JP2005291827A - 超音波顕微鏡を使用した音速測定方法、その音速測定装置、超音波顕微鏡を使用した画像診断方法およびその画像診断装置 - Google Patents

超音波顕微鏡を使用した音速測定方法、その音速測定装置、超音波顕微鏡を使用した画像診断方法およびその画像診断装置 Download PDF

Info

Publication number
JP2005291827A
JP2005291827A JP2004105213A JP2004105213A JP2005291827A JP 2005291827 A JP2005291827 A JP 2005291827A JP 2004105213 A JP2004105213 A JP 2004105213A JP 2004105213 A JP2004105213 A JP 2004105213A JP 2005291827 A JP2005291827 A JP 2005291827A
Authority
JP
Japan
Prior art keywords
measured
ultrasonic
inclination
calculating
reflected wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004105213A
Other languages
English (en)
Other versions
JP4521584B2 (ja
Inventor
Tadahiro Hozumi
直裕 穂積
Kazuto Kobayashi
和人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Electronics Co Ltd
Original Assignee
Honda Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Electronics Co Ltd filed Critical Honda Electronics Co Ltd
Priority to JP2004105213A priority Critical patent/JP4521584B2/ja
Publication of JP2005291827A publication Critical patent/JP2005291827A/ja
Application granted granted Critical
Publication of JP4521584B2 publication Critical patent/JP4521584B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】プレパラートの傾きを信号処理系で補正できるようにする。
【解決手段】生体組織を診断するための音速情報を取得する前に、プレパラートの平面方程式Zに用いられる係数a,b,cを、3点Po〜P2の値Zo〜Z2より算出する。係数a,b,cが判れば、生体組織が載置されたプレパラートの平面内の任意の点におけるz軸方向の値Zp(傾き)を算出できる。この算出値が生体組織の厚みを算出するときの補正値として利用されることで、プレパラートが超音波出射方向に対する傾きを考慮した状態で測定点での生体組織の厚みを正確に算出できる。つまり信号処理で傾きを補正できる。生体組織の厚みを高精度に算出できれば、測定点での音速も正確に算出できる。音速の値を測定点ごとに等音速線として描画すれば、生体組織の音速像が得られる。音速像の精度も大幅に向上し、生体組織をより緻密に診断することが可能になる。
【選択図】 図17

Description

この発明は、超音波顕微鏡を使用した音速測定方法、その音速測定装置、超音波顕微鏡を使用した画像診断方法およびその画像診断装置に関する。詳しくは超音波顕微鏡として特に、広帯域のパルス励起型超音波顕微鏡を使用して生体組織などの被測定物の音速を測定するに当たり、超音波振動子が正対する試料載置板の機械的な傾き量を信号処理によって補正することで、試料載置板の傾き量に対する機械的な事前調整を不要にして、測定時間の大幅短縮を図ると共に、機械的な調整誤差による測定精度への影響を除去したものである。
さらに、生体組織などの性状を音速像として取得するに当たり、試料載置板の機械的な傾き量を電気的に補正することで、音速像の処理時間を短縮すると共に、高精度な音速像が得られるようにしたものである。
超音波顕微鏡を使用して試料の表面状態を観察したり、その音速を測定する手法は以前から知られている(例えば、非特許文献1)。
また、一方では生体組織の観察及び診断に、この超音波顕微鏡などが応用されるようになってきた。例えば、悪性腫瘍を切除するような場合、切除部位の組織を摘出したり、切除部位近傍の生体組織を摘出して組織観察する生体組織診断が行われている。
この生体組織診断に使用される診断装置(観察装置)として従来から光学顕微鏡が使用されている。これは摘出した生体組織を染色した状態でその切除面を光学顕微鏡で観察しているが、完全な染色を行うには1日以上待機しなければならないため、光学顕微鏡を使用した組織観察は術後になる。
また、染色する場合でも術中に観察が可能なように術中迅速診断法も開発されているが、この場合には、通常の染色による場合には組織輪郭の内部に「染色によって塗り分けられる」はずの組織情報が、術中迅速診断法では失われてしまうことが報告されている。
このようなことから、従来の染色方法を用いないでも、術中に摘出した生体組織の診断を行える術中診断法や、術中診断装置の開発が切望されている。この要望に応えるものとして、超音波顕微鏡を使用した診断装置の研究および開発がなされている。
超音波顕微鏡とは、生体組織に超音波を照射し、その反射波の強度や位相などを演算処理して可視像化しながら観察することで、その生体組織を診断する手法である(非特許文献1参照)。
図7はこれを模式的に示した概念図であって、超音波顕微鏡1は送受波部10を有する。この送受波部10にはその先端部側に超音波振動子11が内蔵されている。送受波部10と対峙するようにガラス板などを使用したプレパラート(試料載置板)12が置かれ、このプレパラート12上に被測定物(例えば、生体組織切片)13が載置される。
そして、この被測定物13をターゲットとするように被測定物面に対して、超音波が水などの媒質17を介して照射される。超音波出射面10aは図示するように湾曲しており、超音波はビーム状に絞り込まれた状態で被測定物13の面に到達するようになされている。ビームの絞り込み方などで分解能が決まる。
被測定物13の面上を二次元走査できるように、この例では二次元走査手段16が設けられ、この二次元走査手段16に上述したプレパラート12が載置される。図7の例では、二次元走査手段16としてX−Yステージを使用した場合を示す。X−Yステージ16はXステージ16XとYステージ16Yとで構成される。
したがって、超音波出射側からの平面図は図8のようになり、また図9のようにx、x’方向(水平方向)への往復走査と、y方向への走査を行うことによって被測定物13に対して超音波を二次元的に走査することができる。
超音波顕微鏡1は音波の伝搬という定量化が容易な物理的パラメータを取り扱うのが特長である。具体的には反射波(反射波信号)の強度や位相をパラメータとして取り扱う。反射波を可視像として観察するため、図10のようにプレパラート12の面上に照射された超音波の反射波信号(参照反射波信号)Srと、被測定物13の面上に照射された超音波の反射波信号Soが利用される。
ここに、反射波信号Soは、被測定物13の表面から反射した反射波信号Ssと、その裏面側つまりプレパラート12の面で反射した反射波信号Sdとの干渉波である。
図11には超音波振動子11を従来のようにバースト信号で励起するのではなく、説明の都合上、広帯域のパルス信号で励起したときのそれぞれの波形が示されている。
図11Aは超音波振動子11を励起する励起パルスSiの波形である。ほぼ1サイクルのパルス波形で、その周波数特性は図12のようになる。この例では、中心周波数が80MHz程度で、40〜150MHz程度までの帯域を持つ励起パルスが使用される。図11Bはそのとき得られる参照反射波信号Srの波形である。また図11Cは反射波信号SsとSdとが干渉した干渉反射波信号Soの波形が示されている。
図示する干渉反射波信号Soは、被測定物13として生体組織切片を用いたときの波形で、励起パルスSi自身の波形(Si’)のほかに、反射波信号Suが得られる。超音波は超音波振動子11と被測定物13との間で繰り返し反射されるものであるから、最初に得られる反射波信号を一次反射波信号Su1とすると、数次に至った反射波信号Su2,Su3,・・・が得られる。
ここで、このような構成をなす超音波顕微鏡にあっては、得られた反射波信号Sr,Soの強度(反射波強度)や位相を利用して試料である被測定物の音速が求められる。このときの測定精度を高めるためにはプレパラート12の傾きに影響されない測定方法や測定装置であることが望ましい。また、この超音波顕微鏡1を生体の画像診断として利用する場合には、被測定物13は摘出した生体組織切片となる。
以下に画像診断について説明する。生体組織切片からの反射波の強度や位相に基づいて生体組織を評価することで、当該生体組織内における音響減衰評価が可能になる。
非特許文献2にも示されるように、バースト信号を利用した超音波顕微鏡による診断ではこのように音響減衰による評価が主で、したがって、従来では生体組織の音速評価は全くなされていない。
生体組織内に超音波を照射した場合、超音波は生体組織の性状によって得られる音速が相違することが知られている。
つまり、生体組織と音速とは相関性が高く、生体組織が正常な組織である場合と、病変部のように変質した組織の場合とでは、その物理的性質の違い、換言すれば生体組織の弾性の違いが音速の違いとなって検知できる。
超音波を使用する場合では、音響特性の相違から生体組織の違いとして「塗り分ける」ことが可能であることが、最近の諸種の実験によって確認されている。したがって、超音波による生体組織の性状診断を行うには、生体組織の音響特性をミクロンレベルで計測することが必要になる。
その一方で、術中診断を可能にするためには、
(1)摘出生体組織切片の迅速な可視像生成が可能であること
(2)できれば、超音波顕微鏡を使用した診断装置の手術室内への搬入が可能であること
(3)診断のための装置操作が簡易であること
(4)目視できること
などの諸種の課題をクリアしなければならない。
さらには、商業ベースを考えると、比較的安価に提供できることも必要である。あまり高価であると、装置設置者にとって負担が大きく、その負担の一部は患者への医療費負担に還元されてしまうからである。
従来の超音波顕微鏡を使用した診断装置は、上述したように単一周波数のバースト信号を超音波信号として利用し、反射した超音波信号の強度や位相を解析することで、生体組織の性状を観察している。
プレパラート12から直接反射された参照反射波信号Srと生体組織切片13からの反射波信号Soを用いて生体組織切片13の厚みdや生体組織の音速を算出することができる。その詳細は後述する。
ところで、上述した表面反射波信号Ssと裏面反射波信号Sdとの時間差よりも、超音波振動子11に加えるバースト信号の持続時間を短くすることが難しいため、通常は表面反射波信号Ssと裏面反射波信号Sdとが互いに干渉した干渉反射波信号Soを用いて解析せざるを得ない。
干渉による影響をなくすため、干渉波を分離できるようにバースト信号の周波数を順次変化させて、そのときの反射波の強度と位相スペクトルを解析することで、生体組織の厚さと音速を算出している。
研究室レベルで研究開発が進行しているこの超音波顕微鏡を使用した診断装置では、上述したようにバースト信号を使用した位相検波方式を採用している。上述したように得られた反射波の強度と位相スペクトルを解析して、生体組織の厚みや音速を算出し、得られた音響特性から生体組織の性状を診断するものであるから、可視像化するまでの処理時間が非常に長い。
例えば、2mm×2mmの生体組織切片を100×100ピクセルとして測定した場合でも10分以上費やしてしまう。したがってこれを300×300ピクセル程度まで測定精度を上げるためには90分程度の処理時間がかかることになり、病理判断を行う術中診断装置としては充分とは言えない。
計測時間が長くかかるのは、さらに生体組織切片に対する走査速度が関与している。従来装置では生体組織切片をX−Yステージ16の上に載せ、これをx、y方向に間欠的に動かすことで、例えば100×100ピクセルの生体像を得ている。この間欠走査による生体像の取得が測定時間を遅延させる大きな要因となっている。さらに生体組織の切片から得られた反射波を処理して音速情報を得る信号処理速度の遅さも一因となっている。
このような問題を解決するための超音波顕微鏡を使用した画像診断装置として、近年パルス励起による超音波顕微鏡を使用した画像診断装置の研究が進められている。
上述したようにほぼ1サイクル分の広帯域パルスを用いて超音波振動子を励起する方式である。このパルス励起型超音波顕微鏡を用いると共に、X−Yステージ16のx、y方向における走査速度を速め、さらに信号処理系を工夫することによって、超音波を照射してから最終的な診断画像を可視像として描画するまでの時間を、従来のバースト信号を使用した超音波顕微鏡よりも格段に短縮できることが確認された。
本出願人らによる実験によれば、図13のように、参照面としてのプレパラート12を含めた300×300ピクセルの画像を描画する場合でも2分以下に短縮できることが判った。もちろん、このような画像処理時間の短縮は、同時に超音波を収束させて照射する超音波ビームを使用したこと、超音波の励起周波数(ほぼ中心周波数)を80MHz程度に選定することなどが大きく寄与していることは明らかである。
図14に超音波顕微鏡を使用して作成した生体組織の画像(生体像)の一例を示す。プレパラート12の面が参照画像20となり、生体組織切片が生体像21となって得られる。生体像は減衰像や音速像が考えられる。
なお、パルス励振型の超音波顕微鏡や超音波治療装置としては特許文献1〜特許文献3などが知られている。
特許文献1は、パルス増幅器からのノイズを遮断するためのスイッチ回路を備えた超音波顕微鏡が開示されている。したがってこの発明とは直接関係のない技術である。
特許文献2は、パルス励振型超音波治療装置に関する技術であって、特にパルスの焦点位置がずれないような治療装置に関するもので、これまたこの発明の内容とは直接関係がない。
また、特許文献3は、三次元超音波顕微鏡に関する技術が開示されている。これは球面超音波によって三次元に対象物を観察できるようにしたもので、二次元観察を対象とするこの発明とはその技術が相違する。
「超音波技術とその応用:超音波顕微鏡の最新成果」 (「電子材料」1992年11月号(102〜107頁) 工業調査会発行) 「医用超音波:パルス励振型超音波顕微鏡」 (「超音波TECHNO」 VOL.15 No.6(2003.11〜12)(101〜105頁)日本工業出版社発行) 特開2001−46370号公報 特開平7−303657号公報 特表200−517414号公報
ところで、このようなパルス励起による超音波顕微鏡を使用した高速処理可能な音速測定にあっては、超音波を照射したときの反射波から、被測定物の音速を正確に測定しなければならないし、画像診断装置にあっては、照射点(測定点)での生体組織の音速を正確に算出しなければならない。そのためには、被測定物と超音波振動子(トランスデューサ)11が正対し、図10のように参照基板であるプレパラート12や被測定物13に対してそれぞれ直角に超音波が照射されることが必要である。
被測定物13はプレパラート12の上に載せられており、このプレパラート12はさらにX−Yステージ16に載っているものであるから、超音波振動子11とプレパラート12および被測定物13がそれぞれ正対の関係にあるとは限らず、微少ではあるが、僅かな傾きを以て正対する場合が殆どである。この傾きがゼロでないと、参照反射波信号Srおよび干渉反射波信号Soから厚みや音速を正確に算出することができず、僅かな計測誤差が発生してしまう。
例えば、図15に示すように基準面refに対してプレパラート12の平面12aが傾きθをもっているときには、参照点Poと被測定物13が載置されているところの測定点Ppとの関係では、測定点Ppは、z軸方向(超音波出射方向)に対して参照点PoよりもΔdだけずれている。
このz軸方向での測定点Ppのずれによって、測定された厚みが変わる。また厚みが変わると音速の算出誤差が生じ、この誤差による影響で、より精密で、きめ細かな画像診断の妨げとなるおそれがある。
特に、被測定物として生体組織を観察するときは、この生体組織を極めて薄く切り落として使用する。通常4〜10μm程度の厚みとなるようにスライスする。これに対してプレパラート12の傾きは微調整後であっても1μm程度の調整誤差(傾き誤差)が発生しているのが常である。しかし、この調整誤差は生体組織の厚みからすると看過できない値であるから、極めて高精度に調整して、傾きを限りなくゼロに近づけなければならない。
従来の測定では、このずれΔdを機械的に補正している。例えば図16に示すように生体組織切片13が載置されていないプレパラート12の平面12aの任意の点Poを基準点とし、これとx軸方向での任意の点P1およびy軸方向での任意の点P2をとり、基準点Poからみたプレパラート12のx軸方向の傾き(Δθx)がゼロとなるようにプレパラート12より、具体的にはXステージ16Xのx軸方向の傾きが微調整される。同様にしてy軸方向の傾き(Δθy)がゼロとなるようにYステージ16Yの傾きが微調整される。
このような機械的な微調整を繰り返し行うことで、超音波の出射方向とプレパラート12および生体組織切片13のそれぞれが直交するようになるので、音速の算出精度が高まる。
しかし、このX−Yステージ16の超音波出射方向に対する傾きθは上述したように極めて僅かな値であるから、これを正確に微調整するためには相当の熟練を要するため、被測定物に対する事前調整が面倒で、事前の調整時間に相当時間を費やしてしまう。結果として迅速で高精度な生体組織診断を阻害する要因となっている。しかも、この機械的な微調整は、熟練を要すると共に、生体組織を診断する都度実施しなければならないので、非常に面倒であるなどの問題も惹起している。
このようなことから、超音波顕微鏡を用いて音速を測定する場合にあっては、超音波振動子に対する被測定物の傾き補正を短時間にかつ高精度に行うことが極めて重要になる。そのことが超音波顕微鏡を用いた画像診断装置に対する画像診断の精度に大きく影響を及ぼすことになる。
そこで、この発明はこのような従来の課題を解決したものであって、特に機械的調整によることなく、換言すれば電気的な処理のみで傾き補正が可能な超音波顕微鏡を使用した音速測定方法、音速測定装置、及びこの傾き補正を応用した画像診断方法およびその画像診断装置を提案するものである。
上述の課題を解決するため、請求項1に記載したこの発明に係る超音波顕微鏡を使用した音速測定方法は、超音波振動子をパルス励起することで被測定物の音速を測定するパルス励起型超音波顕微鏡を使用した音速測定方法であって、
上記超音波振動子と対峙する試料載置板の傾き量を検出するステップと、
検出されたこの傾き量と、上記超音波振動子からの反射波信号とに基づいて上記被測定物の厚みを算出するステップとを有し、
上記傾き量によって電気的に補正された上記被測定物の厚みに基づいて上記被測定物の音速を算出するステップとを有することを特徴とする。
請求項6に記載したこの発明に係る超音波顕微鏡を使用した音速測定装置は、音波振動子をパルス励起することで被測定物の音速を測定するパルス励起型超音波顕微鏡を使用した音速測定装置あって、
上記超音波振動子と対峙する試料載置板の傾き量を検出する傾き量検出手段と、
検出されたこの傾き量と、上記超音波振動子からの反射波信号とに基づいて上記被測定物の厚みを算出する厚み算出手段とを有し、
上記傾き量によって電気的に補正された上記被測定物の厚みに基づいて、上記被測定物の音速を測定する手段とで構成されたことを特徴とする。
また、請求項11に記載したこの発明に係る超音波顕微鏡を使用した画像診断方法は、超音波振動子をパルス励起することで被測定物の性状を音速像として取得するパルス励起型超音波顕微鏡を使用した画像診断方法であって、
上記超音波振動子と対峙する試料載置板の傾き量を検出するステップと、
検出されたこの傾き量と、上記超音波振動子からの反射波信号とに基づいて上記被測定物の厚みを算出するステップと、
上記反射波信号に基づいて算出された上記被測定物の厚みを上記傾き量によって電気的に補正するステップと、
上記被測定物の厚み情報から当該被測定物の音速を算出するステップと、
この音速から上記被測定物の音速像を生成するステップとを有する
ことを特徴とする。
さらに、請求項17に記載したこの発明に係る超音波顕微鏡を使用した画像診断装置では、超音波振動子をパルス励起することで被測定物の性状を音速像として取得するパルス励起型超音波顕微鏡を使用した画像診断装置であって、
上記超音波振動子と対峙する試料載置板の傾き量を検出する傾き量検出手段と、
検出されたこの傾き量と、上記超音波振動子からの反射波信号とに基づいて上記被測定物の厚みを算出する厚み算出手段と、
上記反射波信号に基づいて算出された上記被測定物の厚みを上記傾き量によって電気的に補正する補正手段と、
上記被測定物の厚み情報から当該被測定物の音速を算出する音速算出手段と、
この音速から上記被測定物の音速像を生成する音速像生成手段とを有する
ことを特徴とする。
この発明では、被測定物の音速を測定する前に、試料載置板としてのプレパラートの平面方程式Zに用いられる係数a,b,cを算出する。平面方程式を算出するためには少なくともプレパラートの平面上の任意の3点をとる。3点以上多点測定ももちろん可能であるし、その分精度が向上するが、実施例では3点を例示する。
この3点は何れも試料(被測定物)が載置されていない面内の点が選ばれる。3点のうちの1点例えばPoを参照点とする。参照点Poでのz軸方向の値(傾き)Zoはゼロとする。残りの2点でのz軸方向の値Z1,Z2は、実際に試料に超音波を照射して得た反射波信号Srを用いて算出する。具体的には3つの測定点Po,P1,P2から得られた反射波信号Sro,Sr1,Sr2を周波数成分に分解し、その周波数成分比からz軸方向の値Z1,Z2を算出することで、最終的に係数a,b,cを求めることができる。
係数a,b,cが判れば、試料が載置されたプレパラートの平面内の任意の点におけるz軸方向の値Zp、つまり傾き量を算出できる。このz軸方向の値Zpが試料の厚みdを算出するときの補正値として利用されることで、プレパラートが超音波出射方向に対して傾いていたとしても、この傾きを考慮した状態で測定点での試料の音速を正確に算出できる。つまり、電気的に傾きを補正した状態で試料である被測定物の音速を求めることができる。
したがって、被測定物を画像として取得して診断を行う場合にあっても、プレパラートに被測定物を載せた状態で、上述した係数a,b,cを求めてから実際の画像(音速像)を求める作業が行われる。生体組織の厚みを高精度に算出できれば、その測定点での音速も正確に算出できることになり、音速の値を測定点ごとに等音速線として描画すれば、生体組織の音速像が得られる。したがってこの音速像の精度も大幅に向上することになり、生体組織をより緻密に診断することが可能になる。
この発明は、生体組織が載置される載置面の超音波の出射方向に対する傾きを信号処理によって補正できるようにしたものである。
これによれば、載置面の傾きを信号処理によって補正した状態で被測定物の厚みや音速を算出できるから、音速測定や画像診断のための前処理時間を従来よりも大幅に短縮できる。さらに、載置面の傾きを電気的に補正することで被測定物の音速を算出するものであるから、機械的調整のように調整ミスによる誤差がなくなり、その結果、音速測定や画像診断の都度、得られたデータにばらつきが殆どなくなり、算出された音速の精度が格段に向上する。したがって、被測定物の音速測定を高精度に、かつ極めて短時間に行うことができると共に、被測定物をより正確に反映した音速像を取得できる実益を有する。
この発明に係る音速測定では、被測定物の音速を極めて高い精度で測定できるので、この考えをこの発明に係る画像診断に応用することは極めて重要である。画像診断の対象となる生体組織の切片は、その厚みが10μm程度と非常に薄いから、数μm単位の僅かな傾きでも音速像算出結果には甚大な影響を及ぼすからである。
続いて、この発明に係る超音波顕微鏡を使用した音速測定方法、音速測定装置、画像診断方法およびその画像診断装置の好ましい実施例を図面を参照して詳細に説明する。以下に示す実施例としては、被測定物として生体組織の切片を用いてその厚みと音速を測定することで、生体組織の音速像を得るものに適用した例を述べる。
被測定物は生体組織切片である。図17は傾き補正を電気的に行うための原理的説明に供する図である。
機械的調整によってプレパラート12の傾きを調整するのではなく、電気的な処理でこの機械的な傾きを補正するには、まずプレパラート12の平面方程式を解く必要がある。X−Yステージ16の傾きはプレパラート12の傾きに反映されるので、結局は生体組織切片13を載置しているプレパラート12の傾きを補正すればよいことになる。
プレパラート12が傾いた状態での任意の点での平面方程式が算出できれば、その平面方程式によって表されるz軸の値そのものが傾きを含んだ値となっているので、生体組織切片13の厚みdをこの平面方程式を利用して算出するだけで、傾きを考慮した厚み算出となる。つまり、傾きによる影響を排除して厚みが算出されたことになる。
そのため、図17のように生体組織切片13が載置されていないプレパラート12の平面12aにおける任意の3点Po,P1,P2を指定する。そのうちの1点例えばPo(xo,yo)を参照点とする。残りの2点P1,P2の座標を(x1,y1)、(x2,y2)とする。
平面方程式は周知のように、
Z=ax+by+c ・・・・・(1)
(ここに、a,b,cは係数である)
である。したがって3点Po,P1,P2の平面方程式Zo,Z1,Z2は
Zo=axo+byo+c ・・・・・(2)
Z1=ax1+by1+c ・・・・・(3)
Z2=ax2+by2+c ・・・・・(4)
参照点Poの傾きは、基準点であるためゼロ(Zo=0)とする。
(2)〜(4)式から、係数a,b,cは、
Figure 2005291827
となる。
したがって、生体組織切片13が載置されているプレパラート12の任意の測定点Px(xp、yp)での平面方程式は、上述した係数a,b,cから
Zp=axp+byp+c ・・・・・(6)
となる。このz軸方向の値Zp、すなわち参照点Poと測定点Pxとのz軸方向における距離差分Zpを傾き補正値として、その測定点Pxにおける厚みdpが算出される。
上述した測定点P1,P2での平面方程式Z1,Z2は以下のようにして算出できる。まず、各点Po,P1,P2での反射波信号Sro、Sr1,Sr2を得る。
次に、これら反射波信号Sro、Sr1,Sr2の周波数成分を得るためフーリエ変換(例えば高速フーリエ変換FFT)処理を施す。それぞれのフーリエ変換出力Fo、F1,F2から参照点Poを基準にしたフーリエ変換出力の比(F1/Fo)および(F2/Fo)を求める。このフーリエ変換出力の比は規格化スペクトルとなる。
次に、この規格化スペクトルに関連した複素平面(周波数に対する位相の関係)より、φ/2πf(fは超音波信号の中心周波数)を求める。このφ/2πfは、結局参照点Poと測定点P1との間の傾きによって生ずる時間差Δto1となる。同様に参照点Poと測定点P2との傾きによって生ずる時間差Δto2が求まる。
したがって、参照点Poと測定点P1までのz軸方向の値が、すなわち平面方程式Z1であり、これは超音波振動子10とプレパラート12との間に介在された媒質(通常は水)の音速をCoとしたとき、
Z1=Co・Δto1 ・・・・(7)
として求めることができる。Coは既知の値(=1600m/s)である。同様に、測定点P2における平面方程式Z2は、
Z2=Co・Δto2 ・・・・(8)
となり、これらの値Z1,Z2および上述した参照値Zo(=0)から上述した係数a,b,cを算出できる(式(5))。算出されたこれら係数a,b,cは生体組織切片13の厚み測定時に参照されるために、メモリ手段(RAMなど)に保存される。
上述したように、生体組織切片13に超音波信号を照射すると、生体組織切片13の表面と背面からの反射波が干渉した干渉反射波信号Soが得られる。そこで、プレパラート12の表面からの参照反射波信号Srと干渉反射波信号Soとをそれぞれフーリエ変換して、参照反射波信号Srと干渉反射波信号So(具体的には一次反射波信号Su1)と比較することで、規格化した強度スペクトルと同じく規格化した位相スペクトルを得ることができる。このスペクトル例を図18A,図18Bに示す。
そして、信号強度の極小点または極大点の周波数をfm、そのときの位相をφmとすると、生体組織切片13の表面と背面からの反射波は極小点では逆位相、極大点では同位相となっている。すなわち極小点においては生体組織切片13の表面からの反射波は背面からの反射波より(2n−1)πだけ進んでおり、{φm+(2n−1)π}となる(nは自然数)。生体組織切片13の厚さをd、水の音速をCoとすれば、
Figure 2005291827
極大点においてはこの位相差が2nπとなっていることから、
Figure 2005291827
が成立している。一方、2dの距離を生体組織切片13内の音速Cで通過した反射波と、参照音速Coで通過した反射波の位相差がφmであるから、
Figure 2005291827
(9)式と(11)式を連立させて解くと、
d={φm+(2n−1)π}Co/4πfm ・・・(12)
のようにして生体組織切片13の厚さdを求めることができる。また、(10)式と(11)式を連立させて解くと、
Figure 2005291827
のように生体組織の音速Cが求まる。
一方、生体組織切片13の厚みdと音速Cを演算するときの周波数faは、図18Aに示す規格化強度スペクトルの最小値fm(この場合98MHz)を採用する。またその最小値fmでの位相φmは、図18Bの規格化位相スペクトル曲線より92degとなる。
厚みdと音速Cを演算するときには、fm=faとして代入するが、そのときの位相はリファレンス点となるプレパラート12上の参照点Poからの傾きによって生じたz軸方向(超音波出射方向)の距離差分Zpに相当する位相だけずれていることになる。したがって、この距離差分Zpに相当する位相分を補正する必要がある。距離差分Zpは(6)式によって算出できる。
そこで、この距離差分Zpだけ補正した位相φmを以下のように演算する。
Figure 2005291827
このようにして算出した位相φmと、極小値での周波数fm(=fa)を、(12)式と(13)式に代入することで、距離差分Zpを補正した最終的な厚みdと音速Cを得ることができる。
続いて、この発明に係る超音波顕微鏡を使用した音速測定装置をさらに応用した画像診断装置100の一例を図1以下を参照して説明する。
この画像診断装置100は大別して超音波顕微鏡1の本体部1Aと、第1の信号処理部1Bと第2の信号処理部1Cとで構成される。この画像診断装置100は、当然のことながら音速測定装置としても機能する。相違する点は、音速測定装置として使用する場合には、画像診断における最終工程である音速像の算出処理部57が含まれないことである。
ここで、この画像診断装置100は、超音波振動子11と対峙する試料載置板12の傾き量を検出する傾き量検出手段と、検出されたこの傾き量と、超音波振動子11からの反射波信号Soとに基づいて被測定物13の厚みを算出する厚み算出手段と、反射波信号Soに基づいて算出された被測定物13の厚みを傾き量によって電気的に補正する補正手段と、被測定物13の厚み情報から当該被測定物13の音速を算出する音速算出手段と、この音速から被測定物13の音速像を生成する音速像生成手段とで構成されていることになる。
傾き量検出手段、厚み算出手段、傾き量補正手段及び音速像生成手段は、主として本体部1Aと第2の信号処理部1Cとによって構成される。
