JP2005290221A - Hydrocarbon oil for producing hydrogen of system for producing hydrogen and fuel for burner - Google Patents

Hydrocarbon oil for producing hydrogen of system for producing hydrogen and fuel for burner Download PDF

Info

Publication number
JP2005290221A
JP2005290221A JP2004108144A JP2004108144A JP2005290221A JP 2005290221 A JP2005290221 A JP 2005290221A JP 2004108144 A JP2004108144 A JP 2004108144A JP 2004108144 A JP2004108144 A JP 2004108144A JP 2005290221 A JP2005290221 A JP 2005290221A
Authority
JP
Japan
Prior art keywords
hydrocarbon oil
hydrogen
burner
hydrocarbon
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004108144A
Other languages
Japanese (ja)
Other versions
JP4227929B2 (en
Inventor
Tadatoshi Sone
忠豪 曽根
Masanori Hirose
正典 廣瀬
Osamu Sadakane
修 定兼
Iwao Anzai
巌 安斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2004108144A priority Critical patent/JP4227929B2/en
Priority to KR1020067022418A priority patent/KR20070015553A/en
Priority to PCT/JP2005/006697 priority patent/WO2005095552A1/en
Priority to CNA2005800161638A priority patent/CN1957074A/en
Publication of JP2005290221A publication Critical patent/JP2005290221A/en
Application granted granted Critical
Publication of JP4227929B2 publication Critical patent/JP4227929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrocarbon oil reformable as a raw material for producing the hydrogen in a system for producing the hydrogen using a burner as a heat source at a relatively low temperature and reducing the burner load and reducing the NOx emission as a fuel for the burner of the system for producing the hydrogen. <P>SOLUTION: The hydrocarbon oil has ≥40°C flash point, ≥145 to ≤195°C initial boiling point, ≤220°C 95 vol% distillation temperature, ≥+25 Saybolt color, ≤1 corrosiveness to a copper strip, ≤0.5 mass ppm of sulfur content, ≤25 mass% of the component ratio of 13C hydrocarbons and ≥1.95 molar ratio of hydrogen element to carbon element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱供給源として主にバーナーを用いる水素製造システムにおける水素製造用炭化水素油および水素製造システムに用いられるバーナー用燃料に関する。   The present invention relates to a hydrocarbon oil for hydrogen production in a hydrogen production system mainly using a burner as a heat supply source and a fuel for a burner used in the hydrogen production system.

近年、将来の地球環境に対する危機感の高まりから、地球にやさしいエネルギー供給システムの開発が求められ、エネルギー効率が高いこと及び排出ガスがクリーンである点から、燃料電池、水素エンジン等の水素を燃料とするシステムが脚光を浴びている。なかでも、燃料電池への水素の供給方法としては、圧縮あるいは液化といった形で直接水素を供給する方法の他、メタノール等の含酸素燃料、及びナフサ、灯油等の炭化水素の改質による供給方法が知られている(例えば、非特許文献1参照。)。このうち、直接水素を供給する方法は、そのまま燃料として利用できる利点はあるが、常温で気体のため貯蔵性および車両等に用いた場合の搭載性に問題がある。また、メタノールはシステム内での改質による水素の製造が比較的容易であるが、重量当たりのエネルギー効率が低く、有毒かつ腐食性を持つために、取り扱い性、貯蔵性にも難点がある。一方、ナフサ、灯油等の炭化水素の改質による水素の製造は、既存の燃料供給インフラが使用できること、トータルでのエネルギー効率が高いこと等により注目を集めている。こうした炭化水素は水素発生のために改質工程を伴う水素製造システムに通される。水素製造システムでは、炭化水素の改質工程にて化学反応を伴うために、その反応熱源が必要である。燃料電池用水素製造システムの場合、特に炭化水素よりの水素製造システム用の熱源としては、電気の使用を極力低くし、炭化水素化合物を燃料としたバーナーによる熱を主に利用することが、水素製造システムの効率を考えた場合好ましい。しかしながら、一般的な炭化水素化合物をバーナー熱源に使用した場合、バーナーより排出されるNOx量は、かならずしも十分に低くなく、地球環境への負荷低減を目指した燃料電池システム用としては好ましくない場合があった。また、水素製造用炭化水素とバーナー用燃料のためのタンクを別々に水素製造システム内に持つ必要があり、システムスペース上の課題もあった。
池松正樹,「エンジンテクノロジー」,山海堂社,2001年1月,第3巻,第1号,p.35
In recent years, due to the growing sense of crisis about the global environment in the future, development of an energy supply system that is friendly to the earth has been demanded. From the viewpoint of high energy efficiency and clean exhaust gas, fuel such as fuel cells and hydrogen engines can be used as fuel. The system is in the limelight. In particular, as a method for supplying hydrogen to the fuel cell, in addition to a method of directly supplying hydrogen in the form of compression or liquefaction, a supply method by reforming of an oxygen-containing fuel such as methanol and hydrocarbons such as naphtha and kerosene. Is known (see, for example, Non-Patent Document 1). Among these, the method of supplying hydrogen directly has an advantage that it can be used as a fuel as it is, but it has a problem in storability and mountability when used in a vehicle or the like because it is a gas at room temperature. Methanol is relatively easy to produce hydrogen by reforming in the system, but has low energy efficiency per weight and is toxic and corrosive, so that it is difficult to handle and store. On the other hand, the production of hydrogen by reforming hydrocarbons such as naphtha and kerosene has attracted attention due to the fact that the existing fuel supply infrastructure can be used and the total energy efficiency is high. Such hydrocarbons are passed through a hydrogen production system with a reforming process for hydrogen generation. In the hydrogen production system, a chemical reaction is involved in the hydrocarbon reforming process, and thus a reaction heat source is required. In the case of a fuel cell hydrogen production system, especially as a heat source for a hydrogen production system from hydrocarbons, the use of electricity is made as low as possible, and the heat from a burner that uses hydrocarbon compounds as fuel is mainly used. It is preferable when considering the efficiency of the manufacturing system. However, when a general hydrocarbon compound is used as a burner heat source, the amount of NOx discharged from the burner is not necessarily low enough, which may not be preferable for a fuel cell system aimed at reducing the load on the global environment. there were. In addition, it is necessary to have separate tanks for hydrocarbons for hydrogen production and fuel for burners in the hydrogen production system, resulting in problems in system space.
Masaki Ikematsu, “Engine Technology”, Sankaidosha, January 2001, Vol. 3, No. 1, p. 35

本発明は、このような状況に鑑み、水素製造システムにおける水素製造用原料として比較的低温で改質でき、かつ主な熱源がバーナーである水素製造システムのバーナー用燃料として、バーナー負荷の低減およびNOx排出量を低減することができる炭化水素油を提供することを目的とする。   In view of such a situation, the present invention can reduce reformer load as a fuel for a hydrogen production system that can be reformed at a relatively low temperature as a raw material for hydrogen production in a hydrogen production system and the main heat source is a burner, and It aims at providing the hydrocarbon oil which can reduce NOx discharge | emission amount.

本発明者らは鋭意研究した結果、特定性状を有する炭化水素油が前記課題を解決できることを見いだし、本発明を完成したものである。
すなわち、本発明は、引火点が40℃以上、初留点が145℃以上195℃以下、95容量%留出温度が220℃以下、セーボルト色+25以上、銅板腐食1以下、硫黄含有量が0.5質量ppm以下、炭素数13の炭化水素の成分割合が25質量%以下、水素元素と炭素元素のモル比が1.95以上であることを特徴とする熱供給源として主にバーナーを用いる水素製造システムの水素製造用炭化水素油に関する。
また、本発明の水素製造用炭化水素油は、さらに水素製造システムの熱供給源であるバーナー用燃料として使用することが望ましい。
As a result of intensive studies, the present inventors have found that a hydrocarbon oil having specific properties can solve the above problems, and have completed the present invention.
That is, the present invention has a flash point of 40 ° C. or higher, an initial boiling point of 145 ° C. or higher and 195 ° C. or lower, a 95% vol. A burner is mainly used as a heat source, characterized in that the component ratio of hydrocarbon of 13 mass ppm or less, carbon number 13 is 25 mass% or less, and the molar ratio of hydrogen element to carbon element is 1.95 or more. The present invention relates to a hydrocarbon oil for hydrogen production in a hydrogen production system.
Moreover, it is desirable to use the hydrocarbon oil for hydrogen production of the present invention as a fuel for a burner that is a heat supply source of a hydrogen production system.

以下、本発明について詳述する。
本発明の水素製造システムに用いられる水素製造用炭化水素油(以下、本発明の炭化水素油ともいう。)の引火点は、引火性、取扱い易さの観点から、40℃以上であることが必要である。
一方、バーナー負荷の低減およびNOx排出量低減の観点から、70℃以下であることが好ましく、50℃以下がさらに好ましく、45℃以下が最も好ましい。
なお、ここでいう引火点は、JIS K2265「原油及び石油製品−引火点試験方法」によって測定される値である。
Hereinafter, the present invention will be described in detail.
The flash point of the hydrocarbon oil for hydrogen production used in the hydrogen production system of the present invention (hereinafter also referred to as the hydrocarbon oil of the present invention) is 40 ° C. or higher from the viewpoint of flammability and ease of handling. is necessary.
On the other hand, from the viewpoint of reducing the burner load and reducing NOx emission, it is preferably 70 ° C. or lower, more preferably 50 ° C. or lower, and most preferably 45 ° C. or lower.
The flash point here is a value measured by JIS K2265 “Crude oil and petroleum products—flash point test method”.

本発明の炭化水素油の初留点(IBP)の下限は、引火性、蒸発ガス(THC)の増加、取り扱い性の観点から、145℃以上であることが必要である。一方、上限はバーナー負荷の低減およびNOx排出量低減の観点から、195℃以下であることが必要であり、180℃以下が好ましく、165℃以下がより好ましく、155℃以下がさらに好ましい。   The lower limit of the initial boiling point (IBP) of the hydrocarbon oil of the present invention is required to be 145 ° C. or higher from the viewpoints of flammability, increased evaporation gas (THC), and handling properties. On the other hand, the upper limit is required to be 195 ° C. or less from the viewpoint of reducing the burner load and NOx emission, 180 ° C. or less is preferable, 165 ° C. or less is more preferable, and 155 ° C. or less is more preferable.

本発明の炭化水素油の95容量%留出温度(T95)の上限は、バーナー負荷の低減およびNOx排出量を低減の観点から、220℃以下であることが必要であり、210℃以下が好ましく、200℃以下がさらに好ましく、190℃以下が最も好ましい。一方、重量あたりの水素発生量、二酸化炭素発生量あたりの水素発生量の観点から、170℃以上であることが好ましく、180℃以上がさらに好ましい。   The upper limit of the 95 vol% distillation temperature (T95) of the hydrocarbon oil of the present invention is required to be 220 ° C. or less, preferably 210 ° C. or less, from the viewpoint of reducing the burner load and reducing NOx emission. 200 ° C. or lower is more preferable, and 190 ° C. or lower is most preferable. On the other hand, from the viewpoint of the hydrogen generation amount per weight and the hydrogen generation amount per carbon dioxide generation amount, it is preferably 170 ° C. or higher, and more preferably 180 ° C. or higher.

また、本発明の炭化水素油のIBP、T95以外の蒸留性状は特に制限はないが、次のとおりであることが好ましい。
10容量%留出温度(T10)は145℃以上210℃以下が好ましい。引火性、蒸発ガス(THC)発生の観点から、150℃以上がより好ましい。一方、水素製造システムの始動時間悪化の理由から、190℃以下がより好ましく、160℃以下がさらに好ましい。
50容量%留出温度(T50)は150℃以上210℃以下が好ましい。重量あたりの水素発生量、二酸化炭素発生量あたりの水素発生量の観点から、160℃以上がより好ましく、165℃以上がさらに好ましい。一方、バーナー負荷の低減およびNOx排出量低減の観点から、190℃以下がより好ましく、180℃以下がさらに好ましく、170℃以下が最も好ましい。
The distillation properties of the hydrocarbon oil of the present invention other than IBP and T95 are not particularly limited, but are preferably as follows.
The 10 vol% distillation temperature (T10) is preferably 145 ° C or higher and 210 ° C or lower. From the viewpoint of flammability and generation of evaporated gas (THC), 150 ° C. or higher is more preferable. On the other hand, 190 degreeC or less is more preferable and 160 degreeC or less is further more preferable from the reason for the start time deterioration of a hydrogen production system.
The 50 vol% distillation temperature (T50) is preferably 150 ° C or higher and 210 ° C or lower. From the viewpoint of the hydrogen generation amount per weight and the hydrogen generation amount per carbon dioxide generation amount, 160 ° C. or higher is more preferable, and 165 ° C. or higher is more preferable. On the other hand, from the viewpoint of reducing the burner load and reducing NOx emissions, 190 ° C. or lower is more preferable, 180 ° C. or lower is more preferable, and 170 ° C. or lower is most preferable.

90容量%留出温度(T90)は160℃以上215℃以下が好ましい。重量あたりの水素発生量、二酸化炭素発生量あたりの水素発生量の観点から、170℃以上がより好ましく、175℃以上がさらに好ましい。一方、バーナー負荷の低減およびNOx排出量低減の観点から、210℃以下がより好ましく、200℃以下がさらに好ましく、190℃以下が最も好ましい。
終点(EP)は170℃以上230℃以下が好ましい。重量あたりの水素発生量、二酸化炭素発生量あたりの水素発生量の観点から、180℃以上がより好ましく、190℃以上がさらに好ましい。一方、排出ガス中のTHC増加の観点から、220℃以下がより好ましく、200℃以下がさらに好ましい。
なお、ここでいうIBP、T10、T50、T90、T95、及びEPは、JIS K2254「石油製品−蒸留試験方法−常圧法蒸留試験方法」によって測定される値である。
The 90 vol% distillation temperature (T90) is preferably 160 ° C or higher and 215 ° C or lower. From the viewpoint of the hydrogen generation amount per weight and the hydrogen generation amount per carbon dioxide generation amount, 170 ° C. or higher is more preferable, and 175 ° C. or higher is more preferable. On the other hand, from the viewpoint of reducing the burner load and reducing NOx emission, 210 ° C. or lower is more preferable, 200 ° C. or lower is further preferable, and 190 ° C. or lower is most preferable.
The end point (EP) is preferably 170 ° C. or higher and 230 ° C. or lower. From the viewpoint of the hydrogen generation amount per weight and the hydrogen generation amount per carbon dioxide generation amount, 180 ° C. or higher is more preferable, and 190 ° C. or higher is more preferable. On the other hand, from the viewpoint of increasing THC in the exhaust gas, 220 ° C. or lower is more preferable, and 200 ° C. or lower is more preferable.
Here, IBP, T10, T50, T90, T95, and EP are values measured according to JIS K2254 “Petroleum products—Distillation test method—Atmospheric pressure distillation test method”.

本発明の炭化水素油のセーボルト色は、システムの耐久性の観点から+25以上であることが必要であり、+29以上が好ましく、+30以上がより好ましい。
ここでいうセーボルト色とは、JIS K2580「石油製品−色試験方法」中のセーボルト色試験方法で測定される値である。
The Saybolt color of the hydrocarbon oil of the present invention needs to be +25 or more from the viewpoint of system durability, preferably +29 or more, and more preferably +30 or more.
The Saebold color here is a value measured by the Saebold color test method in JIS K2580 “Petroleum products-color test method”.

本発明の炭化水素油の銅板腐食は、改質部の耐久性確保の観点から、1以下であることが必要であり、1aが好ましい。
ここでいう銅板腐食とは、JIS K2513「石油製品−銅板腐食試験方法」で測定される値である。
The copper plate corrosion of the hydrocarbon oil of the present invention needs to be 1 or less from the viewpoint of ensuring the durability of the reformed portion, and 1a is preferable.
The copper plate corrosion here is a value measured by JIS K2513 "Petroleum products-Copper plate corrosion test method".

本発明の炭化水素油の硫黄含有量は、脱硫率、脱硫触媒の耐久性、改質触媒の耐久性、改質反応性の低下、二酸化炭素発生量当り水素発生量の観点から0.5質量ppm以下であることが必要であり、0.3質量ppm以下が好ましく、0.2質量ppm以下がより好ましい。
ここで、硫黄含有量とは、ASTM D4045−96「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry」により測定される値である。
The sulfur content of the hydrocarbon oil of the present invention is 0.5 mass from the viewpoint of the desulfurization rate, the durability of the desulfurization catalyst, the durability of the reforming catalyst, the reduction in reforming reactivity, and the amount of hydrogen generation per carbon dioxide generation amount. It is necessary to be not more than ppm, preferably not more than 0.3 mass ppm, more preferably not more than 0.2 mass ppm.
Here, the sulfur content is a value measured by ASTM D 4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry”.

本発明の炭化水素油の炭素数13の炭化水素の成分割合は、脱硫触媒の耐久性、改質触媒の耐久性、改質反応性の低下の観点から、25質量%以下であることが必要であり、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が最も好ましい。
ここで、炭素数13の炭化水素の成分割合とは、GC−FIDを用いて測定される値(質量%)である。すなわち、カラムにはメチルシリコンのキャピラリーカラム(ULTRAALLOY−1、0.25mmφ、30m)、キャリアガスにはヘリウムを、検出器には水素イオン検出器(FID)を用い、キャリアガス流量1.0mL/min、分割比1:79、試料注入温度280℃、カラム昇温条件50℃(5分)→(5℃/min)→280℃(10分)、検出器温度300℃の条件で測定されたクロマトより、炭素数13の炭化水素の面積積分を行った値である。
The component ratio of the hydrocarbon having 13 carbon atoms in the hydrocarbon oil of the present invention needs to be 25% by mass or less from the viewpoints of durability of the desulfurization catalyst, durability of the reforming catalyst, and reduction of reforming reactivity. 10 mass% or less is preferable, 5 mass% or less is more preferable, and 1 mass% or less is the most preferable.
Here, the component ratio of the hydrocarbon having 13 carbon atoms is a value (mass%) measured using GC-FID. That is, a capillary column of methyl silicon (ULTRAALLOY-1, 0.25 mmφ, 30 m) is used for the column, helium is used for the carrier gas, a hydrogen ion detector (FID) is used for the detector, and a carrier gas flow rate of 1.0 mL / min. , Chromatograph measured under the following conditions: split ratio 1:79, sample injection temperature 280 ° C., column temperature rise condition 50 ° C. (5 minutes) → (5 ° C./min)→280° C. (10 minutes), detector temperature 300 ° C. Thus, the value is obtained by performing area integration of hydrocarbons having 13 carbon atoms.

本発明の炭化水素油の水素元素と炭素元素のモル比(H/C)は、一酸化炭素の発生量の少なさ、水素発生効率の高さの観点から、1.95以上であることが必要であり、2.0以上が好ましい。
なお、ここでいう炭化水素油の炭素と水素のモル比(C/H)は、ASTMD5291−01(Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry )に準拠した方法により測定される値である。
The molar ratio (H / C) between the hydrogen element and the carbon element of the hydrocarbon oil of the present invention is 1.95 or more from the viewpoint of the low generation amount of carbon monoxide and the high hydrogen generation efficiency. Necessary and 2.0 or more is preferable.
In addition, the molar ratio (C / H) of carbon to hydrogen of the hydrocarbon oil here is a value measured by a method based on ASTM D 5291-01 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry). .

本発明の炭化水素油の芳香族含有量については何ら制限はないが、重量当りの水素発生量多いこと、二酸化炭素発生量当りの水素発生量が多いこと、排出ガス中のTHCが少ないこと、システム起動時間が短いこと、改質触媒の劣化が小さく初期性能が長時間持続できることなどの点から、20容量%以下が好ましく、8容量%以下がさらに好ましい。   There is no limitation on the aromatic content of the hydrocarbon oil of the present invention, but there is a large amount of hydrogen generation per weight, a large amount of hydrogen generation per carbon dioxide generation amount, a low THC in the exhaust gas, 20% by volume or less is preferable, and 8% by volume or less is more preferable from the viewpoint that the system start-up time is short, the deterioration of the reforming catalyst is small, and the initial performance can be sustained for a long time.

本発明の炭化水素油のオレフィン含有量については何ら制限はないが、重量当りの水素発生量が多いこと、二酸化炭素発生量当りの水素発生量が多いこと、排出ガス中のTHCが少ないこと、システム起動時間が短いこと、改質触媒の劣化が小さく初期性能が長時間持続できること、貯蔵安定性が良いことなどの点から、5容量%以下が好ましく、1容量%以下がより好ましく、0.5容量%以下がさらに好ましく、0.1容量%以下が最も好ましい。   There is no limitation on the olefin content of the hydrocarbon oil of the present invention, but there is a large amount of hydrogen generation per weight, a large amount of hydrogen generation per carbon dioxide generation amount, a low THC in the exhaust gas, 5% by volume or less is preferable, 1% by volume or less is more preferable, from the viewpoint that the system start-up time is short, the deterioration of the reforming catalyst is small and the initial performance can be sustained for a long time, and the storage stability is good. 5% by volume or less is more preferable, and 0.1% by volume or less is most preferable.

本発明の炭化水素油の飽和炭化水素含有量(飽和分とナフテン分の総量)については何ら制限はないが、重量当りの水素発生量が多いこと、二酸化炭素発生量当りの水素発生量が多いこと、排出ガス中のTHCが少ないこと、システム起動時間が短いことなどの点から、80容量%以上が好ましく、90容量%以上がより好ましい。
なお、上述の芳香族含有量、オレフィン含有量、飽和炭化水素含有量は、JIS K2536「石油製品−炭化水素タイプ試験方法」の蛍光指示薬吸着法により測定される値である。
There is no restriction on the saturated hydrocarbon content (total amount of saturated and naphthene) of the hydrocarbon oil of the present invention, but there is a large amount of hydrogen generated per weight and a large amount of hydrogen generated per carbon dioxide generated. In view of low THC in the exhaust gas and short system startup time, 80% by volume or more is preferable, and 90% by volume or more is more preferable.
The above-mentioned aromatic content, olefin content, and saturated hydrocarbon content are values measured by the fluorescent indicator adsorption method of JIS K2536 “Petroleum products-hydrocarbon type test method”.

本発明で使用される炭化水素油の製造方法について何ら制限はないが、以下に示す(1)および(2)の炭化水素油が望ましく、(1)の炭化水素油がより望ましい。   Although there is no restriction | limiting about the manufacturing method of the hydrocarbon oil used by this invention, The hydrocarbon oil of (1) and (2) shown below is desirable and the hydrocarbon oil of (1) is more desirable.

(1):初留点が140〜180℃、90容量%留出温度が200〜270、芳香族含有量が20容量%以下、直鎖飽和炭化水素含有量が25質量%以上、炭素数10〜15の直鎖飽和炭化水素含有量が20質量%以上、硫黄含有量が300質量ppm以下である炭化水素混合物を原料油として、反応温度250〜310℃、水素圧力5〜10MPa、LHSV0.5〜3.0h-1、水素/炭化水素容量比0.15〜0.6の条件で、Ni−W、Ni−Mo、Co−Mo、Co−W、Ni−Co−Moのいずれかを含有する触媒により水素化脱硫処理をした炭化水素混合物から、蒸留操作により得られる140℃〜230℃の基材を主成分とする炭化水素油。 (1): Initial boiling point is 140 to 180 ° C., 90% by volume distillation temperature is 200 to 270, aromatic content is 20% by volume or less, linear saturated hydrocarbon content is 25% by mass or more, and carbon number is 10 A hydrocarbon mixture having a linear saturated hydrocarbon content of -15 to 20 mass% and a sulfur content of 300 massppm or less as a raw material oil, a reaction temperature of 250 to 310 ° C, a hydrogen pressure of 5 to 10 MPa, LHSV 0.5 -3.0h -1 , containing any of Ni-W, Ni-Mo, Co-Mo, Co-W, Ni-Co-Mo under conditions of hydrogen / hydrocarbon capacity ratio of 0.15-0.6 Hydrocarbon oil mainly composed of a base material at 140 ° C. to 230 ° C. obtained by a distillation operation from a hydrocarbon mixture that has been subjected to hydrodesulfurization treatment with a catalyst to be used.

(2):原油の常圧蒸留装置から得られる直留灯油を水素化精製して得られる水素化脱硫灯油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油留分を水素化精製して得られる水素化精製灯油、減圧軽油留分を水素化分解した水素化分解灯油、減圧軽油留分又は脱硫重油を接触分解して得られる接触分解灯油、直留重質油を熱分解して得られる熱分解灯油、熱分解灯油を水素化精製して得られる水素化脱硫灯油、残査油を水素化精製して得られる水素化脱硫灯油、直留灯油及び/又は水素化精製灯油を水素化触媒存在下で深度水素化処理することによって得られる超低硫黄灯油、直留灯油又は水素化脱硫灯油又は水素化精製灯油の抽出によりノルマルパラフィン分を除去した残分である脱ノルマルパラフィン灯油、天然ガス、石炭、アスファルト等を一酸化炭素と水素に分解した後にF−T(Fischer−Tropsch)合成で得られる合成油の灯油留分及び/又はその水素化分解物等の基材からなる炭化水素油。   (2): Hydrodesulfurized kerosene obtained by hydrorefining straight run kerosene obtained from crude oil atmospheric distillation equipment, straight run heavy oil and residual oil obtained from atmospheric distillation equipment using a vacuum distillation equipment Hydrocracked kerosene obtained by hydrorefining a vacuum gas oil fraction obtained by treatment, hydrocracked kerosene obtained by hydrocracking a vacuum gas oil fraction, obtained by catalytic cracking of a vacuum gas oil fraction or desulfurized heavy oil Catalytic cracking kerosene, pyrolysis kerosene obtained by pyrolyzing straight-run heavy oil, hydrodesulfurized kerosene obtained by hydrotreating pyrolysis kerosene, hydrodesulfurization obtained by hydrotreating residual oil Extraction of ultra low sulfur kerosene, straight run kerosene, hydrodesulfurized kerosene or hydrorefined kerosene obtained by deep hydrotreating kerosene, straight run kerosene and / or hydrorefined kerosene in the presence of a hydrogenation catalyst Denormalized water, which is the residue after removing paraffin Substrates such as kerosene fraction of synthetic oil and / or hydrocracked product thereof obtained by FT (Fischer-Tropsch) synthesis after cracking fin kerosene, natural gas, coal, asphalt, etc. into carbon monoxide and hydrogen Hydrocarbon oil consisting of

上記基材の水素化精製条件は、本発明の所定の性状を有する炭化水素油を得ることができる限りにおいて特に限定されるものではないが、水素化触媒存在下で反応温度100〜350℃、水素圧力1〜10MPa、LHSV0.1〜10h-1、水素/油比10〜500NL/Lであることが好ましい。 The hydrorefining conditions for the substrate are not particularly limited as long as the hydrocarbon oil having the predetermined properties of the present invention can be obtained, but the reaction temperature is 100 to 350 ° C. in the presence of a hydrogenation catalyst, It is preferable that the hydrogen pressure is 1 to 10 MPa, the LHSV is 0.1 to 10 h −1 , and the hydrogen / oil ratio is 10 to 500 NL / L.

水素化触媒は、特に限定されるものではないが、水素化活性金属を多孔質担体に担持したものが挙げられる。多孔質担体としては無機酸化物が好ましく用いられる。具体的な無機酸化物としては、アルミナ、チタニア、ジルコニア、ボリア、シリカ、あるいはゼオライトが挙げられ、このうちチタニア、ジルコニア、ボリア、シリカ、ゼオライトのうち少なくとも1種類とアルミナによって構成されているものが好適に用いられる。
水素化処理に用いる触媒の活性金属としては周期律表第6族及び第8族金属から選ばれる少なくとも1種類の金属であることが好ましい。より好ましくはRu,Rd,Ir,Pd,Pt,Ni,Co,MoおよびWから選ばれる少なくとも1種類である。活性金属としてはこれらの金属を組み合わせたものでもよく、例えばPt−Pd,Pt−Rh,Pt−Ru,Ir−Pd,Ir−Rh,Ir−Ru,Pt−Pd−Rh,Pt−Rh−Ru,Ir−Pd−Rh,Ir−Rh−Ru,Co−Mo,Ni−Mo,Ni−Wなどの組み合わせを採用することができる。
The hydrogenation catalyst is not particularly limited, and examples thereof include a hydrogenation active metal supported on a porous carrier. An inorganic oxide is preferably used as the porous carrier. Specific examples of the inorganic oxide include alumina, titania, zirconia, boria, silica, and zeolite. Among these, at least one of titania, zirconia, boria, silica, and zeolite and an alumina is used. Preferably used.
The active metal of the catalyst used for the hydrotreatment is preferably at least one metal selected from Group 6 and Group 8 metals of the Periodic Table. More preferably, it is at least one selected from Ru, Rd, Ir, Pd, Pt, Ni, Co, Mo and W. The active metal may be a combination of these metals, for example, Pt-Pd, Pt-Rh, Pt-Ru, Ir-Pd, Ir-Rh, Ir-Ru, Pt-Pd-Rh, Pt-Rh-Ru. , Ir-Pd-Rh, Ir-Rh-Ru, Co-Mo, Ni-Mo, Ni-W, and the like can be employed.

本発明の炭化水素油は、その主な熱源をバーナーによる水素製造システムにおいて、水素製造用原料として、およびバーナー用燃料として使用される。本発明の炭化水素油を用いることで、水素製造システムにおいて比較的低温で改質でき、かつバーナー負荷の低減およびNOx排出量を低減することができる。   The hydrocarbon oil of the present invention is used as a raw material for hydrogen production and as a fuel for burners in a hydrogen production system using a main heat source as a burner. By using the hydrocarbon oil of the present invention, reforming can be performed at a relatively low temperature in the hydrogen production system, and the burner load and the NOx emission amount can be reduced.

本発明の水素製造システムに用いるバーナーとしては、噴霧式バーナー、蒸発式バーナー等を挙げることができる。また、これらバーナーの他にNOx排出量が低減される触媒燃焼を利用した面バーナーなども利用可能である。   Examples of the burner used in the hydrogen production system of the present invention include a spray burner and an evaporation burner. In addition to these burners, a surface burner using catalytic combustion that reduces NOx emissions can also be used.

バーナーを配置した水素製造システムとしては、例えば、(1)脱硫器・改質器・一酸化炭素浄化装置からなるシステム、(2)脱硫器・改質器・脱硫器(再脱硫)・一酸化炭素浄化器からなるシステム、及び(3)改質器・脱硫器・一酸化炭素浄化器からなるシステムを挙げることができる。バーナーを配置した水素製造システムの組み合わせは、上記(1)〜(3)のシステムに特に限定されるものではない。   Examples of hydrogen production systems with burners include (1) a system consisting of a desulfurizer, reformer, and carbon monoxide purifier, and (2) a desulfurizer, reformer, desulfurizer (re-desulfurization), and monoxide. And a system comprising a carbon purifier and (3) a system comprising a reformer, a desulfurizer and a carbon monoxide purifier. The combination of the hydrogen production system which arrange | positioned the burner is not specifically limited to the system of said (1)-(3).

なお、脱硫器、改質器、一酸化炭素浄化器としては次のようなものが挙げられる。
脱硫器は、炭化水素油中の硫黄分を除去する装置であり、本発明の水素製造システムに用いることができる脱硫器としては、例えば、触媒として銅−亜鉛系、ニッケル系等を用い、反条件としては、反応温度20〜300℃、LHSV0.1〜10h-1、反応圧力1MPa未満で脱硫処理を行う脱硫器などが挙げられる。
Examples of the desulfurizer, reformer, and carbon monoxide purifier include the following.
The desulfurizer is an apparatus for removing sulfur content in hydrocarbon oil. As the desulfurizer that can be used in the hydrogen production system of the present invention, for example, a copper-zinc system, a nickel system, etc. are used as a catalyst. Examples of conditions include a desulfurizer that performs a desulfurization treatment at a reaction temperature of 20 to 300 ° C., LHSV of 0.1 to 10 h −1 , and a reaction pressure of less than 1 MPa.

改質器は、炭化水素油を改質して水素を得るための装置であり、本発明の炭化水素油により改質器の性能を最大限に引き出すためには、下記の改質器を使用することが好ましい。   The reformer is a device for reforming hydrocarbon oil to obtain hydrogen, and the following reformer is used in order to maximize the performance of the reformer with the hydrocarbon oil of the present invention. It is preferable to do.

(1)加熱気化した炭化水素油と水蒸気とを混合し、周期律表第8族元素を活性金属として含む触媒を使用し、反応条件としては、反応温度400〜1000℃、水と炭化水素油の混合比率(S/C)を1〜5モル/モルで反応させることにより、水素を主成分とする生成物を得る水蒸気改質型改質器。 (1) Mixing heat-vaporized hydrocarbon oil and water vapor, using a catalyst containing a group 8 element of the periodic table as an active metal, and reaction conditions include a reaction temperature of 400 to 1000 ° C., water and hydrocarbon oil A steam reforming reformer that obtains a product mainly composed of hydrogen by reacting at a mixing ratio (S / C) of 1 to 5 mol / mol.

(2)加熱気化した炭化水素油を水蒸気及び空気と混合し、周期律表第8族元素を活性金属として含む触媒を使用し、反応条件としては、反応温度400〜1000℃、水と炭化水素油の混合比率(S/C)を0.5〜5モル/モル、酸素と炭化水素油の混合比率(O2/C)を0.1〜0.5モル/モルで反応させることにより、水素を主成分とする生成物を得る自己熱改質型改質器。 (2) Mixing heated and vaporized hydrocarbon oil with water vapor and air, using a catalyst containing Group 8 element of the periodic table as an active metal, reaction conditions are 400 to 1000 ° C., water and hydrocarbon By reacting the mixing ratio of oil (S / C) at 0.5 to 5 mol / mol and the mixing ratio of oxygen and hydrocarbon oil (O 2 / C) at 0.1 to 0.5 mol / mol, A self-thermal reforming reformer that obtains a hydrogen-based product.

なお、ここでいう「水と炭化水素油の混合比率(S/C)」において、Sは水(分子)のモル数、Cは炭化水素油(分子)中の炭素のモル数を意味する。従って、「水と炭化水素油の混合比率(S/C)」の求め方に関し例を挙げて説明すると、水(分子):6モルと、炭化水素油にエタン(C26):1モルを用いた場合、水と炭化水素油の混合比率(S/C)は、炭化水素油であるエタン:1モル中の炭素のモル数は2モルであるので、「S/C=6モル/2モル=3」となる。
また、同様に、ここでいう「酸素と炭化水素油の混合比率(O2/C)」において、O2は酸素(分子)のモル数、Cは炭化水素油(分子)中の炭素のモル数を意味する。従って、「酸素と炭化水素油の混合比率(O2/C)」の求め方に関し例を挙げて説明すると、酸素(分子):0.6モルと、炭化水素油にエタン(C26):1モルを用いた場合、酸素と炭化水素油の混合比率(O2/C)は、炭化水素油であるエタン:1モル中の炭素のモル数は2モルであるので、「O2/C=0.6モル/2モル=0.3」となる。
In the “mixing ratio of water and hydrocarbon oil (S / C)” mentioned here, S means the number of moles of water (molecule), and C means the number of moles of carbon in the hydrocarbon oil (molecule). Accordingly, an example of how to obtain the “mixing ratio of water and hydrocarbon oil (S / C)” will be described. Water (molecule): 6 mol, and hydrocarbon oil to ethane (C 2 H 6 ): 1 When moles are used, the mixing ratio (S / C) of water and hydrocarbon oil is ethane, which is a hydrocarbon oil: The number of moles of carbon in 1 mole is 2 moles, so “S / C = 6 moles”. / 2 mol = 3 ”.
Similarly, in the “mixing ratio of oxygen and hydrocarbon oil (O 2 / C)” referred to here, O 2 is the number of moles of oxygen (molecule), and C is the mole of carbon in the hydrocarbon oil (molecule). Means number. Accordingly, an example of how to obtain the “mixing ratio of oxygen and hydrocarbon oil (O 2 / C)” will be described. Oxygen (molecules): 0.6 mol, ethane (C 2 H 6 ) When 1 mol is used, the mixing ratio of oxygen and hydrocarbon oil (O 2 / C) is ethane, which is a hydrocarbon oil. Since the number of moles of carbon in 1 mol is 2 mol, “O 2 /C=0.6 mol / 2 mol = 0.3 ”.

一酸化炭素浄化器は、改質器で生成したガスに含まれ、燃料電池の触媒毒となる一酸化炭素の除去を行うものである。本発明の水素製造システムに用いることができる一酸化炭素浄化器としては、次のような例が挙げられる。   The carbon monoxide purifier removes carbon monoxide, which is contained in the gas generated by the reformer and becomes the catalyst poison of the fuel cell. Examples of the carbon monoxide purifier that can be used in the hydrogen production system of the present invention include the following examples.

(1)改質器より得られた改質ガスと加熱気化した水蒸気を混合し、触媒として銅、亜鉛、白金、ルテニウム、ロジウム等を用い、反応温度200〜500℃、ガス空間速度1000〜10000h-1、反応圧力1MPa未満、水と改質ガス中の一酸化炭素のモル比を0.5〜3.0モル/モルの反応条件により、一酸化炭素と水蒸気とから二酸化炭素と水素を生成物として得る水性ガスシフト反応器。 (1) The reformed gas obtained from the reformer is mixed with steam vaporized by heating, and copper, zinc, platinum, ruthenium, rhodium or the like is used as a catalyst, the reaction temperature is 200 to 500 ° C., and the gas space velocity is 1000 to 10,000 h. -1 , carbon dioxide and hydrogen are produced from carbon monoxide and water vapor under reaction conditions of reaction pressure of less than 1 MPa and a molar ratio of water and carbon monoxide in the reformed gas of 0.5 to 3.0 mol / mol Water gas shift reactor obtained as a product.

(2)改質器より得られた改質ガスと圧縮空気とを混合し、触媒として銅、ニッケル、白金、ルテニウム、ロジウム等を用い、反応温度100〜300℃、ガス空間速度1000〜10000h-1、反応圧力1MPa未満、空気と改質ガス中の一酸化炭素のモル比を0.5〜3.0モル/モルの反応条件により、一酸化炭素と空気とから一酸化炭素を二酸化炭素に変換する選択酸化反応器。 (2) The reformed gas obtained from the reformer and compressed air are mixed, and copper, nickel, platinum, ruthenium, rhodium, etc. are used as a catalyst, the reaction temperature is 100 to 300 ° C., and the gas space velocity is 1000 to 10,000 h −. 1. Carbon monoxide is converted from carbon monoxide to air to carbon dioxide by reaction conditions of reaction pressure of less than 1 MPa and a molar ratio of air to carbon monoxide in the reformed gas of 0.5 to 3.0 mol / mol. Selective oxidation reactor to convert.

本発明の炭化水素油は、水素製造システムにおける水素製造用原料として比較的低温で改質できるばかりか、水素製造システムのバーナー用の燃料としてもバーナー負荷の低減およびNOx排出量の低減を図ることができる。このため、水素製造システムとして、水素製造用原料タンクと、バーナー用燃料タンクの2つのタンクを別々に持つ必要がなく、システムスペース上の効率においても優れている。   The hydrocarbon oil of the present invention can be reformed at a relatively low temperature as a raw material for hydrogen production in a hydrogen production system, and can also reduce burner load and NOx emissions as fuel for a burner in a hydrogen production system. Can do. For this reason, the hydrogen production system does not need to have two separate tanks, ie, a hydrogen production raw material tank and a burner fuel tank, and the system space efficiency is excellent.

以下に、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to these examples.

[実施例1〜3及び比較例1〜2]
本発明の炭化水素油(炭化水素油A〜C)及び比較用の炭化水素油(炭化水素油D、E)を以下に記す方法により製造した。それらの一般性状を表1に示す。
[Examples 1-3 and Comparative Examples 1-2]
The hydrocarbon oils of the present invention (hydrocarbon oils A to C) and comparative hydrocarbon oils (hydrocarbon oils D and E) were produced by the methods described below. Their general properties are shown in Table 1.

(炭化水素油A〜Eの製造)
炭化水素油A:硫黄含有量が300質量ppm以下である灯油留分の炭化水素混合物を原料油とし、水素化脱硫処理する工程を経て得られた炭化水素油の内、蒸留操作により、150℃〜195℃の留分を分離して炭化水素油Aとした。
炭化水素油B:中東系原油を常圧蒸留装置にかけて得られた灯油留分を高度に水素化精製した後、蒸留操作により、150℃〜200℃の留分を分離して炭化水素油Bとした。
炭化水素油C:硫黄含有量が300質量ppm以下である灯油留分の炭化水素混合物を原料油とし、水素化脱硫処理する工程を経て得られた炭化水素油から蒸留操作により、150℃〜200℃の留分を分離除去した後、ゼオライトにより直鎖飽和炭化水素を抽出分離した炭化水素油より、蒸留操作により190℃〜230℃の留分を分離して炭化水素油Cとした。
炭化水素油D:硫黄含有量が300質量ppm以下である灯油留分の炭化水素混合物を原料油とし、水素化脱硫処理する工程を経て得られた炭化水素油から蒸留操作により150℃〜200℃の留分を分離除去した後、ゼオライトにより直鎖飽和炭化水素を抽出分離した炭化水素油より、蒸留操作により245℃〜270℃の留分を分離して炭化水素油Dとした。
炭化水素油E:中東系原油を常圧蒸留装置にかけて得られた灯油留分を高度に水素化精製した後、蒸留操作により、150℃〜265℃の留分を分離して炭化水素油Eとした。
(Manufacture of hydrocarbon oils A to E)
Hydrocarbon oil A: A hydrocarbon mixture obtained from a kerosene fraction having a sulfur content of 300 ppm by mass or less is used as a raw material oil, and is subjected to a hydrodesulfurization treatment. A fraction of ˜195 ° C. was separated to obtain hydrocarbon oil A.
Hydrocarbon oil B: A kerosene fraction obtained by subjecting a Middle Eastern crude oil to an atmospheric distillation apparatus is highly hydrorefined, and then a fraction of 150 ° C. to 200 ° C. is separated by a distillation operation to obtain hydrocarbon oil B did.
Hydrocarbon oil C: A hydrocarbon mixture of a kerosene fraction having a sulfur content of 300 mass ppm or less is used as a raw material oil, and a hydrocarbon oil obtained through a hydrodesulfurization process is subjected to a distillation operation to 150 ° C. to 200 ° C. After separating and removing the fraction at 0 ° C., hydrocarbon oil C was obtained by separating a fraction at 190 ° C. to 230 ° C. by a distillation operation from the hydrocarbon oil from which the linear saturated hydrocarbon was extracted and separated by zeolite.
Hydrocarbon oil D: 150 ° C. to 200 ° C. by distillation operation from hydrocarbon oil obtained through a hydrodesulfurization treatment using a hydrocarbon mixture of a kerosene fraction having a sulfur content of 300 ppm by mass or less as a raw material oil Then, a fraction at 245 ° C. to 270 ° C. was separated by distillation from the hydrocarbon oil from which the linear saturated hydrocarbon was extracted and separated by zeolite.
Hydrocarbon oil E: A kerosene fraction obtained by subjecting Middle Eastern crude oil to an atmospheric distillation apparatus is highly hydrorefined, and then a fraction of 150 ° C. to 265 ° C. is separated by a distillation operation to obtain hydrocarbon oil E and did.

(性状測定)
炭化水素油A〜Eの一般性状は、以下の試験法により測定した。
密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を指す。
引火点は、JIS K 2265「原油及び石油製品−引火点試験方法」によって測定される引火点を指す。
蒸留性状(IBP、T10、T50、T90、T95、EP)は、全てJIS K 2254「石油製品−蒸留試験方法-常圧法蒸留試験方法」によって測定される値である。
硫黄分は、ASTM D4045−96「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry」により測定される硫黄分含有量を指す。
(Property measurement)
The general properties of the hydrocarbon oils A to E were measured by the following test methods.
The density refers to a density measured according to JIS K 2249 “Determination method of density of crude oil and petroleum products and density / mass / capacity conversion table”.
The flash point refers to a flash point measured by JIS K 2265 “Crude oil and petroleum products—flash point test method”.
The distillation properties (IBP, T10, T50, T90, T95, EP) are all values measured according to JIS K 2254 “Petroleum products—Distillation test method—Atmospheric pressure distillation test method”.
Sulfur content refers to the sulfur content measured by ASTM D 4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry”.

H/Cは、ASTMD5291−01(Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry)に準拠した方法により測定される水素元素と炭素元素のモル比のことを指す。
セーボルト色とは、JIS K2580「石油製品−色試験方法」中のセーボルト色試験方法で測定されるセーボルト色を指す。
銅板腐食とは、JIS K2513「石油製品−銅板腐食試験方法」で測定される銅板腐食を指す。
H / C refers to the molar ratio of hydrogen element to carbon element measured by a method in accordance with ASTM D5291-01 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry).
The Saybolt color refers to the Saybolt color measured by the Saybolt color test method in JIS K2580 “Petroleum products-color test method”.
Copper plate corrosion refers to copper plate corrosion measured by JIS K2513 "Petroleum products-Copper plate corrosion test method".

炭素数13の炭化水素の成分割合とは、GC−FIDを用いて測定される値(質量%)であり、カラムにはメチルシリコンのキャピラリーカラム(ULTRAALLOY−1、0.25mmφ、30m)、キャリアガスにはヘリウムを、検出器には水素イオン検出器(FID)を用い、キャリアガス流量1.0mL/min、分割比1:79、試料注入温度280℃、カラム昇温条件50℃(5分)→(5℃/min)→280℃(10分)、検出器温度300℃の条件で測定されたクロマトより、炭素数13の炭化水素の面積積分を行って求められた値を指す。
芳香族分、オレフィン分、飽和分は、JIS K2536「石油製品−炭化水素タイプ試験方法」の蛍光指示薬吸着法により測定される芳香族分含有量、オレフィン分含有量、飽和炭化水素(ナフテン系炭化水素を含む)含有量を指す。
The component ratio of the hydrocarbon having 13 carbon atoms is a value (mass%) measured using GC-FID, and the column is a methyl silicon capillary column (ULTRAALLOY-1, 0.25 mmφ, 30 m), carrier gas. Helium is used for the detector, and a hydrogen ion detector (FID) is used for the detector, the carrier gas flow rate is 1.0 mL / min, the split ratio is 1:79, the sample injection temperature is 280 ° C., and the column temperature rising condition is 50 ° C. (5 minutes). → (5 ° C./min)→ 280 ° C. (10 minutes) Indicates a value obtained by performing area integration of a hydrocarbon having 13 carbon atoms from a chromatograph measured under the conditions of a detector temperature of 300 ° C.
The aromatic content, olefin content, and saturated content are the aromatic content, olefin content, saturated hydrocarbon (naphthenic carbonization) measured by the fluorescent indicator adsorption method of JIS K2536 “Petroleum products-hydrocarbon type test method”. (Including hydrogen) content.

次に、得られた各炭化水素油を下記の二つの炭化水素油改質システムを用いて評価した。
(1)水蒸気改質型改質システム
ニッケル系吸着脱硫触媒を充填した脱硫器により硫黄分0.1質量ppm未満まで脱硫した炭化水素油と水を加熱によりそれぞれ気化させ、貴金属系触媒を充填し、所定の温度に維持した改質器に導き、水素分に富む改質ガスを発生させた。改質器の温度は、改質が完全に行われる最低の温度(改質ガスに炭化水素油が含まれない最低温度)とした。
次に改質ガスを一酸化炭素浄化器に導いた。一酸化炭素浄化器は前後段の2つに区分される。前段では、改質ガスを水蒸気と共に銅−亜鉛系触媒を充填した反応器に通し、後段では、改質ガスを空気と共に貴金属系触媒を充填した反応器へと通すことで、改質ガスの中の一酸化炭素を二酸化炭素に変換した。なお、一酸化炭素浄化器出口にて水素量10L/min、CO濃度が10容量ppmになるように運転条件を設定した。
炭化水素油および水の気化器、脱硫器、改質器および一酸化炭素浄化器にて必要な熱源は、本発明の炭化水素油(炭化水素油A〜C)及び比較用の炭化水素油(炭化水素油D、E)を用いる噴霧式バーナーを各器に設置したものにて供給した。なお、バーナー用空気量は燃焼排ガス中の酸素濃度:8容量%になるように設定した。
なお、各反応器の運転条件は次の通りである。
<脱硫器>反応温度:200℃
<改質器>LHSV:1h-1、H2O/Cモル比:3モル/モル
<一酸化炭素浄化器前段>反応温度:230℃、H2O/COモル比:5モル/モル
<一酸化炭素浄化器後段>反応温度:110℃、O2/COモル比:1.5モル/モル
水蒸気改質型改質システム評価フローを図1に示す。
Next, each obtained hydrocarbon oil was evaluated using the following two hydrocarbon oil reforming systems.
(1) Steam reforming reforming system Hydrocarbon oil and water desulfurized to a sulfur content of less than 0.1 ppm by mass with a desulfurizer filled with a nickel-based adsorptive desulfurization catalyst are vaporized by heating, and filled with a precious metal catalyst. Then, it was led to a reformer maintained at a predetermined temperature, and a reformed gas rich in hydrogen content was generated. The temperature of the reformer was set to the lowest temperature at which reforming was completely performed (the lowest temperature at which the reformed gas did not contain hydrocarbon oil).
The reformed gas was then led to a carbon monoxide purifier. The carbon monoxide purifier is divided into two parts, a front stage and a rear stage. In the former stage, the reformed gas is passed through a reactor filled with a copper-zinc catalyst together with water vapor, and in the latter stage, the reformed gas is passed through a reactor filled with a noble metal catalyst together with air. Carbon monoxide was converted to carbon dioxide. The operating conditions were set so that the hydrogen amount was 10 L / min and the CO concentration was 10 ppm by volume at the carbon monoxide purifier outlet.
The heat sources required for the hydrocarbon oil and water vaporizers, desulfurizers, reformers and carbon monoxide purifiers are the hydrocarbon oils of the present invention (hydrocarbon oils A to C) and the comparative hydrocarbon oils ( A spray-type burner using hydrocarbon oils D and E) was supplied in each vessel. The amount of air for the burner was set so that the oxygen concentration in the combustion exhaust gas was 8% by volume.
The operating conditions of each reactor are as follows.
<Desulfurizer> Reaction temperature: 200 ° C
<Reformer> LHSV: 1 h −1 , H 2 O / C molar ratio: 3 mol / mol <Carbon monoxide purifier first stage> Reaction temperature: 230 ° C., H 2 O / CO molar ratio: 5 mol / mol
< Second stage of carbon monoxide purifier> Reaction temperature: 110 ° C., O 2 / CO molar ratio: 1.5 mol / mol A steam reforming reforming system evaluation flow is shown in FIG.

(2)自己熱改質型改質システム
ニッケル系吸着脱硫触媒を充填した脱硫器により硫黄分0.1質量ppm未満まで脱硫した炭化水素油と水を加熱により気化させ、予熱した空気と共に貴金属系触媒を充填し、所定の温度に維持した改質器に導き、水素分に富む改質ガスを発生させた。改質器の温度は、改質が完全に行われる最低の温度(改質ガスに炭化水素油が含まれない最低温度)とした。
次に改質ガスを一酸化炭素浄化器に導いた。一酸化炭素浄化器は前後段の2つに区分される。前段では、改質ガスを水蒸気と共に銅−亜鉛系触媒を充填した反応器に通し、後段では、改質ガスを空気と共に貴金属系触媒を充填した反応器へと通すことで、改質ガスの中の一酸化炭素を二酸化炭素に変換した。なお、一酸化炭素浄化器出口にて水素量10L/min、CO濃度が10容量ppmになるように運転条件を設定した。
炭化水素油および水の気化器、脱硫器、改質器および一酸化炭素浄化器にて必要な熱源は、本発明の炭化水素油(炭化水素油A〜C)及び比較用の炭化水素油(炭化水素油D、E)を用いる噴霧式バーナーを各器に設置したものにて供給した。なお、バーナー用空気量は燃焼排ガス中の酸素濃度:8容量%になるように設定した。
なお、各反応器の運転条件は次の通りである。
<脱硫器>反応温度:200℃
<改質器>LHSV:1h-1、H2O/Cモル比:2モル/モル、
2/Cモル比:0.3モル/モル
<一酸化炭素浄化器前段>反応温度:230℃、H2O/CO比:5モル/モル
<一酸化炭素浄化器後段>反応温度:110℃、O2/CO比:1.5モル/モル
自己熱改質型改質システム評価フローを図2に示す。
(2) Self-thermal reforming reforming system Hydrocarbon oil and water desulfurized to a sulfur content of less than 0.1 mass ppm by a desulfurizer filled with a nickel-based adsorptive desulfurization catalyst are vaporized by heating, and preheated air and precious metal system The catalyst was charged and led to a reformer maintained at a predetermined temperature to generate a reformed gas rich in hydrogen. The temperature of the reformer was set to the lowest temperature at which reforming was completely performed (the lowest temperature at which the reformed gas did not contain hydrocarbon oil).
The reformed gas was then led to a carbon monoxide purifier. The carbon monoxide purifier is divided into two parts, a front stage and a rear stage. In the former stage, the reformed gas is passed through a reactor filled with a copper-zinc catalyst together with water vapor, and in the latter stage, the reformed gas is passed through a reactor filled with a noble metal catalyst together with air. Carbon monoxide was converted to carbon dioxide. The operating conditions were set so that the hydrogen amount was 10 L / min and the CO concentration was 10 ppm by volume at the carbon monoxide purifier outlet.
The heat sources required for the hydrocarbon oil and water vaporizers, desulfurizers, reformers and carbon monoxide purifiers are the hydrocarbon oils of the present invention (hydrocarbon oils A to C) and the comparative hydrocarbon oils ( A spray-type burner using hydrocarbon oils D and E) was supplied in each vessel. The amount of air for the burner was set so that the oxygen concentration in the combustion exhaust gas was 8% by volume.
The operating conditions of each reactor are as follows.
<Desulfurizer> Reaction temperature: 200 ° C
<Reformer> LHSV: 1 h −1 , H 2 O / C molar ratio: 2 mol / mol,
O 2 / C molar ratio: 0.3 mol / mol <carbon monoxide purifier first stage> reaction temperature: 230 ° C., H 2 O / CO ratio: 5 mol / mol <carbon monoxide purifier latter stage> reaction temperature: 110 ° C, O 2 / CO ratio: 1.5 mol / mol An autothermal reforming reforming system evaluation flow is shown in FIG.

(3)評価
上記二つの炭化水素油改質システムを用いた場合の炭化水素油によるNOx排出量を下記の方法にて評価した。
改質器にて炭化水素油が完全に改質され、かつ、一酸化炭素浄化器出口にて水素量10L/min、CO濃度10容量ppmになるよう各反応器の調整が完了した後、各反応器、気化器類でのバーナー燃焼排ガスラインを1つのラインにつなぎ、そのNOx排出量を測定することで、各炭化水素油でのNOx排出量を比較した。
以上の評価結果を表2に示す。なお、2つの改質システムにおける増減比較は、比較例1のNOx排出量を100.0として相対比較を行った。
その結果、実施例1〜3の炭化水素油は比較例1〜2の炭化水素油と比較して、水素製造システムより排出されるNOx量が低減されていることが分かる。
(3) Evaluation The NOx emission amount by hydrocarbon oil when the above two hydrocarbon oil reforming systems were used was evaluated by the following method.
After the adjustment of each reactor was completed so that the hydrocarbon oil was completely reformed in the reformer and the hydrogen amount was 10 L / min and the CO concentration was 10 vol ppm at the carbon monoxide purifier outlet, The NOx emissions in each hydrocarbon oil were compared by connecting the burner combustion exhaust gas lines in the reactor and vaporizers to one line and measuring the NOx emissions.
The above evaluation results are shown in Table 2. In addition, the increase / decrease comparison in two reforming systems performed the relative comparison by making NOx discharge | emission amount of the comparative example 1 into 100.0.
As a result, it can be seen that the hydrocarbon oils of Examples 1 to 3 are reduced in the amount of NOx discharged from the hydrogen production system as compared with the hydrocarbon oils of Comparative Examples 1 and 2.

Figure 2005290221
Figure 2005290221
Figure 2005290221
Figure 2005290221

水蒸気改質型改質器の評価フローチャートである。It is an evaluation flowchart of a steam reforming type reformer. 自己熱改質型改質器の評価フローチャートである。It is an evaluation flowchart of a self-heat reforming type reformer.

Claims (2)

引火点が40℃以上、初留点が145℃以上195℃以下、95容量%留出温度が220℃以下、セーボルト色+25以上、銅板腐食1以下、硫黄含有量が0.5質量ppm以下、炭素数13の炭化水素の成分割合が25質量%以下、水素元素と炭素元素のモル比が1.95以上であることを特徴とする熱供給源として主にバーナーを用いる水素製造システムの水素製造用炭化水素油。   Flash point is 40 ° C or higher, initial boiling point is 145 ° C or higher and 195 ° C or lower, 95% by volume distillation temperature is 220 ° C or lower, Saybolt color +25 or higher, copper plate corrosion is 1 or lower, sulfur content is 0.5 mass ppm or lower, Hydrogen production of a hydrogen production system mainly using a burner as a heat source, wherein the component ratio of hydrocarbons having 13 carbon atoms is 25% by mass or less and the molar ratio of hydrogen element to carbon element is 1.95 or more Hydrocarbon oil for use. 水素製造システムの熱供給源であるバーナー用燃料として使用することを特徴とする請求項1記載の炭化水素油。


The hydrocarbon oil according to claim 1, wherein the hydrocarbon oil is used as a fuel for a burner which is a heat supply source of a hydrogen production system.


JP2004108144A 2004-03-31 2004-03-31 Hydrocarbon oil and hydrogen fuel for hydrogen production in hydrogen production system Expired - Fee Related JP4227929B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004108144A JP4227929B2 (en) 2004-03-31 2004-03-31 Hydrocarbon oil and hydrogen fuel for hydrogen production in hydrogen production system
KR1020067022418A KR20070015553A (en) 2004-03-31 2005-03-30 Hydrocarbon oil for producing hydrogen and fuel for burner in hydrogen production system
PCT/JP2005/006697 WO2005095552A1 (en) 2004-03-31 2005-03-30 Hydrocarbon oil for producing hydrogen and fuel for burner in hydrogen production system
CNA2005800161638A CN1957074A (en) 2004-03-31 2005-03-30 Hydrocarbon oil for producing hydrogen and fuel for burner in hydrogen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108144A JP4227929B2 (en) 2004-03-31 2004-03-31 Hydrocarbon oil and hydrogen fuel for hydrogen production in hydrogen production system

Publications (2)

Publication Number Publication Date
JP2005290221A true JP2005290221A (en) 2005-10-20
JP4227929B2 JP4227929B2 (en) 2009-02-18

Family

ID=35063756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108144A Expired - Fee Related JP4227929B2 (en) 2004-03-31 2004-03-31 Hydrocarbon oil and hydrogen fuel for hydrogen production in hydrogen production system

Country Status (4)

Country Link
JP (1) JP4227929B2 (en)
KR (1) KR20070015553A (en)
CN (1) CN1957074A (en)
WO (1) WO2005095552A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933978B (en) * 2020-09-11 2020-12-18 江苏铧德氢能源科技有限公司 Fuel cell cogeneration system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598893B2 (en) * 2000-04-10 2010-12-15 Jx日鉱日石エネルギー株式会社 Fuel for fuel cell system
JPWO2002046334A1 (en) * 2000-12-08 2004-04-08 新日本石油株式会社 Mixed gasoline and its storage and / or supply system
JP4414125B2 (en) * 2002-05-22 2010-02-10 出光興産株式会社 Cold rolling oil composition

Also Published As

Publication number Publication date
KR20070015553A (en) 2007-02-05
CN1957074A (en) 2007-05-02
WO2005095552A1 (en) 2005-10-13
JP4227929B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
CN101087646A (en) Desulfurizing agent for fuel oil containing organic sulfur compound and process for producing hydrogen for fuel cell
KR101218840B1 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4537666B2 (en) Fuel for fuel cell system and fuel cell system
JP4598892B2 (en) Fuel for fuel cell system
JP4684539B2 (en) Fuel for fuel cell system, method for producing the same, and fuel cell system
JP4583666B2 (en) Fuel for fuel cell system
JP4227929B2 (en) Hydrocarbon oil and hydrogen fuel for hydrogen production in hydrogen production system
JP4227927B2 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4598893B2 (en) Fuel for fuel cell system
JP2001279271A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
KR101163249B1 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4632281B2 (en) Fuel for fuel cell system
JP4598898B2 (en) Fuel for fuel cell system
JP4548765B2 (en) Fuel for fuel cell system
JP4227928B2 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4229448B2 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4598895B2 (en) Fuel for fuel cell system
JP2004319403A (en) Fuel for fuel cell system
JP4202058B2 (en) Fuel for fuel cell system
JP4598897B2 (en) Fuel for fuel cell system
JP4227930B2 (en) Hydrocarbon oil and method for desulfurizing the hydrocarbon oil
JP4598896B2 (en) Fuel for fuel cell system
JP2006111502A (en) Hydrogen manufacturing system
JP2004027082A (en) Fuel for fuel cell system
JP2004027083A (en) Fuel for producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees