JP2005295617A - ハイブリッド車両の発電制御装置 - Google Patents

ハイブリッド車両の発電制御装置 Download PDF

Info

Publication number
JP2005295617A
JP2005295617A JP2004103629A JP2004103629A JP2005295617A JP 2005295617 A JP2005295617 A JP 2005295617A JP 2004103629 A JP2004103629 A JP 2004103629A JP 2004103629 A JP2004103629 A JP 2004103629A JP 2005295617 A JP2005295617 A JP 2005295617A
Authority
JP
Japan
Prior art keywords
power generation
power
generator
drive
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004103629A
Other languages
English (en)
Inventor
Atsushi Nanba
篤史 難波
Tomohiro Sakurai
智浩 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2004103629A priority Critical patent/JP2005295617A/ja
Publication of JP2005295617A publication Critical patent/JP2005295617A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 駆動用バッテリの電力枯渇を回避するとともに、ジェネレータの発電サイクルを長く設定する。
【解決手段】 ハイブリッド車両は、ジェネレータを駆動するエンジンと駆動輪を駆動する駆動モータとを備えており、ジェネレータからの電力を蓄えるとともに、駆動モータに電力を供給する駆動用バッテリを備えている。駆動系制御ユニットは、電流Ibatと電圧Vbatとに基づいて駆動用バッテリの充放電電力Wbatを算出し、この充放電電力Wbatを積算した電力積算値Ebatを算出する。次いで、算出周期Tpre毎に電力積算値Ebatの変化率である積算値変化率DEbatを算出した後に、この積算値変化率DEbatに基づいて発電閾値Gsocを設定する。このように算出周期Tpre毎に新たに設定される発電閾値Gsocを、充電状態SOCが下回ると判定されたときに、ジェネレータによる発電が開始される。
【選択図】 図4

Description

本発明は、発電機を駆動するエンジンと駆動輪を駆動する電動モータとを有するハイブリッド車両の発電制御装置に関する。
近年、エンジンおよび電動モータを動力源として搭載するようにしたハイブリッド車両が開発されている。このようなハイブリッド車両は、発進時や低速時の動力源として低回転から高トルクを発生する電動モータを用いることにより、エンジンの使用領域を効率の良い領域に絞ることができるため、エンジン効率を向上させて低燃費を達成することができる。
このハイブリッド車両の駆動方式としては、電動モータのみを用いて駆動輪を駆動するようにしたシリーズ方式、電動モータとエンジンとを用いて駆動輪を駆動するようにしたパラレル方式、そしてシリーズ方式とパラレル方式とを組み合わせるようにしたシリーズ・パラレル方式が開発されている。
シリーズ方式やシリーズ・パラレル方式の車両にあっては、エンジンに駆動される発電機が搭載されており、発電機を駆動することによって発電された電力は、駆動輪を駆動するために電動モータに供給されるとともに、発進時や加速時等に備えて蓄電手段であるバッテリに充電される。エンジンを始動させて発電機を駆動するか否か、つまり発電機を用いて発電するか否かは、バッテリの充電状態に応じて判定されることが多く、たとえば、充電状態が予め設定される下限レベルを下回ったときに発電機を駆動する一方、充電状態が上限レベルを上回ったときに発電機を停止するようにした発電制御装置が開発されている(たとえば、特許文献1参照)。
また、エンジンを用いて発電機を駆動する際には、発電機の駆動状態と停止状態との切換サイクルを長く設定することが、フィーリングや発電効率の観点から好ましいものとなっている。つまり、発電機の切換サイクルを短く設定すると、エンジンを駆動状態と停止状態とに頻繁に切り換える必要があるため、運転者に違和感を与えるだけでなく、エンジン効率を低下させることになる。
特開平9−98504号公報(第4頁、図6)
しかしながら、切換サイクルを長く設定するため、充電状態の下限レベルを引き下げて設定すると、バッテリからの放電量が少ない場合には、バッテリの電力を枯渇させることなく充電できるものの、バッテリからの放電量が多い場合には、バッテリの電力を枯渇させてしまうおそれがある。一方、バッテリの電力枯渇を回避するため、充電状態の下限レベルを引き上げて設定すると、発電機の切換サイクルが短く設定されることになり、運転者に違和感を与えるとともにエンジン効率を低下させることになる。このように、充電状態の下限レベルを予め設定した場合には、バッテリの電力枯渇を回避することと、発電機の切換サイクルを長く設定することとを両立させることは困難となっていた。
本発明の目的は、蓄電手段の電力枯渇を回避するとともに、発電機の切換サイクルを長く設定することにある。
本発明のハイブリッド車両の発電制御装置は、発電機を駆動するエンジンと駆動輪を駆動する電動モータとを有するハイブリッド車両の発電制御装置であって、前記発電機からの電力を蓄え、前記電動モータに電力を供給する蓄電手段と、前記蓄電手段の電力量変化率を所定周期毎に算出する変化率算出手段と、前記電力量変化率に基づいて発電閾値を設定する閾値設定手段と、前記蓄電手段の充電状態が前記発電閾値を下回るときに、前記発電機による発電を開始する発電制御手段とを有することを特徴とする。
本発明のハイブリッド車両の発電制御装置は、前記所定周期を走行負荷信号に基づいて変化させることを特徴とする。
本発明のハイブリッド車両の発電制御装置は、前記走行負荷信号は車速であることを特徴とする。
本発明のハイブリッド車両の発電制御装置は、前記所定周期を前記電力量変化率に基づいて変化させることを特徴とする。
本発明によれば、所定周期毎に算出される電力量変化率に基づいて発電閾値を設定するようにしたので、走行状況に応じて発電開始のタイミングを的確に設定することができる。たとえば、蓄電手段からの放電量が多く、電力量変化率が大きく算出されるときには、発電閾値を高く設定することにより、早期に発電を開始することができ、蓄電手段の電力枯渇を回避することができる。一方、蓄電手段からの放電量が少なく、電力量変化率が小さく算出されるときには、発電閾値を低く設定することにより、発電状態と非発電状態との切換サイクルを長く設定することができるため、発電機を駆動する際のエンジン効率を高めることができ、運転者に良好なフィーリングを与えることができる。
また、走行負荷信号に基づいて所定周期を変更するようにしたので、発電を開始するまでの応答性を向上させることができる。たとえば、大きな走行負荷によって蓄電手段からの放電量が多くなる走行状況、つまり発電が要求され易い走行状況にあっては、所定周期を短く設定して早期に発電閾値を更新することにより、走行状況が変化してから発電を開始するまでの応答性を向上させることができる。
さらに、電力量変化率に基づいて所定周期を変更するようにしたので、発電を開始するまでの応答性を向上させることができる。たとえば、蓄電手段からの放電量が急激に増大する走行状況、つまり発電が要求され易い走行状況にあっては、所定周期を短く設定して早期に発電閾値を更新することにより、走行状況が変化してから発電を開始するまでの応答性を向上させることができる。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1はハイブリッド車両の駆動装置10を示す概略図である。図1に示す駆動装置10は、前輪駆動用のハイブリッド車両に適用される駆動装置10であり、動力源として電動モータである駆動モータ11と内燃機関であるエンジン12とを有している。駆動モータ11はモータ側駆動歯車13aが固定されたモータ出力軸14を有しており、これに平行となる前輪駆動軸15にはモータ側駆動歯車13aに噛み合うモータ側従動歯車13bが固定されている。また、前輪駆動軸15の先端には終減速小歯車16が固定されており、この終減速小歯車16に噛み合う終減速大歯車17には図示しないディファレンシャル機構が組み付けられる。ディファレンシャル機構から車幅方向に伸びる車軸18は、駆動輪としての前輪に連結されており、駆動モータ11から前輪駆動軸15を介して伝達されるモータ動力は、ディファレンシャル機構を介して左右の前輪に伝達されることになる。
また、エンジン12のクランク軸20には発電機つまりジェネレータ21が取り付けられており、ジェネレータ21のロータ21aにはロータ出力軸22が固定されている。ロータ出力軸22とこれの同軸上に配置されるエンジン出力軸23との間には、エンジン動力を伝達する締結状態と遮断する解放状態とに作動するカップリング24が設けられている。さらに、エンジン出力軸23にはエンジン側駆動歯車25aが固定され、前輪駆動軸15にはエンジン側駆動歯車25aに噛み合うエンジン側従動歯車25bが固定されており、カップリング24を締結状態に切り換えることによって、エンジン動力が前輪駆動軸15を介して前輪に伝達されるようになっている。エンジン動力を伝達するカップリング24としては、図示しない電磁コイルに対する通電制御によって作動する噛み合い式の2ウェイクラッチが使用されているが、通電制御によって作動する摩擦クラッチを設けるようにしても良い。
なお、エンジン12のクランク軸20に連結されるジェネレータ21は、エンジン動力によって発電する機能だけでなく、スタータモータとしての機能を有している。このため、ジェネレータ21をスタータモータとして駆動することにより、エンジン12を始動することができるようになっている。また、駆動モータ11は発電機としての機能を有しており、車両制動時に駆動モータ11を発電機として作動させることで、運動エネルギーを電気エネルギーに変換して回収することができるようになっている。
このような駆動モータ11とエンジン12を備えるハイブリッド車両は、モータ動力のみを駆動輪に伝達するシリーズ走行モード、エンジン動力のみを駆動輪に伝達するエンジン走行モード、モータ動力とエンジン動力との双方を駆動輪に伝達するパラレル走行モードを備えており、これらの走行モードは走行状況に応じて切り換えられる。ここで、図2は走行モード切換特性の一例を示す特性線図である。図2に示すように、車速、勾配、負荷などに応じて走行モードが設定されるようになっており、大きな駆動トルクが要求される低中速時にはシリーズ走行モードが設定され、エンジン12を高回転域で効率良く駆動することができる高速時(たとえば、80Km/h以上)にはエンジン走行モードが設定され、加速時や登坂時などの高負荷時にはパラレル走行モードが設定されるようになっている。
これら走行モードの切り換えは、エンジン12と前輪駆動軸15との間に設けられるカップリング24を切換制御することによって実行される。つまり、エンジン走行モードやパラレル走行モードを実行する際には、エンジン動力を前輪駆動軸15に伝達するため、カップリング24が締結状態に切り換えられる一方、前輪駆動軸15に対してエンジン動力を遮断するシリーズ走行モードにあっては、カップリング24は解放状態に切り換えられ、前輪駆動軸15に対してエンジン12が切り離された状態となる。そして、このシリーズ走行モードにおいて、ジェネレータ21による発電が必要な走行状況になると、ジェネレータ21を用いてエンジン12が始動された後に、エンジン12が効率の良い回転数領域でジェネレータ21を駆動することになる。なお、エンジン走行モードやパラレル走行モードであっても、エンジン12にかかる負荷が少ない場合には、車両状態に応じて余剰動力を用いた発電制御が実行されることになる。
図3はハイブリッド車両の電気系および制御系を示すブロック図である。図3に示すように、ハイブリッド車両は各種制御ユニット30〜32を備えており、これらの制御ユニット30〜32によって、各駆動部の駆動状態が検出されるとともに各駆動部に制御信号が出力されている。これらの制御ユニット30〜32は通信ケーブルを介して相互に接続されており、ハイブリッド車両には制御ユニット間で検出信号や制御信号を相互に通信するための通信ネットワーク33が構築されている。なお、各制御ユニット30〜32には、制御信号を演算するCPUが設けられるとともに、制御プログラム、演算式およびマップデータ等を格納するROMや、一時的にデータを格納するRAMが設けられている。
図3に示すように、ハイブリッド車両には、ジェネレータ21によって発電された電力を蓄えるとともに、駆動モータ11に電力を供給する蓄電手段としての駆動用バッテリ34が搭載されている。この駆動用バッテリ34にはバッテリ制御ユニット30が設けられており、バッテリ制御ユニット30によって、駆動用バッテリ34の電圧Vbat、電流Ibat、セル温度等が検出される。そして、電圧Vbat、電流Ibat、セル温度に基づいて、バッテリ制御ユニット30は駆動用バッテリ34の充電状態SOC(state of charge)を算出するようになっている。なお、蓄電手段として駆動用バッテリ34が搭載されているが、これに代えてキャパシタを搭載するようにしても良い。
また、駆動用バッテリ34とジェネレータ21との間には、ジェネレータ用のインバータ35が設けられており、交流同期型モータのジェネレータ21によって発電された交流電流は、インバータ35を介して直流電流に変換された後に、駆動用バッテリ34に充電されるようになっている。そして、ジェネレータ21をスタータモータとして駆動する際には、駆動用バッテリ34からの直流電流が、インバータ35を介して交流電流に変換された後に、ジェネレータ21に供給されることになる。
同様に、駆動用バッテリ34と駆動モータ11との間には、駆動モータ用のインバータ36が設けられており、駆動用バッテリ34からの直流電流が、インバータ36を介して交流電流に変換された後に、交流同期型モータの駆動モータ11に供給されるようになっている。そして、回生ブレーキによって発電された交流電流、つまり車両の制動時に駆動モータ11によって発電された交流電流は、インバータ36を介して直流電流に変換された後に、駆動用バッテリ34に充電されることになる。
また、ハイブリッド車両にはエンジン12を駆動制御するエンジン制御ユニット31が設けられており、エンジン制御ユニット31には各種センサからエンジン12の駆動状態が入力されている。さらに、エンジン制御ユニット31には、アクセル開度、車速V、シフトレンジ等の信号が、後述する駆動系制御ユニット32から通信ネットワーク33を介して入力されている。これらの各種信号に基づいて、エンジン制御ユニット31は、スロットルバルブ、インジェクタ、イグナイタ等に対して制御信号を出力することにより、エンジン12の駆動状態を制御するようになっている。
さらに、ハイブリッド車両には駆動装置10を駆動制御する駆動系制御ユニット32が設けられている。この駆動系制御ユニット32には、アクセル開度を検出するアクセルペダルセンサ37や、シフトレンジを検出するシフトポジションセンサ38が接続されるとともに、ロータ出力軸22、エンジン出力軸23、前輪駆動軸15等の回転数を検出する図示しない回転数センサが接続されている。さらには、通信ネットワーク33を介して、エンジン12、駆動モータ11およびジェネレータ21の各駆動状態や、駆動用バッテリ34の充電状態SOC、電流Ibat、および電圧Vbat等が入力されている。そして、駆動系制御ユニット32は、アクセルペダルセンサ37から入力されるアクセル開度と前輪駆動軸15の回転数から演算される車速Vとに基づいて走行モードを設定するとともに、入力された各種信号に基づいて、カップリング24、エンジン制御ユニット31、インバータ35,36に対して制御信号を出力するようになっている。
このような各制御ユニット30〜32によって制御されるハイブリッド車両の走行状況は、車室内に設けられる計器板つまりインストルメントパネル39に表示され、運転者が走行状況を認識できるようになっている。前述した通信ネットワーク33には、ボディ統合制御ユニット40が接続されており、エンジン12、駆動モータ11、およびジェネレータ21の駆動状態、そして駆動用バッテリ34の充電状態SOC等が、ボディ統合制御ユニット40を介してインストルメントパネル39に出力されている。
なお、ハイブリッド車両には、補機類などの電装品に電流を供給するため、駆動用バッテリ34よりも低電圧の補機用バッテリ41(たとえば、12V)が搭載されている。この補機用バッテリ41を充電するため、補機用バッテリ41と駆動用バッテリ34との間には、DC/DCコンバータ42が設けられており、駆動用バッテリ34用に発電された高電圧電流が、補機用バッテリ41用の低電圧電流に変換されている。
次いで、シリーズ走行モードにおける発電開始判定の手順について説明する。図4は発電開始までの過程における各種データの変動状態を示す線図であり、図5は発電開始までの手順を示すフローチャートである。まず、図4に従って、発電を開始するまでの手順について概略的に説明する。変化率算出手段、閾値設定手段および発電制御手段として機能する駆動系制御ユニット32は、図4に示すように、バッテリ制御ユニット30から入力される電流Ibatと電圧Vbatとに基づいて駆動用バッテリ34の充放電電力Wbatを算出し、この充放電電力Wbatを積算した電力積算値Ebatを算出する。次いで、所定周期としての算出周期Tpre毎に電力積算値Ebatの電力量変化率である積算値変化率DEbatを算出した後に、この積算値変化率DEbatに基づいて発電閾値Gsocを設定する。このように算出周期Tpre毎に新たに設定される発電閾値Gsocを充電状態SOCが下回ると判定された場合には、エンジン12とジェネレータ21とが駆動制御され、ジェネレータ21による発電が開始されるようになっている。以下、このような発電開始判定を図5のフローチャートに従って詳細に説明する。
図5に示すように、ステップS1では、電流Ibatと電圧Vbatとを乗算することによって駆動用バッテリ34の充放電電力Wbatが算出され、ステップS2では充放電電力Wbatをルーチン毎に加算することによって電力積算値Ebatが算出される。そしてステップS3では、カウンタCntが0であるか否かが判定され、カウンタCntが0であると判定された場合には、ステップS4において積算初期値Eintが設定された後に、ステップS5においてカウンタCntがカウント処理される。一方、ステップS3において、カウンタCntが0以外であると判定された場合には、そのままステップS5に進みカウンタCntがカウント処理される。
ステップS6では、走行負荷信号である車速Vに基づき周期テーブルを参照することによって算出周期Tpreが設定される。ここで、図6(A)は周期テーブルの一例を示す特性線図であり、図6(A)に示すように、低車速時に比べて走行負荷が高まる高車速時には算出周期Tpreが短くなるように設定されている。続くステップS7において、周期テーブルに基づいて設定された算出周期TpreをカウンタCntが上回ると判定された場合には、発電閾値Gsocを設定するルーチンが開始されてから算出周期Tpreを経過した状態であるため、ステップS8に進み積算値変化率DEbatが以下の式(1)に基づいて算出される。つまり、積算値変化率DEbatは算出周期Tpre内における充放電電力Wbatの電力平均値となっている。なお、図4に示す場合には一定車速で走行している状況であるため、算出周期Tpreはほぼ一定となっているが、車速Vの変動に伴って算出周期Tpreが変更されることはいうまでもない。
DEbat=(Ebat−Eint)/Cnt・・・・・(1)
ステップS8において積算値変化率DEbatが算出されると、ステップS9ではカウンタCntがリセット処理され、続くステップS10では積算値変化率DEbatに基づいて閾値テーブルを参照することにより発電閾値Gsocが設定される。ここで、図6(B)は閾値テーブルの一例を示す特性線図であり、図6(B)に示すように、積算値変化率DEbatが増大する程、つまり駆動用バッテリ34からの放電量が多くなる程、発電閾値Gsocが高く設定されるようになっている。
そして、ステップS11では、発電閾値Gsocと充電状態SOCとが比較判定され、発電閾値Gsocを充電状態SOCが下回ると判定された場合には、続くステップS12において、発電フラグが設定されるとともにエンジン12とジェネレータ21とに制御信号が出力され、ジェネレータ21による発電が開始される。一方、ステップS11において、発電閾値Gsocを充電状態SOCが上回ると判定された場合には、発電が停止された状態のままルーチンを抜けることになる。なお、充電状態SOCには所定の上限レベルが定められており、発電によって充電状態SOCが上限レベルに達した場合には、ジェネレータ21による発電が停止されるようになっている。
このように、発電閾値Gsocを積算値変化率DEbatに応じて変化させるようにしたので、ハイブリッド車両の走行状況に応じて発電開始のタイミングを的確に設定することができる。つまり、駆動用バッテリ34からの放電量が多く、積算値変化率DEbatが大きく算出されるときには、発電閾値Gsocが高く設定されるため、早期に発電を開始することができ、駆動用バッテリ34の電力枯渇を回避することができる。一方、駆動用バッテリ34からの放電量が少なく、積算値変化率DEbatが小さく算出されるときには、発電閾値Gsocが低く設定されるため、ジェネレータ21の発電状態と非発電状態との切換サイクルを長く設定することができ、ジェネレータ21を駆動する際のエンジン効率を高めるとともに、運転者に良好なフィーリングを与えることができる。
また、走行負荷信号としての車速Vに応じて算出周期Tpreを変更するようにしたので、走行状況が変化してから発電を開始するまでの応答性を向上させることができる。つまり、駆動モータ11に多くの電力が供給される高車速域は、ジェネレータ21による発電が要求され易い走行状況であるため、この走行状況においては算出周期Tpreを短く設定して、早期に発電閾値Gsocを更新することにより、走行状況が変化してから発電を開始するまでの応答性を向上させることができる。なお、走行負荷信号としては車速Vに限られることはなく、運転者の加速意思を示すアクセル開度やシフトレンジ信号を用いるようにしても良い。
これまでの説明では、車速Vに応じて設定された算出周期Tpreを経過する度に発電閾値Gsocが更新されるようになっているが、走行状況によっては算出周期Tpreを経過する前であっても発電閾値Gsocが更新されることになる。続いて、算出周期Tpreの経過前に発電閾値Gsocを更新するようにした走行状況について説明する。
図5に示すように、ステップS7においてカウンタCntが算出周期Tpreを下回ると判定された場合には、ステップS13に進み、駆動用バッテリ34の放電量(Ebat−Eint)が、所定の上限値Emaxを上回るか否かが判定される。ステップS13において、放電量(Ebat−Eint)が上限値Emaxを上回ると判定された場合には、駆動用バッテリ34からの放電量が急激に増大する状況であるため、ステップS8に進み積算値変化率DEbatが算出され、続くステップS10で発電閾値Gsocが更新された後に、ステップS11では充電状態SOCと新たな発電閾値Gsocとが比較判定されることになる。つまり、積算値変化率DEbatが急激に増大した場合には、算出周期Tpreが短縮されるとともに新たな発電閾値Gsocが設定されるようになっている。一方、ステップS13において、放電量(Ebat−Eint)が上限値Emaxを下回ると判定された場合には、新たな発電閾値Gsocが設定されることはなく、ステップS11に進み、充電状態SOCと前回の発電閾値Gsocとが比較判定されることになる。
ここで、図7は発電開始までの過程における各種データの変動状態を示す線図であり、シリーズ走行モードにおいて運転者がアクセルペダルを踏み込んだ状況を示している。図7に符号aで示すように、アクセルペダルが踏み込まれ、駆動モータ11に対する供給電力が増大することにより、放電量(Ebat−Eint)が上限値Emaxを上回る場合には、車速Vに基づき設定された算出周期Tpreが経過する前であっても、新たな発電閾値Gsocが設定されるとともに、この発電閾値Gsocと充電状態SOCとが比較判定されることになる。このように、駆動用バッテリ34からの放電量が急激に増大する状況においては、設定された算出周期Tpreの経過を待つことなく、算出周期Tpreを短縮して発電閾値Gsocを更新するようにしたので、走行状況が変化してから発電を開始するまでの応答性を向上させることができる。
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。たとえば、本発明の発電制御装置は、前輪駆動のハイブリッド車両に適用されているが、これに限られることはなく、後輪駆動や4輪駆動のハイブリッド車両に適用しても良い。また、シリーズ・パラレル方式のハイブリッド車両に限られることはなく、シリーズ方式のハイブリッド車両に本発明を適用しても良い。さらに、エンジン動力の伝達経路に変速機構を設けるようにしたハイブリッド車両に本発明を適用しても良い。
また、前述の説明では、充放電電力Wbatを電力積算値Ebatに置き換え、電力積算値Ebatの積算値変化率DEbatから発電閾値Gsocを設定しているが、これに限られることはなく、充放電電力Wbatから直接的に算出周期Tpre内での変化率を算出して、この変化率に基づき発電閾値Gsocを設定しても良い。
さらに、バッテリ制御ユニット30によって、駆動用バッテリ34の充電状態SOCを算出するようにしているが、駆動系制御ユニット32によって充電状態SOCを算出しても良いことは言うまでもない。
ハイブリッド車両の駆動装置を示す概略図である。 走行モード切換特性の一例を示す特性線図である。 ハイブリッド車両の電気系および制御系を示すブロック図である。 発電開始までの過程における各種データの変動状態を示す線図である。 発電開始までの手順を示すフローチャートである。 (A)は周期テーブルの一例を示す特性線図であり、(B)は閾値テーブルの一例を示す特性線図である。 発電開始までの過程における各種データの変動状態を示す線図である。
符号の説明
11 駆動モータ(電動モータ)
12 エンジン
21 ジェネレータ(発電機)
32 駆動系制御ユニット(変化率算出手段,閾値設定手段,制御手段)
34 駆動用バッテリ(蓄電手段)
SOC 充電状態
Wbat 充放電電力
DEbat 積算値変化率(電力量変化率)
Tpre 算出周期(所定周期)
Gsoc 発電閾値
V 車速(走行負荷信号)

Claims (4)

  1. 発電機を駆動するエンジンと駆動輪を駆動する電動モータとを有するハイブリッド車両の発電制御装置であって、
    前記発電機からの電力を蓄え、前記電動モータに電力を供給する蓄電手段と、
    前記蓄電手段の電力量変化率を所定周期毎に算出する変化率算出手段と、
    前記電力量変化率に基づいて発電閾値を設定する閾値設定手段と、
    前記蓄電手段の充電状態が前記発電閾値を下回るときに、前記発電機による発電を開始する発電制御手段とを有することを特徴とするハイブリッド車両の発電制御装置。
  2. 請求項1記載のハイブリッド車両の発電制御装置において、前記所定周期を走行負荷信号に基づいて変化させることを特徴とするハイブリッド車両の発電制御装置。
  3. 請求項2記載のハイブリッド車両の発電制御装置において、前記走行負荷信号は車速であることを特徴とするハイブリッド車両の発電制御装置。
  4. 請求項1〜3のいずれか1項に記載のハイブリッド車両の発電制御装置において、前記所定周期を前記電力量変化率に基づいて変化させることを特徴とするハイブリッド車両の発電制御装置。

JP2004103629A 2004-03-31 2004-03-31 ハイブリッド車両の発電制御装置 Pending JP2005295617A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103629A JP2005295617A (ja) 2004-03-31 2004-03-31 ハイブリッド車両の発電制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103629A JP2005295617A (ja) 2004-03-31 2004-03-31 ハイブリッド車両の発電制御装置

Publications (1)

Publication Number Publication Date
JP2005295617A true JP2005295617A (ja) 2005-10-20

Family

ID=35327955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103629A Pending JP2005295617A (ja) 2004-03-31 2004-03-31 ハイブリッド車両の発電制御装置

Country Status (1)

Country Link
JP (1) JP2005295617A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230671A (ja) * 2010-04-28 2011-11-17 Hitachi Automotive Systems Ltd ハイブリッド車両の発電制御装置
DE112011104613T5 (de) 2010-12-27 2013-12-12 Honda Motor Co., Ltd. Erzeugungssteuerungsvorrichtung und Erzeugungssteuerungsverfahren
DE112011104602T5 (de) 2010-12-27 2013-12-24 Honda Motor Co., Ltd. Erzeugungssteuerungsvorrichtung und Erzeugungssteuerungsverfahren
JP2014187779A (ja) * 2013-03-22 2014-10-02 Mazda Motor Corp 車両の走行制御装置
WO2015029507A1 (ja) 2013-08-29 2015-03-05 本田技研工業株式会社 発電制御装置及び発電制御方法
CN112428833A (zh) * 2020-11-27 2021-03-02 东风越野车有限公司 一种直联式行车发电系统和车辆
US11267364B2 (en) * 2019-04-24 2022-03-08 Hyundai Motor Company SOC control method and apparatus for improving fuel efficiency of hybrid vehicle
CN114379533A (zh) * 2022-01-14 2022-04-22 南京金龙客车制造有限公司 一种面向智能交通的整车能量快速规划方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230671A (ja) * 2010-04-28 2011-11-17 Hitachi Automotive Systems Ltd ハイブリッド車両の発電制御装置
DE112011104613T5 (de) 2010-12-27 2013-12-12 Honda Motor Co., Ltd. Erzeugungssteuerungsvorrichtung und Erzeugungssteuerungsverfahren
DE112011104602T5 (de) 2010-12-27 2013-12-24 Honda Motor Co., Ltd. Erzeugungssteuerungsvorrichtung und Erzeugungssteuerungsverfahren
US8948948B2 (en) 2010-12-27 2015-02-03 Honda Motor Co., Ltd Generation control apparatus and generation control method
US9393876B2 (en) 2010-12-27 2016-07-19 Honda Motor Co., Ltd Generation control apparatus and generation control method
JP2014187779A (ja) * 2013-03-22 2014-10-02 Mazda Motor Corp 車両の走行制御装置
WO2015029507A1 (ja) 2013-08-29 2015-03-05 本田技研工業株式会社 発電制御装置及び発電制御方法
JPWO2015029507A1 (ja) * 2013-08-29 2017-03-02 本田技研工業株式会社 発電制御装置及び発電制御方法
US9849773B2 (en) 2013-08-29 2017-12-26 Honda Motor Co., Ltd. Generation control apparatus
US11267364B2 (en) * 2019-04-24 2022-03-08 Hyundai Motor Company SOC control method and apparatus for improving fuel efficiency of hybrid vehicle
CN112428833A (zh) * 2020-11-27 2021-03-02 东风越野车有限公司 一种直联式行车发电系统和车辆
CN114379533A (zh) * 2022-01-14 2022-04-22 南京金龙客车制造有限公司 一种面向智能交通的整车能量快速规划方法

Similar Documents

Publication Publication Date Title
JP3613216B2 (ja) ハイブリッド車両の制御装置
JP5304350B2 (ja) 車両用制御装置
US7677341B2 (en) Hybrid vehicle and control method of hybrid vehicle
US7565942B2 (en) Vehicle drive control system and method
JP5949731B2 (ja) ハイブリッド車両
JP4217192B2 (ja) ハイブリッド車両の制御装置
WO2007141984A1 (ja) ハイブリッド車両の制御装置およびハイブリッド車両
JP5598555B2 (ja) 車両および車両用制御方法
JP2006312352A (ja) 駆動システムの制御装置
KR20090059175A (ko) 하이브리드 차량의 보조배터리 충전제어방법
JP6414112B2 (ja) 表示装置
WO2012127677A1 (ja) 車両および車両用制御方法
JP4385342B2 (ja) 回生エネルギ量報知装置
EP2927047B1 (en) Travel control device
JP6414111B2 (ja) 表示装置
US9150111B1 (en) Engine-generator control method and series hybrid electric combat maneuvering system using the same
JP2011097666A (ja) 自動車およびその制御方法
WO2012101798A1 (ja) 車両および車両の制御方法
JP2009126303A (ja) 車両制御装置
JP2005295617A (ja) ハイブリッド車両の発電制御装置
KR20190048254A (ko) 하이브리드 전기 자동차의 강제 사륜구동장치 및 그 방법
JP2010149679A (ja) 省エネルギ運転の評価装置及び省エネルギ運転の評価方法
JP2004320946A (ja) 電気自動車およびその制御方法
JP2017103980A (ja) 車両の回生制御装置
JP2004019641A (ja) 車両用ハイブリッドパワートレインの制御装置