WO2005095552A1 - Hydrocarbon oil for producing hydrogen and fuel for burner in hydrogen production system - Google Patents

Hydrocarbon oil for producing hydrogen and fuel for burner in hydrogen production system Download PDF

Info

Publication number
WO2005095552A1
WO2005095552A1 PCT/JP2005/006697 JP2005006697W WO2005095552A1 WO 2005095552 A1 WO2005095552 A1 WO 2005095552A1 JP 2005006697 W JP2005006697 W JP 2005006697W WO 2005095552 A1 WO2005095552 A1 WO 2005095552A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrocarbon oil
less
hydrocarbon
hydrogen production
Prior art date
Application number
PCT/JP2005/006697
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahide Sone
Masanori Hirose
Osamu Sadakane
Iwao Anzai
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2005095552A1 publication Critical patent/WO2005095552A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrocarbon oil for hydrogen production in a hydrogen production system mainly using a burner as a heat supply source, and a fuel for a Pana used in a hydrogen production system.
  • the method of directly supplying hydrogen has the advantage that it can be used as fuel as it is, but it has a problem in its mountability when used in storage vehicles because it is a gas at room temperature.
  • methanol is relatively easy to produce hydrogen by reforming in the system, but has low energy efficiency per weight, is toxic and corrosive, and has difficulties in handling and storage.
  • hydrogen production by reforming hydrocarbons such as naphtha and kerosene has attracted attention because of the availability of the existing fuel supply infrastructure and high total energy efficiency.
  • Such hydrocarbons are passed through a hydrogen production system with a reforming process to generate hydrogen.
  • a reaction heat source is required because a chemical reaction is involved in the hydrocarbon reforming process.
  • Non-Patent Document 1 Masaki Ikematsu, “Engine Technology”, Sankaidosha, 2001
  • the present invention can reduce the burner load as a fuel for a hydrogen production system that can be reformed at a relatively low temperature as a raw material for hydrogen production in a hydrogen production system and whose main heat source is a burner.
  • the aim is to provide a hydrocarbon oil that can reduce NOX emissions.
  • the present invention has a flash point of 40 ° C. or higher, an initial boiling point of 144 ° C. or higher and 195 ° C. or lower, a 95% by volume distillation temperature of 220 ° C. or lower, and a Saybolt color. + 25 or more, copper plate corrosion 1 or less, sulfur content ⁇ 5 mass ppm or less, component ratio of hydrocarbons with 13 carbon atoms 25 mass% or less, molar ratio of hydrogen element to carbon element 1.9
  • the present invention relates to a hydrocarbon oil for hydrogen production of a hydrogen production system mainly using a burner as a heat supply source, characterized in that the heat source is 5 or more.
  • the hydrocarbon oil for hydrogen production of the present invention is desirably used as a fuel for a burner, which is a heat supply source of a hydrogen production system.
  • a burner which is a heat supply source of a hydrogen production system.
  • the hydrocarbon oil for hydrogen production used in the hydrogen production system of the present invention (hereinafter also referred to as the hydrocarbon oil of the present invention) has a flash point of 40 ° C or higher from the viewpoint of flammability and ease of handling. It is necessary to be.
  • the temperature is preferably 70 ° C or lower, more preferably 50 ° C or lower, and most preferably 45 ° C or lower.
  • the flash point referred to here is a value prescribed by JISK 2265 “Crude oil and petroleum products-Flash point test method”. It is necessary that the lower limit of the initial boiling point (IBP) of the hydrocarbon oil of the present invention is not less than 145 ° C from the viewpoint of flammability, increase in evaporative gas (THC), and handleability.
  • the upper limit is required to be 195 ° C or less, preferably 180 ° C or less, and more preferably 165 ° C or less from the viewpoint of reducing the load on the burner and reducing NOx emissions.
  • the temperature is more preferably, and more preferably 155 ° C or lower.
  • the upper limit of the 95% by volume distilling temperature (T95) of the hydrocarbon oil of the present invention must be 220 ° C or less from the viewpoint of reducing the load on the pliers and reducing NOx emissions. It is preferably at most 10 ° C, more preferably at most 200 ° C, most preferably at most 190 ° C. On the other hand, from the viewpoint of the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated, the temperature is preferably 170 ° C or higher, more preferably 180 ° C or higher.
  • distillation properties of the hydrocarbon oil of the present invention are not particularly limited, but are preferably as follows.
  • the 10% by volume distillation temperature (T10) is preferably from 145 ° C to 210 ° C. From the viewpoint of flammability and generation of evaporative gas (THC), the temperature is more preferably 150 ° C or higher. On the other hand, the temperature is preferably 190 ° C. or lower, more preferably 160 ° C. or lower, for the reason that the hydrogen production system is deteriorated at the time of startup.
  • the 50% by volume distillation temperature (T50) is preferably from 150 ° C to 210 ° C. From the viewpoints of the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated, the temperature is more preferably 160 ° C or higher, and even more preferably 165 ° C or higher. On the other hand, from the viewpoint of reducing the burner load and reducing NOx emissions, the temperature is preferably 190 ° C or lower, more preferably 180 ° C or lower, and most preferably 170 ° C or lower.
  • the 90% by volume distillation temperature (T90) is preferably from 160 ° C to 215 ° C. From the viewpoint of the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated, the temperature is more preferably 170 ° C or higher, and further preferably 175 ° C or higher. On the other hand, from the viewpoint of reducing the burner load and reducing NOx emissions, the temperature is preferably 210 ° C or lower, more preferably 200 ° C or lower, and most preferably 190 ° C or lower.
  • the end point (EP) is preferably from 170 ° C to 230 ° C. From the viewpoint of the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated, the temperature is preferably 180 ° C or higher, more preferably 190 ° C or higher. On the other hand, is it possible to increase THC in exhaust gas? Thus, the temperature is more preferably 220 ° C or lower, and further preferably 200 ° C or lower.
  • ⁇ ⁇ are measured in accordance with JIS K2254 “Petroleum product one distillation test method-normal pressure distillation test method”. Value.
  • the savonoleto color of the hydrocarbon oil of the present invention needs to be +25 or more, preferably +29 or more, more preferably +30 or more from the viewpoint of system durability.
  • the Saybolt color is a value measured by the Saeport color test method in JIS K 2580 “Petroleum product one-color test method”.
  • the copper plate corrosion of the hydrocarbon oil of the present invention needs to be 1 or less from the viewpoint of ensuring the durability of the reformed portion, and la is preferred.
  • the copper plate corrosion here is the value measured by JIS K2513 “Petroleum product-copper plate corrosion test method”.
  • the sulfur content of the hydrocarbon oil of the present invention is 0.5 mass from the viewpoint of the desulfurization rate, the durability of the desulfurization catalyst, the durability of the reforming catalyst, the lowering of the reforming reactivity, and the amount of hydrogen generated per carbon dioxide generated. It is required to be not more than p pm, preferably not more than 0.3 mass p pm, more preferably not more than 0.2 mass p pm.
  • the sulfur content is a value measured by AS TM D4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ”.
  • the component ratio of the hydrocarbon having 13 carbon atoms in the hydrocarbon oil of the present invention is 25% by mass or less from the viewpoints of the durability of the desulfurization catalyst, the durability of the reforming catalyst, and the reduction of the "regeneration reaction". It is necessary that the content be 10% by mass or less, more preferably 5% by mass or less, and most preferably 1% by mass or less.
  • the component ratio of the hydrocarbon having 1 3 carbon atoms is the value (mass 0/0) which is determined using GC-FID.
  • a methyl silicon capillary column (ULTRAAL LOY-1, 0.25 mm ⁇ , 30 m) is used as the column, helium is used as the carrier gas, and a hydrogen ion detector (FID) is used as the detector.
  • the molar ratio (HZ C) between the hydrogen element and the carbon element of the hydrocarbon oil of the present invention may be 1.95 or more from the viewpoints of low carbon monoxide generation and high hydrogen generation efficiency. Necessary, and preferably 2.0 or more.
  • the carbon-to-hydrogen molar ratio (CZH) of the hydrocarbon oil referred to here is measured by a method based on AS TMD 5291-01 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry). Value.
  • AS TMD 5291-01 Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry.
  • the amount of hydrogen generated per weight is large, the amount of hydrogen generated per carbon dioxide is large, the THC in the exhaust gas is small, From the viewpoint that the system startup time is short, the deterioration of the reforming catalyst is small, and the initial performance can be maintained for a long time, it is preferably 20% by volume or less, more preferably 8% by volume or less.
  • the amount of hydrogen generated per weight is large, the amount of hydrogen generated per carbon dioxide is large, and the THC in the exhaust gas is small.
  • 5% by volume or less more preferably 1% by volume or less, from the viewpoint that the system startup time is short, the deterioration of the reforming catalyst is small, the initial performance can be maintained for a long time, and the storage stability is good.
  • 0.5 vol% or less is more preferable, and 0.1 vol% or less is most preferable.
  • the hydrogen content (total amount of the saturated and naphthene components) of the saturated carbon in the hydrocarbon oil of the present invention is no restriction on the hydrogen content (total amount of the saturated and naphthene components) of the saturated carbon in the hydrocarbon oil of the present invention, but the amount of hydrogen generated per weight is large, and the amount of hydrogen per carbon dioxide generated is large. 80% by volume or more is preferable, and 90% by volume or more is more preferable, in view of the large amount of generated gas, the small amount of THC in outgassing, and the short system startup time.
  • the above-mentioned aromatic content, olefin content, and saturated hydrocarbon content are the values measured by the fluorescent indicator adsorption method of JISK 2536 “Petroleum products, one-charcoal and hydrogen-type test method”. It is. There is no particular limitation on the method of producing the hydrocarbon and the process used in the present invention. However, the following hydrocarbon oils (1) and (2) are desirable, and the hydrocarbon oil (1) is more desirable. .
  • Atmospheric distillation unit for crude oil hydrodesulfurized kerosene obtained by hydrorefining the straight-run kerosene obtained, and heavy straight-run oil and residual oil obtained from the atmospheric distillation unit
  • a hydrocarbon oil consisting of a base material is not particularly limited as long as the hydrocarbon oil having the predetermined properties of the present invention can be obtained, but the reaction temperature is 100 to 350 ° C in the presence of a hydrogenation catalyst. , 7) ⁇ containing pressure l ⁇ 10MP a, LHS V0. l ⁇ 10 h one 1, and is preferably a hydrogen oil ratio 10 ⁇ 500 NLZL.
  • the hydrogenation catalyst is not particularly limited, and examples thereof include a catalyst in which a hydrogenation active metal is supported on a porous carrier.
  • a porous carrier an inorganic oxide is preferably used.
  • the inorganic oxide include alumina, titania, zirconia, polya, silica, and zeolite. Of these, titer, zirconia, and poly A material composed of at least one of alumina, silica, and zeolite and alumina is preferably used.
  • the active metal of the catalyst used in the hydrotreating is preferably at least one metal selected from Group 6 and Group 8 metals of the periodic table. More preferably, it is at least one selected from Ru, Rd, Ir, Pd, Pt, Ni, Co, Mo and W.
  • the active metal may be a combination of these metals, for example, Pt-Pd, Pt-Rh, Pt-Ru, Ir-Pd, Ir-Rh, Ir-Ru, Pt -Pd-Rh, Pt-Rh-; Ru, Ir-Pd-Rh, Ir-Rh-Ru, Co-Mo, Ni-Mo, Ni-W, etc. be able to.
  • the hydrocarbon oil of the present invention is used as a raw material for hydrogen production and as a fuel for a burner in a hydrogen production system using a burner as a main heat source.
  • reforming can be performed at a relatively low temperature in a hydrogen production system, and a reduction in the load on a panner and a reduction in NOx emissions can be achieved.
  • Examples of the burner used in the hydrogen production system of the present invention include a spray burner and an evaporative burner. In addition to these burners, surface burners using catalytic combustion that reduces NOx emissions can also be used.
  • Examples of hydrogen production systems with burners include (1) a system consisting of a desulfurizer, a reformer, and a carbon monoxide purifier, and (2) a desulfurizer * a reformer's desulfurizer (resulfurization) ⁇ monoxide.
  • Combinations of hydrogen production systems with burners are not particularly limited to the above-mentioned systems (1) to (3).
  • the desulfurizer is a device that removes the sulfur content in the hydrocarbon oil.
  • a desulfurizer that can be used in the hydrogen production system of the present invention for example, a copper-zinc system, a nickel system, or the like is used as a catalyst.
  • the reverse conditions include a desulfurizer for performing a desulfurization treatment at a reaction temperature of 20 to 300 ° C. and a LHSV of 0.1 to 10 h—reaction pressure of less than IMPa.
  • the reformer is a device for reforming hydrocarbon oil to obtain hydrogen, In order to maximize the performance of the reformer with hydrogen oil, it is preferable to use the following reformer.
  • reaction conditions are as follows: reaction temperature 400 to 1 000 ° C, water and carbonization.
  • a steam reforming reformer that obtains a product containing hydrogen as a main component by reacting a hydrogen oil mixture ratio (SZC) at 1 to 5 mol Z mol.
  • SZC hydrocarbon oil
  • O / C oxygen and hydrocarbon oil
  • oxygen mixture ratio (o 2 / c) of the hydrocarbon oil odor, 0 2 moles of oxygen (molecules), C is the carbon in the hydrocarbon oil (molecules) It means the number of moles. Therefore, the method of obtaining the “mixing ratio of oxygen and charcoal hydrogen oil (o 2 / c)” will be described with an example.
  • the carbon monoxide purifier removes carbon monoxide, which is contained in the gas generated by the reformer and is a catalyst poison for the fuel cell. Examples of the carbon monoxide purifier that can be used in the hydrogen production system of the present invention include the following.
  • the reformed gas obtained from the reformer is mixed with steam that has been heated and vaporized.
  • reaction temperature 200 ⁇ 500 ° C reaction temperature 200 ⁇ 500 ° C
  • gas space velocity 1 000 ⁇ 10 OQ 0 ⁇ reaction pressure less than IMPa reaction pressure less than IMPa
  • the hydrocarbon oil of the present invention can be reformed at a relatively low temperature as a raw material for hydrogen production in a hydrogen production system. It can also be used as a fuel for a hydrogen production system. Can be reduced. For this reason, the hydrogen production system does not need to have two separate tanks, one for the hydrogen production and the other for the burner fuel tank, which is excellent in system space efficiency.
  • hydrocarbon oils (hydrocarbon oils A to C) of the present invention and the comparative hydrocarbon oils (hydrocarbon oils D and E) were produced by the methods described below.
  • Table 1 shows their general properties.
  • Hydrocarbon oil A A hydrocarbon mixture of a kerosene fraction having a sulfur content of 300 mass ppm or less is used as a raw material oil. Of the hydrocarbon oil obtained through the hydrodesulfurization process, 1 The fraction at 50 ° C to 195 ° C was separated to be hydrocarbon oil A.
  • Hydrocarbon oil B A kerosene fraction obtained by subjecting a Middle Eastern crude to a normal pressure distillation unit is highly hydrorefined, and then subjected to a distillation operation to separate a fraction at 150 ° C to 200 ° C and carbonize. Hydrogen oil B.
  • Hydrocarbon oil C A hydrocarbon mixture of a kerosene fraction having a sulfur content of 300 mass ppm or less is used as a feed oil, and a hydrocarbon oil obtained through a 7K hydrodesulfurization process is subjected to a distillation operation to obtain a hydrocarbon oil. After separating and removing the fraction at 50 ° C to 200 ° C, the fraction at 190 ° C to 230 ° C is separated by distillation from the hydrocarbon oil from which linear saturated hydrocarbons have been extracted and separated with zeolite. It was named hydrocarbon oil C.
  • Hydrocarbon oil D A hydrocarbon mixture of a kerosene fraction with a sulfur content of 300 mass ppm or less is used as a feed oil, and the hydrocarbon oil obtained through the sulphating desulfurization process is subjected to a distillation operation to 150 °. After separating and removing the distillate at C to 200 ° C, the fraction at 245 ° C to 270 ° C is separated by distillation from the hydrocarbon oil from which the linear saturated hydrocarbon was extracted and separated by Zeolite, and carbonized. Hydrogen oil D.
  • Hydrocarbon oil E Middle Eastern crude oil is subjected to atmospheric distillation to obtain a kerosene fraction, which is highly hydrorefined and then separated by distillation to remove hydrocarbon at 150 ° C to 265 ° C. Oil E.
  • Density refers to the density measured by JIS K 2249 “Density test method for crude oil and petroleum products and density / mass / volume conversion table”.
  • Flash point refers to the flash point measured by JIS K 2265 “Crude oil and petroleum products-Flash point test method”.
  • distillation properties are values measured by JIS K 2254 “Petroleum product monodistillation test method-atmospheric pressure distillation test method”.
  • the sulfur content refers to the sulfur content measured by ASTM D4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ”.
  • HZC is based on ASTD 5291-01 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry) This refers to the molar ratio of hydrogen element to carbon element distributed from U.
  • Saeport color refers to the Saybolt color measured by the Saeport color test method in JIS K 2580 “Petroleum Product One Color Test Method”.
  • Copper plate corrosion refers to the copper plate corrosion measured by JIS K25 13 “Petroleum products-Copper plate corrosion test method”.
  • the component ratio of hydrocarbon carbon atoms 1 3, GC-FID is the measured values with the (mass 0/0), Kiyabirari Ichiriki ram methyl silicon in column (ULTRAA LLOY- l, 0 25 mm ⁇ 30 m), a carrier for carrier gas, and a hydrogen ion detector (FID) for detector, carrier gas flow rate 1.
  • the aromatics, olefins, and saturated components are the aromatic content, olefin content, and saturated hydrocarbon content measured by the fluorescent indicator adsorption method of JIS K25 36 “Petroleum products-Hydrocarbon type test method”. (Including naphthenic hydrocarbons) Next, each of the obtained hydrocarbon oils was evaluated using the following two hydrocarbon oil reforming systems.
  • Hydrogen oil and water desulfurized to a sulfur content of less than 0.1 mass ppm by a desulfurizer filled with a nickel-based adsorptive desulfurization catalyst are heated to vaporize, respectively, charged with a noble metal catalyst, and maintained at a predetermined temperature.
  • the reformer was led to generate a reformed gas rich in hydrogen.
  • the temperature of the reformer was set to the lowest temperature at which the reforming was completely performed (the lowest temperature at which the reformed gas did not contain hydrocarbon oil).
  • Carbon monoxide purifiers are divided into two stages: front and rear. In the first stage, the reformed gas is passed through a reactor filled with a zinc-based catalyst together with water vapor, and in the second stage, the reformed gas is passed through a reactor filled with a noble metal catalyst together with air, so that the reformed gas is The carbon monoxide therein was converted to carbon dioxide. At the outlet of the carbon monoxide purifier, the hydrogen amount becomes 10 L / min, and the CO concentration becomes 10 vol.
  • the operating conditions were set as follows.
  • the heat source required for the hydrocarbon oil and water vaporizer, desulfurizer, reformer and carbon monoxide purifier is the hydrocarbon oil of the present invention (hydrocarbon oils A to C) and the comparative hydrocarbon oil.
  • a mist type burner using (hydrocarbon oils D and E) was installed in each unit. The burner air volume was set so that the oxygen concentration in the flue gas was 8% by volume.
  • the operating conditions of each reactor are as follows.
  • Figure 1 shows the flow chart for evaluating the steam reforming reforming system.
  • Hydrocarbon oil and water desulfurized to a sulfur content of less than 0.1 mass ppm with a desulfurizer filled with a nickel-based adsorptive desulfurization catalyst were vaporized by heating, filled with precious metal-based catalyst together with preheated air, and maintained at a predetermined temperature. It was led to a reformer to generate reformed gas rich in hydrogen. The temperature of the reformer was set to the lowest temperature at which the reforming was completely performed (the lowest temperature at which the reformed gas did not contain hydrocarbon oil).
  • Carbon monoxide purifiers are divided into two stages: front and rear. In the first stage, the reformed gas is passed through a reactor filled with a copper-zinc catalyst together with water vapor, and in the second stage, the reformed gas is passed through a reactor filled with a noble metal catalyst together with air, thereby forming a reformed gas. The carbon monoxide therein was converted to carbon dioxide. The operating conditions were set so that the carbon monoxide purifier outlet 4 trowel hydrogen amount was 10 LZmin, and the CO concentration was 10 volume ppm.
  • the heat source required for the hydrocarbon oil and water vaporizer, desulfurizer, reformer and carbon monoxide purifier is the hydrocarbon oil of the present invention (hydrocarbon oils A to C) and the carbon dioxide for comparison.
  • Spray burners using hydrogen oil are installed in each unit. It was.
  • the burner air volume is the oxygen concentration in the combustion exhaust gas: 8 volumes. /. Was set to be.
  • the operating conditions of each reactor are as follows.
  • Figure 2 shows the evaluation flow of the autothermal reforming type reforming system.
  • Table 2 shows the above evaluation results.
  • the increase / decrease comparison between the two reforming systems was performed by comparing the NOx emission of Comparative Example 1 with 100.0.
  • the increase / decrease comparison is a relative value when the NOx value of Comparative Example 1 is set to 100.0 in each reforming system evaluation.
  • Figure 1 is an evaluation flowchart for a steam reforming reformer
  • Figure 2 is an evaluation flowchart for the autothermal reformer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fuel Cell (AREA)

Abstract

A hydrocarbon oil which exhibits a flash point of 40°C or higher, an initial boiling point of 145 to 195°C, 95 vol % distillation temperature of 220°C or lower, a Saybolt color of +25 or more, a copper-strip corrosion of 1 or less and a sulfur content of 0.5 mass ppm or less, and has a proportion of the hydrocarbons having 13 carbon atoms of 25 mass % or less and a mole ratio of hydrogen to carbon of 1.95 or more. The hydrocarbon oil can be reformed at a relatively low temperature, as a raw material for producing hydrogen in a hydrogen production system using a burner as a heat source, and further, when used as a fuel for a burner in a hydrogen production system, can achieve the reduction of a load to the burner and the decrease of the discharge of NOx.

Description

水素製造システムの水素製造用炭化水素油およびパーナ一用燃料 [技術分野]  Hydrocarbon oils for hydrogen production and fuels for PAHs in hydrogen production systems
本発明は、 熱供給源として主にバーナーを用いる水素製造システムにおける水 素製造用炭化水素油および水素製造システムに用いられるパーナ一用燃枓に関す る。  TECHNICAL FIELD The present invention relates to a hydrocarbon oil for hydrogen production in a hydrogen production system mainly using a burner as a heat supply source, and a fuel for a Pana used in a hydrogen production system.
 Light
[背景技術] 田 [Background Art]
近年、 将来の地球環境に対する危機感の高まりから、 地球にやさしいエネルギ 一供給システムの開発が求められ、 エネルギー効率が高いこと及ぴ排出ガスがク リーンである点から、 燃料電池、 水素エンジン等の水素を燃料とするシス テムが 脚光を浴ぴている。 なかでも、 燃料電池への水素の供給方法としては、 圧縮ある いは液化といった形で直接水素を供給する方法の他、メタノール等の含酸秦燃料、 及びナフサ、 灯油等の炭化水素の改質による供給方法が知られている (例えば、 非特許文献 1参照。)。 このうち、 直接水素を供給する方法は、 そのまま燃料とし て利用できる利点はあるが、 常温で気体のため貯蔵性おょぴ車両等に用いた場合 の搭載性に問題がある。 また、 メタノールはシステム内での改質による水素の製 造が比較的容易であるが、 重量当たりのエネルギー効率が低く、 有毒かつ腐食性 を持っために、 取り扱い性、 貯蔵性にも難点がある。 一方、 ナフサ、 灯油等の炭 化水素の改質による水素の製造は、 既存の燃料供給インフラが使用できる こと、 トータルでのエネルギー効率が高いこと等により注目を集めている。 こう した炭 化水素は水素発生のために改質工程を伴う水素製造システムに通される。 水素製 造システムでは、 炭化水素の改質工程にて化学反応を伴うために、 その反応熱源 が必要である。 燃料電池用水素製造システムの場合、 特に炭化水素よりの水素製 造システム用の熱源としては、 電気の使用を極力低くし、 炭化水素化合物を燃料 としたパーナ一による熱を主に利用することが、 水素製造システムの効率を考え た場合好ましい。 しかしながら、 一般的な炭化水素化合物をバーナー熱派に使用 した場合、 バーナーより排出される N O X量は、 かならずしも十分に低く なく、 地球環境への負荷低減を目指した燃料電池システム用としては好ましくない場合 があった。 また、 水素製造用炭化水素とパーナ一用燃料のためのタンクを別々に 水素製造システム内こ持つ必要があり、 システムスペース上の課題もあった。 In recent years, the growing sense of danger to the global environment in the future has demanded the development of an energy-friendly energy supply system that is friendly to the earth.Because energy efficiency is high and exhaust gas is clean, fuel cells, hydrogen engines, etc. Systems using hydrogen as fuel are in the limelight. Among the methods for supplying hydrogen to fuel cells are methods for directly supplying hydrogen in the form of compression or liquefaction, as well as reforming of acid-containing cinnabar fuel such as methanol and hydrocarbons such as naphtha and kerosene. Is known (for example, see Non-Patent Document 1). Among them, the method of directly supplying hydrogen has the advantage that it can be used as fuel as it is, but it has a problem in its mountability when used in storage vehicles because it is a gas at room temperature. In addition, methanol is relatively easy to produce hydrogen by reforming in the system, but has low energy efficiency per weight, is toxic and corrosive, and has difficulties in handling and storage. . On the other hand, hydrogen production by reforming hydrocarbons such as naphtha and kerosene has attracted attention because of the availability of the existing fuel supply infrastructure and high total energy efficiency. Such hydrocarbons are passed through a hydrogen production system with a reforming process to generate hydrogen. In a hydrogen production system, a reaction heat source is required because a chemical reaction is involved in the hydrocarbon reforming process. In the case of hydrogen production systems for fuel cells, in particular, as a heat source for hydrogen production systems from hydrocarbons, the use of electricity should be as low as possible, and the heat mainly from hydrocarbon-fueled fuel burners should be used. It is preferable when considering the efficiency of the hydrogen production system. However, when a general hydrocarbon compound is used for the burner fever, the amount of NOX emitted from the burner is not always low enough. In some cases, it was not suitable for use in fuel cell systems aimed at reducing the burden on the global environment. In addition, it was necessary to have separate tanks for the hydrocarbons for hydrogen production and fuel for the Pana in the hydrogen production system.
(非特許文献 1 ) 池松正樹, 「エンジンテクノロジー」, 山海堂社, 2 0 0 1年  (Non-Patent Document 1) Masaki Ikematsu, "Engine Technology", Sankaidosha, 2001
1月, 第 3卷, 第 1号, p . 3 5  January, Volume 3, Issue 1, p. 35
[発明の開示] [Disclosure of the Invention]
本発明は、 このような状況に鑑み、 水素製造システムにおける水素製造用原料 として比較的低温で改質でき、 かつ主な熱源がバーナーである水素製造システム のパーナ一用燃料として、 バーナー負荷の低減おょぴ N O X排出量を低減するこ とができる炭化水素油を提供することを目的とする。  In view of this situation, the present invention can reduce the burner load as a fuel for a hydrogen production system that can be reformed at a relatively low temperature as a raw material for hydrogen production in a hydrogen production system and whose main heat source is a burner. The aim is to provide a hydrocarbon oil that can reduce NOX emissions.
本発明者らは鋭意研究した結果、 特定性状を有する炭化水素油が前記課題を解 決できることを見いブ し、 本発明を完成したものである。  As a result of intensive studies, the present inventors have found that hydrocarbon oils having specific properties can solve the above problems, and have completed the present invention.
すなわち、 本発明は、 引火点が 4 0 °C以上、 初留点が 1 4 5 °C以上 1 9 5 °C以 下、 9 5容量%留出温度が 2 2 0 °C以下、 セーボルト色 + 2 5以上、 銅板腐食 1 以下、 硫黄含有量が◦. 5質量 p p m以下、 炭素数 1 3の炭化水素の成分割合が 2 5質量%以下、 水素元素と炭素元素のモル比が 1 . 9 5以上であることを特徴 とする熱供給源として主にバーナーを用いる水素製造システムの水素製造用炭化 水素油に関する。  That is, the present invention has a flash point of 40 ° C. or higher, an initial boiling point of 144 ° C. or higher and 195 ° C. or lower, a 95% by volume distillation temperature of 220 ° C. or lower, and a Saybolt color. + 25 or more, copper plate corrosion 1 or less, sulfur content ◦ 5 mass ppm or less, component ratio of hydrocarbons with 13 carbon atoms 25 mass% or less, molar ratio of hydrogen element to carbon element 1.9 The present invention relates to a hydrocarbon oil for hydrogen production of a hydrogen production system mainly using a burner as a heat supply source, characterized in that the heat source is 5 or more.
また、 本発明の水素製造用炭化水素油は、 さらに水素製造システムの熱供給源 であるバーナー用燃料として使用することが望ましい。 以下、 本発明にっレ、て詳述する。  In addition, the hydrocarbon oil for hydrogen production of the present invention is desirably used as a fuel for a burner, which is a heat supply source of a hydrogen production system. Hereinafter, the present invention will be described in detail.
本発明の水素製造システムに用いられる水素製造用炭化水素油 (以下、 本発明 の炭化水素油ともいう。) の引火点は、 引火性、 取扱い易さの観点から、 4 0 °C以 上であることが必要である。  The hydrocarbon oil for hydrogen production used in the hydrogen production system of the present invention (hereinafter also referred to as the hydrocarbon oil of the present invention) has a flash point of 40 ° C or higher from the viewpoint of flammability and ease of handling. It is necessary to be.
—方、 バーナー負荷の低減おょぴ N O X排出量低減の観点から、 7 0 °C以下で あることが好ましく、 5 0 以下がさらに好ましく、 4 5 °C以下が最も好ましい。 なお、 ここでいう引火点は、 J I S K 2 2 6 5 「原油及び石油製品一引火点 試験方法」 によって則定される値である。 本発明の炭化水素油の初留点 (I B P) の下限は、 引火性、 蒸発ガス (THC) の増加、 取り扱い性の観点力 ら、 1 4 5°C以上であることが.必要である。 一方、 上限はパーナ一負荷の低減おょぴ NO X排出量低減の観点から、 1 9 5°C以下で あることが必要であり、 18 0°C以下が好ましく、 1 6 5°C以下がより好ましく、 1 55 °C以下がさらに好ましい。 On the other hand, from the viewpoint of reducing the burner load and reducing the NOx emission, the temperature is preferably 70 ° C or lower, more preferably 50 ° C or lower, and most preferably 45 ° C or lower. The flash point referred to here is a value prescribed by JISK 2265 “Crude oil and petroleum products-Flash point test method”. It is necessary that the lower limit of the initial boiling point (IBP) of the hydrocarbon oil of the present invention is not less than 145 ° C from the viewpoint of flammability, increase in evaporative gas (THC), and handleability. On the other hand, the upper limit is required to be 195 ° C or less, preferably 180 ° C or less, and more preferably 165 ° C or less from the viewpoint of reducing the load on the burner and reducing NOx emissions. The temperature is more preferably, and more preferably 155 ° C or lower.
本発明の炭化水素油の 95容量%留出温度 (T 95) の上限は、 パーナ一負荷 の低減および NO X排出量を低減の観点から、 220°C以下であることが必要で あり、 2 10°C以下が好ましく、 200°C以下がさらに好ましく、 1 90°C以下 が最も好ましい。 一方、 重量あたりの水素発生量、 二酸化炭素発生量あたりの水 素発生量の観点から、 1 70°C以上であることが好ましく、 1 80°C以上がさら に好ましい。  The upper limit of the 95% by volume distilling temperature (T95) of the hydrocarbon oil of the present invention must be 220 ° C or less from the viewpoint of reducing the load on the pliers and reducing NOx emissions. It is preferably at most 10 ° C, more preferably at most 200 ° C, most preferably at most 190 ° C. On the other hand, from the viewpoint of the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated, the temperature is preferably 170 ° C or higher, more preferably 180 ° C or higher.
また、 本発明の炭化水素油の I B P、 T 9 5以外の蒸留性状は特に制限はない が、 次のとおりであることが好ましい。  The distillation properties of the hydrocarbon oil of the present invention other than IBP and T95 are not particularly limited, but are preferably as follows.
1 0容量%留出温度 (T 1 0) は 1 45°C以上 2 1 0°C以下が好ましい。 引火 性、 蒸発ガス (THC) 発生の観点から、 1 50°C以上がより好ましい。 一方、 水素製造システムの始動時 Γ 悪化の理由から、 1 90°C以下がより好ましく、 1 60 °C以下がさらに好ましい。  The 10% by volume distillation temperature (T10) is preferably from 145 ° C to 210 ° C. From the viewpoint of flammability and generation of evaporative gas (THC), the temperature is more preferably 150 ° C or higher. On the other hand, the temperature is preferably 190 ° C. or lower, more preferably 160 ° C. or lower, for the reason that the hydrogen production system is deteriorated at the time of startup.
50容量%留出温度 (T 5 0) は 1 50°C以上 2 1 0°C以下が好ましい。 重量 あたりの水素発生量、二酸化炭素発生量あたりの水素発生量の観点から、 1 60°C 以上がより好ましく、 1 6 5°C以上がさらに好ましい。 一方、 バーナー負荷の低 減おょぴ NO X排出量低減の観点から、 1 90°C以下がより好ましく、 1 80°C 以下がさらに好ましく、 1 7 0°C以下が最も好ましい。  The 50% by volume distillation temperature (T50) is preferably from 150 ° C to 210 ° C. From the viewpoints of the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated, the temperature is more preferably 160 ° C or higher, and even more preferably 165 ° C or higher. On the other hand, from the viewpoint of reducing the burner load and reducing NOx emissions, the temperature is preferably 190 ° C or lower, more preferably 180 ° C or lower, and most preferably 170 ° C or lower.
90容量%留出温度 (T 9 0) は 1 6 0°C以上 2 1 5 °C以下が好ましい。 重量 あたりの水素発生量、二酸化炭素発生量あたりの水素発生量の観点から、 1 70°C 以上がより好ましく、 1 75°C以上がさらに好ましい。 一方、 バーナー負荷の低 減おょぴ NO X排出量低減の観点から、 2 1 0°C以下がより好ましく、 200°C 以下がさらに好ましく、 1 9 0°C以下が最も好ましい。  The 90% by volume distillation temperature (T90) is preferably from 160 ° C to 215 ° C. From the viewpoint of the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated, the temperature is more preferably 170 ° C or higher, and further preferably 175 ° C or higher. On the other hand, from the viewpoint of reducing the burner load and reducing NOx emissions, the temperature is preferably 210 ° C or lower, more preferably 200 ° C or lower, and most preferably 190 ° C or lower.
終点 (EP) は 1 70°C以上 230°C以下が好ましい。 重量あたりの水素発生 量、 二酸化炭素発生量あたりの水素発生量の観点から、 1 80°C以上がより好ま しく、 1 90で以上がさらに好ましい。 一方、 排出ガス中の THC増加の観点か ら、 220°C以下がより好ましく、 200°C以下がさらに好ましい。 The end point (EP) is preferably from 170 ° C to 230 ° C. From the viewpoint of the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated, the temperature is preferably 180 ° C or higher, more preferably 190 ° C or higher. On the other hand, is it possible to increase THC in exhaust gas? Thus, the temperature is more preferably 220 ° C or lower, and further preferably 200 ° C or lower.
なお、 ここでいう Ι Β Ρ、 Τ 1 0、 Τ 50、 Τ 90、 Τ 9 5、. 及ぴ ΕΡは、 J I S K2254 「石油製品一蒸留試験方法一常圧法蒸留試験方法」 によって測 定される値である。  い う Β Ρ, Τ10, Τ50, Τ90, 、 95,. And い う are measured in accordance with JIS K2254 “Petroleum product one distillation test method-normal pressure distillation test method”. Value.
本発明の炭化水素油のセーボノレト色は、 システムの耐久性の観点から + 25以 上であることが必要であり、 + 2 9以上が好ましく、 + 30以上がより好ましい。 ここでいぅセーボルト色とは、 J I S K 2580 「石油製品一色試験方法」 中のセーポルト色試験方法で測定される値である。  The savonoleto color of the hydrocarbon oil of the present invention needs to be +25 or more, preferably +29 or more, more preferably +30 or more from the viewpoint of system durability. Here, the Saybolt color is a value measured by the Saeport color test method in JIS K 2580 “Petroleum product one-color test method”.
本発明の炭化水素油の銅板腐食は、 改質部の耐久性確保の観点から、 1以下で あることが必要であり、 l aが好ましい。  The copper plate corrosion of the hydrocarbon oil of the present invention needs to be 1 or less from the viewpoint of ensuring the durability of the reformed portion, and la is preferred.
こ でいう銅板腐食とは、 J I S K2 5 1 3 「石油製品一銅板腐食試験方法」 で測定される値である。  The copper plate corrosion here is the value measured by JIS K2513 “Petroleum product-copper plate corrosion test method”.
本発明の炭化水素油の硫黄含有量は、 脱硫率、 脱硫触媒の耐久性、 改質触媒の 耐久性、 改質反応性の低下、 二酸化炭素発生量当り水素発生量の観点から 0. 5 質量 p pm以下であることが必要であり、 0. 3質量 p pm以下が好ましく、 0. 2質量 p pm以下がより好ましい。  The sulfur content of the hydrocarbon oil of the present invention is 0.5 mass from the viewpoint of the desulfurization rate, the durability of the desulfurization catalyst, the durability of the reforming catalyst, the lowering of the reforming reactivity, and the amount of hydrogen generated per carbon dioxide generated. It is required to be not more than p pm, preferably not more than 0.3 mass p pm, more preferably not more than 0.2 mass p pm.
ここで、硫黄含有量とは、 AS TM D4045-96 「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ により測定される値である。  Here, the sulfur content is a value measured by AS ™ D4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ”.
本発明の炭化水素油の炭素数 1 3の炭化水素の成分割合は、脱硫触媒の耐久性、 改質触媒の耐久性、 改質反応"生の低下の観点から、 2 5質量%以下であることが 必要であり、 1 0質量%以下が好ましく、 5質量%以下がより好ましく、 1質量% 以下が最も好ましい。  The component ratio of the hydrocarbon having 13 carbon atoms in the hydrocarbon oil of the present invention is 25% by mass or less from the viewpoints of the durability of the desulfurization catalyst, the durability of the reforming catalyst, and the reduction of the "regeneration reaction". It is necessary that the content be 10% by mass or less, more preferably 5% by mass or less, and most preferably 1% by mass or less.
ここで、 炭素数 1 3の炭化水素の成分割合とは、 GC— F I Dを用いて測定さ れる値 (質量0 /0) である。 すなわち、 カラムにはメチルシリコンのキヤビラリ一 カラム (ULTRAAL LOY— 1、 0. 2 5 mm φ、 30m), キヤリァガスに はヘリウムを、 検出器には水素イオン検出器 (F I D) を用い、 キャリアガス流 量 1. 0 m L/m i n、 分割比 1 : 7 9、 試料注入温度 280 °C、 カラム昇温条 件 50 °C ( 5分) → (5 °C/m i n) →280°C (1 0分)、 検出器温度 300 °C の条件で測定されたクロマトより、 炭素数 1 3の炭化水素の面積積分を行った値 である。 Herein, the component ratio of the hydrocarbon having 1 3 carbon atoms, is the value (mass 0/0) which is determined using GC-FID. In other words, a methyl silicon capillary column (ULTRAAL LOY-1, 0.25 mm φ, 30 m) is used as the column, helium is used as the carrier gas, and a hydrogen ion detector (FID) is used as the detector. Volume 1.0 ml / min, split ratio 1:79, sample injection temperature 280 ° C, column heating condition 50 ° C (5 min) → (5 ° C / min) → 280 ° C (10 ° C) Min), the value obtained by integrating the area of hydrocarbons with 13 carbon atoms from the chromatogram measured at the detector temperature of 300 ° C It is.
本発明の炭化水素油の水素元素と炭素元素のモル比 (HZ C ) は、 一酸化炭素 の発生量の少なさ、 水素発生効率の高さの観点から、 1 . 9 5以上であることが 必要であり、 2 . 0以上が好ましい。  The molar ratio (HZ C) between the hydrogen element and the carbon element of the hydrocarbon oil of the present invention may be 1.95 or more from the viewpoints of low carbon monoxide generation and high hydrogen generation efficiency. Necessary, and preferably 2.0 or more.
なお、 ここでいう炭化水素油の炭素と水素のモル比 (C ZH) は、 A S TMD 5 2 9 1 — 0 1 ( Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry )に準拠した方法により測定される値である。 本発明の炭化水素油の芳香族含有量については何ら制限はないが、 重量当りの 水素発生量多いこと、 二酸化炭素発生量当りの水素発生量が多いこと、 排出ガス 中の T H Cが少ないこと、 システム起動時間が短いこと、 改質触媒の劣化が小さ く初期性能が長時間持続できることなどの点から、 2 0容量%以下が好ましく、 8容量%以下がさらに好ましい。  The carbon-to-hydrogen molar ratio (CZH) of the hydrocarbon oil referred to here is measured by a method based on AS TMD 5291-01 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry). Value. There is no restriction on the aromatic content of the hydrocarbon oil of the present invention, but the amount of hydrogen generated per weight is large, the amount of hydrogen generated per carbon dioxide is large, the THC in the exhaust gas is small, From the viewpoint that the system startup time is short, the deterioration of the reforming catalyst is small, and the initial performance can be maintained for a long time, it is preferably 20% by volume or less, more preferably 8% by volume or less.
本発明の炭化水素油のォレフィン含有量については何ら制限はないが、 重量当 りの水素発生量が多いこと、 二酸化炭素発生量当りの水素発生量が多いこと、 排 出ガス中の T H Cが少ないこと、 システム起動時間が短いこと、 改質触媒の劣化 が小さく初期性能が長時間持続できること、貯蔵安定性が良いことなどの点から、 5容量%以下が好ましく、 1容量%以下がより好ましく、 0 . 5容量%以下がさ らに好ましく、 0 . 1容量%以 が最も好ましい。  There is no limitation on the olefin content of the hydrocarbon oil of the present invention, but the amount of hydrogen generated per weight is large, the amount of hydrogen generated per carbon dioxide is large, and the THC in the exhaust gas is small. 5% by volume or less, more preferably 1% by volume or less, from the viewpoint that the system startup time is short, the deterioration of the reforming catalyst is small, the initial performance can be maintained for a long time, and the storage stability is good. 0.5 vol% or less is more preferable, and 0.1 vol% or less is most preferable.
本発明の炭化水素油の飽和炭 ί匕水素含有量 (飽和分とナフテン分の総量) につ いては何ら制限はないが、 重量当りの水素発生量が多いこと、 二酸化炭素発生量 当りの水素発生量が多いこと、 出ガス中の T H Cが少ないこと、 システム起動 時間が短いことなどの点から、 8 0容量%以上が好ましく、 9 0容量%以上がよ り好ましい。  There is no restriction on the hydrogen content (total amount of the saturated and naphthene components) of the saturated carbon in the hydrocarbon oil of the present invention, but the amount of hydrogen generated per weight is large, and the amount of hydrogen per carbon dioxide generated is large. 80% by volume or more is preferable, and 90% by volume or more is more preferable, in view of the large amount of generated gas, the small amount of THC in outgassing, and the short system startup time.
なお、 上述の芳香族含有量、 才レフィン含有量、 飽和炭化水素含有量は、 J I S K 2 5 3 6 「石油製品一炭 ί匕水素タイプ試験方法」 の蛍光指示薬吸着法によ り測定される値である。 本発明で使用される炭化水素、?由の製造方法について何ら制限はないが、 以下に 示す (1 ) および (2 ) の炭化フ k素油が望ましく、 (1 ) の炭化水素油がより望ま しい。 (1):初留点が 140〜180°C、 90容量%留出温度が 200〜270、 芳 香族含有量が 20容量%以下、 直鎖飽和炭化水素含有量が 25質量%以上、 炭素 数 10〜 1 5の直鎖飽和炭化水素含有量が 20質量%以上、 硫黄含有量が 300 質量 p pm以下である炭化水素混合物を原料油として、 反応温度 250〜3 1 0°C、 水素圧力 5〜: L OMP a、 LH S V 0. 5〜3. 0 h_1、 水素ノ炭化水素 容量比 0. 1 5〜0. 6の条件で、 N i— W、 N i—Mo、 C o—Mo、 C o— W、 N i一 C o— Moのいずれかを含有する触媒により水素化脱硫処理をした炭 化水素混合物から、 蒸留操作により得られる 140°C〜230°Cの基材を主成分 とする炭化水素油。 In addition, the above-mentioned aromatic content, olefin content, and saturated hydrocarbon content are the values measured by the fluorescent indicator adsorption method of JISK 2536 “Petroleum products, one-charcoal and hydrogen-type test method”. It is. There is no particular limitation on the method of producing the hydrocarbon and the process used in the present invention. However, the following hydrocarbon oils (1) and (2) are desirable, and the hydrocarbon oil (1) is more desirable. . (1): Initial boiling point 140-180 ° C, 90% by volume Distillation temperature 200-270, aromatics content 20% by volume or less, linear saturated hydrocarbon content 25% by mass or more, carbon Using a hydrocarbon mixture having a linear saturated hydrocarbon content of several tens to fifteen to 20 mass% or more and a sulfur content of 300 mass ppm or less as a feed oil, a reaction temperature of 250 to 310 ° C and a hydrogen pressure of 5 to: L OMP a, LH SV 0.5 to 3.0 h _1 , Hydrogen hydrocarbons Capacity ratio 0.1 5 to 0.6, Ni—W, Ni—Mo, Co— From a hydrocarbon mixture that has been hydrodesulfurized with a catalyst containing any of Mo, Co—W, and Ni—Co—Mo, a substrate at 140 ° C. to 230 ° C. obtained by distillation is used. Hydrocarbon oil as the main component.
(2):原油の常圧蒸留装置;^ら得られる直留灯油を水素化精製して得られる水 素化脱硫灯油、 常圧蒸留装置力 ら得られる直留重質油や残查油を減圧蒸留装置で 処理して得られる減圧軽油留分を水素化精製して得られる水素化精製灯油、 減圧 軽油留分を水素化分解した水素化分解灯油、 減圧軽油留分又は脱硫重油を接触分 解して得られる接触分解灯油、 直留重質油を熱分解して得られる熱分解灯油、 熱 分解灯油を水素化精製して得られる水素化脱硫灯油、 残查油を水素化精製して得 られる水素化脱硫灯油、 直留灯油及び Z又は水素化精製灯油を水素化触媒存在下 で深度水素化処理することによって得られる超低硫黄灯油、 直留灯油又は水素化 脱硫灯油又は水素化精製灯油の抽出によりノルマルパラフィン分を除去した残分 である脱ノルマルパラフィン灯油、 天然ガス、 石炭、 ァスフアルト等を一酸化炭 素と水素に分解した後に F_T (F i s c h e r -T r o p s c h) 合成で得ら れる合成油の灯油留分及び/又はその水素化分解物等の基材からなる炭化水素油。 上記基材の水素化精製条件は、 本発明の所定の性状を有する炭化水素油を得る ことができる限りにおいて特に限定されるものではないが、 水素化触媒存在下で 反応温度 100〜 350°C、 7) ^素圧力 l〜10MP a、 LHS V0. l〜10 h 一1、 水素 油比 10〜500 NLZLであることが好ましい。 (2): Atmospheric distillation unit for crude oil; hydrodesulfurized kerosene obtained by hydrorefining the straight-run kerosene obtained, and heavy straight-run oil and residual oil obtained from the atmospheric distillation unit A hydrorefined kerosene obtained by hydrorefining a vacuum gas oil fraction obtained by treating with a vacuum distillation unit, a hydrocracked kerosene hydrocracked from a vacuum gas oil fraction, a vacuum gas oil fraction or a desulfurized heavy oil in contact Hydrolysis of catalytic cracking kerosene, pyrolysis kerosene obtained by pyrolysis of straight-run heavy oil, hydrodesulfurized kerosene obtained by hydrorefining pyrolysis kerosene, and residual oil Ultra-low sulfur kerosene, straight run kerosene or hydrodesulfurized kerosene or hydrorefined kerosene obtained by deep hydrotreating the obtained hydrodesulfurized kerosene, straight run kerosene and Z or hydrorefined kerosene in the presence of a hydrogenation catalyst De-nor, which is the residue obtained by removing normal paraffin content by extracting kerosene Kerosene fraction of synthetic oil obtained by F_T (Fischer-Tropsch) synthesis after decomposing malparaffin kerosene, natural gas, coal, asphalt, etc. into carbon monoxide and hydrogen, and / or its hydrogenated products A hydrocarbon oil consisting of a base material. The conditions for hydrorefining the base material are not particularly limited as long as the hydrocarbon oil having the predetermined properties of the present invention can be obtained, but the reaction temperature is 100 to 350 ° C in the presence of a hydrogenation catalyst. , 7) ^ containing pressure l~10MP a, LHS V0. l~10 h one 1, and is preferably a hydrogen oil ratio 10~500 NLZL.
水素化触媒は、 特に限定されるものではないが、 水素化活性金属を多孔質担体 に担持したものが挙げられる。 多孔質担体としては無機酸化物が好ましく用いら れる。具体的な無機酸化物としては、 アルミナ、 チタニア、 ジルコニァ、ポリア、 シリカ、 あるいはゼォライトが挙げられ、 このうちチタ-ァ、 ジルコニァ、 ボリ ァ、 シリカ、 ゼォライトのうち少なくとも 1種類とアルミナによって構成されて いるものが好適に用いられる。 The hydrogenation catalyst is not particularly limited, and examples thereof include a catalyst in which a hydrogenation active metal is supported on a porous carrier. As the porous carrier, an inorganic oxide is preferably used. Specific examples of the inorganic oxide include alumina, titania, zirconia, polya, silica, and zeolite. Of these, titer, zirconia, and poly A material composed of at least one of alumina, silica, and zeolite and alumina is preferably used.
水素化処理に用いる触媒の活性金属としては周期律表第 6族及び第 8族金属か ら選ばれる少なくとも 1種類の金属であることが好ましい。より好ましくは Ru, R d, I r , P d, P t, N i , C o, M oおよび Wから選ばれる少なくとも 1 種類である。 活性金属としてはこれらの金属を組み合わせたものでもよく、 例え ば P t— P d, P t— Rh, P t— Ru, I r - P d , I r一 Rh, I r—Ru, P t -P d-Rh, P t— Rh—; Ru, I r -P d -R h, I r -Rh-Ru, C o—Mo, N i -Mo, N i— Wなどの組み合わせを採用することができる。 本発明の炭化水素油は、 その主な熱源をバーナーによる水素製造システムにお いて、 水素製造用原料として、 およびバーナー用燃料として使用される。 本発明 の炭化水素油を用いることで、水素製造システムにおいて比較的低温で改質でき、 かつパーナ一負荷の低減および NO X排出量を低減することができる。  The active metal of the catalyst used in the hydrotreating is preferably at least one metal selected from Group 6 and Group 8 metals of the periodic table. More preferably, it is at least one selected from Ru, Rd, Ir, Pd, Pt, Ni, Co, Mo and W. The active metal may be a combination of these metals, for example, Pt-Pd, Pt-Rh, Pt-Ru, Ir-Pd, Ir-Rh, Ir-Ru, Pt -Pd-Rh, Pt-Rh-; Ru, Ir-Pd-Rh, Ir-Rh-Ru, Co-Mo, Ni-Mo, Ni-W, etc. be able to. The hydrocarbon oil of the present invention is used as a raw material for hydrogen production and as a fuel for a burner in a hydrogen production system using a burner as a main heat source. By using the hydrocarbon oil of the present invention, reforming can be performed at a relatively low temperature in a hydrogen production system, and a reduction in the load on a panner and a reduction in NOx emissions can be achieved.
本発明の水素製造システムに用いるバーナーとしては、 噴霧式バーナー、 蒸発 式パーナ一等を挙げることができる。 また、 これらバーナーの他に NO X排出量 が低減される触媒燃焼を利用した面バーナーなども利用可能である。  Examples of the burner used in the hydrogen production system of the present invention include a spray burner and an evaporative burner. In addition to these burners, surface burners using catalytic combustion that reduces NOx emissions can also be used.
バーナーを配置した水素製造システムとしては、例えば、 ( 1 )脱硫器 ·改質器 · 一酸化炭素浄化装置からなるシステム、 (2)脱硫器 *改質器'脱硫器(再脱硫) · 一酸化炭素浄化器からなるシステム、 及び (3) 改質器 ·脱硫器 ·一酸化炭素浄 化器からなるシステムを挙げることができる。 バーナーを配置した水素製造シス テムの組み合わせは、 上記 (1) 〜 (3) のシステムに特に限定されるものでは ない。  Examples of hydrogen production systems with burners include (1) a system consisting of a desulfurizer, a reformer, and a carbon monoxide purifier, and (2) a desulfurizer * a reformer's desulfurizer (resulfurization) · monoxide. A system consisting of a carbon purifier, and (3) a system consisting of a reformer, a desulfurizer, and a carbon monoxide purifier. Combinations of hydrogen production systems with burners are not particularly limited to the above-mentioned systems (1) to (3).
なお、 脱硫器、 改質器、 一酸化炭素浄化器としては次のようなものが挙げられ る。  The following are examples of desulfurizers, reformers, and carbon monoxide purifiers.
脱硫器は、 炭化水素油中の硫黄分を除去する装置であり、 本発明の水素製造シ ステムに用いることができる脱硫器としては、 例えば、 触媒として銅一亜鉛系、 ニッケル系等を用い、 反条件としては、 反応温度 20〜 300°C、 LHSV0. 1〜 1 0 h— 反応圧力 IMP a未満で脱硫処理を行う脱硫器などが挙げられる。 改質器は、 炭化水素油を改質して水素を得るための装置であり、 本発明の炭化 水素油により改質器の性能を最大限に引き出すためには、 下記の改質器を使用す ることが好ましい。 The desulfurizer is a device that removes the sulfur content in the hydrocarbon oil. As the desulfurizer that can be used in the hydrogen production system of the present invention, for example, a copper-zinc system, a nickel system, or the like is used as a catalyst. The reverse conditions include a desulfurizer for performing a desulfurization treatment at a reaction temperature of 20 to 300 ° C. and a LHSV of 0.1 to 10 h—reaction pressure of less than IMPa. The reformer is a device for reforming hydrocarbon oil to obtain hydrogen, In order to maximize the performance of the reformer with hydrogen oil, it is preferable to use the following reformer.
(1) 加熱気化した炭化水素油と水蒸気とを混合し、 周期律表第 8族元素を活性 金属として含む触媒を使用し、反応条件としては、反応温度 400〜1 000°C、 水と炭化水素油の混合比率 (SZC) を 1〜5モル Zモルで反応させることによ り、 水素を主成分とする生成物を得る水蒸気改質型改質器。  (1) Heated and vaporized hydrocarbon oil and steam are mixed, and a catalyst containing Group 8 element of the periodic table as an active metal is used.The reaction conditions are as follows: reaction temperature 400 to 1 000 ° C, water and carbonization. A steam reforming reformer that obtains a product containing hydrogen as a main component by reacting a hydrogen oil mixture ratio (SZC) at 1 to 5 mol Z mol.
(2) 加熱気化した炭化水素油を水蒸気及び空気と混合し、 周期律表第 8族元素 を活性金属として含む触媒を使用し、 反応条件としては、 反応温度 400〜1 0 00°C、 水と炭化水素油の混合比率 (SZC) を 0. 5〜5モル/モル、 酸素と 炭化水素油の混合比率 (Oノ C) を 0. 1〜0. 5モル Zモルで反応させるこ とにより、 水素を主成分とする生成物を得る自己熱改質型改質器。 なお、 ここでいう 「水と炭化水素油の混合比率(SZC)」において、 Sは水(分 子) のモル数、 Cは炭化水素油 (分子) 中の炭素のモル数を意味する。 従って、 (2) Heated and vaporized hydrocarbon oil is mixed with water vapor and air, and a catalyst containing Group 8 element of the periodic table as an active metal is used.The reaction conditions are as follows: reaction temperature 400 ~ 100 ° C, water And the hydrocarbon oil (SZC) at 0.5 to 5 mol / mol and the oxygen and hydrocarbon oil (O / C) at 0.1 to 0.5 mol / mol. An autothermal reforming reformer that obtains a product containing hydrogen as a main component. In the “mixing ratio of water and hydrocarbon oil (SZC)”, S means the number of moles of water (molecule), and C means the number of moles of carbon in the hydrocarbon oil (molecule). Therefore,
「水と炭化水素油の混合比率 (S/C)」 の求め方に関し例を挙げて説明すると、 水 (分子) : 6モノレと、 炭化水素油にエタン (C2H6) : 1モルを用いた場合、 水 と炭化水素油の混合比率 (S C) は、 炭化水素油であるエタン : 1モル中の炭 素のモル数は 2モルであるので、 「SZC= 6モル 2モル = 3」 となる。 To explain how to determine the “mixing ratio of water and hydrocarbon oil (S / C)”, for example, water (molecule): 6 monoles and ethane (C 2 H 6 ): 1 mole in hydrocarbon oil When used, the mixing ratio (SC) of water and hydrocarbon oil is "SZC = 6 moles 2 moles = 3" because the number of moles of carbon in 1 mole of hydrocarbon ethane is 2 moles. It becomes.
また、 同様に、 ここでいう 「酸素と炭化水素油の混合比率 (o2/c)」 におい て、 02は酸素 (分子) のモル数、 Cは炭化水素油 (分子) 中の炭素のモル数を 意味する。 従って、 「酸素と炭ィ匕水素油の混合比率 (o2/c)」 の求め方に関し 例を挙げて説明すると、 酸素 (分子) : 0. 6モルと、 炭化水素油にエタン (C2 H6) : 1モルを用いた場合、 酸素と炭化水素油の混合比率 (02ZC) は、 炭化 水素油であるエタン: 1モル中の炭素のモル数は 2モルであるので、 ro2/C = 0. 6モル Z 2モル =0. 3」 となる。 一酸化炭素浄化器は、 改質器で生成したガスに含まれ、 燃料電池の触媒毒とな る一酸化炭素の除去を行うものである。 本発明の水素製造システムに用いること ができる一酸化炭素浄化器としては、 次のような例が挙げられる。 Similarly, where and say, "oxygen mixture ratio (o 2 / c) of the hydrocarbon oil" odor, 0 2 moles of oxygen (molecules), C is the carbon in the hydrocarbon oil (molecules) It means the number of moles. Therefore, the method of obtaining the “mixing ratio of oxygen and charcoal hydrogen oil (o 2 / c)” will be described with an example. Oxygen (molecule): 0.6 mol, and ethane (C 2 H 6 ): When 1 mole is used, the mixing ratio of oxygen and hydrocarbon oil (0 2 ZC) is ethane, which is hydrocarbon oil. Since the number of moles of carbon in 1 mole is 2 moles, ro 2 / C = 0.6 mol Z 2 mol = 0.3 ". The carbon monoxide purifier removes carbon monoxide, which is contained in the gas generated by the reformer and is a catalyst poison for the fuel cell. Examples of the carbon monoxide purifier that can be used in the hydrogen production system of the present invention include the following.
(1) 改質器より得られた改質ガスと加熱気化した水蒸気を混合し、 触媒として 銅、 亜鉛、 白金、 ルテニウム、 ロジウム等を用い、 反応温度 200〜500°C、 ガス空間速度 1 000〜1 0 O Q 0 ~ 反応圧力 IMP a未満、 水と改質ガス. 中の一酸化炭素のモル比を 0. 5〜3. 0モル Zモルの反応条件により、 一酸化 炭素と水蒸気とから二酸化炭素と水素を生成物として得る水性ガスシフト反応器。 (1) The reformed gas obtained from the reformer is mixed with steam that has been heated and vaporized. Using copper, zinc, platinum, ruthenium, rhodium, etc., reaction temperature 200 ~ 500 ° C, gas space velocity 1 000 ~ 10 OQ 0 ~ reaction pressure less than IMPa, water and reformed gas. A water gas shift reactor for obtaining carbon dioxide and hydrogen as products from carbon monoxide and water vapor under a reaction condition of a molar ratio of 0.5 to 3.0 mol Z mol.
(2) 改質器より得られた改質ガスと圧縮空気とを混合し、 触媒として銅、 ニッ ケル、 白金、 ルテニウム、 ロジウム等を用い、 反応温度 1 00〜 300°C、 ガス 空間速度 1 000〜1 000 O h— 反応圧力 1 M P a未満、 空気と改質ガス中 の一酸化炭素のモル比を 0. 5〜3. 0モルノモルの反応条件により、 一酸化炭 素と空気とから一酸化炭素を二酸化炭素に変換する選択酸化反応器。  (2) Mix the reformed gas obtained from the reformer with compressed air, and use copper, nickel, platinum, ruthenium, rhodium, etc. as a catalyst, reaction temperature 100-300 ° C, gas space velocity 1 000 to 1 000 O h—reaction pressure less than 1 MPa, and the molar ratio of air to carbon monoxide in the reformed gas is 0.5 to 3.0 molmol. A selective oxidation reactor that converts carbon oxide to carbon dioxide.
[産業上の利用可能性] [Industrial applicability]
本発明の炭化水素油は、 水素製造システムにおける水素製造用原料として比較 的低温で改質できるばかり力 \ 水素製造システムのパーナ一用の燃料としてもバ ーナー負荷の低減おょぴ NO X排出量の低減を図ることができる。 このため、 水 素製造システムとして、 水素製造用原料タンクと、 バーナー用燃料タンクの 2つ のタンクを別々に持つ必要がなく、 システムスペース上の効率においても優れて いる。  The hydrocarbon oil of the present invention can be reformed at a relatively low temperature as a raw material for hydrogen production in a hydrogen production system. It can also be used as a fuel for a hydrogen production system. Can be reduced. For this reason, the hydrogen production system does not need to have two separate tanks, one for the hydrogen production and the other for the burner fuel tank, which is excellent in system space efficiency.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下に、 実施例及ぴ比較例を挙げて本発明を具体的に説明するが、 本発明はこ れらの例に限定されるもので ίまない。  Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
《実施例 1〜 3及び比較例 1〜 2》 << Examples 1-3 and Comparative Examples 1-2 >>
本発明の炭化水素油 (炭化水素油 A〜C) 及ぴ比較用の炭化水素油 (炭化水素 油 D、 E) を以下に記す方法により製造した。.それらの一般性状を表 1に示す。  The hydrocarbon oils (hydrocarbon oils A to C) of the present invention and the comparative hydrocarbon oils (hydrocarbon oils D and E) were produced by the methods described below. Table 1 shows their general properties.
(炭化水素油 A〜Eの製造) (Production of hydrocarbon oils A to E)
炭化水素油 A:硫黄含有量が 300質量 p pm以下である灯油留分の炭化水素 混合物を原料油とし、 水素化脱硫処理する工程を経て得られた炭化水素油の内、 蒸留操作により、 1 50°C〜1 95 °Cの留分を分離して炭化水素油 Aとした。 炭化水素油 B : 中東系原油を常圧蒸留装置にかけて得られた灯油留分を高度に 水素化精製した後、 蒸留操作により.、 1 50°C〜200°Cの留分を分離して炭化 水素油 Bとした。 Hydrocarbon oil A: A hydrocarbon mixture of a kerosene fraction having a sulfur content of 300 mass ppm or less is used as a raw material oil. Of the hydrocarbon oil obtained through the hydrodesulfurization process, 1 The fraction at 50 ° C to 195 ° C was separated to be hydrocarbon oil A. Hydrocarbon oil B: A kerosene fraction obtained by subjecting a Middle Eastern crude to a normal pressure distillation unit is highly hydrorefined, and then subjected to a distillation operation to separate a fraction at 150 ° C to 200 ° C and carbonize. Hydrogen oil B.
炭化水素油 C :硫黄含有量が 300質量 p pm以下である灯油留分の炭化水素 混合物を原料油とし、 7K素化脱硫処理する工程を経て得られた炭化水素油から蒸 留操作により、 1 50°C〜200°Cの留分を分離除去した後、 ゼォライトにより 直鎖飽和炭化水素を抽出分離した炭化水素油より、 蒸留操作により 190°C〜2 30°Cの留分を分離して炭化水素油 Cとした。  Hydrocarbon oil C: A hydrocarbon mixture of a kerosene fraction having a sulfur content of 300 mass ppm or less is used as a feed oil, and a hydrocarbon oil obtained through a 7K hydrodesulfurization process is subjected to a distillation operation to obtain a hydrocarbon oil. After separating and removing the fraction at 50 ° C to 200 ° C, the fraction at 190 ° C to 230 ° C is separated by distillation from the hydrocarbon oil from which linear saturated hydrocarbons have been extracted and separated with zeolite. It was named hydrocarbon oil C.
炭化水素油 D :硫黄含有量が 300質量 p pm以下である灯油留分の炭化水素 混合物を原料油とし、 7 素化脱硫処理する工程を経て得られた炭化水素油から蒸 留操作により 150°C~200°Cの留分を分離除去した後、 ゼォライ トにより直 鎖飽和炭化水素を抽出分離した炭化水素油より、 蒸留操作により 245°C〜27 0°Cの留分を分離して炭化水素油 Dとした。  Hydrocarbon oil D: A hydrocarbon mixture of a kerosene fraction with a sulfur content of 300 mass ppm or less is used as a feed oil, and the hydrocarbon oil obtained through the sulphating desulfurization process is subjected to a distillation operation to 150 °. After separating and removing the distillate at C to 200 ° C, the fraction at 245 ° C to 270 ° C is separated by distillation from the hydrocarbon oil from which the linear saturated hydrocarbon was extracted and separated by Zeolite, and carbonized. Hydrogen oil D.
炭化水素油 E : 中東系原油を常圧蒸留装置にかけて得られた灯油留分を高度に 水素化精製した後、 蒸留操作により、 1 50°C〜265 °Cの留分を分離して炭化 水素油 Eとした。  Hydrocarbon oil E: Middle Eastern crude oil is subjected to atmospheric distillation to obtain a kerosene fraction, which is highly hydrorefined and then separated by distillation to remove hydrocarbon at 150 ° C to 265 ° C. Oil E.
(性状測定) (Property measurement)
炭化水素油 A〜Eの一般性状は、 以下の試験法により測定した。  The general properties of the hydrocarbon oils A to E were measured by the following test methods.
密度は、 J I S K 2249 「原油及び石油製品の密度試験方法並びに密度 · 質量 ·容量換算表」 により測定される密度を指す。  Density refers to the density measured by JIS K 2249 “Density test method for crude oil and petroleum products and density / mass / volume conversion table”.
引火点は、 J I S K 2265 「原油及ぴ石油製品一引火点試験方法」 によ つて測定される引火点を指す。  Flash point refers to the flash point measured by JIS K 2265 “Crude oil and petroleum products-Flash point test method”.
蒸留性状 (Ι ΒΡ、 Τ 10、 Τ 50、 Τ 90、 Τ 95、 Ε Ρ) は、 全て J I S K 2254 「石油製品一蒸留試験方法-常圧法蒸留試験方法」によって測定され る値である。  All the distillation properties (Ι ΒΡ, Τ10, Τ50, Τ90, Τ95, Ε Ρ) are values measured by JIS K 2254 “Petroleum product monodistillation test method-atmospheric pressure distillation test method”.
硫黄分は、 A S TM D4045- 96 「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ により 測定される硫黄分含有量を指す。  The sulfur content refers to the sulfur content measured by ASTM D4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ”.
HZCは、 A S T D 5291—01 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry) ίこ準拠した方法 ίこより頒 U 定される水素元素と炭素元素のモル比のことを指す。 HZC is based on ASTD 5291-01 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry) This refers to the molar ratio of hydrogen element to carbon element distributed from U.
セーポルト色とは、 J I S K 2580 「石油製品一色試験方法」 中のセーポ ルト色試験方法で測定されるセーボルト色を指す。  Saeport color refers to the Saybolt color measured by the Saeport color test method in JIS K 2580 “Petroleum Product One Color Test Method”.
銅板腐食とは、 J I S K25 1 3 「石油製品一銅板腐食試験方法」 で測定さ れる銅板腐食を指す。  Copper plate corrosion refers to the copper plate corrosion measured by JIS K25 13 “Petroleum products-Copper plate corrosion test method”.
炭素数 1 3の炭化水素の成分割合とは、 GC— F I Dを用いて測定される値 (質 量0 /0) であり、 カラムにはメチルシリコンのキヤビラリ一力ラム (ULTRAA LLOY— l、 0. 25mm< 30m)、 キヤリァガスにはヘリゥムを、 検出器 には水素イオン検出器(F I D) を用い、キヤリァガス流量 1. OmL/m i n、 分割比 1 : 79、試料注入温度 280°C、 カラム昇温条件 50°C (5分)→ (5°C Zm i n) →28 0°C ( 1 0分)、検出器温度 300 °Cの条件で測定されたクロマ トより、 炭素数 1 3の炭化水素の面積積分を行って求められた値を指す。 The component ratio of hydrocarbon carbon atoms 1 3, GC-FID is the measured values with the (mass 0/0), Kiyabirari Ichiriki ram methyl silicon in column (ULTRAA LLOY- l, 0 25 mm <30 m), a carrier for carrier gas, and a hydrogen ion detector (FID) for detector, carrier gas flow rate 1. OmL / min, split ratio 1:79, sample injection temperature 280 ° C, column temperature rise Conditions 50 ° C (5 minutes) → (5 ° C Zmin) → 280 ° C (10 minutes), Chromatography measured at 300 ° C detector temperature indicates that the hydrocarbon has 13 carbon atoms. Indicates the value obtained by performing the area integration.
芳香族分、 ォレフィン分、 飽和分は、 J I S K25 36 「石油製品—炭化水 素タイプ試験方法」 の蛍光指示薬吸着法により測定される芳香族分含有量、 ォレ フィン分含有量、 飽和炭化水素 (ナフテン系炭化水素を含む) 含有量を指す。 次に、 得られた各炭化水素油を下記の二つの炭化水素油改質システムを用いて 評価した。  The aromatics, olefins, and saturated components are the aromatic content, olefin content, and saturated hydrocarbon content measured by the fluorescent indicator adsorption method of JIS K25 36 “Petroleum products-Hydrocarbon type test method”. (Including naphthenic hydrocarbons) Next, each of the obtained hydrocarbon oils was evaluated using the following two hydrocarbon oil reforming systems.
(1) 水蒸気改質型改質システム  (1) Steam reforming type reforming system
ニッケル系吸着脱硫触媒を充填した脱硫器により硫黄分 0. 1質量 p pm未満 まで脱硫した炭 ί匕水素油と水を加熱によりそれぞれ気化させ、 貴金属系触媒を充 填し、所定の温度に維持した改質器に導き、水素分に富む改質ガスを発生させた。 改質器の温度は、 改質が完全に行われる最低の温度 (改質ガスに炭化水素油が含 まれない最低温度) とした。  Hydrogen oil and water desulfurized to a sulfur content of less than 0.1 mass ppm by a desulfurizer filled with a nickel-based adsorptive desulfurization catalyst are heated to vaporize, respectively, charged with a noble metal catalyst, and maintained at a predetermined temperature. The reformer was led to generate a reformed gas rich in hydrogen. The temperature of the reformer was set to the lowest temperature at which the reforming was completely performed (the lowest temperature at which the reformed gas did not contain hydrocarbon oil).
次に改質ガスを一酸化炭素浄化器に導いた。 一酸化炭素浄化器は前後段の 2つ に区分される。 前段では、 改質ガスを水蒸気と共に鲖ー亜鉛系触媒を充填した反 応器に通し、 後段では、 改質ガスを空気と共に貴金属系触媒を充填した反応器へ と通すことで、 改質ガスの中の一酸化炭素を二酸化炭素に変換した。 なお、 一酸 化炭素浄化器出口にて水素量 1 0 L/m i n、 CO濃度が 1 0容量 p pmになる ように運転条件を設定した。 Next, the reformed gas was led to a carbon monoxide purifier. Carbon monoxide purifiers are divided into two stages: front and rear. In the first stage, the reformed gas is passed through a reactor filled with a zinc-based catalyst together with water vapor, and in the second stage, the reformed gas is passed through a reactor filled with a noble metal catalyst together with air, so that the reformed gas is The carbon monoxide therein was converted to carbon dioxide. At the outlet of the carbon monoxide purifier, the hydrogen amount becomes 10 L / min, and the CO concentration becomes 10 vol. The operating conditions were set as follows.
炭化水素油および水の気化器、 脱硫器、 改質器および一酸化炭素浄化器にて必 要な熱源は、 本発明の炭化水素油 (炭化水素油 A〜C) 及び比較用の炭化水素油 (炭化水素油 D、 E) を用いる嘖霧式バーナーを各器に設置したものにて供給し た。 なお、 バーナー用空気量は燃焼排ガス中の酸素濃度: 8容量%になるように 設定した。  The heat source required for the hydrocarbon oil and water vaporizer, desulfurizer, reformer and carbon monoxide purifier is the hydrocarbon oil of the present invention (hydrocarbon oils A to C) and the comparative hydrocarbon oil. A mist type burner using (hydrocarbon oils D and E) was installed in each unit. The burner air volume was set so that the oxygen concentration in the flue gas was 8% by volume.
なお、 各反応器の運転条件は次の通りである。  The operating conditions of each reactor are as follows.
く脱硫器 > 反応温度: 2 0 0°C  Desulfurizer> Reaction temperature: 200 ° C
<改質器 > LH S V: 1 h _ 1、 H2OZCモル比: 3モル/モル <Reformer> LH SV: 1 h _ 1 , H 2 OZC molar ratio: 3 mol / mol
<一酸化炭素浄ィ匕器前段 > '  <Carbon monoxide cleaner>
反応温度: 2 3 0°C、 HsOZCOモル比: 5モル Zモル  Reaction temperature: 230 ° C, HsOZCO molar ratio: 5 mol Z mol
く一酸化炭素浄化器後段 >  The second stage of the carbon monoxide purifier>
反応温度: 1 1 o°c、 o2Zcoモル比: 1. 5モル Zモル Reaction temperature: 11 o ° c, o 2 Zco molar ratio: 1.5 mol Z mol
水蒸気改質型改質システム評価フローを図 1に示す。  Figure 1 shows the flow chart for evaluating the steam reforming reforming system.
(2) 自己熱改質型改質システム (2) Autothermal reforming type reforming system
ニッケル系吸着脱硫触媒を充填した脱硫器により硫黄分 0. 1質量 p p m未満 まで脱硫した炭化水素油と水を加熱により気化させ、 予熱した空気と共に貴金属 系触媒を充填し、 所定の温度に維持した改質器に導き、 水素分に富む改質ガスを 発生させた。 改質器の温度は、 改質が完全に行われる最低の温度 (改質ガスに炭 化水素油が含まれない最低温度) とした。  Hydrocarbon oil and water desulfurized to a sulfur content of less than 0.1 mass ppm with a desulfurizer filled with a nickel-based adsorptive desulfurization catalyst were vaporized by heating, filled with precious metal-based catalyst together with preheated air, and maintained at a predetermined temperature. It was led to a reformer to generate reformed gas rich in hydrogen. The temperature of the reformer was set to the lowest temperature at which the reforming was completely performed (the lowest temperature at which the reformed gas did not contain hydrocarbon oil).
次に改質ガスを一酸化炭素浄化器に導いた。 一酸化炭素浄化器は前後段の 2つ に区分される。 前段では、 改質ガスを水蒸気と共に銅一亜鉛系触媒を充填した反 応器に通し、 後段では、 改質ガスを空気と共に貴金属系触媒を充填した反応器へ と通すことで、 改質ガスの中の一酸化炭素を二酸化炭素に変換した。 なお、 一酸 化炭素浄化器出口 4こて水素量 1 0 LZm i n、 CO濃度が 1 0容量 p pmになる ように運転条件を設定した。  Next, the reformed gas was led to a carbon monoxide purifier. Carbon monoxide purifiers are divided into two stages: front and rear. In the first stage, the reformed gas is passed through a reactor filled with a copper-zinc catalyst together with water vapor, and in the second stage, the reformed gas is passed through a reactor filled with a noble metal catalyst together with air, thereby forming a reformed gas. The carbon monoxide therein was converted to carbon dioxide. The operating conditions were set so that the carbon monoxide purifier outlet 4 trowel hydrogen amount was 10 LZmin, and the CO concentration was 10 volume ppm.
炭化水素油および水の気化器、 脱硫器、 改質器おょぴ一酸化炭素浄化器にて必 要な熱源は、 本発明の炭化水素油 (炭化水素油 A〜C) 及び比較用の炭化水素油 (炭化水素油 D、 E) を用いる噴霧式バーナーを各器に設置したものにて供給し た。 なお、 バーナー用空気量は燃焼排ガス中の酸素濃度: 8容量。/。になるように 設定した。 The heat source required for the hydrocarbon oil and water vaporizer, desulfurizer, reformer and carbon monoxide purifier is the hydrocarbon oil of the present invention (hydrocarbon oils A to C) and the carbon dioxide for comparison. Spray burners using hydrogen oil (hydrocarbon oils D and E) are installed in each unit. It was. The burner air volume is the oxygen concentration in the combustion exhaust gas: 8 volumes. /. Was set to be.
なお、 各反 器の運転条件は次の通りである。  The operating conditions of each reactor are as follows.
<脱硫器 > 反応温度: 200で  <Desulfurizer> Reaction temperature: 200
<改質器 > LHSV : 1 h~ H20/Cモル比: 2モル/モル、 <Reformer> LHSV: 1 h ~ H 2 0 / C mole ratio: 2 mol / mol,
O 2/Cモル比: 0. 3モル/モノレ O 2 / C molar ratio: 0.3 mol / mono
<一酸化炭素浄化器前段 >  <Pre-stage carbon monoxide purifier>
反応温度 : 230。 (:、 H2OZCO比: 5モル/モル Reaction temperature: 230. (:, H 2 OZCO ratio: 5 mol / mol
く一酸化炭素浄化器後段 >  The second stage of the carbon monoxide purifier>
反応温度: 1 10。C、 02ZCO比: 1. 5モル/モル Reaction temperature: 110. C, O 2 ZCO ratio: 1.5 mol / mol
自己熱改質型改質システム評価フローを図 2に示す。  Figure 2 shows the evaluation flow of the autothermal reforming type reforming system.
(3) 評価 (3) Evaluation
上記二つの炭化水素油改質システムを用いた場合の炭化水素油による NO X排 出量を下記の方法にて評価した。  The following methods were used to evaluate the NOx emissions from hydrocarbon oil when the above two hydrocarbon oil reforming systems were used.
改質器にて炭化水素油が完全に改質され、 かつ、 一酸化炭素浄化器出口にて水 素量 10 LZ i n、 CO濃度 1 0容量 p p mになるよう各反応器の調整が完了 した後、 各反 器、 気化器類でのバーナー燃焼排ガスラインを 1つのラインにつ なぎ、 その NO X排出量を測定することで、 各炭化水素油での NO X排出量を比 較した。  After the hydrocarbon oil has been completely reformed in the reformer and the adjustment of each reactor has been completed so that the amount of hydrogen is 10 LZ in and the CO concentration is 10 ppm by volume at the outlet of the carbon monoxide purifier. By connecting the burner flue gas line for each reactor and vaporizer to one line and measuring the NOX emissions, the NOX emissions from each hydrocarbon oil were compared.
以上の評価結果を表 2に示す。なお、 2つの改質システムにおける増減比較は、 比較例 1の NO X排出量を 100. 0として相対比較を行った。  Table 2 shows the above evaluation results. The increase / decrease comparison between the two reforming systems was performed by comparing the NOx emission of Comparative Example 1 with 100.0.
その結果、実施例 1〜 3の炭化水素油は比較例 1〜 2の炭化水素油と比較して、 水素製造システムより排出される NO X量が低減されていることが分かる。 As a result, it can be seen that the hydrocarbon oils of Examples 1 to 3 have a lower NO X amount discharged from the hydrogen production system than the hydrocarbon oils of Comparative Examples 1 and 2.
表 1 table 1
炭化水素油 A B C D E Hydrocarbon oil A B C D E
@15°C /cm 0.7756 0.7850 0.7503 0.7681 0.7936 引火点 °c °C 41 40 65 113 45 蒸留性状 IBP 。C 152.0 147.0 191.0 244.0 153.0  @ 15 ° C / cm 0.7756 0.7850 0.7503 0.7681 0.7936 Flash point ° c ° C 41 40 65 113 45 Distillation properties IBP. C 152.0 147.0 191.0 244.0 153.0
T10 。C 158.0 153.0 201.0 249.5 168.0 T10. C 158.0 153.0 201.0 249.5 168.0
T50 。C 168.0 170.0 208.0 250.0 197.0T50. C 168.0 170.0 208.0 250.0 197.0
T90 。C 181.0 185.5 214.0 254.0 245.0T90. C 181.0 185.5 214.0 254.0 245.0
T95 °C 185.0 191.0 219.0 256.0 251.5T95 ° C 185.0 191.0 219.0 256.0 251.5
EP °c 193.0 199.0 225.5 266.5 265.0 硫黄分 ¾ ppm 0.18 0.13 0.18 0.22 0.40EP ° c 193.0 199.0 225.5 266.5 265.0 Sulfur content ¾ ppm 0.18 0.13 0.18 0.22 0.40
HZC モル Zモル 2.02 1.97 2.19 2.10 1.92 セーボルト色 +30 +30 +30 +28 +30 銅板腐食 1 a 1 a 1 a 1 a 1 a 炭素数 13の炭化水素の成分割合 質量 ¾» 0.2 1.2 23.2 0.0 43.2 芳香族分 vol% 6.9 18.0 0.3 0.2 16.8 ォレフィン分 vol% 0.1 0.0 0.0 0.0 0.1 飽和分 (ナフテン分を含む) vol% 93.0 82.0 99.7 99.8 83.1 HZC mol Z mol 2.02 1.97 2.19 2.10 1.92 Saybolt color +30 +30 +30 +28 +30 Corrosion of copper plate 1 a 1 a 1 a 1 a 1 a Proportion of hydrocarbons with 13 carbons Mass ¾ »0.2 1.2 23.2 0.0 43.2 Aromatic vol% 6.9 18.0 0.3 0.2 16.8 Olefin vol% 0.1 0.0 0.0 0.0 0.1 Saturation (including naphthene) vol% 93.0 82.0 99.7 99.8 83.1
表 2 Table 2
Figure imgf000017_0001
Figure imgf000017_0001
※増減比較は、それぞれの改質型システム評価において、比較例 1の NOx値を 100.0とした 場合の相対値  * The increase / decrease comparison is a relative value when the NOx value of Comparative Example 1 is set to 100.0 in each reforming system evaluation.
[図面の簡単な説明] [Brief description of drawings]
図 1 は、 水蒸気改質型改質器の評価フローチャートである  Figure 1 is an evaluation flowchart for a steam reforming reformer
図 2は、 自己熱改質型改質器の評価フローチャートである  Figure 2 is an evaluation flowchart for the autothermal reformer

Claims

請 求 の 範 囲 The scope of the claims
1 . 引火点が 4 0 °C以上、 初留点が 1 4 5 °C以上 1 9 5 °C以下、 9 5容 量%留出温度が 2 2 0 °C以下、 セーボルト色 + 2 5以上、 銅板腐食 1以下、 硫黄 含有量が 0 . 5質量 p p m以下、 炭素数 1 3の炭化水素の成分割合が 2 5質量% 以下、 水素元素と炭素元素のモル比が 1 . 9 5以上であることを特徴とする熱供 給源として主にパー "一を用いる水素製造システムの水素製造用炭化水素油。 1. Flash point of 40 ° C or more, initial boiling point of 144 ° C or more, 195 ° C or less, 95% by volume distillation temperature of 220 ° C or less, Saybolt color + 25 or more , Copper plate corrosion 1 or less, sulfur content 0.5 mass ppm or less, component ratio of hydrocarbons with 13 carbon atoms 25 mass% or less, molar ratio of hydrogen element and carbon element 1.95 or more A hydrocarbon oil for hydrogen production in a hydrogen production system that mainly uses a parylene as a heat supply source.
2 . 水素製造システムの熱供給源であるパーナ一用燃料として使用する ことを特徴とする第 1項記載の炭化水素油。 2. The hydrocarbon oil according to item 1, wherein the hydrocarbon oil is used as a fuel for a burner, which is a heat supply source of a hydrogen production system.
PCT/JP2005/006697 2004-03-31 2005-03-30 Hydrocarbon oil for producing hydrogen and fuel for burner in hydrogen production system WO2005095552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004108144A JP4227929B2 (en) 2004-03-31 2004-03-31 Hydrocarbon oil and hydrogen fuel for hydrogen production in hydrogen production system
JP2004-108144 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005095552A1 true WO2005095552A1 (en) 2005-10-13

Family

ID=35063756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006697 WO2005095552A1 (en) 2004-03-31 2005-03-30 Hydrocarbon oil for producing hydrogen and fuel for burner in hydrogen production system

Country Status (4)

Country Link
JP (1) JP4227929B2 (en)
KR (1) KR20070015553A (en)
CN (1) CN1957074A (en)
WO (1) WO2005095552A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933978B (en) * 2020-09-11 2020-12-18 江苏铧德氢能源科技有限公司 Fuel cell cogeneration system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077263A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for use in fuel cell system
WO2002046334A1 (en) * 2000-12-08 2002-06-13 Nippon Oil Corporation Mixed gasoline, and system for storage and/or supply thereof
JP2003336088A (en) * 2002-05-22 2003-11-28 Idemitsu Kosan Co Ltd Cold-rolling oil composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077263A1 (en) * 2000-04-10 2001-10-18 Nippon Oil Corporation Fuel for use in fuel cell system
WO2002046334A1 (en) * 2000-12-08 2002-06-13 Nippon Oil Corporation Mixed gasoline, and system for storage and/or supply thereof
JP2003336088A (en) * 2002-05-22 2003-11-28 Idemitsu Kosan Co Ltd Cold-rolling oil composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
USHIDA T.: "Datsuryu Keiyu no Shikiso Henka ni Tsuite", SEKIYU GAKKAI, DAI 38 KAI NENKAI DAI 44 KAI KENKYU HPPYOKAI, 1995, pages 68 - 69, XP002994207 *

Also Published As

Publication number Publication date
CN1957074A (en) 2007-05-02
KR20070015553A (en) 2007-02-05
JP2005290221A (en) 2005-10-20
JP4227929B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
WO2006068135A1 (en) Desulfurizing agent for organosulfur compound-containing fuel oil, and process for producing hydrogen for fuel cell
EP1426432A1 (en) Method for desulfurization and reforming of hydrocarbon stock
KR101218840B1 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4537666B2 (en) Fuel for fuel cell system and fuel cell system
JP4583666B2 (en) Fuel for fuel cell system
WO2005095552A1 (en) Hydrocarbon oil for producing hydrogen and fuel for burner in hydrogen production system
JP4684539B2 (en) Fuel for fuel cell system, method for producing the same, and fuel cell system
WO2001077262A1 (en) Fuel for use in fuel cell system
JP4227927B2 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
WO2001077263A1 (en) Fuel for use in fuel cell system
KR101163249B1 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP2001279271A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
KR101115663B1 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4227928B2 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP5393372B2 (en) Hydrocarbon fuel oil for paraffin-based fuel cell systems
JP4548765B2 (en) Fuel for fuel cell system
JP4598895B2 (en) Fuel for fuel cell system
JP2002083626A (en) Fuel for fuel cell system
JP2004319403A (en) Fuel for fuel cell system
JP2006111502A (en) Hydrogen manufacturing system
JP2001214179A (en) Fuel oil
JP2006244873A (en) Manufacturing method of hydrogen for fuel cell
JP2004027083A (en) Fuel for producing hydrogen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067022418

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580016163.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067022418

Country of ref document: KR

122 Ep: pct application non-entry in european phase