平均粗さRaの範囲内(0.2〜0.6μm)および樹脂皮膜4の平均膜厚の範囲内(0.05〜0.9μm)で、アルミニウム素板2の中心線平均粗さRaおよび樹脂皮膜4の平均膜厚を適宜調整すればよい。さらに、本発明に係る電子機器用アルミニウム板1では、中心線平均粗さRaを有するアルミニウム素板2に対して、樹脂皮膜4を適宜な均一性で形成することにより、このアルミニウム素板2の微細な凹凸に沿って形成された耐食性皮膜3の凸部が、所望の度合い(分散度)で樹脂皮膜4の表面に露出するので、100Ω以下の表面抵抗値とすることができる。   In order to make the surface resistance value 100Ω or less in the present invention, the average thickness Ra of the center line average roughness Ra of the aluminum base plate 2 defined in the present invention (0.2 to 0.6 μm) and the average film thickness of the resin film 4 are used. In this range (0.05 to 0.9 μm), the center line average roughness Ra of the aluminum base plate 2 and the average film thickness of the resin film 4 may be appropriately adjusted. Furthermore, in the aluminum plate 1 for electronic devices according to the present invention, the resin base film 4 is formed with appropriate uniformity on the aluminum base plate 2 having the center line average roughness Ra, whereby the aluminum base plate 2 Since the convex part of the corrosion-resistant film 3 formed along the fine irregularities is exposed on the surface of the resin film 4 with a desired degree (dispersion degree), the surface resistance value can be 100Ω or less.

なお、表面抵抗値に影響を及ぼす要因としては、アルミニウム素板2の中心線平均粗さRaおよび樹脂皮膜4の平均膜厚の他にも、樹脂の種類、潤滑剤の種類や量等が挙げられる。そのため、アルミニウム素板2の中心線平均粗さRa、樹脂皮膜4の平均膜厚と合わせて、これらの要因を適宜調製することで所望の表面抵抗値に微調整することが可能である。   In addition to the center line average roughness Ra of the aluminum base plate 2 and the average film thickness of the resin film 4, factors affecting the surface resistance value include the type of resin, the type and amount of lubricant, and the like. It is done. Therefore, it is possible to finely adjust to a desired surface resistance value by appropriately adjusting these factors together with the center line average roughness Ra of the aluminum base plate 2 and the average film thickness of the resin film 4.

(表面抵抗値の測定)
本発明に係る電子機器用アルミニウム板1を特定する表面抵抗値は、次のような方法によって測定することができる。図3は、表面抵抗値の測定方法の一例を模式的に示す図である。この表面抵抗値の測定方法は、テスター11の端子の一方を、電子機器用アルミニウム板1の表裏面あるいは端面で、サンドペーパー等を用いた研磨によって耐食性皮膜3および樹脂皮膜4が除去されたアルミニウム素板2に接続し(図3では電子機器用アルミニウム板1の裏面に接続している)、テスター11の端子の他方を、先端部が半径10mmの略球形状に形成された球状端子を有する金属製の測定棒12を介して、電子機器用アルミニウム板1の樹脂皮膜4の測定箇所に接続して行うことができる。なお、この金属製の測定棒12は、導電性に優れる真鍮や銅、アルミニウム等で構成することができるが、表面に自然酸化膜を生じる金属を測定に用いる場合は、表面抵抗値の測定ばらつきを抑えるため、測定前に金属製の測定棒12の表面を予めサンドペーパー等で研磨して、この自然酸化膜を充分に除去しておくことが望ましい。なお測定棒の先端部を球状にしているのは、樹脂皮膜4に穴があいて、測定棒12がアルミニウム素板2に直接接触してしまうのを防ぐ目的である。
(Measurement of surface resistance)
The surface resistance value that specifies the aluminum plate 1 for electronic equipment according to the present invention can be measured by the following method. FIG. 3 is a diagram schematically illustrating an example of a method for measuring the surface resistance value. In this surface resistance measurement method, one of the terminals of the tester 11 is aluminum in which the corrosion-resistant film 3 and the resin film 4 are removed by polishing with sandpaper or the like on the front or back surface or end surface of the aluminum plate 1 for electronic equipment. Connected to the base plate 2 (connected to the back surface of the aluminum plate 1 for electronic equipment in FIG. 3), the other of the terminals of the tester 11 has a spherical terminal whose tip is formed in a substantially spherical shape with a radius of 10 mm. The measurement can be performed by connecting to a measurement location of the resin film 4 of the aluminum plate 1 for electronic equipment through a metal measuring rod 12. The metal measuring rod 12 can be made of brass, copper, aluminum or the like having excellent conductivity. However, when a metal that forms a natural oxide film on the surface is used for measurement, the measurement variation of the surface resistance value In order to suppress this, it is desirable to sufficiently remove the natural oxide film by polishing the surface of the metal measuring rod 12 with sandpaper or the like in advance before the measurement. The reason why the tip of the measuring rod is spherical is to prevent the measuring rod 12 from coming into direct contact with the aluminum base plate 2 due to a hole in the resin film 4.

そして、金属製の棒12の先端部に備えられた球状端子を、一定荷重で圧力を加えることにより抵抗値の測定が可能である。ただし荷重が変わると抵抗値が変わるため、本発明では0.4N(40gf)の荷重で、電子機器用アルミニウム板1の樹脂皮膜4の測定箇所に押し付け、この状態で電子機器用アルミニウム板1の表面抵抗値を測定する。   The resistance value can be measured by applying pressure to the spherical terminal provided at the tip of the metal rod 12 with a constant load. However, since the resistance value changes when the load changes, in the present invention, the load of 0.4 N (40 gf) is pressed against the measurement location of the resin film 4 of the aluminum plate 1 for electronic equipment, and in this state the aluminum plate 1 for electronic equipment 1 Measure the surface resistance.

なお、本発明で規制する範囲の表面粗さを有するアルミニウム素板2に、本発明で規制する範囲の付着量を有する耐食性皮膜3および本発明で規制する範囲の膜厚を有する樹脂皮膜4を形成した際に、導体であるアルミニウム素板2の素地または耐食性皮膜3が、樹脂皮膜4の表面に適度に露出するように構成することが可能なため、低い表面抵抗値を得ることができる。このとき、表面抵抗値が100Ω以下であれば、アルミニウム素板2に耐食性皮膜3および樹脂皮膜4が順次形成された電子機器用アルミニウム板1にアースを設ける際に、このアース用接触端子と電子機器用アルミニウム板1との接点で適切に導電性を確保することができる。   In addition, on the aluminum base plate 2 having a surface roughness within the range regulated by the present invention, a corrosion-resistant film 3 having an adhesion amount within the range regulated by the present invention and a resin film 4 having a film thickness within the range regulated by the present invention. Since the base of the aluminum base plate 2 that is a conductor or the corrosion-resistant coating 3 can be appropriately exposed on the surface of the resin coating 4 when formed, a low surface resistance value can be obtained. At this time, if the surface resistance value is 100Ω or less, when the ground is provided on the aluminum plate 1 for electronic equipment in which the corrosion-resistant film 3 and the resin film 4 are sequentially formed on the aluminum base plate 2, Conductivity can be appropriately secured at the contact point with the aluminum plate 1 for equipment.

しかし、アルミニウム素板2の表面粗さ、すなわちその中心線平均粗さRaが本発明で規制する範囲よりも小さく、樹脂皮膜4の平均膜厚が本発明で規制する範囲よりも厚い場合、つまり、樹脂皮膜4がアルミニウム素板2を略完全に被覆するように構成された条件の下では、表面抵抗値は非常に高くなり、本発明を電子機器に適用したときに、外部で発生した電磁波ノイズを充分に除去することが困難となるため、例えばドライブ装置においては、書き込みや再生エラーなどの不具合が誘発され易くなり、あるいは、液晶ディスプレーにおいては、画像ノイズ等の不具合が発生し易くなる。   However, when the surface roughness of the aluminum base plate 2, that is, the center line average roughness Ra is smaller than the range regulated by the present invention, and the average film thickness of the resin film 4 is thicker than the range regulated by the present invention, Under the condition that the resin film 4 is configured to cover the aluminum base plate 2 almost completely, the surface resistance value becomes very high, and the electromagnetic wave generated outside when the present invention is applied to an electronic device. Since it becomes difficult to sufficiently remove noise, for example, in the drive device, problems such as writing and reproduction errors are likely to be induced, or in the liquid crystal display, problems such as image noise are likely to occur.

[電子機器用成形品]
そして、前記した本発明に係る電子機器用アルミニウム板を用いた電子機器用成形品としては、例えば、図4(a)の斜視図に示すような、ノートパソコンに搭載されるスリム型CD−ROMドライブに用いられるカバーとする他、液晶バックライト背面板とすることなどを挙げることが出来る。これら電子機器用成形品を成形するには、まず、本発明に係る電子機器用アルミニウム板を所定の形状を有するプレス機用の金型にセットし、プレス機によって所定圧力でプレス加工すればよい。なお、本発明に係る電子機器用成形品としてはこれらに限定されるものではなく、種々の電子機器に用いる成形品に適用できることは言うまでもない。また部品によっては導電性は必ずしも必要ではない。
[Molded products for electronic equipment]
And as a molded article for electronic equipment using the above-mentioned aluminum plate for electronic equipment according to the present invention, for example, as shown in the perspective view of FIG. In addition to a cover used for a drive, a liquid crystal backlight back plate can be used. In order to mold these molded products for electronic devices, first, the aluminum plate for electronic devices according to the present invention may be set in a mold for a press machine having a predetermined shape, and pressed with a press machine at a predetermined pressure. . The molded product for electronic equipment according to the present invention is not limited to these, and it goes without saying that it can be applied to molded products used for various electronic equipment. In addition, conductivity is not always necessary depending on parts.

次に、本発明に係る電子機器用アルミニウム板1を完成するために行った種々の実験例を元に、当該電子機器用アルミニウム板1の効果を説明する。
本発明に係る電子機器用アルミニウム板1の検討にあたり、試験材として使用したアルミニウム板は、合金番号A5182−H34の板厚0.4mm材を使用し、耐食性皮膜の形成としてリン酸クロメート処理を施した。リン酸クロメート処理の条件はクロム付着量で20mg/m2とした。また、使用したアルミニウム板の機械的性質は引張強さ330MPa、耐力240MPa、伸び12%であった。
このアルミニウム板に、表1に記載する、樹脂系、樹脂の主剤の分子量、ガラス転移温度が既知である5種類の樹脂(例えば、日本ペイント製フレキコートシリーズ)を塗装することにより、下記表1に記載する試験材1〜試験材5を作製した。また、樹脂には潤滑剤として、ポリテトラフルオロエチレン(PTFE;例えば、喜多村社製KD600)を1質量%含有した。樹脂の塗装はロールコート法により行い、塗布量で0.8g/m2(厚さ約0.8μm)とした。塗装の焼付けは、素材到達温度230℃で30秒間処理することで行った。
Next, the effect of the aluminum plate 1 for electronic devices will be described based on various experimental examples performed to complete the aluminum plate 1 for electronic devices according to the present invention.
In the examination of the aluminum plate 1 for electronic equipment according to the present invention, the aluminum plate used as a test material is a 0.4 mm thick material having an alloy number A5182-H34, and is subjected to a phosphoric acid chromate treatment for forming a corrosion-resistant film. did. The condition of the phosphoric acid chromate treatment was 20 mg / m 2 in terms of chromium adhesion. Further, the mechanical properties of the used aluminum plate were a tensile strength of 330 MPa, a proof stress of 240 MPa, and an elongation of 12%.
By coating this aluminum plate with five types of resins (for example, Flexcoat series manufactured by Nippon Paint Co., Ltd.) having the known resin system, molecular weight of the resin main ingredient, and glass transition temperature described in Table 1, the following Table 1 1 to 5 were prepared. Further, the resin contained 1% by mass of polytetrafluoroethylene (PTFE; for example, KD600 manufactured by Kitamura Co., Ltd.) as a lubricant. The resin was applied by a roll coating method, and the coating amount was 0.8 g / m 2 (thickness: about 0.8 μm). The coating was baked by treating at a material arrival temperature of 230 ° C. for 30 seconds.

Figure 2005297290
Figure 2005297290

このようにして作製した5種類の試験材1〜試験材5を使用して、まず、後記する曲げ加工疵に対する耐疵付き性の評価、および、スクラッチ疵に対する耐疵付き性の評価を行った。なお、本実施例では耐疵付き性とガラス転移温度との関係を明確にするため、樹脂系をポリエステル系に固定し、ガラス転移温度の異なる樹脂を用いることとした。なお他の樹脂系の場合であっても同様の結果が得られることを確認している。   Using the five types of test materials 1 to 5 prepared as described above, first, the evaluation of the scratch resistance to the bending wrinkles described later and the evaluation of the scratch resistance to the scratch wrinkles were performed. . In this example, in order to clarify the relationship between the scratch resistance and the glass transition temperature, the resin system is fixed to the polyester system, and a resin having a different glass transition temperature is used. It has been confirmed that similar results can be obtained even with other resin systems.

実施例について具体的に説明する前に、図4を参照して、プレスによる成形加工時に発生する加工疵についての説明をする。図4(a)は、ノートパソコンに搭載されるスリム型CD−ROMドライブの成形品5の斜視図、および、(b)は、(a)の矢印Aで示す方向から当該成形品5の側壁部51を観察した拡大写真であって、加工初期の加工疵の様子を示す。また、図4(c)は、(a)の矢印Aで示す方向から当該成形品5の側壁部51を観察した拡大写真であって、連続成形後の加工疵の様子を示す(倍率は図4(b)と同じである)。
図4(b)に示す加工初期の加工疵と、図4(c)に示す連続加工後の加工疵とでは、疵の状態が変化していることが分かる。そこで、かかる加工疵の状態の変化について検討するため、以下の評価を行った。
Prior to specific description of the embodiment, the processing rod generated during the molding process by the press will be described with reference to FIG. 4A is a perspective view of a molded product 5 of a slim type CD-ROM drive mounted on a notebook computer, and FIG. 4B is a side view of the molded product 5 from the direction indicated by arrow A in FIG. It is the enlarged photograph which observed the part 51, Comprising: The mode of the processing wrinkle in the initial stage of a process is shown. FIG. 4C is an enlarged photograph of the side wall 51 of the molded product 5 observed from the direction indicated by the arrow A in FIG. 4 (b)).
It can be seen that the state of the wrinkles has changed between the processing wrinkles at the initial stage of processing shown in FIG. 4B and the processing wrinkles after the continuous processing shown in FIG. Therefore, the following evaluation was performed in order to examine the change in the state of such a processing rod.

[1.曲げ加工疵に対する耐疵付き性の評価]
曲げ加工疵に対する耐疵付き性の評価は、剪断曲げ試験法により評価した。剪断曲げ試験法は、図5の説明図に示すように、挟持具K1,K2により各試験材(試験材1〜試験材5)を挟持し、それぞれの試験材に対しポンチPを摺動して曲げ加工を行うことで、プレスによる成形加工時に発生する加工疵の再現を試みた。すなわち、ポンチPによる曲げ加工は、各試験材について1往復摺動して曲げ加工したものと、各試験材を100枚ずつ用意して、それらをポンチPによって連続的に曲げ加工したものを用意した。なお、挟持具K2とポンチPとの間に生じる間隔(金型間隔)は、用いた試験材の板厚(0.4mm)に10%のクリアランスを加算した間隔とした。
そして、1往復摺動して曲げ加工を行った試験材1〜試験材5と、100枚を連続的に曲げ加工を行った試験材1〜試験材5の摺動面Sを目視観察し(図5のB方向から観察)、図5の写真に示す耐疵付き性評価基準を参考にして、各試験材に対する曲げ加工疵の度合いによって0点(劣)〜5点(優)の点数を付けて数値化し、耐疵付き性の評価を行った。同じ実験を5回行い、その平均値が1点以上の点数のついたものを合格とした。1点以下であると、疵が酷過ぎるために製品に適用することができないからである。結果および考察については後記する。
[1. Evaluation of scratch resistance against bending flaws]
The evaluation of the scratch resistance on the bending wrinkle was evaluated by a shear bending test method. In the shear bending test method, as shown in the explanatory diagram of FIG. 5, each test material (test material 1 to test material 5) is held by the holding tools K 1 and K 2, and the punch P is slid against each test material. By trying to bend, we tried to reproduce the wrinkles generated during press forming. That is, the bending process using the punch P is prepared by bending each test material by one reciprocating sliding and preparing each test material by 100 sheets and bending them continuously by the punch P. did. In addition, the space | interval (metal mold | die space | interval) which arises between the clamping tool K2 and the punch P was made into the space | interval which added 10% clearance to the plate | board thickness (0.4mm) of the used test material.
Then, the test materials 1 to 5 which were slid once and reciprocated and the sliding surfaces S of the test materials 1 to 5 which were continuously bent 100 sheets were visually observed ( Referring to the wrinkle resistance evaluation standard shown in the photograph of FIG. 5, the score of 0 (inferior) to 5 (excellent) is determined depending on the degree of bending flaw on each test material. In addition, it was digitized to evaluate the resistance to scratches. The same experiment was performed five times, and the average value with a score of 1 or more was regarded as acceptable. This is because if it is 1 point or less, the wrinkles are too severe to be applied to the product. The results and discussion will be described later.

[2.スクラッチ疵に対する耐疵付き性の評価]
スクラッチ疵に対する耐疵付き性の評価は、バウデン試験法によって動摩擦係数を求めるとともに、その疵付き性について評価することとした。スクラッチ疵の疵付き性は、図2に示すバウデン試験機6(駆動摩擦摩耗試験機)を用いて、25℃の測定温度条件下、十分に脱脂された直径4.8mm(3/16インチ)の鋼球61を、2N(200gf)の垂直荷重を加えつつ試験材1〜試験材5の表面に押し当て、200mm/分の速度で所定回数(1往復または10往復)摺動させた。このように所定回数摺動することで、スクラッチ疵についても曲げ加工疵の場合と同様に連続摺動が加わった場合の耐疵付き性の再現を試みた。
そして、1往復摺動した試験材1〜試験材5と、10往復摺動した試験材1〜試験材5のスクラッチ疵について目視観察を行い、図2の写真に示すスクラッチ疵評価基準を参考にして、各試験材に対するスクラッチ疵の度合いによって0点(劣)〜3点(優)の点数を付けて数値化し、耐疵付き性の評価を行った。同じ実験を5回行い、その平均値が1点以上の点数のついたものを合格とした。結果および考察については後記する。
[2. Evaluation of scratch resistance against scratches]
For evaluation of scratch resistance against scratches, the dynamic friction coefficient was obtained by the Bowden test method, and the scratch resistance was evaluated. The scratching property of the scratching rod is 4.8 mm (3/16 inch) in diameter, which is sufficiently degreased using a Bowden testing machine 6 (driven friction and wear testing machine) shown in FIG. The steel balls 61 were pressed against the surfaces of the test materials 1 to 5 while applying a vertical load of 2N (200 gf) and slid a predetermined number of times (one reciprocation or 10 reciprocations) at a speed of 200 mm / min. In this way, by sliding a predetermined number of times, an attempt was made to reproduce the scratch resistance when scratching was applied to the scratched scissors as in the case of the bent scissors.
Then, the scratches of the test material 1 to the test material 5 slid 1 reciprocating and the test material 1 to the test material 5 slid 10 reciprocally were visually observed, with reference to the evaluation criteria for the scratches shown in the photograph of FIG. In addition, a score of 0 point (inferior) to 3 points (excellent) was given according to the degree of scratch wrinkles with respect to each test material, and the resistance to wrinkle was evaluated. The same experiment was performed five times, and the average value with a score of 1 or more was regarded as acceptable. The results and discussion will be described later.

[結果および考察]
前記の曲げ加工疵に対する耐疵付き性の評価、および、スクラッチ疵に対する耐疵付き性の評価をするにあたって、それぞれの評価において1往復摺動することで耐疵付き性を評価したものを「1往復摺動」と総称する。また、曲げ加工疵に対する耐疵付き性の評価において100枚を連続的に曲げ加工行ったものと、スクラッチ疵に対する耐疵付き性の評価において10往復摺動したものを「連続摺動」と総称する。
[Results and Discussion]
In the evaluation of the scratch resistance against the bending wrinkles and the evaluation of the scratch resistance against the scratch wrinkles, the evaluation of the scratch resistance by performing one reciprocal sliding in each evaluation is “1”. Collectively referred to as “reciprocating sliding”. In addition, 100 sheets that were bent continuously in the evaluation of the scratch resistance against the bending wrinkles and 10 slides that were slid 10 times in the evaluation of the scratch resistance against the scratch wrinkles are collectively referred to as “continuous sliding”. To do.

前記の曲げ加工疵に対する耐疵付き性の評価、および、スクラッチ疵に対する耐疵付き性の評価で数値化された試験材1〜試験材5の耐疵付き性に対するグラフを図6および図7に示す。図6は、樹脂のガラス転移温度に対する耐疵付き性をプロットしたグラフであって、(a)は、連続摺動における耐疵付き性を表すグラフであり、(b)は、1往復摺動における耐疵付き性を表すグラフである。
なお、黒いプロット(●)は、曲げ加工疵に対するプロットを示し、白いプロット(○)は、スクラッチ疵に対するプロットを示す。また、各プロットの中の数字は試験材の番号を表す。
FIG. 6 and FIG. 7 are graphs of the scratch resistance of the test materials 1 to 5 quantified in the evaluation of the scratch resistance against the bending wrinkles and the evaluation of the scratch resistance against the scratch wrinkles. Show. FIG. 6 is a graph plotting the rust resistance against the glass transition temperature of the resin, where (a) is a graph showing the rust resistance in continuous sliding, and (b) is one reciprocating sliding. It is a graph showing the abrasion resistance in.
In addition, a black plot (●) indicates a plot with respect to the bending ridge, and a white plot (◯) indicates a plot with respect to the scratch ridge. Moreover, the number in each plot represents the number of the test material.

図6(a)に示す連続摺動に関するグラフから、ガラス転移温度が30℃よりも高い本発明例である試験材2、試験材4および試験材5は、耐疵付き性の評価平均点が1点を超えており、合格という評価を得た。一方、ガラス転移温度が30℃以下となる比較例である試験材1(ガラス転移温度:0℃)と試験材3(ガラス転移温度:30℃)では、耐疵付き性の評価平均点が1点未満となり、不合格となった。また、このグラフからは樹脂のガラス転移温度が高くなるに連れて曲げ加工疵およびスクラッチ疵に対しても耐疵付き性が向上していることを確認することができる。すなわち、曲げ加工疵或いはスクラッチ疵を問わず、連続摺動の場合の耐疵付き性とガラス転移温度との間には相関関係があることが認められた。
一方、同図(b)に示す1往復摺動に関するグラフにおいては、試験材1〜試験材5のいずれもが評価平均点が1点以上となり、合格となった。樹脂のガラス転移温度と曲げ加工疵およびスクラッチ疵に対する耐疵付き性の間に明確な関係は認められなかった。
From the graph relating to continuous sliding shown in FIG. 6A, the test material 2, the test material 4 and the test material 5, which are examples of the present invention having a glass transition temperature higher than 30 ° C., have an evaluation average score of scratch resistance. It exceeded 1 point and got an evaluation of passing. On the other hand, in the test material 1 (glass transition temperature: 0 ° C.) and the test material 3 (glass transition temperature: 30 ° C.) which are comparative examples in which the glass transition temperature is 30 ° C. or less, the evaluation average score of scratch resistance is 1 It was less than the score and it was rejected. Further, from this graph, it can be confirmed that as the glass transition temperature of the resin becomes higher, the resistance to scratching is also improved with respect to the bending-processed scratches and scratches. That is, it was recognized that there is a correlation between the wrinkle resistance and the glass transition temperature in the case of continuous sliding regardless of bending work scratches or scratches.
On the other hand, in the graph relating to one reciprocal sliding shown in FIG. 5B, all of the test materials 1 to 5 had an evaluation average score of 1 or more and passed. There was no clear relationship between the glass transition temperature of the resin and the resistance to wrinkling against bending wrinkles and scratches.

以上、曲げ加工疵に対する耐疵付き性の評価、および、スクラッチ疵に対する耐疵付き性の評価から、耐疵付き性を高めるためには疵の程度が軽い1往復摺動の(即ち加工初期の)耐疵付き性を向上するよりも、疵の程度が重い連続摺動の耐疵付き性を向上することの方が本来の目的に叶っていると言える。また、この連続摺動においては、樹脂のガラス転移温度が高いほど耐疵付き性が向上していることから、本発明の目的のためには樹脂のガラス転移温度を高くすることが重要になる。   As described above, in order to improve the scratch resistance from the evaluation of the scratch resistance against the bending defect and the evaluation of the scratch resistance against the scratch defect, one reciprocating sliding (that is, the initial stage of processing) with a light degree of the defect is required. ) It can be said that improving the scratch resistance of continuous sliding with a heavy degree of wrinkles fulfills the original purpose rather than improving the wrinkle resistance. Further, in this continuous sliding, the higher the glass transition temperature of the resin, the better the scratch resistance, so it is important to increase the glass transition temperature of the resin for the purpose of the present invention. .

次に、連続摺動と1往復摺動で挙動が異なる理由、連続摺動でガラス転移温度が高いほど耐疵付き性に優れる理由、および、1往復摺動で耐疵付き性に及ぼす因子を解明すべく、以下の考察と試験を行った。
[連続摺動と1往復摺動の加工疵の状態]
連続摺動と1往復摺動の加工疵の状態を比較した様子を図7に示す。図7は、連続摺動と1往復摺動の加工疵の状態を、顕微鏡写真とWYCO像とで表したものである。同図から、連続摺動の加工疵には、1往復摺動の加工疵では確認することのできない切削状の疵痕Cが存在していることが分かる。同時に今回実施した剪断曲げ試験法は、実際にCD−ROMなどの電子機器のカバーを連続成形したときに得られる、加工初期の疵および連続成形後の疵を良く再現していることも確認できた。なお、顕微鏡写真は、日本電子社製JSM−6340Fを使用して撮影した。また、WYCO像は、Veeco社製NT3300を使用して撮影した。
Next, the reason why the behavior is different between continuous sliding and one reciprocating sliding, the reason why the higher the glass transition temperature in continuous sliding is, the better the scratch resistance, and the factors affecting the scratch resistance in one reciprocating sliding are as follows. To elucidate, the following considerations and tests were conducted.
[Continuous sliding and 1 reciprocating sliding state]
FIG. 7 shows a state in which the state of the machining rod of continuous sliding and one reciprocating sliding is compared. FIG. 7 shows a state of the processing rod of continuous sliding and one reciprocating sliding with a micrograph and a WYCO image. From the figure, it can be seen that the continuous sliding machining bar has a cutting-shaped scratch mark C that cannot be confirmed by a single reciprocating sliding machine bar. At the same time, it can also be confirmed that the shear bending test method implemented this time reproduces well the wrinkles at the initial stage of processing and the wrinkles after continuous molding, which are obtained when the cover of an electronic device such as a CD-ROM is actually continuously molded. It was. The micrograph was taken using JSM-6340F manufactured by JEOL. A WYCO image was taken using NT3300 manufactured by Veeco.

このことから、連続摺動の加工疵は、摩耗粉のような硬い微粒子が関与することで微小な切削作用が働いて起こるアブレシブ摩耗が原因であると判断することができる。一方、1往復摺動の加工疵は、摩耗粉のような硬い微粒子が関与せず、微視的な凝着や破壊に起因する凝着摩耗が原因であると判断することができる。
なお、アブレシブ摩耗と凝着摩耗とでは、加工疵の状態以外にも潤滑性に対する挙動が異なることが知られている。
From this, it can be determined that the continuous sliding work rod is caused by the abrasive wear caused by the minute cutting action due to the involvement of hard fine particles such as wear powder. On the other hand, it is possible to determine that the one-reciprocating processing rod does not involve hard fine particles such as wear powder and is caused by adhesion wear resulting from microscopic adhesion or destruction.
In addition, it is known that the behavior with respect to the lubricity differs between the abrasive wear and the adhesive wear, in addition to the state of the work iron.

[潤滑性に対する耐疵付き性の評価]
そこで、潤滑性に対する耐疵付き性の評価について、前記のバウデン試験法によって求めた動摩擦係数を元に評価し直した。図8に結果を示す。図8は、樹脂の摩擦係数に対する耐疵付き性をプロットしたグラフであって、(a)は、連続摺動における耐疵付き性を表すグラフであり、(b)は、1往復摺動における耐疵付き性を表すグラフである。図8の(a)に示す連続摺動に関するグラフからは、樹脂の動摩擦係数が低くなっても曲げ加工疵およびスクラッチ疵に対する耐疵付き性の向上は認められなかった。
一方、同図(b)に示す1往復摺動に関するグラフからは、樹脂の動摩擦係数が低くなる(すなわち、潤滑性が高くなる)ほど曲げ加工疵およびスクラッチ疵に対する耐疵付き性が向上することが認められた。
一般に、凝着摩耗は潤滑剤などによる潤滑性向上により低減させることができると言われているのに対し、アブレシブ摩耗は潤滑剤などによる潤滑性向上の影響を受けないと言われている。今回の結果はこの一般的な見解に沿う結果となっていることから、連続成形初期の耐疵付き性と連続成形が進んだ状況での耐疵付き性はそれぞれメカニズムが異なり、前者は凝着摩耗、後者がアブレシブ摩耗に起因する挙動であるという説明がさらに説得力のあるものであることが分かった。
[Evaluation of scratch resistance against lubricity]
Therefore, the evaluation of the scratch resistance with respect to the lubricity was re-evaluated based on the dynamic friction coefficient obtained by the Bowden test method. The results are shown in FIG. FIG. 8 is a graph plotting the scratch resistance against the friction coefficient of the resin, in which (a) is a graph showing the scratch resistance in continuous sliding, and (b) is in one reciprocating sliding. It is a graph showing the weather resistance. From the graph relating to continuous sliding shown in FIG. 8 (a), no improvement in the scratch resistance against the bending-processed flaws and scratch flaws was observed even when the dynamic friction coefficient of the resin was lowered.
On the other hand, from the graph relating to one reciprocal sliding shown in FIG. 2B, the resistance to wrinkles against bending and scratching flaws improves as the dynamic friction coefficient of the resin decreases (that is, the lubricity increases). Was recognized.
In general, it is said that adhesive wear can be reduced by improving the lubricity with a lubricant or the like, whereas abrasive wear is said not to be affected by the improvement in lubricity with a lubricant or the like. Since the results this time are in line with this general view, the mechanism of the scratch resistance at the initial stage of continuous molding and the resistance to scratch resistance in the situation where continuous molding has progressed are different. It has been found that the explanation that wear, the latter is behavior due to abrasive wear, is even more convincing.

[ガラス転移温度と耐疵付き性の評価]
連続摺動においてガラス転移温度が高いほど耐疵付き性に優れる理由としては、以下のように考察することができる。すなわち、アブレシブ摩耗では摩擦面の間に硬い固形粒子(例えば、摩耗粉)が介在するほど生じ易くなることから、電子機器用アルミニウム板の表面を十分に硬くすることで摩耗粉による切削を低減することができ、加工疵の発生を防止することができる。
[Evaluation of glass transition temperature and scratch resistance]
The reason why the higher the glass transition temperature in continuous sliding is, the better the scratch resistance is, can be considered as follows. In other words, in abrasive wear, the hard solid particles (for example, wear powder) are more likely to be present between the friction surfaces, and therefore the surface of the aluminum plate for electronic equipment is sufficiently hardened to reduce cutting by the wear powder. It is possible to prevent generation of processing flaws.

そこで、確認のため試験材1〜試験材5における樹脂の硬度を鉛筆硬度で測定し、その測定結果と樹脂のガラス転移温度の関係を評価した。
鉛筆硬度は、JIS K5600−5−4:1999に規定される塗料一般試験方法−第5部:塗料の機械的性質−第4節:引っかき硬度(鉛筆法)に準じて行った(JIS K5400:1990に準拠してもよい)。なお、測定環境温度は25℃、測定荷重は、1000gとした。結果を図9に示す。図9は、ガラス転移温度(℃)に対する鉛筆硬度をプロットしたグラフである。
図9に示すグラフから、樹脂のガラス転移温度が高くなるにつれて鉛筆硬度も高くなることが確認できる。
Therefore, the hardness of the resin in Test Material 1 to Test Material 5 was measured by pencil hardness for confirmation, and the relationship between the measurement result and the glass transition temperature of the resin was evaluated.
The pencil hardness was determined in accordance with the paint general test method specified in JIS K5600-5-4: 1999-Part 5: Mechanical properties of paint-Section 4: Scratch hardness (pencil method) (JIS K5400: 1990). The measurement environment temperature was 25 ° C., and the measurement load was 1000 g. The results are shown in FIG. FIG. 9 is a graph plotting pencil hardness against glass transition temperature (° C.).
From the graph shown in FIG. 9, it can be confirmed that the pencil hardness increases as the glass transition temperature of the resin increases.

[潤滑剤の含有量の検討]
次に、樹脂に含有する潤滑剤の量について検討を行った。潤滑剤としては、前記と同様、ポリテトラフルオロエチレン(PTFE;喜多村社製KD600)を用いた。このPTFEを0〜30質量%含有させた樹脂皮膜を作製し、先に説明した1往復摺動による耐疵付き性に対する評価を行った。また、かかる検討にあたって使用した樹脂としては、ガラス転移温度が40℃である樹脂(日本ペイント製フレキコートシリーズ)を用いた。塗布方法はロールコート法により行い、塗布量は0.8g/m2(厚さ約0.8μm)とし、塗装の焼付けは、素材到達温度230℃で30秒間処理して行った。
[Examination of lubricant content]
Next, the amount of lubricant contained in the resin was examined. As the lubricant, polytetrafluoroethylene (PTFE; KD600 manufactured by Kitamura Co., Ltd.) was used as described above. A resin film containing 0-30% by mass of this PTFE was prepared, and the evaluation of the resistance to wrinkles by one reciprocating sliding described above was performed. Moreover, as resin used in this examination, resin (Nippon Paint Flexcoat series) whose glass transition temperature is 40 degreeC was used. The coating method was performed by a roll coating method, the coating amount was 0.8 g / m 2 (thickness: about 0.8 μm), and the coating was baked at a material arrival temperature of 230 ° C. for 30 seconds.

評価の基準は、1往復摺動して曲げ加工を行った際の耐疵付き性について目視観察し(図5のB方向から観察)、図5の写真に示す耐疵付き性評価基準を参考にして、各試験材に対する曲げ加工疵の度合いによって0点(劣)〜5点(優)の点数を付けて数値化することで耐疵付き性の評価を行った。なお、同じ実験を5回行い、その平均点をプロットしたグラフを図10に示す。   The criteria for evaluation were visually observed for wrinkle resistance when the sample was slid once and reciprocally bent (observed from the direction B in FIG. 5), and the wrinkle resistance evaluation standard shown in the photograph of FIG. 5 was referenced. Then, the scratch resistance was evaluated by assigning a score of 0 point (inferior) to 5 point (excellent) depending on the degree of bending wrinkle on each test material. In addition, the same experiment was performed 5 times and the graph which plotted the average point is shown in FIG.

図10は、潤滑剤の含有量に対する耐疵付き性を検討した結果を表すグラフである。図10に示すグラフから明らかなように、樹脂に1質量%のPTFEを加えることで耐疵付き性は著しく向上している。その後、耐疵付き性は、含有量が15質量%であるときをピークに徐々に減じ、25質量%を超えると耐疵付き性が劣る結果となることが確認できる。   FIG. 10 is a graph showing the results of examining the anti-scratch property with respect to the lubricant content. As apparent from the graph shown in FIG. 10, the scratch resistance is remarkably improved by adding 1% by mass of PTFE to the resin. Then, it can be confirmed that the scratch resistance is gradually reduced to a peak when the content is 15% by mass, and when the content exceeds 25% by mass, the result of inferior weather resistance is obtained.

[まとめ]
以上、一連の試験の結果、連続摺動での耐疵付き性は、曲げ加工疵、スクラッチ疵ともに皮膜(樹脂)のガラス転移温度と相関があり、ガラス転移温度が高いほど耐疵付き性が向上した。これはガラス転移温度が高くなるほど皮膜が硬くなり、摩耗粉による切削が受け難くなったためと考えられる。このような現象は摩擦面の間に摩耗粉という異物を介在させた、アブレシブ摩耗という摩耗現象で説明が出来る。
[Summary]
As described above, as a result of a series of tests, the resistance to scratching in continuous sliding is correlated with the glass transition temperature of the coating (resin) for both bending and scratching. The higher the glass transition temperature, the more the resistance to scratching is. Improved. This is considered to be because the film became harder as the glass transition temperature was higher, and it was difficult to receive cutting with wear powder. Such a phenomenon can be explained by a wear phenomenon called abrasive wear in which a foreign substance called wear powder is interposed between friction surfaces.

また、1往復摺動での耐疵付き性は、曲げ加工疵およびスクラッチ疵ともに樹脂のガラス転移温度との間では明確な関係は認められなかったが、皮膜物性の一つである潤滑性とは相関があり、摩擦係数が低くなるほど耐疵付き性が向上する傾向が認められた。このような現象は、摩擦面の間に介在物が存在しない凝着摩耗という摩耗現象で説明が出来る。   In addition, with respect to scratch resistance in one reciprocating sliding, there was no clear relationship between the glass transition temperature of the resin in both the bending process scratch and the scratch process, but lubrication, which is one of the film properties, There was a correlation, and the tendency to improve the scratch resistance was observed as the friction coefficient decreased. Such a phenomenon can be explained by a wear phenomenon called adhesive wear in which no inclusions exist between the friction surfaces.

さらに、1往復摺動と連続摺動とで挙動が変化するのは連続成形が進むに連れて摩耗粉の発生により耐疵付き性の挙動が凝着摩耗からアブレシブ摩耗に変化することが分かった。
先にも述べた様に、耐疵付き性を高めるためには疵の程度が軽い1往復摺動の(即ち加工初期の)耐疵付き性を向上するよりも、疵の程度が重い連続摺動の耐疵付き性を向上することの方が本来の目的に叶っており、この連続摺動においては、樹脂のガラス転移温度が高いほど耐疵付き性が向上していることから、本発明の目的のためには樹脂のガラス転移温度を高くして、樹脂皮膜の硬度を高めることが最も重要な考え方になると言える。
Furthermore, it was found that the behavior changes between one reciprocating sliding and continuous sliding, as the continuous molding proceeds, the wear resistance behavior changes from adhesive wear to abrasive wear due to the generation of wear powder. .
As described above, in order to improve the scratch resistance, continuous sliding with a higher degree of wrinkles than the improvement of the resistance to wrinkles of one reciprocating sliding (that is, the initial stage of machining) with a light wrinkle degree. The improvement of dynamic scratch resistance has been achieved for the original purpose, and in this continuous sliding, the higher the glass transition temperature of the resin, the higher the scratch resistance, the present invention. Therefore, it can be said that the most important idea is to increase the glass transition temperature of the resin and increase the hardness of the resin film.

これまで耐疵付き性の向上を試みた先行発明は存在するが、本発明の様に連続成形初期と連続成形後の疵付きメカニズムの相違を明確にし、それぞれのメカニズムに応じた対処が明示されており、成形初期の疵に対しても連続成形後の疵に対しても優れた耐疵付き性を付与する発明は過去において認められない。したがって、連続成形によって製造される箱形成形品の性能向上に対して、本発明は優れた貢献が出来るものと確信する。   There are prior inventions that have attempted to improve the scratch resistance so far. However, as in the present invention, the difference between the initial stage of the continuous molding and the mechanism after the continuous molding is clarified, and the countermeasures according to each mechanism are clearly indicated. In the past, there has been no invention that imparts excellent scratch resistance to the wrinkles at the initial stage of molding and the wrinkles after continuous molding. Therefore, it is convinced that the present invention can make an excellent contribution to the improvement of the performance of box-shaped products manufactured by continuous molding.

本発明に係る電子機器用アルミニウム板の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the aluminum plate for electronic devices which concerns on this invention. スクラッチ疵に対する耐疵付き性の評価を説明する説明図である。It is explanatory drawing explaining the evaluation of the scratch resistance with respect to a scratch flaw. 表面抵抗値の測定方法の一例を模式的に示す図である。It is a figure which shows typically an example of the measuring method of a surface resistance value. (a)は、ノートパソコンに搭載されるスリム型CD−ROMドライブの成形品の斜視図、(b)は、(a)の矢印Aで示す方向から成形品の側壁部を観察した拡大写真であって、加工初期の加工疵の様子を示し、(c)は、(a)の矢印Aで示す方向から成形品の側壁部を観察した拡大写真であって、連続成形後の加工疵の様子を示す。(A) is a perspective view of a molded product of a slim type CD-ROM drive mounted on a notebook personal computer, and (b) is an enlarged photograph in which the side wall of the molded product is observed from the direction indicated by arrow A in (a). FIG. 5C shows a state of the processing wrinkle at the initial stage of processing, and FIG. 5C is an enlarged photograph of the side wall portion of the molded product observed from the direction indicated by the arrow A in FIG. Indicates. 曲げ加工疵に対する耐疵付き性の評価を説明する説明図である。It is explanatory drawing explaining the evaluation of the wrinkle resistance with respect to a bending work flaw. 樹脂のガラス転移温度に対する耐疵付き性をプロットしたグラフであって、(a)は、連続摺動における耐疵付き性を表し、(b)は、1往復摺動における耐疵付き性を表す。It is the graph which plotted the abrasion resistance with respect to the glass transition temperature of resin, (a) represents the abrasion resistance in continuous sliding, (b) represents the abrasion resistance in 1 reciprocating sliding. . 連続摺動と1往復摺動の加工疵の状態を、顕微鏡写真とWYCO像とで表したものである。The state of the processing rod of continuous sliding and one reciprocating sliding is represented by a micrograph and a WYCO image. 樹脂の摩擦係数に対する耐疵付き性をプロットしたグラフであって、(a)は、連続摺動における耐疵付き性を表し、(b)は、1往復摺動における耐疵付き性を表す。It is the graph which plotted the abrasion resistance with respect to the friction coefficient of resin, (a) represents the abrasion resistance in continuous sliding, (b) represents the abrasion resistance in 1 reciprocating sliding. ガラス転移温度(℃)に対する鉛筆硬度をプロットしたグラフである。It is the graph which plotted pencil hardness with respect to glass transition temperature (degreeC). 潤滑剤の含有量に対する耐疵付き性を検討した結果を表すグラフである。It is a graph showing the result of having examined the scratch resistance with respect to content of a lubricant.

符号の説明Explanation of symbols

1 電子機器用アルミニウム板
2 アルミニウム素板
3 耐食性皮膜
4 樹脂皮膜
1 Aluminum plate for electronic equipment 2 Aluminum base plate 3 Corrosion-resistant coating 4 Resin coating

Claims (5)

中心線平均粗さRaが0.2〜0.6μmであるアルミニウム素板の少なくとも片面に、このアルミニウム素板側から順に耐食性皮膜と樹脂皮膜とを積層して形成された潤滑表面を有し、かつ、前記アルミニウム素板、または前記耐食性皮膜が形成された表面の微細な凸部が前記樹脂皮膜の表面に露出したアルミニウム板であって、
前記耐食性皮膜は、CrまたはZrを含有し、かつ前記アルミニウム板への付着量がCrまたはZr換算値で10〜50mg/m2であり、
前記樹脂皮膜は、平均膜厚が0.05〜0.9μm、かつ、ガラス転移温度が30℃よりも高く、全樹脂皮膜量に対して1〜25質量%の潤滑剤を含有し、
前記潤滑表面の動摩擦係数が0.2以下、鉛筆硬度が3H以上であることを特徴とする電子機器用アルミニウム板。
On the at least one surface of the aluminum base plate having a center line average roughness Ra of 0.2 to 0.6 μm, it has a lubricating surface formed by laminating a corrosion-resistant film and a resin film sequentially from the aluminum base plate side, And, the aluminum plate, or an aluminum plate in which fine protrusions on the surface on which the corrosion-resistant film is formed are exposed on the surface of the resin film,
The corrosion-resistant film contains Cr or Zr, and the amount of adhesion to the aluminum plate is 10 to 50 mg / m 2 in terms of Cr or Zr,
The resin film has an average film thickness of 0.05 to 0.9 μm, a glass transition temperature higher than 30 ° C., and contains 1 to 25% by mass of a lubricant with respect to the total resin film amount,
An aluminum plate for electronic equipment, wherein the lubrication surface has a dynamic friction coefficient of 0.2 or less and a pencil hardness of 3H or more.
前記樹脂皮膜が、ポリエステル系樹脂よりなることを特徴とする請求項1に記載の電子機器用アルミニウム板。   The aluminum plate for electronic equipment according to claim 1, wherein the resin film is made of a polyester resin. 前記潤滑表面に、先端が半径10mmの金属製球状端子を、0.4Nの荷重で押付けたときの前記球状端子と前記アルミニウム素板との間の表面抵抗値が100Ω以下であることを特徴とする請求項1または請求項2に記載の電子機器用アルミニウム板。   A surface resistance value between the spherical terminal and the aluminum base plate when a metal spherical terminal having a radius of 10 mm is pressed against the lubricated surface with a load of 0.4 N is 100Ω or less. The aluminum plate for electronic devices according to claim 1 or 2. 前記潤滑剤が、ポリアルキレン系ワックスおよびフッ素系ワックスのうち少なくとも一種を含むことを特徴とする請求項1から請求項3に記載の電子機器用アルミニウム板。   The aluminum plate for electronic devices according to claim 1, wherein the lubricant contains at least one of a polyalkylene wax and a fluorine wax. 請求項1から請求項4のうちいずれか一項に記載の電子機器用アルミニウム板を用いて成形したことを特徴とする電子機器用成形品。   A molded product for electronic equipment, which is molded using the aluminum plate for electronic equipment according to any one of claims 1 to 4.
JP2004114682A 2004-04-08 2004-04-08 Aluminum plate for electronic equipment and molded product for electronic equipment using the same Expired - Lifetime JP4482364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114682A JP4482364B2 (en) 2004-04-08 2004-04-08 Aluminum plate for electronic equipment and molded product for electronic equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114682A JP4482364B2 (en) 2004-04-08 2004-04-08 Aluminum plate for electronic equipment and molded product for electronic equipment using the same

Publications (2)

Publication Number Publication Date
JP2005297290A true JP2005297290A (en) 2005-10-27
JP4482364B2 JP4482364B2 (en) 2010-06-16

Family

ID=35329434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114682A Expired - Lifetime JP4482364B2 (en) 2004-04-08 2004-04-08 Aluminum plate for electronic equipment and molded product for electronic equipment using the same

Country Status (1)

Country Link
JP (1) JP4482364B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143080A (en) * 2008-12-18 2010-07-01 Kobe Steel Ltd Precoated aluminum sheet
JP2013071779A (en) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd Cover
KR101279287B1 (en) * 2010-02-23 2013-06-26 가부시키가이샤 고베 세이코쇼 Precoating aluminum plate for electronic equipment
KR20180073388A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Coating Composition Having Superior Corrosion-Resistance and Lubricity and Coated Steel Sheet Using the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913178A (en) * 1995-04-28 1997-01-14 Nkk Corp Precoated steel plate used by applying final coating after molding and excellent in molding workability
JP2002206178A (en) * 2000-10-25 2002-07-26 Kobe Steel Ltd Aluminum sheet for forming and formed parts using the aluminum sheet
JP2003064484A (en) * 2001-08-17 2003-03-05 Kobe Steel Ltd Aluminum alloy sheet for cover of electronic equipment, cover of electronic equipment having the aluminum alloy sheet, and electronic equipment having the cover
JP2003313684A (en) * 2002-04-24 2003-11-06 Kobe Steel Ltd Aluminum sheet for electronic equipment and molded article for electronic equipment using the sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913178A (en) * 1995-04-28 1997-01-14 Nkk Corp Precoated steel plate used by applying final coating after molding and excellent in molding workability
JP2002206178A (en) * 2000-10-25 2002-07-26 Kobe Steel Ltd Aluminum sheet for forming and formed parts using the aluminum sheet
JP2003064484A (en) * 2001-08-17 2003-03-05 Kobe Steel Ltd Aluminum alloy sheet for cover of electronic equipment, cover of electronic equipment having the aluminum alloy sheet, and electronic equipment having the cover
JP2003313684A (en) * 2002-04-24 2003-11-06 Kobe Steel Ltd Aluminum sheet for electronic equipment and molded article for electronic equipment using the sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143080A (en) * 2008-12-18 2010-07-01 Kobe Steel Ltd Precoated aluminum sheet
JP4638538B2 (en) * 2008-12-18 2011-02-23 株式会社神戸製鋼所 Pre-coated aluminum plate
KR101279287B1 (en) * 2010-02-23 2013-06-26 가부시키가이샤 고베 세이코쇼 Precoating aluminum plate for electronic equipment
JP2013071779A (en) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd Cover
KR20180073388A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Coating Composition Having Superior Corrosion-Resistance and Lubricity and Coated Steel Sheet Using the Same
KR101988702B1 (en) 2016-12-22 2019-06-12 주식회사 포스코 Coating Composition Having Superior Corrosion-Resistance and Lubricity and Coated Steel Sheet Using the Same

Also Published As

Publication number Publication date
JP4482364B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
KR100473517B1 (en) An aluminium plate having a film and an electronic device member using the same
Podgornik et al. Comparison between different test methods for evaluation of galling properties of surface engineered tool surfaces
KR101463637B1 (en) Method of rolling metal sheet material and rolled sheet material produced by the rolling method
JP5215241B2 (en) Surface treatment method for machine parts made of high-strength steel, and sealing system obtained by performing the method
CA2830084C (en) Press-forming mold and method for manufacturing protective film for press-forming mold
Tenner et al. Numerical and experimental investigation of dry deep drawing of aluminum alloys with conventional and coated tool surfaces
JP4482364B2 (en) Aluminum plate for electronic equipment and molded product for electronic equipment using the same
TWI325366B (en) Pre-coated metal plate
JP4348107B2 (en) Resin-coated aluminum material and molded product using the same
JP2010064293A (en) Coated aluminum plate and aluminum can lid
Valleti et al. Efficacy of TiCrN/DLC coatings for service life enhancement of stamping dies
JP5079037B2 (en) Conductive pre-coated aluminum alloy plate for electrical or electronic equipment housing
KR101009869B1 (en) Precoated metal plate
Liu et al. Scratch adhesion evaluation of electroless nickel plating on Mg and Mg alloys
JP6648874B1 (en) Manufacturing method of hot press molded product, press molded product, die mold, and mold set
JP4104570B2 (en) Manufacturing method of sliding member
JP2001205730A (en) Resin coated metal sheet for electronic apparatus component excellent in electroconductivity, manufacturing method therefor and electronic apparatus component using the same
JP3903835B2 (en) Manufacturing method of plated steel sheet
Polok-Rubiniec et al. Comparison of the PVD coatings deposited onto hot work tool steel and brass substrates
Cai et al. Surface Fatigue Cracking Behavior of a CrN-Coated Tool Steel Influenced by Sliding Cycles and Sliding Energy Density
JP5671402B2 (en) Pre-coated aluminum plate for electronic equipment
JPH06192781A (en) Aluminum alloy sheet excellent in galling resistance and scuffing resistance
JPH10233074A (en) Aluminum for disk shutter or aluminum alloy plate
JP4108284B2 (en) Aluminum alloy plate for shutter of recording medium case
Tuszynski et al. Investigation of antiwear coatings deposited by the PVD process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4482364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4