JP2005291227A - 粉体系水素貯蔵材料前駆体への水素充填方法 - Google Patents
粉体系水素貯蔵材料前駆体への水素充填方法 Download PDFInfo
- Publication number
- JP2005291227A JP2005291227A JP2004102773A JP2004102773A JP2005291227A JP 2005291227 A JP2005291227 A JP 2005291227A JP 2004102773 A JP2004102773 A JP 2004102773A JP 2004102773 A JP2004102773 A JP 2004102773A JP 2005291227 A JP2005291227 A JP 2005291227A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- hydrogen storage
- storage material
- powder
- material precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 297
- 239000001257 hydrogen Substances 0.000 title claims abstract description 215
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 215
- 239000011232 storage material Substances 0.000 title claims abstract description 106
- 239000000843 powder Substances 0.000 title claims abstract description 88
- 239000002243 precursor Substances 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000007789 gas Substances 0.000 claims abstract description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 23
- 239000000446 fuel Substances 0.000 claims description 17
- -1 lithium imide Chemical class 0.000 claims description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 13
- 229910052783 alkali metal Inorganic materials 0.000 claims description 9
- 150000001340 alkali metals Chemical class 0.000 claims description 9
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 8
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 150000003949 imides Chemical class 0.000 claims description 5
- 150000001408 amides Chemical class 0.000 claims description 4
- 229910000103 lithium hydride Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical compound [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
【課題】 水素貯蔵容器内に充填されている粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体を凝集・過密化させることなく、該粉体系水素貯蔵材料前駆体に効率良く水素を充填する方法を提供する。
【解決手段】 複数の独立した部屋と水素ガス導入ライン3とを有する水素貯蔵容器1を用い、水素ガス導入口6から該水素ガス導入ラインに充填する水素ガスを導入し、該水素ガス導入ライン3の上方に設けられた前記各部屋に充填されている粉体系水素貯蔵材料前駆体10を該水素ガスにより部屋内に飛散させ、気中で粉体系水素貯蔵材料前駆体10と水素ガスとを接触させることにより、該水素ガスを該粉体系水素貯蔵材料前駆体10に充填する。
【選択図】 図1
Description
本発明は、燃料電池自動車や家庭用燃料電池等の燃料として用いられる水素ガスを、水素貯蔵容器内に充填されている粉体系水素貯蔵材料前駆体へ充填する粉体系水素貯蔵材料前駆体への水素充填方法に関する。
最近、クリーンな次世代エネルギー源の1つとして水素エネルギーによる燃料電池の開発が盛んに行われている。この燃料電池の技術を支える重要な技術として、燃料電池の燃料となる水素を貯蔵する技術がある。水素の貯蔵形態としては、高圧ボンベによる水素ガスの圧縮貯蔵や液体水素化させる冷却貯蔵、水素貯蔵材料による貯蔵が知られているが、中でも水素貯蔵材料による貯蔵は、安全性、貯蔵スペース、作業性、輸送の点等で有利である。
水素貯蔵材料としては粉体系水素貯蔵材料が一般的であり、水素吸蔵合金粉末、ナノグラファイトによるグラファイト系水素貯蔵材料、リチウム系水素貯蔵材料等について研究開発が進められているが、水素放出温度が低いことからリチウム系水素貯蔵材料が着目されている。リチウム以外のアルカリ金属又はアルカリ土類金属からなるアミドおよびそのイミドを含むリチウム系水素貯蔵材料による水素の吸放出は、下式(1)による反応により可逆的に進められる。
M(NH2)X+XLiH=X/2MNH+X/2Li2NH+XH2↑
・・・・・・・・・ (1)
(MはLi,Na,K,Mg,Caなどのアルカリ金属またはアルカリ土類金属、Xは1,2の整数)
すなわち、アルカリ金属又はアルカリ土類金属からなるアミドと水素化リチウムとの反応により水素ガスを放出し、リチウムイミド、あるいは、リチウムを除くアルカリ金属又はアルカリ土類金属からなるイミドとリチウムイミドとの混合物(粉体系水素貯蔵材料前駆体)に水素ガスを接触させて反応させることにより、アルカリ金属又はアルカリ土類金属からなるアミドや水素化リチウムの形で水素を貯蔵させるものである。
他の粉体系水素貯蔵材料においても、このような可逆反応により水素の吸放出がなされることは同様である。
M(NH2)X+XLiH=X/2MNH+X/2Li2NH+XH2↑
・・・・・・・・・ (1)
(MはLi,Na,K,Mg,Caなどのアルカリ金属またはアルカリ土類金属、Xは1,2の整数)
すなわち、アルカリ金属又はアルカリ土類金属からなるアミドと水素化リチウムとの反応により水素ガスを放出し、リチウムイミド、あるいは、リチウムを除くアルカリ金属又はアルカリ土類金属からなるイミドとリチウムイミドとの混合物(粉体系水素貯蔵材料前駆体)に水素ガスを接触させて反応させることにより、アルカリ金属又はアルカリ土類金属からなるアミドや水素化リチウムの形で水素を貯蔵させるものである。
他の粉体系水素貯蔵材料においても、このような可逆反応により水素の吸放出がなされることは同様である。
上記のような粉体系水素貯蔵材料と粉体系水素貯蔵材料前駆体による水素の吸放出は、水素貯蔵容器に充填された粉体系水素貯蔵材料前駆体に水素ガスを圧入接触させて水素化合物として水素を保持させたり、逆に水素化合物として水素を保持している物質を加熱して水素ガスを発生させたりして行われる。
しかし、このように、水素ガスを圧入接触させたり可逆反応により水素の吸放出を繰り返すことにより粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体が凝集し水素貯蔵容器の下部に密に詰まり、水素の吸放出能力が低減するという問題があった。
しかし、このように、水素ガスを圧入接触させたり可逆反応により水素の吸放出を繰り返すことにより粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体が凝集し水素貯蔵容器の下部に密に詰まり、水素の吸放出能力が低減するという問題があった。
このため、水素貯蔵容器内におけるこの粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体の凝集・過密化防止策が図られている。例えば、特許文献1には、水素吸蔵用合金粉末が充填されている水素貯蔵容器において、下部に水素ガス導入管を、上部に水素ガス放出管を設けることにより水素吸蔵用合金粉末の過密化を防ぐようにした水素貯蔵精製容器が開示されている。
しかし、このような水素ガス導入管による方法では、容器の形状によっては十分に過密化を防げなかったり粉体系水素貯蔵材料前駆体と水素ガスとの接触が不均一になることがある。また、飛散した粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体が水素ガス放出管の水素ガス放出口に目詰まりすることにより水素放出効率が低下するといった問題もある。
特開昭62−108702号公報
しかし、このような水素ガス導入管による方法では、容器の形状によっては十分に過密化を防げなかったり粉体系水素貯蔵材料前駆体と水素ガスとの接触が不均一になることがある。また、飛散した粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体が水素ガス放出管の水素ガス放出口に目詰まりすることにより水素放出効率が低下するといった問題もある。
本発明は上記事情に鑑みてなされたもので、水素貯蔵容器内に充填されている粉体系水素貯蔵材料と粉体系水素貯蔵材料前駆体の水素吸放出能力を低下させることなく、該粉体系水素貯蔵材料前駆体に水素を効率よく充填させる粉体系水素貯蔵材料前駆体への水素充填方法を提供することを目的とする。
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、水素貯蔵容器に充填されている粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体の凝集・過密化を防ぐには、水素貯蔵容器に仕切り壁を設けて複数の部屋からなるものにするとともに該各部屋に充填されている該粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体を適宜ブローイングして飛散させれば良いこと、同時に、気中で粉体系水素貯蔵材料前駆体と水素ガスとを接触させ該粉体系水素貯蔵材料前駆体に水素を充填させれば効率的に水素充填が行えることを見出し本発明を完成させるに至った。
すなわち、本発明の粉体系水素貯蔵材料前駆体への水素充填方法は、複数の独立した部屋と水素ガス導入ラインとを有する水素貯蔵容器において、水素ガス導入口より該水素ガス導入ラインに外部から水素ガスを導入し、導入した水素ガスを該水素ガス導入ラインの上方の各部屋床面に設けた噴出し口より噴出させることにより各部屋に充填されている粉体系水素貯蔵材料前駆体を各部屋内に飛散させ、それぞれ気中で粉体系水素貯蔵材料前駆体と水素ガスとを接触させることにより、該水素ガスを該粉体系水素貯蔵材料前駆体に充填することを特徴とする方法である。
本発明に用いる水素貯蔵容器は、軽量かつ高耐久性の高温高圧容器である。具体的には、最高温度200゜C、最高圧力50気圧までの使用に耐えうる容器である。したがって、該水素貯蔵容器は、ステンレス、アルミニウム合金などからなる。容器の寸法や容積は特に限定されず、目的に応じて設計される。例えば、燃料電池自動車へ適用した場合は、約100Lとすることが好ましい。
また、該水素貯蔵容器は仕切り壁により並列して複数の部屋が設けられ、各部屋には粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体が充填されている。該粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体の充填量は特に限定されないが、各部屋の床面からの水素ガス噴出によるブローイングにより、各部屋の気中にそれぞれ十分に飛散できる量とする必要がある。
また、該水素貯蔵容器は仕切り壁により並列して複数の部屋が設けられ、各部屋には粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体が充填されている。該粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体の充填量は特に限定されないが、各部屋の床面からの水素ガス噴出によるブローイングにより、各部屋の気中にそれぞれ十分に飛散できる量とする必要がある。
部屋数は特に限定されないが、2〜4部屋が好ましい。各部屋も上記温度圧力条件に耐えうるように設計されている。
各部屋の床面には水素ガスを噴出させる微細な噴出し口が多数設けられている。噴出し口の孔径は、数μm〜数十μmが好ましい。噴出し口の数や配置は特に限定されず、充填されている粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体が均一に飛散されるようになっておれば良い。
各部屋の天井面には、水素ガスを放出する水素ガス放出口と粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体の出し入れを行う為の粉体充填口が設けられている。そして、水素ガス放出口には詰まり防止用のフィルターが設置されていることが好ましい。
各部屋の床面には水素ガスを噴出させる微細な噴出し口が多数設けられている。噴出し口の孔径は、数μm〜数十μmが好ましい。噴出し口の数や配置は特に限定されず、充填されている粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体が均一に飛散されるようになっておれば良い。
各部屋の天井面には、水素ガスを放出する水素ガス放出口と粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体の出し入れを行う為の粉体充填口が設けられている。そして、水素ガス放出口には詰まり防止用のフィルターが設置されていることが好ましい。
本発明の水素貯蔵容器の内部(通常は上記各部屋床面の下方)には水素ガス導入ラインとしての空間が設けられている。この空間に水素ガス導入口より新たな水素ガスが導入され、ここから上記各部屋に上記床面の噴出し口を通じて水素ガスが配される。該空間の容積は特に限定されないが、水素貯蔵容器の1/5程度の容積とすることが好ましい。
本発明の粉体系水素貯蔵材料前駆体への水素充填は、前記水素貯蔵容器の各部屋において、床面の噴出し口から噴出した水素ガスによりブローイングされて充填されている粉体系水素貯蔵材料前駆体が各部屋の気中に飛散し、気中で水素ガスと粉体系水素貯蔵材料前駆体とが接触することによって行われる。
接触時の各部屋の温度圧力条件は用いる粉体系水素貯蔵材料前駆体の種類によって異なるが、例えば、リチウムイミドを用いる場合、温度は室温〜180゜C、圧力は1〜10気圧が好ましい。また、この温度圧力条件下でリチウムイミドに水素ガスを充填させるには10分間程度リチウムイミドの各粒子が各々気中に滞留している必要がある。したがって、導入水素ガスによるブローリングは10分間以上行うことが好ましい。該ブローリングは、粉体系水素貯蔵材料前駆体がある程度の時間気中に滞留していれば良いので、連続的でも間欠的でも良い。リチウムイミドにリチウム以外のアルカリ金属又はアルカリ土類金属からなるイミドが混ざっている場合も同様である。
接触時の各部屋の温度圧力条件は用いる粉体系水素貯蔵材料前駆体の種類によって異なるが、例えば、リチウムイミドを用いる場合、温度は室温〜180゜C、圧力は1〜10気圧が好ましい。また、この温度圧力条件下でリチウムイミドに水素ガスを充填させるには10分間程度リチウムイミドの各粒子が各々気中に滞留している必要がある。したがって、導入水素ガスによるブローリングは10分間以上行うことが好ましい。該ブローリングは、粉体系水素貯蔵材料前駆体がある程度の時間気中に滞留していれば良いので、連続的でも間欠的でも良い。リチウムイミドにリチウム以外のアルカリ金属又はアルカリ土類金属からなるイミドが混ざっている場合も同様である。
また、粉体系水素貯蔵材料前駆体を効果的に飛散させるために、水素貯蔵容器に軽く振動(例えば、超音波振動)を与えたり該水素貯蔵容器を回転させるなど、補助的手段を付加しても良い。
用いる粉体系水素貯蔵材料前駆体としては、上記リチウムイミド、あるいは、リチウムを除くアルカリ金属又はアルカリ土類金属からなるイミドとリチウムイミドとの混合物などのリチウム系水素貯蔵材料、水素貯蔵合金などの金属系水素貯蔵材料、ナノグラファイトなどのグラファイト系水素貯蔵材料が挙げられる。中でもリチウム系水素貯蔵材料は水素の吸放出が比較的容易であり、水素貯蔵能力も比較的高いので好ましい。
本発明の粉体系水素貯蔵材料前駆体への水素充填方法は、燃料電池自動車に搭載される粉体系水素貯蔵材料から水素が放出して残った粉体系水素貯蔵材料前駆体に水素ガスを充填する際に好適に用いることができる。
用いる粉体系水素貯蔵材料前駆体としては、上記リチウムイミド、あるいは、リチウムを除くアルカリ金属又はアルカリ土類金属からなるイミドとリチウムイミドとの混合物などのリチウム系水素貯蔵材料、水素貯蔵合金などの金属系水素貯蔵材料、ナノグラファイトなどのグラファイト系水素貯蔵材料が挙げられる。中でもリチウム系水素貯蔵材料は水素の吸放出が比較的容易であり、水素貯蔵能力も比較的高いので好ましい。
本発明の粉体系水素貯蔵材料前駆体への水素充填方法は、燃料電池自動車に搭載される粉体系水素貯蔵材料から水素が放出して残った粉体系水素貯蔵材料前駆体に水素ガスを充填する際に好適に用いることができる。
本発明によれば、水素貯蔵容器内での粉体系水素貯蔵材料及び/又は粉体系水素貯蔵材料前駆体の凝集・過密化が低減されるので、該粉体系水素貯蔵材料前駆体に水素を効率よく充填できる。そして、それによって粉体系水素貯蔵材料からの水素の放出能力が高まるので水素エネルギーの供給効率を高められる。
以下に、添付図面を基に、本発明に係る粉体系水素貯蔵材料前駆体への水素充填方法の一実施形態を説明する。
図1に、本発明に係る水素貯蔵容器の一実施形態を示す。この水素貯蔵容器1は略円筒形で、横にした状態(底面を側面にした状態)において水素充填を行う。
下部には水素ガス導入ライン3としての連通した空間部がある。そして、端部(側面)には外部から水素ガスを導入する為の水素ガス導入口6が設けられている。この連通した空間部の容積は、水素貯蔵容器全容積の1/5程度である。
下部には水素ガス導入ライン3としての連通した空間部がある。そして、端部(側面)には外部から水素ガスを導入する為の水素ガス導入口6が設けられている。この連通した空間部の容積は、水素貯蔵容器全容積の1/5程度である。
上記水素ガス導入ライン3(連通した空間部)の上方には、仕切り壁2により独立した3つの部屋が設けられ、各々に粉体系水素貯蔵材料前駆体10が充填されている。水素貯蔵容器1は温度200゜C、圧力50気圧の条件下にも耐えうる高温高圧容器であり、水素貯蔵容器1の外壁と仕切り壁2はステンレス製である。
粉体系水素貯蔵材料前駆体10の好適なものとしてリチウムイミドがある。このリチウムイミドはリチウムアミドと水素化リチウムとの反応により生成されるものである。粉体系水素貯蔵材料前駆体10の充填量は各部屋の気中に十分飛散できる量で部屋の容積の1/4〜1/2程度であり、残りの容積は空間部11である。
粉体系水素貯蔵材料前駆体10の好適なものとしてリチウムイミドがある。このリチウムイミドはリチウムアミドと水素化リチウムとの反応により生成されるものである。粉体系水素貯蔵材料前駆体10の充填量は各部屋の気中に十分飛散できる量で部屋の容積の1/4〜1/2程度であり、残りの容積は空間部11である。
各部屋の床面4は、アルミニウム、ステンレスなどの多孔質金属焼結体からなる。この多孔質金属焼結体には、水素ガスを噴出させるための三次元的に構成された0.5〜2μm径の連通孔がある。該多孔質金属焼結体としては、例えば、マイクロフィルター社の焼結金属フィルターエレメントが挙げられる。床面4の板厚は5〜30mmが好ましい。5mmより薄いと圧力に耐え得る十分な強度が得られず、30mmより厚いと水素ガスの噴出に対しての圧損が大きくなってしまう。
また、各部屋の天井面には水素ガスを放出するための水素ガス放出口7が設けられている。この水素ガス放出口7には、接続される水素ガス輸送管が飛散した粉体系水素貯蔵材料前駆体10で詰まらないようにするために、詰まり防止フィルター8が備えられている。この詰まり防止用フィルター8は上記床面4と同様なアルミニウム、ステンレスなどの多孔質金属焼結体からなり、水素ガスと粉体系水素貯蔵材料前駆体10の飛散微粉末とをほぼ分離する。また、同天井面には、粉体系水素貯蔵材料前駆体10を出し入れする為の粉体充填口9が設けられている。この粉体充填口9の大きさや形状は特に限定されない。
また、各部屋の天井面には水素ガスを放出するための水素ガス放出口7が設けられている。この水素ガス放出口7には、接続される水素ガス輸送管が飛散した粉体系水素貯蔵材料前駆体10で詰まらないようにするために、詰まり防止フィルター8が備えられている。この詰まり防止用フィルター8は上記床面4と同様なアルミニウム、ステンレスなどの多孔質金属焼結体からなり、水素ガスと粉体系水素貯蔵材料前駆体10の飛散微粉末とをほぼ分離する。また、同天井面には、粉体系水素貯蔵材料前駆体10を出し入れする為の粉体充填口9が設けられている。この粉体充填口9の大きさや形状は特に限定されない。
次に、上記水素貯蔵容器1の各部屋に充填されている粉体系水素貯蔵材料前駆体10への水素充填方法について説明する。
充填する水素ガスは水素ガス導入口6から水素ガス導入ライン3に導入される。この水素ガスは4 気圧程度の高圧ガスとなっている。この水素ガスを床面4に設けられている噴出し口5から噴出させることにより各部屋に充填してある粉体系水素貯蔵材料前駆体10を各部屋の気中に飛散させる。同時に、各部屋が温度120〜150゜C、圧力2〜3気圧となるように調整される。加熱方法は特に限定されないが、例えば、加熱するための熱媒が流れるジャケットで水素貯蔵容器を覆うことで加熱することができる。水素充填時に使用する熱媒の温度は100〜200゜Cがよい。加圧は、導入する水素ガスの水素ガス導入ライン3での圧力調節により行われる。なお、上記飛散を強化するために、適宜、水素貯蔵容器1の壁面や仕切り壁2や床面4に軽く振動を与えたり、水素貯蔵容器1自体を振ったり回転させるなどの補助的手段を付加してもよい。これらによって、粉体系水素貯蔵材料前駆体10の各粒子は、合計約30分間、気中に滞留していることが好ましい。その間に、水素ガスは粉体系水素貯蔵材料前駆体10に充填される。
充填する水素ガスは水素ガス導入口6から水素ガス導入ライン3に導入される。この水素ガスは4 気圧程度の高圧ガスとなっている。この水素ガスを床面4に設けられている噴出し口5から噴出させることにより各部屋に充填してある粉体系水素貯蔵材料前駆体10を各部屋の気中に飛散させる。同時に、各部屋が温度120〜150゜C、圧力2〜3気圧となるように調整される。加熱方法は特に限定されないが、例えば、加熱するための熱媒が流れるジャケットで水素貯蔵容器を覆うことで加熱することができる。水素充填時に使用する熱媒の温度は100〜200゜Cがよい。加圧は、導入する水素ガスの水素ガス導入ライン3での圧力調節により行われる。なお、上記飛散を強化するために、適宜、水素貯蔵容器1の壁面や仕切り壁2や床面4に軽く振動を与えたり、水素貯蔵容器1自体を振ったり回転させるなどの補助的手段を付加してもよい。これらによって、粉体系水素貯蔵材料前駆体10の各粒子は、合計約30分間、気中に滞留していることが好ましい。その間に、水素ガスは粉体系水素貯蔵材料前駆体10に充填される。
本発明のこの方法で水素充填を行った場合、例えば、粉体系水素貯蔵材料前駆体がリチウムイミドである時のそれへの水素充填量は4〜5mass%となり、従来の方法(部屋が1つの水素貯蔵容器において、粉体系水素貯蔵材料前駆体を沈積させたまま水素ガスと接触させ、水素を充填する方法)で行った場合の2〜3mass%に比べて高くなる。
水素が充填された粉体系水素貯蔵材料前駆体10(すなわち、粉体系水素貯蔵材料)は、粉体充填口9より取り出して別の水素貯蔵容器に入れ用いても良いし、本発明のこの水素貯蔵容器ごと例えば燃料電池自動車に搭載し水素ガス放出口7から水素ガスを放出させるなどして用いても良い。
水素が充填された粉体系水素貯蔵材料前駆体10(すなわち、粉体系水素貯蔵材料)は、粉体充填口9より取り出して別の水素貯蔵容器に入れ用いても良いし、本発明のこの水素貯蔵容器ごと例えば燃料電池自動車に搭載し水素ガス放出口7から水素ガスを放出させるなどして用いても良い。
前者の場合、例えば、上記水素貯蔵容器1の大型のものが水素供給ステーションに配備される。そして、ここで本発明の粉体系水素貯蔵材料前駆体への水素充填方法により水素が充填された粉体系水素貯蔵材料が製造される。この粉体系水素貯蔵材料は、燃料電池自動車に搭載可能な小型の水素貯蔵容器に入れられ、燃料電池自動車に搭載される。該水素貯蔵容器は該自動車において着脱可能なカートリッジ式になっており、水素供給ステーションで水素貯蔵容器ごと交換される。
後者の場合、上記水素貯蔵容器1の小型のものが燃料電池自動車に搭載される。燃料電池自動車は、水素ガスが貯蔵されている水素供給ステーションで水素の供給を受ける。水素供給ステーションはガソリンスタンドと同様になっており、水素供給ステーションからの水素ガス供給ホースを上記水素ガス導入口6に接続することにより、本発明の粉体系水素貯蔵材料前駆体への水素充填方法で、水素貯蔵容器1の各部屋にある粉体系水素貯蔵材料前駆体に水素が充填される。この場合、燃料電池自動車に搭載されている水素貯蔵容器(および粉体系水素貯蔵材料)は自動車に搭載されたままで、水素供給ステーションで水素の供給だけを受ける。
後者の場合、上記水素貯蔵容器1の小型のものが燃料電池自動車に搭載される。燃料電池自動車は、水素ガスが貯蔵されている水素供給ステーションで水素の供給を受ける。水素供給ステーションはガソリンスタンドと同様になっており、水素供給ステーションからの水素ガス供給ホースを上記水素ガス導入口6に接続することにより、本発明の粉体系水素貯蔵材料前駆体への水素充填方法で、水素貯蔵容器1の各部屋にある粉体系水素貯蔵材料前駆体に水素が充填される。この場合、燃料電池自動車に搭載されている水素貯蔵容器(および粉体系水素貯蔵材料)は自動車に搭載されたままで、水素供給ステーションで水素の供給だけを受ける。
以上、本発明に係る水素貯蔵容器の構造とそれを用いた粉体系水素貯蔵材料前駆体への水素充填方法について説明したが、本発明は、何ら既述の実施の形態に限定されず、特許請求の範囲および明細書に記載した本発明の技術的思想の範囲内において、種々の変形及び変更が可能である。
本発明の粉体系水素貯蔵材料前駆体への水素充填方法は、燃料電池自動車などに水素ガス吸放出媒体として搭載される粉体系水素貯蔵材料から水素ガスが放出して残った粉体系水素貯蔵材料前駆体に水素ガスを充填する際に用いることができる。
1;水素貯蔵容器
2;仕切り壁
3;水素ガス導入ライン
4;床板
5;噴出し口
6;水素ガス導入口
7;水素ガス放出口
8;詰まり防止フィルター
9;粉体充填口
10;粉体系水素貯蔵材料前駆体
11;空間
2;仕切り壁
3;水素ガス導入ライン
4;床板
5;噴出し口
6;水素ガス導入口
7;水素ガス放出口
8;詰まり防止フィルター
9;粉体充填口
10;粉体系水素貯蔵材料前駆体
11;空間
Claims (4)
- 粉体系水素貯蔵材料前駆体への水素充填方法であって、複数の独立した部屋と水素ガス導入ラインとを有する水素貯蔵容器において、水素ガス導入口より該水素ガス導入ラインに外部から水素ガスを導入し、導入した水素ガスを該水素ガス導入ラインの上方の各部屋床面に設けた噴出し口より噴出させることにより各部屋に充填されている粉体系水素貯蔵材料前駆体を各部屋内に飛散させ、それぞれ気中で粉体系水素貯蔵材料前駆体と水素ガスとを接触させることにより、該水素ガスを該粉体系水素貯蔵材料前駆体に充填することを特徴とする粉体系水素貯蔵材料前駆体への水素充填方法。
- 上記水素貯蔵容器の各部屋には水素ガス放出口が設けられており、該水素ガス放出口には、詰まり防止用のフィルターが設置されていることを特徴とする請求項1に記載の粉体系水素貯蔵材料前駆体への水素充填方法。
- 上記において、水素ガスと接触させる粉体系水素貯蔵材料前駆体が、アルカリ金属又はアルカリ土類金属からなるアミドと水素化リチウムとの反応により生成するリチウムイミド、あるいは、リチウム以外のアルカリ金属又はアルカリ土類金属からなるイミドとリチウムイミドとの混合物であることを特徴とする請求項1に記載の粉体系水素貯蔵材料前駆体への水素充填方法。
- 請求項1から請求項3に記載の水素充填方法により水素充填された粉体系水素貯蔵材料が入っている水素貯蔵容器を搭載した燃料電池自動車。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004102773A JP2005291227A (ja) | 2004-03-31 | 2004-03-31 | 粉体系水素貯蔵材料前駆体への水素充填方法 |
| PCT/JP2004/009538 WO2005014165A1 (ja) | 2003-08-11 | 2004-07-05 | 水素貯蔵材料およびその製造方法ならびにその製造装置 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004102773A JP2005291227A (ja) | 2004-03-31 | 2004-03-31 | 粉体系水素貯蔵材料前駆体への水素充填方法 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2005291227A true JP2005291227A (ja) | 2005-10-20 |
Family
ID=35324406
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004102773A Pending JP2005291227A (ja) | 2003-08-11 | 2004-03-31 | 粉体系水素貯蔵材料前駆体への水素充填方法 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2005291227A (ja) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007207682A (ja) * | 2006-02-03 | 2007-08-16 | Nissan Motor Co Ltd | 水素発生システム、燃料電池システム及び燃料電池車両 |
| CN119617294A (zh) * | 2025-01-15 | 2025-03-14 | 重庆新型储能材料与装备研究院 | 一种固态储氢罐 |
| CN119642080A (zh) * | 2025-01-14 | 2025-03-18 | 重庆新型储能材料与装备研究院 | 一种储氢容器 |
-
2004
- 2004-03-31 JP JP2004102773A patent/JP2005291227A/ja active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007207682A (ja) * | 2006-02-03 | 2007-08-16 | Nissan Motor Co Ltd | 水素発生システム、燃料電池システム及び燃料電池車両 |
| CN119642080A (zh) * | 2025-01-14 | 2025-03-18 | 重庆新型储能材料与装备研究院 | 一种储氢容器 |
| CN119617294A (zh) * | 2025-01-15 | 2025-03-14 | 重庆新型储能材料与装备研究院 | 一种固态储氢罐 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7947119B2 (en) | Hydrogen reservoir and process for filling a hydrogen reservoir | |
| US8628609B2 (en) | Hydrogen storage tank | |
| US4446111A (en) | Vessel for use in hydrogen/hydride technology | |
| CN101245895B (zh) | 一种固体储氢装置 | |
| US7721601B2 (en) | Hydrogen storage tank and method of using | |
| JP5760000B2 (ja) | 金属水素化物を有する水素貯蔵タンク | |
| KR20120104182A (ko) | 수소 및/또는 열을 저장하고 방출하는 탱크 | |
| JP2008151282A (ja) | ガス貯蔵用容器 | |
| CN105324335B (zh) | 氨储存结构及相关的系统 | |
| US20070243431A1 (en) | Hydrogen-generating solid fuel cartridge | |
| GB2574673A (en) | Hydrogen storage device and method of producing a hydrogen storage device | |
| JP2017538905A (ja) | 複数の積層された階層を備える金属水素化物水素貯蔵タンク | |
| CN116336371A (zh) | 一种金属氢化物储氢罐 | |
| JP2016117620A (ja) | 水素製造装置及び水素発生容器 | |
| JP4574783B2 (ja) | 水素吸蔵合金タンク | |
| JP2022529248A (ja) | 電源 | |
| JP2005291227A (ja) | 粉体系水素貯蔵材料前駆体への水素充填方法 | |
| JP2006029396A (ja) | 水素貯蔵容器および水素貯蔵装置 | |
| JP3706737B2 (ja) | 炭化水素ガスの貯蔵装置 | |
| ES2907065T3 (es) | Reactor para recibir un material de almacenamiento y método de fabricación del mismo | |
| JP2007218317A (ja) | 低温液体・気体水素貯蔵タンク | |
| CN201193778Y (zh) | 一种固体储氢装置 | |
| JPS5983901A (ja) | 水素吸蔵粉末、水素吸蔵素子および水素吸蔵装置 | |
| JP2010001188A (ja) | 水素製造装置及び燃料電池 | |
| RU87775U1 (ru) | Система хранения и выдачи водорода с металлогидридными аккумуляторами водорода |