顕微鏡本体部1Aは、上述したように被測定物であるこの例では生体組織切片13を二次元的に動かすために二次元走査手段として使用されるX−Yステージ16が超音波振動子11と正対する。X−Yステージ16はそれぞれのステージ16X,16Yを駆動するモータ31X,33Yが設けられている。駆動モータ31X,33Yはステッピングモータやリニアモータを使用することができ、好ましくは高速かつ低振動のリニアモータが好適である。
ステッピングモータ、特にリニアモータを使用することで、Xステージ16Xを連続走査(連続送り)することが可能となり、そして、Yステージ16Yを間欠送りとなるように制御することで、X−Yステージ16の高速走査が可能になる。
駆動モータ31X,33Yにはそれぞれこれらに対する駆動信号を生成するためのコントローラ30X,32Yが設けられ、一方のコントローラ30Xには第2の信号処理部1Cで生成された駆動制御信号(パルス信号)が供給される。
この例ではXステージ16Xに関連してエンコーダ34が設けられ、このエンコーダ34によってXステージ16Xの走査位置が検出される。例えば、図13のようにプレパラート12を含めて300×300個の測定点(ピクセル)に分割したときには、1回のx方向における走査が300分割されることになるので、それぞれのピクセルの位置がこのエンコーダ34によって検出され、このエンコーダ出力に同期して駆動制御信号が生成される。
そのため、エンコーダ出力が第2の信号処理部1C内に設けられたCPU55に同期信号として供給されており、またCPU55にはパルス生成部56が関連され、したがってパルス生成部56ではエンコーダ出力に同期した駆動制御信号が生成される。
Xステージ16X用のコントローラ30Xからはさらに駆動制御信号に同期したトリガー信号Stが生成されて、これがパルサー部36に供給される。パルサー部36ではこのトリガー信号Stに同期したタイミングで励起パルスが生成される。
パルサー部36は超音波振動子11に対する励起パルスを生成するためのもので、この励起パルスは送受波分離部37を介して超音波振動子11に供給される。パルサー部36からの励起パルスSiは広帯域幅のパルス信号であって(図12参照)、この例では図11Aに示すように1サイクルの正弦波状をなすパルス信号が出力されるように構成されている。
パルサー部36は後述するように、トリガー信号Stによって間欠的に駆動されるが、この単位間欠周期の中で、さらに集中的に複数個の励起パルスが短時間に出力できるように構成されている。
超音波振動子11は送受波兼用の振動子が使用され、励起パルスによって励起されることで、ビーム状に絞られた超音波信号Siが出射される。同じ超音波振動子11で受波した反射波信号SrやSoのうち、生体組織切片13から得られる反射波信号Soは干渉波形である。これら反射波信号Sr,Soは送受波分離部37および受信部38を介して、信号演算部として機能する第1の信号処理部1Bに供給される。
第1の信号処理部1Bはゲート回路40とゲートパルス生成回路42を有する。ゲートパルス生成回路42には励起パルスに同期したパルス信号が供給される。そのため、パルサー部36の出力段には抵抗分圧部41が設けられ、抵抗分圧部41で分圧された励起パルスSiがゲートパルス生成回路42に供給され、励起パルスSiより所定時間遅延したゲートパルスSgが生成される。
一方、ゲート回路40には参照反射波信号Srと干渉反射波信号Soが供給され、上述したゲートパルスSgで干渉反射波信号Soのうち所望の信号部分のみがゲートされる。
ここで、干渉反射波信号Soは図11Cにも示すように超音波振動子11を励起する励起パルスSiに関連した反射波信号Si’とその反射波信号Suとが合成されたものである。超音波の反射波は超音波振動子11と生体組織切片13との間で反射が繰り返されることになるから、本来ではn次の反射波信号Suが多重信号として得られることになる。
実施例では、そのうち最初に反射する反射波信号(一次反射波信号Su1という。)のみを抽出するため、励起パルスSiから所定時間だけ遅延したゲートパルスSgが使用されるものである。
ゲートされた一次反射波信号Su1はA/D変換回路43に供給されてA/D変換処理されると共に、処理されたA/D変換出力がメモリ手段44に一時的に保存される。後述するように、超音波振動子11は所定周期で間欠的に励起されるが、この単位間欠周期の中で、さらに集中的に複数個の励起パルスが短時間に励起される。詳細は後述するとして、この例では7〜10回程度高速励起される。以下では8回高速励起した場合を示す。
そして、それぞれがメモリ手段44に格納されると共に、8個目の一次反射波信号Su(8)を取得した後、後段の平均化回路45でこれら一次反射波信号Su1(1)、Su2(2)、・・・Su8(8)を用いて平均化される。このような平均化処理を施すのは、1つの一次反射波信号Su1だけでは充分なS/N(つまりC/N)が得られないためであり、S/Nを改善することが主目的である。
また、上述したようにパルサー部38の出力段側に設けられた抵抗分圧部41で分圧された励起パルスSiを用いてゲートパルスSgを生成したのは、8回高速励起して8つの一次反射波信号Su1を得るときの、ゲートパルスSgのジッタを回避するためである。ゲートパルスSgにジッタがなければ、一次反射波信号Su1を平均化したときの同期ジッタ成分がゼロとなるため、安定した平均化出力を得ることができるからである。
なお、このような目的で使用できる高速処理可能なゲート機能付きA/Dボードとしては汎用の高速A/Dボード(例えば販売先が横河製作所である型番741025などのA/Dボード)を使用できる。
平均化処理された一次反射波信号Suは第2の信号処理部1Cに供給される。第2の信号処理部1Cでは、音速像を得るための前処理として、平面方程式のZの算出処理や係数a,b,cを算出するための補正値算出処理が行われる。その他に音速の算出処理および音速像の生成処理が行われる。
そのため、この第2の信号処理部1Cでは、一次反射波信号Su1が供給される高速フーリエ変換処理部51、フーリエ変換出力を演算処理する演算部52、演算処理された規格化スペクトルから時間差Δtを算出するΔt算出部53およびこれらの処理を行うときのワーキング用メモリ手段54などが設けられる。
さらに、時間差Δtのデータやフーリエ変換出力がそれぞれ供給される音速の算出と音速像生成処理部57が設けられる。この音速算出および音速像生成処理部57は画像描画部として機能することになる。時間差Δtは係数a,b,cを算出するときに供給されるデータであり、フーリエ変換出力は通常の音速像を生成するときに供給されるデータである。
そして、CPU55内のROM60(図2参照)にストアされているz値算出のための処理プログラムや音速算出用処理プログラムさらには音速像算出用処理プログラムを実行することによって、上述したz値算出処理などが行われることになる。
このCPU55にはさらにコントローラ30Xに供給するためのパルス生成部56が関連され、CPU55からの同期パルスに同期してパルス生成部56が駆動される。CPU55にはさらに顕微鏡本体部1Aに設けられたエンコーダ34のエンコーダ出力が供給される。このエンコーダ出力に同期してCPU55から同期パルスが出力される。
したがって最終的にはエンコーダ34のエンコーダ出力に同期してトリガー信号Stが生成されるため、生体組織切片13の各ピクセルに同期してパルサー部36が励起されるので、確実にそれぞれのピクセルごとに超音波信号を照射できるようになる。
第2の信号処理部1Cの各部構成の関係は、コンピュータを中心にすると、図2のようにも書き替えることができる。上述したワーキング用のメモリ手段54は図2のRAMが使用されることになる。インタフェース61を介して一次反射波信号(デジタル信号)Su1が取り込まれる。
画像描画部としても機能するこの音速像算出処理部57では、等音速線によって描画されることで、生体組織切片13の組織がミクロン単位で描画される。同一音速同士をつなぎ合わせることで得られる等音速線をモニタ(図示せず)に描画することで生体組織の可視像(音速像)が得られる。この音速像から生体組織を観察し、診断できる。
等音速線で囲まれる領域を同じ色で表示することでカラー表示が可能になり、これによって変質した生体組織を明確に識別できるようになる。表示色にグラデーションをかけることで組織の境界遷移がスムーズになる。もちろん、一次反射波信号Su1の減衰度(強度)を基準にして描画すると生体像として減衰像が得られる。
図2では、第2の信号処理部1C用としてCPU55を説明したが、装置全体としての制御を司るCPUを別に設ける他に、このCPU55を装置全体の制御を司るCPUとして兼用できることはもちろんである。
続いて、図1に示した画像診断装置100の動作を図3以下を参照して説明する。
図3は一次反射波信号Su1のS/Nの説明図である。上述したように生体組織切片13を高速で二次元走査して最終的には計測を開始してから、5分、就中2分以下で音速像を描画できるようにするには、x方向への走査を高速連続走査して1ラインの走査時間を高速化する必要がある。
この例では、1ピクセルに対する計測時間が80μsec程度となるからトリガー信号Stの間隔も80μsecとなる(図3A)。
トリガー信号Stに同期して励起パルスSiが得られる(図3B)。そしてその反射波は図3Cのようになる。励起パルスSiに関連した反射波信号Si’に対して大凡2μsec遅れて一次反射波信号Su1が、さらに2μsec遅れて二次反射波信号Su2が得られる。反射波信号Soの幅は100nsec程度である。
最も単純な信号処理は、図3DのゲートパルスSgを用いて一次反射波信号Su1を抽出する処理であるが、これでは充分なS/Nが得られない。
S/Nを改善するには、複数回超音波振動子11を励起して同じ信号を得、これを平均化すればよい。しかし、そうするためには同じ走査位置で複数回の励起処理を行わなければならないので、次のピクセルに対する計測開始までに複数倍の時間がかかってしまう。これでは、高速画像処理を実現できない。
そこで、超音波振動子11を間欠的に励起する時間間隔を保ったまま、さらにこの間欠励起時間内で集中的に複数個の励起パルスを短時間に励起することで、短時間に複数個の一次反射波信号を取得し、その平均化した信号を反射波信号として用いるようにする。具体例を図4を参照して説明する。
上述したように励起パルスSiに対する反射波信号Si’から一次反射波信号Su1が得られるまでの時間は大凡2μsecであり、この一次反射波信号Su1が最もS/Nがよく、二次以降の反射波信号Su2、・・・は超音波振動子11と生体組織切片13との間の多重反射信号であるためS/Nが悪い。
したがって、図4Aのように高速画像処理を実現するため間欠励起時間は図3の場合と同じにする。次に、使用する反射波信号としては一次反射波信号Su1のみとする。この反射波信号の取捨を行うため、ほぼ2μsec間隔で複数回(2回以上)、好ましくは7〜10回、例えば8回に亘り連続的に超音波振動子11を励起する。すなわち、図4Aに示すようにトリガー信号Stに対して、パルサー部36では図4Bに示すような2μsec間隔の励起パルスが8個連続的に生成される。
この2μsec間隔の励起パルスSiで超音波振動子11が励起される。その結果、図4Cに示すような反射波信号が得られる。
その一方で、励起パルスSiに同期したゲートパルスSg(図4D)が生成される。この連続的なゲートパルスSgで一次反射波信号Su1のみをゲートすれば、8個の一次反射波信号Su1が得られる(図4E)。図4Eは便宜的に並べて図示したものである。実際にはこのような時系列で信号が並ぶものではないことは明らかである。
これら8個の一次反射波信号Su1(1)〜Su8(8)を平均化処理して、最終的な一次反射波信号Suが生成される(図4F)。この処理によって一次反射波信号SuのS/Nが改善されると共に、高速画像処理が可能になる。
続いて、この発明に係る画像診断方法を実現する処理例を図5および図6のフローチャートを参照して説明する。
図5は、平面方程式における係数a,b,cを算出するための処理例を示すフローチャートであって、この算出処理プログラムは音速像を生成するための生成処理プログラムの一部としてプログラムされている場合と、単独にサブルーチンとしてプログラムされている場合がある。
以下はサブルーチンとしてプログラムしたときの処理例であり、この算出プログラムが起動されると、まずXYテーブル16を走査してプレパラート12上における任意の測定ポイント(測定点)Pi(i=0,1,2であって、Po,P1,P2)の座標データ(xi,yi){i=0,1,2であって、(x0,y0)、(x1,y1)、(x2,y2)}を取得する(ステップ71)。
次に、これら測定ポイントPiでの反射波信号Sri(i=0,1,2であって、Sro,Sr1,Sr2)を取得すると共に(ステップ72)、得られた反射波信号Sriをそれぞれ高速フーリエ変換してフーリエ変換出力Fiを求める(ステップ73)。
続いて、これらフーリエ変換出力Fiより参照フーリエ変換出力Froとの比(Fr1/FroおよびFr2/Fro)を演算して規格化スペクトルを求める(ステップ74)。
このようにして求めた規格化スペクトルの周波数成分fと位相成分φから、
φ/2πfでの時間差Δti(i=1,2)を算出する(ステップ75)。
測定ポイントPi(i=1,2)における参照点Poからの時間差Δt1,Δt2と既知の音速Co(この例では水の音速)から、測定ポイントP1,P2での平面方程式Zi(i=1,2であって、Z1,Z2)を求める(ステップ76)。この平面方程式Ziが参照点Poに対する測定ポイントP1及びP2でのz値(傾き量)となる。
このような処理を経て算出した3つの平面方程式Zo,Z1,Z2より係数a,b,cが算出され、算出された係数a,b,cがメモリ手段54に保存される(ステップ77)。したがって、これら生体組織切片13の全ての測定点Pp(xp,yp)における平面方程式Zp、つまり参照点Poを基準にした測定ポイントPpでのz値Zpを算出できることになる。なお、この係数算出処理は音速像生成の前処理として被測定物である生体組織を観察する都度実行される。
図6は傾き補正を含めた音速算出例を示すフローチャートであって、係数a,b,cはすでに保存されているものとする。
音速像生成処理プログラムが起動されると、CPU55からの指示に基づいてX−Yステージ16が駆動されてx方向への走査が開始されると共に、エンコーダ34からのエンコーダ出力に同期して駆動制御信号がコントローラ30Xに供給される。
この駆動制御信号に同期してトリガー信号Stがパルサー部36に供給され、超音波振動子11が励起される。この一連の処理によって得られたx方向における走査線上の測定点(ピクセル)Piの座標(xi,yi)(i=1〜300)を取得すると共に(ステップ81)、測定点Piでの反射波信号Soiを取得する(ステップ82)。反射波信号Soiとしては、ほぼ同一測定点Piからの得られた複数個、この例では8個の一次反射波信号Su1を平均した信号が利用される。
続いて、この反射波信号Soiより測定点Piでの平面方程式、換言すれば測定点Piでのz値(傾き量)Zpが算出されて、これが保存される(ステップ83)。
その後、反射波信号Soiと、参照すべき反射波信号Srとの時間差、反射波信号Soiの強度、位相差などから測定点Piでの生体組織の厚みdiが算出される(ステップ84)。この厚み算出過程でz値Zpが参照される。つまり、このステップ84でプレパラート12の傾きを含めた状態での厚みdiが得られ、傾きによる影響を除去した厚みdiとなる。
次に、算出された厚みdiから測定点Piでの音速Ciが算出され、その値が描画プレーン(フレーム)として機能するメモリ手段54に保存される(ステップ85)。そしてこの音速Ciが等音速線のデータとして画面上に描画されると共に、描画情報としてさらにメモリ手段54の別のエリアに保存される(ステップ86)。
このような音速算出処理が全てのピクセル(例えば300×300ピクセル)に対して実行されるので(ステップ87)、全てのピクセルに対し音速データを取得することで、生体組織の等音速線を描画できる。等音速線をカラー表示して区別することで、カラー音速線が得られる。等音速線の描画によって生体組織の音速像が得られる。また各測定点Piでの反射波信号Soiより反射強度(減衰量)を得ることで、生体組織の減衰像を得ることができる。
上述した実施例では、平面方程式を得るのにプレパラート12に対して任意の3点を指定して行ったが、それ以上の点を用いて平面方程式を求め、これより平面方程式の係数を算出するようにしてもよい。多点(4点以上)であればあるほど、算出した係数値の精度が増す。
さらに、プレパラート12や生体組織13自体の凹凸、反りなどを考慮して平面方程式を算出すれば、より一層正確な生体組織切片13の厚みdおよび音速を算出できるようになる。その他は実施例1と同じである。
上述した実施例では、被測定物として生体組織切片を用いたときの音速測定を電気的に(信号的に)補正して求めると共に、算出された音速から生体組織の音速像を得る場合に適用したが、被測定物の音速測定及び音速像の生成としては生体組織に限らず、種々の被測定物が測定対象となり得ることは明らかである。その他は実施例1と同じである。
この発明は、超音波顕微鏡を使用して試料の音速を測定する音速測定装置、生体組織、その他の被測定物の表面状態を観察したり診断したりする画像診断装置に適用できる。
この発明に係る超音波顕微鏡を使用した画像診断装置の実施例を示す要部の系統図である。 第2の信号処理部の実施例を示す要部の系統図である。 超音波振動子の励起と一次反射波信号との関係を示す波形図である。 集中パルス励起を示す波形図である。 この発明に係る画像診断方法を実現する場合に必要な平面方程式の係数算出例を示すフローチャートである。 プレパラートの傾き補正を信号処理によって処理する場合の処理例を示すフローチャートである。 超音波顕微鏡の概念図である。 被測定物と二次元走査手段との関係を示す図である。 連続走査例を示す図である。 超音波の反射波の説明図である。 そのときの励起パルスと反射波との関係を示す図である。 超音波の帯域を示す図である。 走査領域を示す図である。 超音波によって得られた画像例を示す図である。 プレパラートの傾きと生体組織との関係を示す図である。 従来の傾き補正を機械的に行うときの説明図である。 プレパラートの傾きを信号処理によって補正するときの説明図である。 規格化スペクトルの曲線図である。
符号の説明
1・・・超音波顕微鏡
11・・・超音波振動子
12・・・プレパラート
13・・・被測定物(生体組織切片)
16・・・X−Yステージ
16X・・・Xステージ
16Y・・・Yステージ
17・・・媒質(水)
21・・・音速像
1A・・・顕微鏡本体部
1B・・・第1の信号処理部
1C・・・第2の信号処理部
36・・・パルサー部
40・・・ゲート回路
42・・・ゲートパルス生成回路
45・・・平均化回路
51・・・FFT処理部
55・・・CPU
57・・・音速像生成処理部

Claims (22)

  1. 超音波振動子をパルス励起することで被測定物の音速を測定するパルス励起型超音波顕微鏡を使用した音速測定方法であって、
    上記超音波振動子と対峙する試料載置板の傾き量を検出するステップと、
    検出されたこの傾き量と、上記超音波振動子からの反射波信号とに基づいて上記被測定物の厚みを算出するステップとを有し、
    上記傾き量によって電気的に補正された上記被測定物の厚みに基づいて上記被測定物の音速を算出するステップとを
    有することを特徴とする超音波顕微鏡を使用した音速測定方法。
  2. 上記傾き量を検出するステップは、上記試料載置面の平面方程式の係数を算出するステップと、
    上記被測定物に対する任意の被測定点における傾き量が、上記平面方程式の係数に基づいて算出されるステップとを含む
    ことを特徴とする請求項1記載の超音波顕微鏡を使用した音速測定方法。
  3. 上記平面方程式の係数を算出するステップは、上記試料載置板の少なくとも3つの測定点からの反射波信号を用いて行う
    ことを特徴とする請求項1記載の超音波顕微鏡を使用した音速測定方法。
  4. 上記測定点は、上記試料載置板の平面であって、上記被測定物の非載置面が使用される
    ことを特徴とする請求項3記載の超音波顕微鏡を使用した音速測定方法。
  5. 上記励起パルスは、広帯域のパルス信号である
    ことを特徴とする請求項1記載の超音波顕微鏡を使用した音速測定方法。
  6. 超音波振動子をパルス励起することで被測定物の音速を測定するパルス励起型超音波顕微鏡を使用した音速測定装置あって、
    上記超音波振動子と対峙する試料載置板の傾き量を検出する傾き量検出手段と、
    検出されたこの傾き量と、上記超音波振動子からの反射波信号とに基づいて上記被測定物の厚みを算出する厚み算出手段とを有し、
    上記傾き量によって電気的に補正された上記被測定物の厚みに基づいて、上記被測定物の音速を測定する手段
    とで構成されたことを特徴とする超音波顕微鏡を使用した音速測定装置。
  7. 上記傾き量検出は、上記試料載置板の平面方程式を算出する算出手段を有し、
    上記被測定物に対する任意の被測定点における傾き量が、上記平面方程式の係数に基づいて算出される
    ことを特徴とする請求項6記載の超音波顕微鏡を使用した音速測定装置。
  8. 上記平面方程式の算出手段では、上記試料載置板の少なくとも3つの測定点からの反射波信号を用いて上記平面方程式の係数が算出される
    ことを特徴とする請求項6記載の超音波顕微鏡を使用した音速測定装置。
  9. 上記測定点は、上記試料載置板の平面であって、上記被測定物の非載置面が使用される
    ことを特徴とする請求項8記載の超音波顕微鏡を使用した音速測定装置。
  10. 上記励起パルスは、広帯域のパルス信号である
    ことを特徴とする請求項8記載の超音波顕微鏡を使用した音速測定装置。
  11. 超音波振動子をパルス励起することで被測定物の性状を音速像として取得するパルス励起型超音波顕微鏡を使用した画像診断方法であって、
    上記超音波振動子と対峙する試料載置板の傾き量を検出するステップと、
    検出されたこの傾き量と、上記超音波振動子からの反射波信号とに基づいて上記被測定物の厚みを算出するステップと、
    上記反射波信号に基づいて算出された上記被測定物の厚みを上記傾き量によって電気的に補正するステップと、
    上記被測定物の厚み情報から当該被測定物の音速を算出するステップと、
    この音速から上記被測定物の音速像を生成するステップとを有する
    ことを特徴とする超音波顕微鏡を使用した画像診断方法。
  12. 上記傾き量を検出するステップは、上記試料載置面の平面方程式の係数を算出するステップと、
    上記被測定物に対する任意の被測定点における傾き量が、上記平面方程式の係数に基づいて算出されるステップとを含む
    ことを特徴とする請求項11記載の超音波顕微鏡を使用した画像診断方法。
  13. 上記平面方程式の係数を算出するステップは、上記試料載置板の少なくとも3つの測定点からの反射波信号を用いて行う
    ことを特徴とする請求項11記載の超音波顕微鏡を使用した画像診断方法。
  14. 上記測定点は、上記試料載置板の平面であって、上記被測定物の非載置面が使用される
    ことを特徴とする請求項13記載の超音波顕微鏡を使用した画像診断方法。
  15. 上記励起パルスは、広帯域のパルス信号である
    ことを特徴とする請求項11記載の超音波顕微鏡を使用した画像診断方法。
  16. 上記被測定物は、生体組織切片である
    ことを特徴とする請求項11記載の超音波顕微鏡を使用した画像診断方法。
  17. 超音波振動子をパルス励起することで被測定物の性状を音速像として取得するパルス励起型超音波顕微鏡を使用した画像診断装置であって、
    上記超音波振動子と対峙する試料載置板の傾き量を検出する傾き量検出手段と、
    検出されたこの傾き量と、上記超音波振動子からの反射波信号とに基づいて上記被測定物の厚みを算出する厚み算出手段と、
    上記反射波信号に基づいて算出された上記被測定物の厚みを上記傾き量によって電気的に補正する補正手段と、
    上記被測定物の厚み情報から当該被測定物の音速を算出する音速算出手段と、
    この音速から上記被測定物の音速像を生成する音速像生成手段とを有する
    ことを特徴とする超音波顕微鏡を使用した画像診断装置。
  18. 上記傾き量検出は、上記試料載置板の平面方程式を算出する算出手段を有し、
    上記被測定物に対する任意の被測定点における傾き量が、上記平面方程式の係数に基づいて算出される
    ことを特徴とする請求項17記載の超音波顕微鏡を使用した画像診断装置。
  19. 上記平面方程式の算出手段では、上記試料載置板の少なくとも3つの測定点からの反射波信号を用いて上記平面方程式の係数が算出される
    ことを特徴とする請求項17記載の超音波顕微鏡を使用した画像診断装置。
  20. 上記測定点は、上記試料載置板の平面であって、上記被測定物の非載置面が使用される
    ことを特徴とする請求項19記載の超音波顕微鏡を使用した画像診断装置。
  21. 上記励起パルスは、広帯域のパルス信号である
    ことを特徴とする請求項17記載の超音波顕微鏡を使用した画像診断装置。
  22. 上記被測定物は、生体組織切片である
    ことを特徴とする請求項17記載の超音波顕微鏡を使用した画像診断装置。
JP2004105213A 2004-03-31 2004-03-31 超音波顕微鏡を使用した音速測定方法、その音速測定装置、超音波顕微鏡を使用した音速像取得方法およびその画像診断装置 Expired - Fee Related JP4521584B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105213A JP4521584B2 (ja) 2004-03-31 2004-03-31 超音波顕微鏡を使用した音速測定方法、その音速測定装置、超音波顕微鏡を使用した音速像取得方法およびその画像診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105213A JP4521584B2 (ja) 2004-03-31 2004-03-31 超音波顕微鏡を使用した音速測定方法、その音速測定装置、超音波顕微鏡を使用した音速像取得方法およびその画像診断装置

Publications (2)

Publication Number Publication Date
JP2005291827A true JP2005291827A (ja) 2005-10-20
JP4521584B2 JP4521584B2 (ja) 2010-08-11

Family

ID=35324928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105213A Expired - Fee Related JP4521584B2 (ja) 2004-03-31 2004-03-31 超音波顕微鏡を使用した音速測定方法、その音速測定装置、超音波顕微鏡を使用した音速像取得方法およびその画像診断装置

Country Status (1)

Country Link
JP (1) JP4521584B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171052A (ja) * 2005-12-22 2007-07-05 Honda Electronic Co Ltd 音速測定方法、音速測定装置、及び超音波画像検査装置
JP2007171051A (ja) * 2005-12-22 2007-07-05 Honda Electronic Co Ltd 音速測定方法、音速測定装置、及び超音波画像検査装置
JP2008014844A (ja) * 2006-07-06 2008-01-24 Honda Electronic Co Ltd 超音波画像検査方法、及び超音波画像検査装置
JP2011185777A (ja) * 2010-03-09 2011-09-22 Mitsubishi Electric Corp 地物検出システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262909A (ja) * 1990-03-13 1991-11-22 Olympus Optical Co Ltd 超音波計測装置
JP2624749B2 (ja) * 1988-03-04 1997-06-25 日立建機株式会社 超音波探傷装置
JP2002014083A (ja) * 2000-04-28 2002-01-18 Nkk Corp 鋳片の凝固状態判定方法及び装置並びに連続鋳造鋳片の製造方法
JP2003050117A (ja) * 2001-08-08 2003-02-21 Olympus Optical Co Ltd 厚さ測定方法及び厚さ測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624749B2 (ja) * 1988-03-04 1997-06-25 日立建機株式会社 超音波探傷装置
JPH03262909A (ja) * 1990-03-13 1991-11-22 Olympus Optical Co Ltd 超音波計測装置
JP2002014083A (ja) * 2000-04-28 2002-01-18 Nkk Corp 鋳片の凝固状態判定方法及び装置並びに連続鋳造鋳片の製造方法
JP2003050117A (ja) * 2001-08-08 2003-02-21 Olympus Optical Co Ltd 厚さ測定方法及び厚さ測定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171052A (ja) * 2005-12-22 2007-07-05 Honda Electronic Co Ltd 音速測定方法、音速測定装置、及び超音波画像検査装置
JP2007171051A (ja) * 2005-12-22 2007-07-05 Honda Electronic Co Ltd 音速測定方法、音速測定装置、及び超音波画像検査装置
JP2008014844A (ja) * 2006-07-06 2008-01-24 Honda Electronic Co Ltd 超音波画像検査方法、及び超音波画像検査装置
JP2011185777A (ja) * 2010-03-09 2011-09-22 Mitsubishi Electric Corp 地物検出システム

Also Published As

Publication number Publication date
JP4521584B2 (ja) 2010-08-11

Similar Documents

Publication Publication Date Title
US6336899B1 (en) Ultrasonic diagnosis apparatus
US6464642B1 (en) Ultrasonic diagnosis apparatus
CN107647880B (zh) 医用图像处理装置以及医用图像处理方法
EP2881041A1 (en) Apparatus and method for ultrasonic diagnosis
EP2945560B1 (en) Method of adjusting focal zone in ultrasound-guided medical procedure and system employing the method
JP5917037B2 (ja) 被検体情報取得装置および被検体情報取得方法
CN103025248B (zh) 图像信息获取装置和图像信息获取方法
KR20140020486A (ko) 초음파를 이용하여 조직의 탄성을 분석하는 방법 및 장치
JP5496031B2 (ja) 音響波信号処理装置ならびにその制御方法および制御プログラム
CN110151270B (zh) 振动穿刺装置、频率调整方法及超声成像系统
JP2015065975A (ja) 被検体情報取得装置およびその制御方法
JP6108499B2 (ja) 超音波を使用して組織内の鏡面対象及びターゲット解剖構造をイメージングする方法及び超音波イメージング装置
JP2005319199A (ja) 超音波診断装置
JP7052530B2 (ja) 超音波診断装置、および、超音波信号処理方法
JP4521584B2 (ja) 超音波顕微鏡を使用した音速測定方法、その音速測定装置、超音波顕微鏡を使用した音速像取得方法およびその画像診断装置
JP4654335B2 (ja) 超音波画像検査方法、超音波画像検査装置
JP4830100B2 (ja) 被検査物の測定方法、及び被検査物の測定装置
JP4521585B2 (ja) 超音波顕微鏡を使用した音速測定方法、その音速測定装置、音速像取得方法および画像診断装置
JP4996141B2 (ja) 超音波診断装置
JP5317395B2 (ja) 超音波診断装置および超音波診断画像表示方法
JP4613269B2 (ja) 音速測定方法、及び音速測定装置
JP2008046097A (ja) 音速測定方法、及び音速測定装置
CN210447159U (zh) 振动穿刺装置及超声成像系统
JP4830099B2 (ja) 音速測定方法、及び音速測定装置
JP4787914B2 (ja) 音速測定方法、音速測定装置、及び超音波画像検査装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4521584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees