JP2005289730A - Method and apparatus for producing hydrogen - Google Patents

Method and apparatus for producing hydrogen Download PDF

Info

Publication number
JP2005289730A
JP2005289730A JP2004107444A JP2004107444A JP2005289730A JP 2005289730 A JP2005289730 A JP 2005289730A JP 2004107444 A JP2004107444 A JP 2004107444A JP 2004107444 A JP2004107444 A JP 2004107444A JP 2005289730 A JP2005289730 A JP 2005289730A
Authority
JP
Japan
Prior art keywords
hydrogen
cleaning
purity
gas
purifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004107444A
Other languages
Japanese (ja)
Other versions
JP4771668B2 (en
Inventor
Toyokazu Tanaka
豊和 田中
Yukio Hiranaka
幸男 平中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004107444A priority Critical patent/JP4771668B2/en
Publication of JP2005289730A publication Critical patent/JP2005289730A/en
Application granted granted Critical
Publication of JP4771668B2 publication Critical patent/JP4771668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing hydrogen, by which an adsorbing agent in a hydrogen purification unit can be cleaned as desired without using product hydrogen in a cleaning process, and product hydrogen is efficiently produced. <P>SOLUTION: In the method for producing hydrogen for producing high purity product hydrogen from a hydrogen-enriched gas by repeating a hydrogen taking-out step for taking out the high purity product hydrogen by adsorbing impurities in the hydrogen-enriched gas onto the adsorbing agent while maintaining the inside of the hydrogen purification unit in a pressurized state, an off-gas taking-out step for taking out off-gas by desorbing the impurities from the adsorbing agent while maintaining the inside of the hydrogen purification unit in a reduced pressure state, and a cleaning step for cleaning the adsorbing agent by high purity cleaning hydrogen while maintaining the inside of the hydrogen purification unit in a reduced pressure state, after completion of the hydrogen taking-out step, a hydrogen recovering step for recovering the high purity hydrogen remaining in the hydrogen purification unit as the cleaning hydrogen is performed by the reduction of the pressure in the hydrogen purification unit, and after completion of the hydrogen recovering step, the off-gas taking-out step is performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、吸着剤を収容する水素精製装置内を加圧状態に維持して前記吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素を取り出す水素取り出し工程と、その水素取り出し工程完了後に前記水素精製装置内を減圧状態に維持して前記吸着剤から不純物を脱着させてオフガスを取り出すオフガス取り出し工程と、そのオフガス取り出し工程完了後に前記水素精製装置内を減圧状態に維持して高純度の洗浄用水素により前記吸着剤を洗浄する洗浄工程とを繰り返しながら、水素リッチガスから高純度の製品水素を製造する水素製造方法とその方法の実施に直接使用する水素製造装置に関する。   The present invention relates to a hydrogen extraction step for extracting high-purity product hydrogen by adsorbing impurities in a hydrogen-rich gas to the adsorbent while maintaining the inside of a hydrogen purifier containing the adsorbent in a pressurized state, and the hydrogen extraction step After completion, the hydrogen purifier is maintained in a reduced pressure state to remove off-gas by desorbing impurities from the adsorbent, and the hydrogen purifier is maintained in a reduced pressure state after the off-gas removal step is completed. The present invention relates to a hydrogen production method for producing high-purity product hydrogen from a hydrogen-rich gas while repeating the washing step of washing the adsorbent with purity washing hydrogen, and a hydrogen production apparatus used directly for carrying out the method.

水素は、燃料電池の燃料やバーナの燃料をはじめとして不飽和結合への添加用などの各種の用途に供されるもので、燃料ガスの変成法、液体燃料のガス化法、水の電解法、石炭やコークスのガス化法、コークス炉ガスの液化分離法、メタノールやアンモニアの分解法などの各種方法により製造される。
しかし、製造後の水素中に多量の不純物が含まれていると、用途によっては使用不能になる可能性があるため、水素中に含まれる不純物を除去して高純度の水素に精製する必要がある。
Hydrogen is used for various applications such as fuel cell fuel and burner fuel, as well as for addition to unsaturated bonds, such as fuel gas transformation methods, liquid fuel gasification methods, and water electrolysis methods. They are produced by various methods such as coal and coke gasification methods, coke oven gas liquefaction separation methods, and methanol and ammonia decomposition methods.
However, if a large amount of impurities are contained in the hydrogen after production, it may become unusable depending on the application, so it is necessary to remove impurities contained in the hydrogen and purify it to high purity hydrogen. is there.

例えば、原料として都市ガスや天然ガスを使用して燃料ガス変成法により水素を製造する場合、主成分である水素の他にCOやCO2などの不純物が含まれている。そして、燃料電池のうち、リン酸型燃料電池(PAFC)の燃料として水素を使用する場合には、CO含有量は1%が限度であり、固体高分子型燃料電池(PEFC)の燃料として使用する場合には、100ppmが限度であって、それを越えると電池性能が著しく劣化することになる。
また、不飽和結合への添加用として水素を使用する場合にも、5規定(N)以上の純度が要求され、したがって、上述した水素精製方法によって水素リッチガスを高純度の水素に精製する必要がある。
For example, when hydrogen is produced by a fuel gas conversion method using city gas or natural gas as a raw material, impurities such as CO and CO 2 are contained in addition to hydrogen as a main component. Of the fuel cells, when hydrogen is used as a fuel for a phosphoric acid fuel cell (PAFC), the CO content is limited to 1%, which is used as a fuel for a polymer electrolyte fuel cell (PEFC). In this case, the limit is 100 ppm, and if it exceeds that, battery performance will be significantly degraded.
Also, when hydrogen is used for addition to an unsaturated bond, a purity of 5 N (N) or more is required, and therefore it is necessary to purify the hydrogen rich gas into high purity hydrogen by the hydrogen purification method described above. is there.

ところで、従来の水素製造方法では、水素取り出し工程、オフガス取り出し工程、および、洗浄工程を繰り返しながら、水素リッチガスから高純度の製品水素を製造していた。
具体的には、一般に吸着工程と称される水素取り出し工程において、吸着剤を収容する水素精製装置内を加圧状態に維持してその吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素を取り出し、その後、均圧工程を経た後、水素精製装置内を減圧状態に維持して吸着剤から不純物を脱着させてオフガスを取り出し、さらに、高純度の洗浄用水素により吸着剤を洗浄し、その後、昇圧工程を経て再び吸着工程を実行しながら製品水素を製造していた。
そして、従来の水素製造方法では、吸着剤を洗浄するための高純度の洗浄用水素として、上述した水素取り出し工程において取り出した製品水素を使用していた(実際に実施してはいるが、この点について詳しく言及した特許文献などは見当たらない)。
By the way, in the conventional hydrogen production method, high purity product hydrogen was produced from the hydrogen rich gas while repeating the hydrogen removal step, the off-gas removal step, and the cleaning step.
Specifically, in a hydrogen extraction process generally referred to as an adsorption process, the inside of a hydrogen purification apparatus that contains the adsorbent is maintained in a pressurized state, and impurities in the hydrogen-rich gas are adsorbed to the adsorbent to achieve high purity. The product hydrogen is taken out, and then after a pressure equalization process, the hydrogen purifier is maintained in a reduced pressure state to remove impurities from the adsorbent and take off gas, and the adsorbent is washed with high-purity cleaning hydrogen. After that, product hydrogen was produced while performing the adsorption step again through the pressure raising step.
In the conventional hydrogen production method, the product hydrogen extracted in the hydrogen extraction step described above is used as the high-purity cleaning hydrogen for cleaning the adsorbent (although it is actually implemented, There is no patent document that mentions the details in detail).

このように、従来の水素製造方法では、水素取り出し工程において取り出した製品水素の一部を洗浄用水素として使用するため、当然のことながら、その分だけ製品水素の回収率が低くなるという問題があった。
このような従来の問題を前提として、本発明者らが各種の実験などを繰り返して追求したところ、水素精製装置から高純度の製品水素を取り出した後、次に水素精製装置内の圧力を減圧する段階においても、その水素精製装置内に回収可能な高純度の水素が残存していることが判明した。
Thus, in the conventional hydrogen production method, since a part of the product hydrogen extracted in the hydrogen extraction step is used as cleaning hydrogen, it is a matter of course that the recovery rate of the product hydrogen is lowered accordingly. there were.
Based on these conventional problems, the present inventors repeatedly pursued various experiments and the like. After taking out high-purity product hydrogen from the hydrogen purifier, the pressure in the hydrogen purifier was then reduced. In this stage, it was found that high-purity hydrogen that can be recovered remains in the hydrogen purifier.

本発明は、このような新知見に基づくもので、その目的は、洗浄工程において製品水素を使用することなく、水素精製装置内の吸着剤を所望どおりに洗浄することができ、それにより製品水素回収率の向上を図って効率良く製品水素を製造することの可能な水素製造方法とそのための装置を提供することにある。   The present invention is based on such new knowledge, and its purpose is to be able to clean the adsorbent in the hydrogen purifier as desired without using product hydrogen in the washing step, thereby producing product hydrogen. An object of the present invention is to provide a hydrogen production method capable of efficiently producing product hydrogen by improving the recovery rate, and an apparatus therefor.

本発明の第1の特徴構成は、吸着剤を収容する水素精製装置内を加圧状態に維持して前記吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素を取り出す水素取り出し工程と、その水素取り出し工程完了後に前記水素精製装置内を減圧状態に維持して前記吸着剤から不純物を脱着させてオフガスを取り出すオフガス取り出し工程と、そのオフガス取り出し工程完了後に前記水素精製装置内を減圧状態に維持して高純度の洗浄用水素により前記吸着剤を洗浄する洗浄工程とを繰り返しながら、水素リッチガスから高純度の製品水素を製造する水素製造方法であって、前記水素取り出し工程完了後、前記水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の水素を前記洗浄用水素として回収する水素回収工程を実行し、その水素回収工程完了後に前記オフガス取り出し工程へ移行するところにある。   A first characteristic configuration of the present invention is a hydrogen extraction step in which the inside of a hydrogen purification apparatus that contains an adsorbent is maintained in a pressurized state, and impurities in the hydrogen-rich gas are adsorbed on the adsorbent to extract high-purity product hydrogen. And after the hydrogen removal process is completed, the hydrogen purifier is maintained in a depressurized state so that impurities are desorbed from the adsorbent to take off gas, and the hydrogen purifier is depressurized after the offgas removal process is completed. A hydrogen production method for producing high-purity product hydrogen from a hydrogen-rich gas while repeating the washing step of washing the adsorbent with high-purity washing hydrogen while maintaining the state, after completion of the hydrogen extraction step, Performing a hydrogen recovery step of recovering high-purity hydrogen remaining in the hydrogen purifier as the cleaning hydrogen with a reduced pressure in the hydrogen purifier, There is to be after the completion of the hydrogen recovery step shifts to the off-gas extraction process.

本発明の第1の特徴構成によれば、高純度の製品水素を取り出す水素取り出し工程完了後、水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の水素を洗浄用水素として回収する水素回収工程を実行し、その水素回収工程完了後にオフガス取り出し工程へ移行するので、従来の方法では未回収であった高純度の残存水素を洗浄用水素として確実に回収することができる。
そして、その回収した水素を洗浄用水素として使用するので、製品水素回収率の向上を図って効率良く製品水素を製造することができる。
According to the first characteristic configuration of the present invention, after completion of the hydrogen extraction process for extracting high-purity product hydrogen, the high-purity hydrogen remaining in the hydrogen purification apparatus as the hydrogen in the hydrogen purification apparatus is reduced as the hydrogen for cleaning. Since the hydrogen recovery process to be recovered is executed and the process proceeds to the off-gas extraction process after the hydrogen recovery process is completed, high-purity residual hydrogen that has not been recovered by the conventional method can be reliably recovered as cleaning hydrogen.
Since the recovered hydrogen is used as cleaning hydrogen, the product hydrogen recovery rate can be improved and product hydrogen can be produced efficiently.

本発明の第2の特徴構成は、上述の水素製造方法であって、前記水素回収工程が、比較的高純度の水素を回収する第1水素回収工程と、比較的低純度の水素を回収する第2水素回収工程との少なくとも2つの水素回収工程からなるところにある。   A second characteristic configuration of the present invention is the above-described hydrogen production method, wherein the hydrogen recovery step recovers a relatively high purity hydrogen and a first hydrogen recovery step that recovers relatively high purity hydrogen. It consists of at least two hydrogen recovery steps with a second hydrogen recovery step.

本発明の第2の特徴構成によれば、前記水素回収工程が、比較的高純度の水素を回収する第1水素回収工程と、比較的低純度の水素を回収する第2水素回収工程との少なくとも2つの水素回収工程からなるので、例えば、第1水素回収工程において回収した比較的高純度の水素のみを洗浄用水素として使用し、第2水素回収工程における低純度の水素を他の目的に使用することもでき、その結果、高純度の水素のみを使用して確実な洗浄を行うことができる。   According to the second characteristic configuration of the present invention, the hydrogen recovery step includes a first hydrogen recovery step for recovering relatively high purity hydrogen and a second hydrogen recovery step for recovering relatively low purity hydrogen. Since it consists of at least two hydrogen recovery steps, for example, only the relatively high purity hydrogen recovered in the first hydrogen recovery step is used as cleaning hydrogen, and the low purity hydrogen in the second hydrogen recovery step is used for other purposes. As a result, reliable cleaning can be performed using only high-purity hydrogen.

本発明の第3の特徴構成は、上述の水素製造方法であって、前記洗浄工程において、前記第2水素回収工程で回収した水素による予備洗浄工程を実行した後、前記第1水素回収工程で回収した水素による洗浄工程を実行するところにある。   A third characteristic configuration of the present invention is the above-described hydrogen production method, wherein in the cleaning step, after performing a preliminary cleaning step using hydrogen recovered in the second hydrogen recovery step, the first hydrogen recovery step The cleaning process using the recovered hydrogen is in progress.

本発明の第3の特徴構成によれば、前記洗浄工程において、第2水素回収工程で回収した水素、つまり、比較的低純度の水素により予備洗浄工程を実行し、その後、第1水素回収工程で回収した水素、つまり、比較的高純度の水素により洗浄工程を実行するので、高純度の水素のみならず、比較的低純度の水素も有効に利用して効果的な洗浄を行うことができる。   According to the third characteristic configuration of the present invention, in the cleaning step, the preliminary cleaning step is executed with hydrogen recovered in the second hydrogen recovery step, that is, relatively low-purity hydrogen, and then the first hydrogen recovery step. Since the cleaning process is performed with hydrogen recovered in step 1, that is, relatively high purity hydrogen, effective cleaning can be performed by effectively using not only high purity hydrogen but also relatively low purity hydrogen. .

本発明の第4の特徴構成は、上述の水素製造方法であって、前記予備洗浄工程において、前記第2水素回収工程で回収した水素を加熱して使用するところにある。   A fourth characteristic configuration of the present invention is the above-described hydrogen production method, wherein the hydrogen recovered in the second hydrogen recovery step is heated and used in the preliminary cleaning step.

本発明の第4の特徴構成によれば、前記予備洗浄工程において、第2水素回収工程で回収した水素、つまり、比較的低純度の水素を加熱して使用するので、たとえ低純度であっても洗浄効果が向上し、より一層確実な洗浄効果が期待できる。   According to the fourth characteristic configuration of the present invention, in the preliminary cleaning step, hydrogen recovered in the second hydrogen recovery step, that is, relatively low-purity hydrogen is heated and used. In addition, the cleaning effect is improved, and a more reliable cleaning effect can be expected.

本発明の第5の特徴構成は、吸着剤を収容する水素精製装置と、その水素精製装置から高純度の製品水素を取り出す水素取り出しラインと、前記水素精製装置に高純度の洗浄用水素を供給する洗浄用供給ラインと、その洗浄用水素により前記吸着剤を洗浄した後の洗浄排ガスを排出する洗浄用排出ラインを備え、前記水素精製装置内を加圧状態に維持して前記吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素に精製し、その製品水素を前記水素取り出しラインから取り出すように構成してある水素製造装置であって、前記水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の水素を前記洗浄用水素として回収する水素回収ラインを備え、その水素回収ラインから回収した前記洗浄用水素を前記洗浄用供給ラインを介して前記水素精製装置に供給するように構成してあるところにある。   A fifth characteristic configuration of the present invention is a hydrogen purifier that contains an adsorbent, a hydrogen take-out line that takes out high-purity product hydrogen from the hydrogen purifier, and supplies high-purity cleaning hydrogen to the hydrogen purifier. A cleaning supply line, and a cleaning discharge line for discharging the cleaning exhaust gas after cleaning the adsorbent with the cleaning hydrogen, and maintaining the inside of the hydrogen purifier in a pressurized state so that the adsorbent is charged with hydrogen. A hydrogen production apparatus configured to adsorb impurities in a rich gas and purify to high-purity product hydrogen, and to take out the product hydrogen from the hydrogen take-out line, with a decrease in pressure in the hydrogen purification apparatus A hydrogen recovery line for recovering high-purity hydrogen remaining in the hydrogen purifier as the cleaning hydrogen is provided, and the cleaning hydrogen recovered from the hydrogen recovery line is supplied to the cleaning supply line. Is in place is arranged to supply to the hydrogen purifier through.

本発明の第5の特徴構成によれば、水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の水素を洗浄用水素として回収する水素回収ラインを備えているので、上記第1の特徴構成に関連して記述したように、従来の方法では未回収であった高純度の残存水素を洗浄用水素として確実に回収することができる。
そして、その水素回収ラインから回収した洗浄用水素を洗浄用供給ラインを介して水素精製装置に供給するように構成してあるので、その回収した水素を洗浄用水素として使用することで、製品水素回収率の向上を図って効率良く製品水素を製造することができる。
According to the fifth characteristic configuration of the present invention, since the high-purity hydrogen remaining in the hydrogen purification apparatus is recovered as cleaning hydrogen with the decompression in the hydrogen purification apparatus, As described in connection with the first feature, high-purity residual hydrogen that has not been recovered by the conventional method can be reliably recovered as cleaning hydrogen.
Since the cleaning hydrogen recovered from the hydrogen recovery line is supplied to the hydrogen purifier via the cleaning supply line, the recovered hydrogen can be used as cleaning hydrogen to produce product hydrogen. Product hydrogen can be produced efficiently by improving the recovery rate.

本発明の第6の特徴構成は、上述の水素製造装置であって、前記水素回収ラインから回収した前記洗浄用水素を貯蔵する洗浄用貯蔵タンクを備えているところにある。   A sixth characteristic configuration of the present invention is the above-described hydrogen production apparatus, including a cleaning storage tank that stores the cleaning hydrogen recovered from the hydrogen recovery line.

本発明の第6の特徴構成によれば、水素回収ラインから回収した洗浄用水素を貯蔵する洗浄用貯蔵タンクを備えているので、必要に応じて回収した洗浄用水素を貯蔵しておき、必要なときに使用して吸着剤の洗浄を行うことができる。   According to the sixth characteristic configuration of the present invention, since the cleaning storage tank for storing the cleaning hydrogen recovered from the hydrogen recovery line is provided, the recovered cleaning hydrogen is stored as necessary. It can be used at any time to clean the adsorbent.

本発明の第7の特徴構成は、上述の水素製造装置であって、前記洗浄用貯蔵タンクが、比較的高純度の洗浄用水素を貯蔵する第1貯蔵タンクと、比較的低純度の洗浄用水素を貯蔵する第2貯蔵タンクとの少なくとも2つのタンクを備えているところにある。   A seventh characteristic configuration of the present invention is the above-described hydrogen production apparatus, wherein the cleaning storage tank includes a first storage tank for storing relatively high purity cleaning hydrogen, and a relatively low purity cleaning apparatus. There are at least two tanks with a second storage tank for storing hydrogen.

本発明の第7の特徴構成によれば、洗浄用貯蔵タンクが、比較的高純度の洗浄用水素を貯蔵する第1貯蔵タンクと、比較的低純度の洗浄用水素を貯蔵する第2貯蔵タンクとの少なくとも2つのタンクを備えているので、上記第2の特徴構成に関連して記述したように、第1水素回収工程で回収した比較的高純度の水素は第1貯蔵タンクに、また、第2水素回収工程で回収した比較的高純度の水素は第2貯蔵タンクにそれぞれ各別に貯蔵することができる。
したがって、必要に応じて比較的高純度の水素と比較的低純度の水素を適宜使用して、例えば、上記第3の特徴構成に関連して記述したように、比較的低純度の水素により予備洗浄工程を実行し、その後、比較的高純度の水素により洗浄工程を実行するなど、目的に応じて使い分けることができる。
According to the seventh characteristic configuration of the present invention, the cleaning storage tank stores a relatively high purity cleaning hydrogen, and a second storage tank stores a relatively low purity cleaning hydrogen. Therefore, as described in relation to the second characteristic configuration, relatively high purity hydrogen recovered in the first hydrogen recovery step is stored in the first storage tank, and The relatively high-purity hydrogen recovered in the second hydrogen recovery step can be stored separately in the second storage tank.
Therefore, if necessary, relatively high purity hydrogen and relatively low purity hydrogen are used as appropriate, for example, as described in connection with the third feature configuration above, with reserve of relatively low purity hydrogen. The cleaning process can be performed and then the cleaning process can be performed with relatively high-purity hydrogen, depending on the purpose.

本発明の第8の特徴構成は、上述の水素製造方法であって、前記第2貯蔵タンクが、そのタンク内の洗浄用水素を加熱する加熱手段を備えているところにある。   An eighth characteristic configuration of the present invention is the above-described hydrogen production method, wherein the second storage tank includes a heating means for heating cleaning hydrogen in the tank.

本発明の第8の特徴構成によれば、第2貯蔵タンクが、そのタンク内の洗浄用水素、つまり、比較的低純度の水素を加熱する加熱手段を備えているので、その低純度の水素を使用して予備洗浄を行う場合、上記第4の特徴構成に関連して記述したように、低純度の水素を加熱して使用するので、たとえ低純度であっても確実な洗浄効果が期待できる。   According to the eighth characteristic configuration of the present invention, since the second storage tank is provided with heating means for heating cleaning hydrogen in the tank, that is, relatively low-purity hydrogen, the low-purity hydrogen When preliminary cleaning is performed using low temperature hydrogen, as described in relation to the fourth characteristic configuration described above, since low purity hydrogen is heated and used, a reliable cleaning effect is expected even if the purity is low. it can.

本発明による水素製造方法とその装置の実施の形態を図面に基づいて説明する。
この水素製造方法は、例えば、原料である炭化水素として13Aなどの都市ガスを使用して高純度の水素を製造するもので、そのための装置は、図1に示すように、コンプレッサ1、第1熱交換器2a、脱硫器3、第2熱交換器2b、バーナ4aを有する改質器4、変成器5、第3熱交換器2c、気液分離器6、水素精製装置7、水素貯蔵タンク8、オフガス用タンク9などを備えて構成されている。
コンプレッサ1は、第1配管ラインL1から供給される原料としての炭化水素ガスを圧縮して昇圧するもので、例えば、都市ガスにおける中圧ラインからのガスを原料とする場合であれば、0.1MPaあるいはそれ以上の圧力を有する炭化水素ガスを0.98MPa程度にまで昇圧し、昇圧後の炭化水素ガスは、第1熱交換器2aを有する第2配管ラインL2を通って脱硫器3に送られる。
Embodiments of a hydrogen production method and apparatus according to the present invention will be described with reference to the drawings.
This hydrogen production method, for example, produces high-purity hydrogen using a city gas such as 13A as a hydrocarbon as a raw material, and the apparatus therefor includes a compressor 1, a first one as shown in FIG. Heat exchanger 2a, desulfurizer 3, second heat exchanger 2b, reformer 4 having burner 4a, transformer 5, third heat exchanger 2c, gas-liquid separator 6, hydrogen purifier 7, hydrogen storage tank 8 and an off-gas tank 9 are provided.
The compressor 1 compresses and raises the pressure of hydrocarbon gas as a raw material supplied from the first piping line L1. For example, when the gas from the medium pressure line in city gas is used as the raw material, The pressure of the hydrocarbon gas having a pressure of 1 MPa or higher is increased to about 0.98 MPa, and the pressurized hydrocarbon gas is sent to the desulfurizer 3 through the second piping line L2 having the first heat exchanger 2a. It is done.

脱硫器3は、昇圧後の炭化水素ガスから硫黄分をppbレベルにまで除去し、硫黄分除去後の炭化水素ガスは、第2熱交換器2bを有する第3配管ラインL3を通って改質器4に送られ、かつ、その改質器4には、第4配管ラインL4から水蒸気(スチーム)または改質器4内で水蒸気となる純水が供給される。
改質器4は、バーナ4aの燃焼により750℃程度の高温に維持され、0.85MPa程度の圧力下で水蒸気改質用の触媒により炭化水素ガスに水蒸気を反応させて水素リッチなガスに改質し、改質後の水素リッチガスは、第5配管ラインL5を通って第1と第2熱交換器2a,2bにより炭化水素ガスを予熱して変成器5に送られる。
変成器5は、変成用の触媒により水素リッチガス中の一酸化炭素(CO)を二酸化炭素(CO2)に変成し、変成後の水素リッチガスは、第3熱交換器2cを有する第6配管ラインL6を通って気液分離器6に送られ、気液分離器6が、水素リッチガスを常温程度にまで冷却して余分な水分を凝縮除去し、その後、水素リッチガスは、第1電磁バルブV1を有する第7配管ラインL7を通って水素精製装置7に送られる。
The desulfurizer 3 removes the sulfur content from the pressurized hydrocarbon gas to the ppb level, and the hydrocarbon gas after the sulfur content removal is reformed through the third piping line L3 having the second heat exchanger 2b. The reformer 4 is supplied with steam (steam) or pure water that becomes steam in the reformer 4 from the fourth piping line L4.
The reformer 4 is maintained at a high temperature of about 750 ° C. by the combustion of the burner 4a, and the steam is reacted with the hydrocarbon gas by the steam reforming catalyst under a pressure of about 0.85 MPa to improve the gas to a hydrogen-rich gas. The reformed hydrogen-rich gas passes through the fifth piping line L5 and is preheated with the first and second heat exchangers 2a and 2b to be sent to the transformer 5.
The transformer 5 transforms carbon monoxide (CO) in the hydrogen-rich gas into carbon dioxide (CO 2 ) by the catalyst for the transformation, and the hydrogen-rich gas after the transformation is the sixth piping line having the third heat exchanger 2c. The gas-liquid separator 6 is sent to the gas-liquid separator 6 through L6, and the gas-liquid separator 6 cools the hydrogen-rich gas to room temperature to condense and remove excess water, and then the hydrogen-rich gas passes through the first electromagnetic valve V1. It is sent to the hydrogen purifier 7 through the seventh piping line L7.

水素精製装置7は、例えば、活性アルミナ、カーボンモレキュラーシーブ(CMS)、ゼオライトなどの吸着剤を収容する圧力スイング式水素精製装置で、加圧状態下において水素リッチガスから水、二酸化炭素(CO2)、一酸化炭素(CO)、メタン(CH4)、窒素(N2)などの不純物を吸着除去して高純度の製品水素に精製し、その吸着した不純物を減圧状態下において吸着剤から脱着させるものである。
その水素精製装置7は、図2に詳しく示すように、例えば、3塔の水素精製装置7、つまり、第1水素精製装置7a、第2水素精製装置7b、および、第3水素精製装置7cにより構成されて、それら第1〜第3の水素精製装置7a〜7cが並列に接続され、後に詳しく説明するように、各水素精製装置7a〜7cにおいて、吸着(水素取り出し工程)、均圧(水素回収工程)、均圧(1)、減圧(1)と(2)、洗浄、均圧(2)、昇圧の各工程を順番に繰り返すことにより水素リッチガスから高純度の製品水素を連続的に製造するように構成されている。
The hydrogen purifier 7 is a pressure swing-type hydrogen purifier that contains an adsorbent such as activated alumina, carbon molecular sieve (CMS), zeolite, and the like. From a hydrogen rich gas to water, carbon dioxide (CO 2 ) under pressure. , Carbon monoxide (CO), methane (CH 4 ), nitrogen (N 2 ) and other impurities are adsorbed and removed to purify to high purity product hydrogen, and the adsorbed impurities are desorbed from the adsorbent under reduced pressure. Is.
As shown in detail in FIG. 2, the hydrogen purifier 7 includes, for example, a three-column hydrogen purifier 7, that is, a first hydrogen purifier 7a, a second hydrogen purifier 7b, and a third hydrogen purifier 7c. The first to third hydrogen purifiers 7a to 7c are connected in parallel. As will be described in detail later, in each hydrogen purifier 7a to 7c, adsorption (hydrogen extraction step), pressure equalization (hydrogen Recovery process), pressure equalization (1), pressure reduction (1) and (2), washing, pressure equalization (2), and pressure increase are repeated in order to continuously produce high purity product hydrogen from hydrogen rich gas. Is configured to do.

各水素精製装置7a〜7cからの高純度水素は、水素取り出し用調圧機構PV1を備えた水素取り出しラインとしての第8配管ラインL8を通って水素貯蔵タンク8へ搬送され、供給側と需要側での流量変動を吸収して常時一定量の製品水素として供給できるように水素貯蔵タンク8に貯蔵され、需要に応じて、第9配管ラインL9から供給される。
そのため、各水素精製装置7a〜7cは、水素取り出し用開閉機構としての第2電磁バルブV2a〜V2cを備えた第8補助配管ラインL8a〜L8cを介してそれぞれ第8配管ラインL8に並列に接続されている。
さらに、各水素精製装置7a〜7cは、水素回収用開閉機構としての第3電磁バルブV3a〜V3cを備えた第10補助配管ラインL10a〜L10cを介してそれぞれ水素回収ラインとしての第10配管ラインL10に並列に接続されている。
High-purity hydrogen from each of the hydrogen purifiers 7a to 7c is conveyed to the hydrogen storage tank 8 through an eighth piping line L8 as a hydrogen extraction line provided with a hydrogen extraction pressure adjusting mechanism PV1, and is supplied to the supply side and the demand side. Is stored in the hydrogen storage tank 8 so that it can be supplied as a constant amount of product hydrogen at all times, and is supplied from the ninth piping line L9 according to demand.
Therefore, each of the hydrogen purifiers 7a to 7c is connected in parallel to the eighth piping line L8 via the eighth auxiliary piping lines L8a to L8c provided with the second electromagnetic valves V2a to V2c as the hydrogen extraction opening / closing mechanism. ing.
Further, each of the hydrogen purifiers 7a to 7c has a tenth piping line L10 as a hydrogen recovery line via a tenth auxiliary piping line L10a to L10c provided with third electromagnetic valves V3a to V3c as a hydrogen recovery opening / closing mechanism. Connected in parallel.

その第10配管ラインL10は、水素回収用調圧機構PV2と第4電磁バルブV4を備えていて、その第10配管ラインL10には、洗浄用水素を貯蔵する洗浄用貯蔵タンク10が接続されている。その洗浄用貯蔵タンク10は、比較的高純度の洗浄用水素を貯蔵する第1貯蔵タンク10aと比較的低純度の洗浄用水素を貯蔵する第2貯蔵タンク10bとの2つのタンクで構成され、それら2つの貯蔵タンク10a,10bは、それぞれ貯蔵用電磁バルブV10a,V10bを備えて、第10配管ラインL10に並列に接続されていて、第2貯蔵タンク10bには、そのタンク内の洗浄用水素を加熱する加熱手段11が設けられている。
すなわち、第10配管ラインL10は、水素回収ラインとして機能するもので、その第10配管ラインL10の途中には、均圧用調圧機構PV3を備えた第11補助配管ラインL11aが分岐接続され、その第11補助配管ラインL11aが水素取り出し用調圧機構PV1よりも上手側において第8配管ラインL8に接続されている。
The tenth piping line L10 includes a hydrogen recovery pressure regulating mechanism PV2 and a fourth electromagnetic valve V4, and a cleaning storage tank 10 for storing cleaning hydrogen is connected to the tenth piping line L10. Yes. The cleaning storage tank 10 is composed of two tanks, a first storage tank 10a for storing relatively high purity cleaning hydrogen and a second storage tank 10b for storing relatively low purity cleaning hydrogen, These two storage tanks 10a and 10b are equipped with storage electromagnetic valves V10a and V10b, respectively, and are connected in parallel to the tenth piping line L10. The second storage tank 10b has a cleaning hydrogen in the tank. A heating means 11 for heating the is provided.
That is, the tenth piping line L10 functions as a hydrogen recovery line, and an eleventh auxiliary piping line L11a including a pressure equalizing pressure regulating mechanism PV3 is branched and connected in the middle of the tenth piping line L10. The eleventh auxiliary piping line L11a is connected to the eighth piping line L8 on the upper side than the pressure adjustment mechanism PV1 for extracting hydrogen.

また、各水素精製装置7a〜7cからのオフガスは、第12配管ラインL12を通って改質器4用のバーナ4a側に送られるように構成され、そのため、各水素精製装置7a〜7cは、第5電磁バルブV5a〜V5cを有する第12補助配管ラインL12a〜L12cを介してそれぞれ第12配管ラインL12に接続され、その第12配管ラインL12にオフガス用タンク9が介装されるとともに、第12補助配管ラインL12a〜L12cに対し、第1電磁バルブV1を構成する電磁バルブV1a〜V1cを有する第7補助配管ラインL7a〜L7cを介して第7配管ラインL7がそれぞれ接続されている。
各水素精製装置7a〜7cからのオフガスは、バーナ4aに供給され、燃焼後の排ガスは、第14配管ラインL14を通って装置外へ排出される。
Further, the off-gas from each of the hydrogen purifiers 7a to 7c is configured to be sent to the burner 4a side for the reformer 4 through the twelfth piping line L12. Therefore, each of the hydrogen purifiers 7a to 7c is The twelfth auxiliary pipe lines L12a to L12c having the fifth electromagnetic valves V5a to V5c are connected to the twelfth pipe line L12, respectively, and the off-gas tank 9 is interposed in the twelfth pipe line L12. The seventh piping line L7 is connected to the auxiliary piping lines L12a to L12c via seventh auxiliary piping lines L7a to L7c having the electromagnetic valves V1a to V1c constituting the first electromagnetic valve V1, respectively.
Off-gas from each of the hydrogen purification apparatuses 7a to 7c is supplied to the burner 4a, and the exhaust gas after combustion is discharged out of the apparatus through the fourteenth piping line L14.

第12配管ラインL12に介装のオフガス用タンク9は、各水素精製装置7a〜7cから供給されるオフガスを一時的に貯蔵して常時一定量のオフガスをバーナ4aに供給するためのもので、オフガス用タンク9の前後には、第6電磁バルブV6と第1圧力調整バルブPV1が配設されている。
その第12配管ラインL12において、オフガス用タンク9を含んで前後の第6電磁バルブV6と第1圧力調整バルブPV1をバイパスする第15配管ラインL15が設けられ、その第15配管ラインL15には、第7電磁バルブV7と第2圧力調整バルブPV2が配設され、かつ、第15配管ラインL15より下手側の第12配管ラインL12には流量計Fが配設されている。
そして、第7配管ラインL7における第1電磁バルブV1の上手側には、第8電磁バルブV8を備えたパージ用の第16配管ラインL16と、気液分離器6からの水素リッチガスの一部を第1配管ラインL1に戻す第17配管ラインL17が接続されている。
The off gas tank 9 interposed in the twelfth piping line L12 is for temporarily storing off gas supplied from the hydrogen purifiers 7a to 7c and supplying a constant amount of off gas to the burner 4a at all times. Before and after the offgas tank 9, a sixth electromagnetic valve V6 and a first pressure adjustment valve PV1 are disposed.
In the twelfth piping line L12, a fifteenth piping line L15 including the off-gas tank 9 and bypassing the front and rear sixth electromagnetic valves V6 and the first pressure regulating valve PV1 is provided, and the fifteenth piping line L15 includes A seventh electromagnetic valve V7 and a second pressure regulating valve PV2 are disposed, and a flow meter F is disposed in a twelfth piping line L12 on the lower side of the fifteenth piping line L15.
Then, on the upper side of the first electromagnetic valve V1 in the seventh piping line L7, a part of the hydrogen-rich gas from the gas-liquid separator 6 and the sixteenth piping line L16 for purge provided with the eighth electromagnetic valve V8. A seventeenth piping line L17 returning to the first piping line L1 is connected.

つぎに、この水素製造装置の作動を説明して水素製造方法に言及する。
まず、装置の循環系全体を所定の温度にまで昇温する起動運転を実行した後、水素精製運転を行って水素を製造するのであり、水素精製運転では、原料である炭化水素ガスが、第1配管ラインL1から導入されてコンプレッサ1により所定の圧力にまで昇圧され、第1熱交換器2aを通過した後、脱硫器3において硫黄分が除去され、その後、第2熱交換器2bを通過し、改質器4において、バーナ4aの燃焼による高温下で、水蒸気改質用の触媒により水蒸気と反応して水素リッチガスに改質される。
改質後の水素リッチガスは、第1と第2熱交換器2a,2bを通過して原料である炭化水素ガスを予熱し、変成器5において含有一酸化炭素が二酸化炭素に変成され、第3熱交換器2cを通過して気液分離器6で余分な水分が除去された後、3塔ある水素精製装置7a〜7cのいずれかにおいて不純物が吸着除去されて高純度の水素に精製される。
Next, the operation of the hydrogen production apparatus will be described and a hydrogen production method will be referred to.
First, after performing a start-up operation in which the entire circulation system of the apparatus is heated to a predetermined temperature, a hydrogen purification operation is performed to produce hydrogen. In the hydrogen purification operation, hydrocarbon gas as a raw material is After being introduced from one piping line L1, the pressure is increased to a predetermined pressure by the compressor 1, and after passing through the first heat exchanger 2a, sulfur is removed in the desulfurizer 3, and then passes through the second heat exchanger 2b. In the reformer 4, it reacts with the steam by the steam reforming catalyst at a high temperature due to the combustion of the burner 4 a to be reformed into a hydrogen rich gas.
The reformed hydrogen-rich gas passes through the first and second heat exchangers 2a and 2b to preheat the hydrocarbon gas as the raw material, and the contained carbon monoxide is transformed into carbon dioxide in the transformer 5, and the third After excess water is removed by the gas-liquid separator 6 after passing through the heat exchanger 2c, impurities are adsorbed and removed in any of the three towers of the hydrogen purifiers 7a to 7c to be purified to high purity hydrogen. .

例えば、図3の上段に示すように、水素リッチガスが第1水素精製装置7aにおいて精製される場合であれば、図3の下段に示すように、ステップ1〜5(時間t1〜t5)の間、第1電磁バルブV1aの開弁によって第1水素精製装置7aに水素リッチガスが供給され、第1水素精製装置7a内を所定の加圧状態に維持して、吸着剤に水素リッチガス中に含まれる水、二酸化炭素、一酸化炭素、メタン、窒素などの不純物を吸着させ、第2電磁バルブV2aの開弁により、高純度の製品水素を取り出す吸着工程、つまり、水素取り出し工程を実行する。
この水素取り出し工程の間、第1水素精製装置7a内は、例えば、圧力調整バルブからなる水素取り出し用調圧機構PV1によって0.85MPa程度の所定圧に維持され、高純度の製品水素は、水素取り出しラインとしての第8配管ラインL8を介して水素貯蔵タンク8へ搬送されて貯蔵される。
For example, as shown in the upper part of FIG. 3, if the hydrogen-rich gas is purified in the first hydrogen purifier 7a, as shown in the lower part of FIG. 3, between steps 1 to 5 (time t1 to t5). By opening the first electromagnetic valve V1a, the hydrogen-rich gas is supplied to the first hydrogen purification device 7a, and the first hydrogen purification device 7a is maintained in a predetermined pressurized state, and is contained in the hydrogen-rich gas in the adsorbent. An adsorption step of adsorbing impurities such as water, carbon dioxide, carbon monoxide, methane, nitrogen, etc., and extracting the high-purity product hydrogen by opening the second electromagnetic valve V2a, that is, a hydrogen extraction step is executed.
During this hydrogen extraction process, the inside of the first hydrogen purification device 7a is maintained at a predetermined pressure of about 0.85 MPa by a hydrogen extraction pressure adjustment mechanism PV1 including a pressure adjustment valve, for example. It is transported and stored in the hydrogen storage tank 8 via an eighth piping line L8 as a take-out line.

その際、第2水素精製装置7bは、洗浄工程が終了した直後の均圧(2)工程にあり、第3水素精製装置7cは、吸着工程(水素取り出し工程)が終了した直後の均圧工程、つまり、第3水素精製装置7c内に残存する高純度の水素を回収する水素回収工程にあって、ステップ1(時間t1)の間、第3電磁バルブV3c,V4,V4bの開弁によって、第2と第3水素精製装置7b,7c内の圧力を均圧化した後に、第3水素精製装置7c内の減圧に伴って第3水素精製装置7c内に残存する高純度の水素を回収する水素回収工程を実行する。
この水素回収工程では、まず、図4の(a)に示すように、貯蔵用電磁バルブV10aの開弁により比較的高純度の水素が洗浄用水素ガスとして第1貯蔵タンク10aに貯蔵される第1水素回収工程が実行され、その後、貯蔵用電磁バルブV10aが閉弁されるとともに、貯蔵用電磁バルブV10bが開弁されて、比較的低純度の水素が洗浄用水素として第2貯蔵タンク10bに貯蔵される第2水素回収工程が実行される。
なお、その水素回収工程の間、第3水素精製装置7c内は、例えば、流量調整バルブからなる水素回収用流量調整機構FV1によって流量を調整し、第1貯蔵タンク10aと均圧する。その後、同様に、第3水素精製装置7cと、第1貯蔵タンク10aより圧力が低い第2貯蔵タンク10bと均圧して水素回収工程を完了する。
At that time, the second hydrogen purification device 7b is in the pressure equalization (2) step immediately after the cleaning step is completed, and the third hydrogen purification device 7c is the pressure equalization step immediately after the adsorption step (hydrogen extraction step) is completed. That is, in the hydrogen recovery process for recovering high-purity hydrogen remaining in the third hydrogen purification device 7c, during step 1 (time t1), the third electromagnetic valves V3c, V4, V4b are opened, After equalizing the pressure in the second and third hydrogen purification apparatuses 7b and 7c, the high-purity hydrogen remaining in the third hydrogen purification apparatus 7c is recovered along with the pressure reduction in the third hydrogen purification apparatus 7c. Perform a hydrogen recovery process.
In this hydrogen recovery step, first, as shown in FIG. 4A, a relatively high purity hydrogen is stored in the first storage tank 10a as cleaning hydrogen gas by opening the storage electromagnetic valve V10a. 1 The hydrogen recovery process is executed, and then the storage electromagnetic valve V10a is closed and the storage electromagnetic valve V10b is opened, so that relatively low-purity hydrogen is supplied to the second storage tank 10b as cleaning hydrogen. A stored second hydrogen recovery step is performed.
During the hydrogen recovery process, the flow rate in the third hydrogen purification device 7c is adjusted by, for example, a hydrogen recovery flow rate adjustment mechanism FV1 including a flow rate adjustment valve, and is equalized with the first storage tank 10a. Thereafter, similarly, the hydrogen recovery process is completed by equalizing the pressure with the third hydrogen purification device 7c and the second storage tank 10b having a pressure lower than that of the first storage tank 10a.

その後、ステップ2(時間t2)において、第2水素精製装置7bが昇圧され、さらに、ステップ3と4(時間t3とt4)においても昇圧され、同時に、第3水素精製装置7cが減圧されて、その減圧下において吸着剤に吸着された不純物が脱着されてオフガスが排出される。
第3水素精製装置7cの減圧工程において、その初期の段階では、図5(a)に示すように、第6電磁バルブV6の開弁によって、比較的多量の一酸化炭素を含むオフガスがオフガス用タンク9に貯蔵され、後期の段階では、図5(b)に示すように、第6電磁バルブV6が閉弁され、第7電磁バルブV7が開弁されて、比較的多量の水素を含むオフガスがバイパス路L15を通り、オフガス用タンク9からのオフガスと混合されて改質器4のバーナ4aに供給されて燃焼される。
Thereafter, in step 2 (time t2), the pressure of the second hydrogen purifier 7b is increased, and in step 3 and 4 (time t3 and t4), the pressure of the third hydrogen purifier 7c is reduced. Under the reduced pressure, the impurities adsorbed on the adsorbent are desorbed and the off-gas is discharged.
In the decompression step of the third hydrogen purification device 7c, in the initial stage, as shown in FIG. 5A, the off-gas containing a relatively large amount of carbon monoxide is used for off-gas by opening the sixth electromagnetic valve V6. As shown in FIG. 5B, the sixth electromagnetic valve V6 is closed and the seventh electromagnetic valve V7 is opened to store off gas containing a relatively large amount of hydrogen. Passes through the bypass L15, is mixed with the offgas from the offgas tank 9, is supplied to the burner 4a of the reformer 4, and is burned.

引き続いて、ステップ5(時間t5)において、第2水素精製装置7bが昇圧され、第3水素精製装置7cには、まず、図4の(b)に示すように、貯蔵用電磁バルブ10bの開弁によって、加熱手段11により加熱された比較的低純度の洗浄用水素が第2貯蔵タンク10bから供給され、それによって予備洗浄工程が実行される。その後、貯蔵用電磁バルブ10bが閉弁されるとともに、貯蔵用電磁バルブV10aの開弁によって比較的高純度の洗浄用水素が第1貯蔵タンク10aから供給され、それによって洗浄工程が実行されて、第3水素精製装置7c内の吸着剤が洗浄される。
洗浄後のオフガスは、図5(b)に示すように、バイパス路L15を通り、オフガス用タンク9からのオフガスと混合されて改質器4のバーナ4aに供給されて燃焼される。
そして、第1〜第3の水素精製装置7a〜7cにおいて、このような工程を順次繰り返すことによって高純度の水素を連続的に製造するのである。
Subsequently, in step 5 (time t5), the pressure of the second hydrogen purifier 7b is increased, and the third hydrogen purifier 7c first opens the storage electromagnetic valve 10b as shown in FIG. 4 (b). A relatively low-purity cleaning hydrogen heated by the heating means 11 is supplied from the second storage tank 10b by the valve, whereby the preliminary cleaning step is executed. Thereafter, the storage electromagnetic valve 10b is closed, and relatively high-purity cleaning hydrogen is supplied from the first storage tank 10a by opening the storage electromagnetic valve V10a, whereby the cleaning process is executed, The adsorbent in the third hydrogen purification device 7c is washed.
As shown in FIG. 5B, the washed off-gas passes through the bypass L15, is mixed with the off-gas from the off-gas tank 9, is supplied to the burner 4a of the reformer 4, and is burned.
And in the 1st-3rd hydrogen purification apparatus 7a-7c, highly purified hydrogen is continuously manufactured by repeating such a process sequentially.

〔別実施形態〕
(1)先の実施形態では、燃料ガスの変成法により水素リッチガスを製造し、その水素リッチガスから高純度水素を精製して製品水素を製造する例を示したが、水素リッチガスの製造に関しては、燃料ガスの変成法以外にも、液体燃料のガス化法、水の電解法、石炭やコークスのガス化法、コークス炉ガスの液化分離法、メタノールやアンモニアの分解法などの各種方法により製造することができる。
[Another embodiment]
(1) In the previous embodiment, an example was shown in which a hydrogen-rich gas was produced by a fuel gas transformation method, and product hydrogen was produced by purifying high-purity hydrogen from the hydrogen-rich gas. In addition to the fuel gas transformation method, it is manufactured by various methods such as liquid fuel gasification method, water electrolysis method, coal and coke gasification method, coke oven gas liquefaction separation method, and methanol and ammonia decomposition method. be able to.

(2)先の実施形態では、3塔の水素精製装置7a〜7cを並列に接続して水素精製装置7を構成した例を示したが、例えば、水素精製装置を2塔使用する水素製造装置においても、また、4塔以上の水素精製装置を並列に接続して使用する水素製造装置においても適用可能である。 (2) In the previous embodiment, an example in which the hydrogen purifier 7 was configured by connecting three towers of hydrogen purifiers 7a to 7c in parallel was shown. However, for example, a hydrogen production apparatus using two hydrogen purifiers In addition, the present invention can also be applied to a hydrogen production apparatus using four or more towers of hydrogen purifiers connected in parallel.

水素製造装置の全体を示す概略構成図Schematic configuration diagram showing the entire hydrogen production system 水素製造装置の要部を示す概略構成図Schematic configuration diagram showing the main parts of the hydrogen production system 水素精製装置の作動を示す説明図Explanatory diagram showing the operation of the hydrogen purifier 水素精製装置の作動を示す説明図Explanatory diagram showing the operation of the hydrogen purifier 水素精製装置の作動を示す説明図Explanatory diagram showing the operation of the hydrogen purifier

符号の説明Explanation of symbols

7(7a〜7c) 水素精製装置
10a 洗浄用貯蔵タンクとしての第1貯蔵タンク
10b 洗浄用貯蔵タンクとしての第2貯蔵タンク
11 第2貯蔵タンクの加熱手段
L8 水素取り出しライン
L10 水素回収ライン
L12 洗浄用排出ライン
7 (7a to 7c) Hydrogen purification apparatus 10a First storage tank as a storage tank for cleaning 10b Second storage tank as a storage tank for cleaning 11 Heating means for the second storage tank L8 Hydrogen take-out line L10 Hydrogen recovery line L12 For cleaning Discharge line

Claims (8)

吸着剤を収容する水素精製装置内を加圧状態に維持して前記吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素を取り出す水素取り出し工程と、その水素取り出し工程完了後に前記水素精製装置内を減圧状態に維持して前記吸着剤から不純物を脱着させてオフガスを取り出すオフガス取り出し工程と、そのオフガス取り出し工程完了後に前記水素精製装置内を減圧状態に維持して高純度の洗浄用水素により前記吸着剤を洗浄する洗浄工程とを繰り返しながら、水素リッチガスから高純度の製品水素を製造する水素製造方法であって、
前記水素取り出し工程完了後、前記水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の水素を前記洗浄用水素として回収する水素回収工程を実行し、その水素回収工程完了後に前記オフガス取り出し工程へ移行する水素製造方法。
A hydrogen extraction step for maintaining the inside of the hydrogen purifier containing the adsorbent in a pressurized state and adsorbing impurities in the hydrogen rich gas to the adsorbent to extract high-purity product hydrogen, and the hydrogen after completion of the hydrogen extraction step An off-gas removal step for removing off-gas by desorbing impurities from the adsorbent while maintaining the inside of the purification device in a reduced pressure state, and maintaining the inside of the hydrogen purification device in a reduced-pressure state after completion of the off-gas removal step for high-purity cleaning A hydrogen production method for producing high-purity product hydrogen from a hydrogen-rich gas while repeating the washing step of washing the adsorbent with hydrogen,
After completion of the hydrogen removal step, a hydrogen recovery step is performed in which high-purity hydrogen remaining in the hydrogen purification device is recovered as the cleaning hydrogen in accordance with the reduced pressure in the hydrogen purification device. A hydrogen production method that moves to an off-gas removal step.
前記水素回収工程が、比較的高純度の水素を回収する第1水素回収工程と、比較的低純度の水素を回収する第2水素回収工程との少なくとも2つの水素回収工程からなる請求項1に記載の水素製造方法。   The hydrogen recovery step comprises at least two hydrogen recovery steps, a first hydrogen recovery step for recovering relatively high purity hydrogen and a second hydrogen recovery step for recovering relatively low purity hydrogen. The hydrogen production method as described. 前記洗浄工程において、前記第2水素回収工程で回収した水素による予備洗浄工程を実行した後、前記第1水素回収工程で回収した水素による洗浄工程を実行する請求項2に記載の水素製造方法。   3. The method for producing hydrogen according to claim 2, wherein, in the cleaning step, after performing a preliminary cleaning step with hydrogen recovered in the second hydrogen recovery step, a cleaning step with hydrogen recovered in the first hydrogen recovery step is performed. 前記予備洗浄工程において、前記第2水素回収工程で回収した水素を加熱して使用する請求項3に記載の水素製造方法。   The hydrogen production method according to claim 3, wherein in the preliminary cleaning step, the hydrogen recovered in the second hydrogen recovery step is heated and used. 吸着剤を収容する水素精製装置と、その水素精製装置から高純度の製品水素を取り出す水素取り出しラインと、前記水素精製装置に高純度の洗浄用水素を供給する洗浄用供給ラインと、その洗浄用水素により前記吸着剤を洗浄した後の洗浄排ガスを排出する洗浄用排出ラインを備え、前記水素精製装置内を加圧状態に維持して前記吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素に精製し、その製品水素を前記水素取り出しラインから取り出すように構成してある水素製造装置であって、
前記水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の水素を前記洗浄用水素として回収する水素回収ラインを備え、その水素回収ラインから回収した前記洗浄用水素を前記洗浄用供給ラインを介して前記水素精製装置に供給するように構成してある水素製造装置。
Hydrogen purifier that contains the adsorbent, a hydrogen take-out line for extracting high-purity product hydrogen from the hydrogen purifier, a cleaning supply line for supplying high-purity cleaning hydrogen to the hydrogen purifier, and for the cleaning A cleaning exhaust line that discharges cleaning exhaust gas after cleaning the adsorbent with hydrogen is provided, and the hydrogen purifier is maintained in a pressurized state so that impurities in the hydrogen rich gas are adsorbed to the adsorbent to achieve high purity. A hydrogen production device configured to purify the product hydrogen and to take out the product hydrogen from the hydrogen take-out line,
A hydrogen recovery line is provided for recovering high-purity hydrogen remaining in the hydrogen purifier as the cleaning hydrogen as the pressure in the hydrogen purifier is reduced, and the cleaning hydrogen recovered from the hydrogen recovery line is used for the cleaning. A hydrogen production apparatus configured to be supplied to the hydrogen purification apparatus via a supply line.
前記水素回収ラインから回収した前記洗浄用水素を貯蔵する洗浄用貯蔵タンクを備えている請求項5に記載の水素製造装置。   The hydrogen production apparatus according to claim 5, further comprising a cleaning storage tank that stores the cleaning hydrogen recovered from the hydrogen recovery line. 前記洗浄用貯蔵タンクが、比較的高純度の洗浄用水素を貯蔵する第1貯蔵タンクと、比較的低純度の洗浄用水素を貯蔵する第2貯蔵タンクとの少なくとも2つのタンクを備えている請求項6に記載の水素製造装置。   The cleaning storage tank includes at least two tanks, a first storage tank for storing relatively high purity cleaning hydrogen and a second storage tank for storing relatively low purity cleaning hydrogen. Item 7. The hydrogen production apparatus according to Item 6. 前記第2貯蔵タンクが、そのタンク内の洗浄用水素を加熱する加熱手段を備えている請求項7に記載の水素製造装置。   The hydrogen production apparatus according to claim 7, wherein the second storage tank includes a heating unit that heats cleaning hydrogen in the tank.
JP2004107444A 2004-03-31 2004-03-31 Hydrogen production method and apparatus Expired - Fee Related JP4771668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107444A JP4771668B2 (en) 2004-03-31 2004-03-31 Hydrogen production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107444A JP4771668B2 (en) 2004-03-31 2004-03-31 Hydrogen production method and apparatus

Publications (2)

Publication Number Publication Date
JP2005289730A true JP2005289730A (en) 2005-10-20
JP4771668B2 JP4771668B2 (en) 2011-09-14

Family

ID=35323116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107444A Expired - Fee Related JP4771668B2 (en) 2004-03-31 2004-03-31 Hydrogen production method and apparatus

Country Status (1)

Country Link
JP (1) JP4771668B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104891A1 (en) * 2012-12-28 2014-07-03 Green Vision Holding B.V. Method and device for separating a gas mixture by means of pressure swing adsorption
JP2017206402A (en) * 2016-05-17 2017-11-24 株式会社神鋼環境ソリューション Hydrogen gas production method and biogas hydrogenation facility

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7147727B2 (en) * 2019-10-08 2022-10-05 Jfeスチール株式会社 Gas separation and recovery method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115801A (en) * 1987-10-29 1989-05-09 Japan Pionics Co Ltd Purification of hydrogen gas and device therefor
JPH0639233A (en) * 1990-01-10 1994-02-15 Uop Inc Collective adsorbing method for recovering hydrogen and hydrocarbon by employing temperature swing stage before pressure swing stage
JPH0929044A (en) * 1995-07-12 1997-02-04 Praxair Technol Inc Reflux in pressure swing type suction method
JPH11239710A (en) * 1997-12-09 1999-09-07 Praxair Technol Inc Pressure-swing adsorption method and device system
JP2001347125A (en) * 2000-06-12 2001-12-18 Mitsubishi Kakoki Kaisha Ltd Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus
JP2004066125A (en) * 2002-08-07 2004-03-04 Sumitomo Seika Chem Co Ltd Method of separating target gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115801A (en) * 1987-10-29 1989-05-09 Japan Pionics Co Ltd Purification of hydrogen gas and device therefor
JPH0639233A (en) * 1990-01-10 1994-02-15 Uop Inc Collective adsorbing method for recovering hydrogen and hydrocarbon by employing temperature swing stage before pressure swing stage
JPH0929044A (en) * 1995-07-12 1997-02-04 Praxair Technol Inc Reflux in pressure swing type suction method
JPH11239710A (en) * 1997-12-09 1999-09-07 Praxair Technol Inc Pressure-swing adsorption method and device system
JP2001347125A (en) * 2000-06-12 2001-12-18 Mitsubishi Kakoki Kaisha Ltd Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus
JP2004066125A (en) * 2002-08-07 2004-03-04 Sumitomo Seika Chem Co Ltd Method of separating target gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104891A1 (en) * 2012-12-28 2014-07-03 Green Vision Holding B.V. Method and device for separating a gas mixture by means of pressure swing adsorption
NL2010072C2 (en) * 2012-12-28 2014-07-03 Green Vision Holding B V Method and device for separating a gas mixture by means of pressure swing adsorption.
US9656202B2 (en) 2012-12-28 2017-05-23 Green Vision Holding B.V. Method and device for separating a gas mixture by means of pressure swing adsorption
JP2017206402A (en) * 2016-05-17 2017-11-24 株式会社神鋼環境ソリューション Hydrogen gas production method and biogas hydrogenation facility

Also Published As

Publication number Publication date
JP4771668B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
KR101388266B1 (en) Method and apparatus for separating blast furnace gas
US4581044A (en) Process for separating carbonic acid gas from methane-rich gas
JP6523134B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
TWI764876B (en) A method for recovering hydrogen from a biomass pyrolysis gas
JP5690165B2 (en) PSA high purity hydrogen production method
US7695545B2 (en) Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration
JP3947752B2 (en) High purity hydrogen production method
WO2017072891A1 (en) Hydrogen recovery method
JP4814024B2 (en) PSA equipment for high-purity hydrogen gas production
JP6667382B2 (en) Hydrogen gas production method and hydrogen gas production device
US8372375B2 (en) Method of producing high-purity hydrogen
JP2007015909A (en) Method for production of high-purity hydrogen
JP4771668B2 (en) Hydrogen production method and apparatus
JP4187569B2 (en) Hydrogen production equipment
JP2007209868A (en) Stable operation method of pressure swing adsorption device
JP6068148B2 (en) Method for starting hydrogen production apparatus and hydrogen production apparatus
JP5357465B2 (en) High purity hydrogen production method
JP4815104B2 (en) Hydrogen production method and apparatus
JP2001347125A (en) Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus
JP6058472B2 (en) Method of using hydrogen production apparatus and hydrogen production apparatus
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP6640660B2 (en) Hydrogen gas production method and hydrogen gas production device
JP4326248B2 (en) Operation method of hydrogen production equipment
JP4236500B2 (en) Hydrogen production apparatus and hydrogen production method
JP2002355519A (en) Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees