JPH01115801A - Purification of hydrogen gas and device therefor - Google Patents

Purification of hydrogen gas and device therefor

Info

Publication number
JPH01115801A
JPH01115801A JP62271640A JP27164087A JPH01115801A JP H01115801 A JPH01115801 A JP H01115801A JP 62271640 A JP62271640 A JP 62271640A JP 27164087 A JP27164087 A JP 27164087A JP H01115801 A JPH01115801 A JP H01115801A
Authority
JP
Japan
Prior art keywords
gas
adsorption
valve
purification
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62271640A
Other languages
Japanese (ja)
Other versions
JP2685766B2 (en
Inventor
Yasusada Miyano
安定 宮野
Yasushi Ishii
康 石井
Kazuo Arai
荒井 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP62271640A priority Critical patent/JP2685766B2/en
Publication of JPH01115801A publication Critical patent/JPH01115801A/en
Application granted granted Critical
Publication of JP2685766B2 publication Critical patent/JP2685766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To obtain a purified hydrogen gas having high purity continuously and stably, by passing a hydrogen gas containing oxygen as an impurity through a reaction column and recleaning a purifying column standing by ready with a purified self gas at a specific stage of adsorption purification. CONSTITUTION:At a point of time when purification of hydrogen containing oxygen as an impurity is advanced in an adsorbing column A and the progress ratio of adsorption purification process based on the flow rate integrated value of a raw material gas reaches a given value to carry out recleaning, a signal to reclean an adsorbing column B is sent from a control part. An on-off valve part Vb of a four-way change valve V1 and an on-off valve part Vd of a four-way change valve V2 are opened so that recleaning by a purified self gas in the adsorbing column B is continued for a given time. Then the interior of the adsorbing column B is made into a uniform pressure state by the purified self gas and the adsorbing column is standing by ready to change to the adsorbing purification process. By using both the four-way change valves V1 and V2, there is no dead space such as branched tube apt to retain a gas and an impurity which is estimated to remain in fine cracks in column walls to be diffused and admixed in space in the adsorbing column standing by ready after regeneration of an adsorbent is completely removed by the recleaning.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素ガスの精製方法および装置に関し、さらに
詳細には水素ガス中に含有される酸素、水および炭酸ガ
スなどの不純物を除去することによって高純度の精製水
素ガスを得るための水素ガスの精製方法および装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for purifying hydrogen gas, and more particularly to a method for removing impurities such as oxygen, water, and carbon dioxide contained in hydrogen gas. The present invention relates to a hydrogen gas purification method and apparatus for obtaining highly purified hydrogen gas.

半導体製造プロセスなどでは水素ガスが多量に使用され
ているが、近年、半導体の高度集積化の急速な進展とと
もに水素ガスも極めて高純度であることが強く要求され
つつある。
Hydrogen gas is used in large quantities in semiconductor manufacturing processes, and in recent years, with the rapid progress in the high degree of integration of semiconductors, there has been a strong demand for extremely high purity hydrogen gas.

〔従来の技術〕[Conventional technology]

水素ガス中に不純物として含有される少量の酸素、水分
および炭酸ガスなどを除去し、精製水素ガスを得る方法
としては、Ni5Cuなどの触媒により酸素を水に転換
する反応工程とゼオライトなどの吸着剤による水分およ
び炭酸ガスなどを吸着除去する吸着精製工程とを組み合
わせた方法が知られている。この場合には吸着剤につい
ては不純物の吸着量が増加すると吸着剤の再生が必要と
なるため、ガスの精製を連続的におこなうためには少な
くとも2系列の吸着筒を設け、これらを順次切り替えて
使用する必要があり、例えば第4図のフローシートで示
すような装置が使用される。
A method for removing small amounts of oxygen, water, carbon dioxide, etc. contained as impurities in hydrogen gas and obtaining purified hydrogen gas involves a reaction process in which oxygen is converted to water using a catalyst such as Ni5Cu, and an adsorbent such as zeolite. A method is known that combines an adsorption purification process in which water and carbon dioxide are removed by adsorption. In this case, the adsorbent will need to be regenerated as the amount of impurities adsorbed increases, so in order to continuously purify the gas, at least two series of adsorption cylinders should be installed and these should be switched sequentially. For example, an apparatus as shown in the flow sheet of FIG. 4 is used.

第4図において、Ni5Cuなどの触媒が充填され  
In Figure 4, a catalyst such as Ni5Cu is filled.
.

た反応筒31の入口32および出口33は原料ガスの供
給路34および反応ガスの流路35とそれぞれ接続され
ている。一方、ゼオライトなどの吸着剤層が充填され、
かつヒーター36が取り付けられた吸着筒AおよびBの
入口はそれぞれ流路38a #よび38bと接続され、
流路38aおよび38bの他端は分岐してその一方は開
閉弁ViaおよびVlbをそれぞれ介して反応ガスの流
路35と、また他方は開閉弁V2aおよびV2bをそれ
ぞれ介して再生排ガスの放出路37と接続されている。
The inlet 32 and outlet 33 of the reactor cylinder 31 are connected to a source gas supply path 34 and a reaction gas flow path 35, respectively. On the other hand, it is filled with an adsorbent layer such as zeolite,
In addition, the inlets of adsorption cylinders A and B to which heaters 36 are attached are connected to channels 38a # and 38b, respectively,
The other ends of the flow paths 38a and 38b are branched, and one of them is connected to a flow path 35 for the reaction gas through on-off valves Via and Vlb, respectively, and the other end is connected to a discharge path 37 for regenerated exhaust gas through on-off valves V2a and V2b, respectively. is connected to.

さらに吸着筒AおよびBの出口は流路41aおよび41
bと接続され、流路41aおよび41bの他端は分岐し
てその一方は開閉弁v3aおよびV3bをそれぞれ介し
て精製ガスの抜出路39に、また他方は開閉弁V4aお
よびV4bをそれぞれ介して再生用の精製自己ガスの供
給路40に接続されている。供給路34から反応筒31
に入った原料水素ガスは触媒と接触することにより水素
ガス中に含有される酸素ガスは水素ガスと反応して水に
転換され、接触後の水素ガスは出口33から反応ガスの
流路35に出る。反応ガスの吸着精製は吸着筒Aおよび
Bを交互に切替えて使用することにより連続的に行われ
る。例えば入部が精製工程のときには開閉弁Viaおよ
びV3aが開かれて反応筒31を出たガスは流路35か
らViaおよび流路38aを経て吸着筒へに入り、吸着
剤と接触することにより、水分およびその他の不純物が
吸着除去されて精製され、精製水素ガスは流路41a、
開閉弁V3aおよび抜出路39を経て抜出される。この
間、吸着筒Bでは吸着剤の再生が行われるが、先ずヒー
ター36により吸着剤が加熱された状態で開閉弁V2b
およびV4bが開かれて再生用の精製自己ガス(精製水
素ガスの一部)はV4bおよび流路41bを経て、吸着
筒Bに入る。ここで吸着剤に吸着された水分および炭酸
ガスなどの不純物は加熱によって離脱し、精製自己ガス
とともに流路38bおよび開閉弁V2bを経て再生排ガ
スとして放出路37から放出される。
Furthermore, the outlets of adsorption cylinders A and B are connected to flow paths 41a and 41.
b, and the other ends of the flow paths 41a and 41b are branched, one of which is connected to the purified gas extraction path 39 via on-off valves v3a and V3b, respectively, and the other is regenerated via on-off valves V4a and V4b, respectively. It is connected to a supply line 40 for purified self-gas. From the supply path 34 to the reaction tube 31
When the raw material hydrogen gas that has entered comes into contact with the catalyst, the oxygen gas contained in the hydrogen gas reacts with the hydrogen gas and is converted to water, and after the contact, the hydrogen gas flows from the outlet 33 to the reaction gas flow path 35. Get out. Adsorption purification of the reaction gas is carried out continuously by alternately using the adsorption cylinders A and B. For example, when the inlet is in the purification process, the on-off valves Via and V3a are opened and the gas exiting the reaction column 31 enters the adsorption column from the flow path 35 via Via and the flow path 38a, and comes into contact with the adsorbent, thereby reducing moisture. and other impurities are adsorbed and purified, and the purified hydrogen gas flows through the channel 41a,
It is extracted through the on-off valve V3a and the extraction passage 39. During this time, the adsorbent is regenerated in the adsorption cylinder B. First, the adsorbent is heated by the heater 36, and then the on-off valve V2b is heated.
Then, V4b is opened, and the purified self-gas for regeneration (part of the purified hydrogen gas) enters the adsorption cylinder B via V4b and the flow path 41b. Impurities such as moisture and carbon dioxide gas adsorbed by the adsorbent are separated by heating and are discharged from the discharge passage 37 together with the purified self-gas through the passage 38b and the on-off valve V2b as regenerated exhaust gas.

第5図は吸着筒AおよびBにおける精製工程および再生
工程を時系列的に示した図である。第5図において入部
で吸着精製が続けられる間にB筒では精製自己ガスによ
る吸着剤の加熱再生が行われるが、再生は比較的短時間
で終了するので、その後は待機状態となり、入部にふけ
る吸着精製が終了した時点で吸着精製工程に切替えられ
、代わって入部が再生工程に入る。
FIG. 5 is a diagram showing the purification process and regeneration process in adsorption cylinders A and B in chronological order. In Figure 5, while adsorption and purification continues in the entry section, the adsorbent is heated and regenerated using purified self-gas in cylinder B, but since the regeneration is completed in a relatively short time, it is then in a standby state and cannot be used for the entry section. When the adsorption purification is completed, the process is switched to the adsorption purification process, and the input part enters the regeneration process instead.

このような装置における吸着精製工程から再生工程への
切替および再生工程における加熱と再生用の精製自己ガ
スの流通などはシーケンサ−などにより、予め設定され
た時間に基づいてヒーターおよび各開閉弁を操作し自動
的に右こなわれるのが一般的となっている。
In such equipment, switching from the adsorption purification process to the regeneration process, heating in the regeneration process, and distribution of purified self-gas for regeneration are performed by operating the heater and each on-off valve based on preset times using a sequencer, etc. It is common for this to be done automatically.

ガスの吸着精製及び吸着剤の再生における各工程時間は
ガス中に含有される不純物の濃度、ガス流量および吸着
筒の大きさなどによって異なり一部に特定できないが、
通常は吸着精製工程に対し、吸着剤の再生工程は短いた
め、再生済の吸着筒は次の吸着精製工程への切り替えま
での間、比較的長時間待機状態となる。
The time required for each process in gas adsorption purification and adsorbent regeneration varies depending on the concentration of impurities contained in the gas, the gas flow rate, the size of the adsorption cylinder, etc., and cannot be specified in part.
Since the adsorbent regeneration step is usually shorter than the adsorption purification step, the regenerated adsorption column remains in a standby state for a relatively long time until switching to the next adsorption purification step.

例えば、吸着精製工程の50〜100時間に対し、精製
自己ガスによる再生工程は5〜10時間、待機時間は4
5〜90時間程度とされる。
For example, while the adsorption purification process takes 50 to 100 hours, the regeneration process using purified self-gas takes 5 to 10 hours, and the standby time is 4 hours.
It is said to take about 5 to 90 hours.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

半導体の高度集積化が進み、サブミクロン級の超LSI
の製造プロセスなどに対処し、超高純度の精製ガスを得
るため、これらの精製装置においても吸着筒壁の微細な
りラブダなどに滞留するような極く微量の不純ガスです
ら無視できなくなり、これらの混入を防止するために内
壁を研暦したり、その他のガスの滞留部を少なくするた
めに配管の分岐部を短くするなどの処置が行われている
。しかしながら、このような処置を行っても不純物の混
入は未だ完全に防止されず、特に吸着筒の切替当初にお
いて不純物濃度が増加する傾向が強く、高純度ガスを連
続的に安定して得られないという問題点があった。
As semiconductors become more highly integrated, submicron-level ultra-LSI
In order to obtain purified gas of ultra-high purity by dealing with the manufacturing process of Measures are being taken to prevent the contamination of other gases, such as refining the inner walls and shortening the branch sections of piping to reduce the number of areas where other gases accumulate. However, even with such measures, the contamination of impurities is still not completely prevented, and the concentration of impurities tends to increase, especially at the beginning of switching the adsorption column, making it difficult to continuously and stably obtain high-purity gas. There was a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らはこれらの問題点を解決し、不純物の混入が
なく、極めて高純度の精製ガスが連続的に安定して得ら
れるとともに運転効率の優れた精製方法及び装置を得る
べく鋭意研纜を重ねた結果、装置に四方切替弁を用いる
とともに精製工程への切替前に再生済で待機中の吸着筒
の精製自己ガスによる再掃気を行うことにより、これら
の目的を達成し得ることを見出し、本発明に到達した。
The inventors of the present invention have worked hard to solve these problems and to develop a purification method and apparatus that can continuously and stably obtain purified gas of extremely high purity without contamination with impurities, and that have excellent operational efficiency. As a result of repeated efforts, we discovered that these objectives could be achieved by using a four-way switching valve in the equipment and by re-sweeping the regenerated adsorption column with purified self-gas before switching to the refining process. , arrived at the present invention.

すなわち本発明は、 (1)触媒が充填された反応筒に水素ガスを通し、該水
素ガス中に不純物として含有される酸素ガスを水に転換
させる反応工程と、吸着剤が充填された少なくとも2系
列の吸着筒を順次切り替えて使用し、反応筒から出たガ
スの吸着剤による吸着精製工程および精製自己ガスによ
る吸着剤の加熱再生工程とを繰り返すことによって水素
ガスを連続的に精製する水素ガス精製方法において、吸
着精製中の吸着筒における吸着精製工程の進行率が少な
くとも70%を超え、かつ該吸着精製工程が終了するま
での間に、吸着剤の再生が終り、精製工程への切り替え
に備えて待機中の精製筒内を精製自己ガスによって再掃
気することを特徴とする水素ガスの精製方法、及び (2)水素ガス中に不純物として含有される酸素ガスを
水に転換するための触媒が充填された反応筒1と、該反
応筒1から導かれた水素ガス中の不純物を除去するため
の吸着剤が充填された2系列の吸着筒AおよびBを有す
る水素ガスの精製装置において、 ブロック状の本体に4ケの開閉弁部が内蔵されて一体化
構造とされ、該開閉弁部それぞれのガスの出入口の一方
が隣接する開閉弁部のガスの出入口の一方と互いに共通
とされた4ケ所の出入口を有する四方切替弁v1及びv
2と、 精製57jAおよびBの入口6aおよび6bと前記四方
切替弁v1のガスの出入口NaおよびNbとをそれぞれ
接続する流路10a J6よび10bと、ガスの出入口
Ncと反応筒1の出口3とを接続する流路5と、ガスの
出入口Ndと接続された再生排ガスの放出路11と、吸
着筒AおよびBの出口8aおよび8hと前記四方切替弁
v2のガスの出入口NaおよびNbとをそれぞれ接続す
る流路12aおよび12bと、出入口Ndと接続された
精製ガスの抜出路13と、該抜出路13から分枝して出
入口Ncに接続された再生用精製自己ガスの供給路14
とを備えてなることを特徴とする水素ガスの精製装置で
ある。
That is, the present invention comprises: (1) a reaction step of passing hydrogen gas through a reaction cylinder filled with a catalyst and converting oxygen gas contained as an impurity in the hydrogen gas into water; and at least two reaction cylinders filled with an adsorbent. Hydrogen gas is continuously purified by sequentially switching between series of adsorption cylinders and repeating the adsorption purification process of the gas emitted from the reaction cylinder using an adsorbent and the heating regeneration process of the adsorbent using purified self-gas. In the purification method, when the progress rate of the adsorption purification process in the adsorption cylinder during adsorption purification exceeds at least 70% and before the adsorption purification process is completed, the regeneration of the adsorbent is completed and it is possible to switch to the purification process. A hydrogen gas purification method characterized by re-scavenging the inside of a purification cylinder on standby with purified own gas, and (2) a catalyst for converting oxygen gas contained as an impurity in hydrogen gas into water. A hydrogen gas purification apparatus having a reaction column 1 filled with hydrogen gas and two series of adsorption columns A and B filled with an adsorbent for removing impurities in the hydrogen gas led from the reaction column 1, The block-shaped main body has four on-off valve parts built into an integrated structure, and one of the gas inlets and outlets of each of the on-off valve parts is shared with one of the gas inlets and outlets of the adjacent on-off valve part. Four-way switching valves v1 and v with four entrances and exits
2, flow paths 10a J6 and 10b connecting the inlets 6a and 6b of the purification 57jA and B and the gas inlet/outlet Na and Nb of the four-way switching valve v1, respectively, the gas inlet/outlet Nc and the outlet 3 of the reaction tube 1; a regenerated exhaust gas discharge path 11 connected to the gas inlet/outlet Nd, outlets 8a and 8h of the adsorption cylinders A and B, and the gas inlet/outlet Na and Nb of the four-way switching valve v2, respectively. Connecting channels 12a and 12b, a purified gas extraction path 13 connected to the inlet/outlet Nd, and a regenerating purified self-gas supply path 14 branched from the extraction path 13 and connected to the inlet/outlet Nc.
A hydrogen gas purification apparatus is characterized by comprising:

本発明を図面によって具体的に例示して説明する。 第
1図は本発明の装置の例を示すフローシートであり、第
2図イおよび口はそれぞれ異なる態様の四方切替弁の原
理を示す断面図であり、第3図は本発明の方法を時系列
的に示した図である。
The present invention will be specifically illustrated and explained with reference to the drawings. FIG. 1 is a flow sheet showing an example of the device of the present invention, FIG. It is a diagram shown in series.

第1図において、Ni、 Cuなどの触媒が充填された
反応筒1の入口2および出口3は流量検出端F1が取り
付けられた原料ガスの供給路4′#よび反応ガスの流路
5とそれぞれ接続されている。一方、頭部に原料ガスの
入口6、および吸着剤層を貫通して底部に至る導管7が
接続された精製ガスの出口8を有し、かつヒーター9が
配設された二系列の精製筒AおよびBの入口6aおよび
6bは、流路10aおよび10bによって四方切替弁v
1の出入口NaおよびNbとそれぞれ接続されている。
In FIG. 1, an inlet 2 and an outlet 3 of a reaction tube 1 filled with catalysts such as Ni and Cu are connected to a raw material gas supply path 4'# and a reaction gas flow path 5 to which a flow rate detection end F1 is attached, respectively. It is connected. On the other hand, the two-line purification cylinder has an inlet 6 for raw gas at the head and an outlet 8 for purified gas connected to a conduit 7 that penetrates the adsorbent layer and reaches the bottom, and is equipped with a heater 9. The inlets 6a and 6b of A and B are connected to the four-way switching valve v by flow paths 10a and 10b.
1 and connected to the entrances Na and Nb, respectively.

また四方切替弁v1の出入口NcおよびNdには反応ガ
スの流路5および再生排ガスの放出路11がそれぞれ接
続されている。また吸着筒AおよびBの出口8aおよび
8bは流路12aおよび12bによって四方切替弁v2
の出入口NaおよびNbとそれぞれ接続されている。さ
らに四方切替弁v2の出入口NdおよびNcには精製ガ
スの抜出路13フよび抜出路13から分枝し、かつ圧力
計P1、ニードル弁v3および流量計F2が設けられた
再生用の精製自己ガスの供給路14がそれぞれ接続され
ている。
Further, a reaction gas flow path 5 and a regeneration exhaust gas discharge path 11 are connected to the inlet/outlet ports Nc and Nd of the four-way switching valve v1, respectively. In addition, the outlets 8a and 8b of the adsorption cylinders A and B are connected to the four-way switching valve v2 by the flow paths 12a and 12b.
are connected to entrances Na and Nb, respectively. Further, at the inlets and outlets Nd and Nc of the four-way switching valve v2, a purified gas extraction passage 13 is branched from the extraction passage 13, and a pressure gauge P1, a needle valve v3, and a flow meter F2 are provided. supply paths 14 are connected to each other.

本発明で使用される四方切替弁v1およびv2はブロッ
ク状の本体に4ケの開閉弁部が内蔵されて一体化構造と
されるとともに4ケ所のガスの出入口を有し、各開閉弁
部のガスの出入口の一方がそれぞれ隣接する開閉弁部の
ガスの出入口の一方と互いに共通とされた構造のもので
ある。 第2図はこれらを具体的に例示したものであり
、イ$よび口はそれぞれ異なる態様の構造の四方切替弁
を原理的に示した断面図である。
The four-way switching valves v1 and v2 used in the present invention have an integrated structure with four on-off valve parts built into a block-shaped main body, and have four gas inlets and outlets, and each on-off valve part has an integrated structure. One of the gas inlets and outlets is common to one of the gas inlets and outlets of the adjacent on-off valve sections. FIG. 2 specifically illustrates these, and the opening and opening are cross-sectional views showing the principle of four-way switching valves having different structures.

第2図イにおいて直方体状の本体20の内部に弁座21
、内弁22および弁軸23を有し、かつ本体20の外部
のアクチュエーター24に接続されてなる4ケの開閉弁
部Va、 VbSVcおよびVdがそれぞれ互いに対象
となる配置で設けられている。それぞれのアクチュエー
ター24は圧縮空気の入口25が設けられたシリンダー
26、弁軸23と接続されたピストン27およびスプリ
ング28を有し、ピストン27がこのスプリング28に
より弁座21方向に押しつけられることにより開閉弁部
はいずれも常時閉とされている。
In FIG.
, an inner valve 22, and a valve shaft 23, and are connected to an actuator 24 outside the main body 20. Four opening/closing valve parts Va, VbSVc, and Vd are provided in mutually symmetrical positions, respectively. Each actuator 24 has a cylinder 26 provided with a compressed air inlet 25, a piston 27 connected to the valve shaft 23, and a spring 28, and opens and closes when the piston 27 is pressed toward the valve seat 21 by the spring 28. All valve parts are normally closed.

本体20の内部においては、開閉弁部Vaとvbについ
ては出入口NcSVaとVcについては出入口Na、 
VaとVdについては出入口Nb5VcとVdについて
は出入口Ndがそれぞれ隣接する開閉弁部同士の共通の
出入口として設けられている。それぞれの開閉弁部はア
クチュエーター24に入口25から圧縮空気を供給し、
ピストン27をスプリング28に抗して移動させること
によって開状態とすることができる。開閉弁部Vaが開
くと出入口NaとNc、 Vbが開くとNbとNc。
Inside the main body 20, the opening/closing valve parts Va and vb have openings Nc, the openings and closing valves Va and Vc have openings Na;
For Va and Vd, an inlet/outlet Nb5; for Vc and Vd, an inlet/outlet Nd is provided as a common inlet/outlet for adjacent on-off valve sections. Each on-off valve section supplies compressed air to the actuator 24 from an inlet 25,
The open state can be achieved by moving the piston 27 against the spring 28. When the on-off valve Va opens, the inlets and outlets Na and Nc open, and when Vb opens, the inlets and outlets Nb and Nc open.

Vcが開くとNaとNd、 Vdが開くとNbとNdが
それぞれ連通し、ガスを所定の流路に切り替えて流すこ
とができる。
When Vc opens, Na and Nd communicate with each other, and when Vd opens, Nb and Nd communicate with each other, allowing gas to be switched to a predetermined flow path and allowed to flow.

第2図口は第2図イにおいて同形式の開閉弁部を4ヶ設
けた代わりに互いにスライドし得る内側弁軸および外側
弁軸を用いて2連式としだもの2組を合わせた構造とさ
れたものである。
The opening in Figure 2 has a structure that combines two sets of two valves with an inner valve shaft and an outer valve shaft that can slide against each other, instead of providing four opening/closing valve parts of the same type as in Figure 2 A. It is what was done.

上下2室に仕切られ、それぞれの室が圧縮空気の入口2
5、ピストン27およびスプリング28を有するシリン
ダー26とされた2連式のアクチュエーター24の下部
シリンダー26Xのピストン27Xは内弁22Xを有す
る外側弁軸23Xと接続され、上部シリンダー26Yの
ピストン27Yは内弁22Yを有する内側弁軸23Yと
それぞれ接続されている。
Divided into two chambers, upper and lower, each chamber has two inlets for compressed air.
5. The piston 27X of the lower cylinder 26X of the double actuator 24, which is a cylinder 26 having a piston 27 and a spring 28, is connected to the outer valve shaft 23X having an inner valve 22X, and the piston 27Y of the upper cylinder 26Y is connected to the inner valve. 22Y and an inner valve shaft 23Y, respectively.

ピストン27Xはスプリング28Xによって上方に押し
上げられ、ピストン27Yはスプリング28Yによって
下方に押し下げられることによってそれぞれの開閉弁部
は常時閉とされている。シリンダー26Xに圧縮空気を
供給することによりピストン27 Xはスプリング28
Xに抗して押し下げられ開閉弁部Vaまたはvbが開か
れる。またシリンダー26Yに圧縮空気を供給すること
によりピストン27Yはスプリング28Yに抗して押し
上げられて開閉弁部VcまたはVdが開かれる。それぞ
れの開閉弁部が開かれて連通ずる出入口については第2
図イで説明したと同様である。
The piston 27X is pushed upward by a spring 28X, and the piston 27Y is pushed downward by a spring 28Y, so that the respective opening/closing valve portions are normally closed. By supplying compressed air to the cylinder 26X, the piston 27X is connected to the spring 28.
It is pushed down against X to open the on-off valve section Va or vb. Furthermore, by supplying compressed air to the cylinder 26Y, the piston 27Y is pushed up against the spring 28Y, and the on-off valve portion Vc or Vd is opened. Regarding the entrance and exit through which each opening/closing valve is opened and communicated, there is a second
This is the same as explained in Figure A.

このような四方切替弁を使用することにより、第1図に
おける四方切替弁v1では開閉弁部Vaが開くと流路1
0aと流路5、開閉弁部vbが開くと流路10bと流路
5、開閉弁部Vcが開くと流路10aと放出路11、開
閉弁部Vdが開くと流路10bと放出路11がそれぞれ
連通し、また四方切替弁v2では開閉弁部Vaが開くと
流路12aと供給路14、開閉弁部vbが開(と流路1
2bと供給路14、開閉弁部Vcが開くと流路12aと
抜出路13、開閉弁部Vdが開くと流m12bと抜出路
13がそれぞれ連通する。
By using such a four-way switching valve, in the four-way switching valve v1 in FIG. 1, when the on-off valve part Va opens, the flow path 1
0a and the flow path 5, when the on-off valve section vb opens, the flow path 10b and the flow path 5, when the on-off valve section Vc opens, the flow path 10a and the discharge path 11, and when the on-off valve section Vd opens, the flow path 10b and the discharge path 11. are in communication with each other, and in the four-way switching valve v2, when the on-off valve part Va opens, the flow path 12a, the supply path 14, and the on-off valve part vb open (and the flow path 1
2b and the supply path 14, when the on-off valve section Vc is opened, the flow path 12a and the extraction path 13, and when the on-off valve section Vd is opened, the flow path m12b and the extraction path 13 are communicated with each other.

原料ガスの供給路4の流量検出端F1、ヒーター9の電
源、各開閉弁部のそれぞれは信号線によって流量積算お
よびシーケンスタイマー機能を有する制御部と接続され
ている (信号線および制御部については図示していな
い)。
The flow rate detection end F1 of the raw material gas supply path 4, the power source of the heater 9, and each on-off valve section are each connected by a signal line to a control section having flow rate integration and sequence timer functions (For the signal line and control section, (not shown).

〔作用〕[Effect]

第3図に示した如く吸着筒Aで水素ガスの吸着精製が行
われる間に吸着筒Bでは精製自己ガスによる吸着剤の加
熱再生が行われる。
As shown in FIG. 3, while hydrogen gas is adsorbed and purified in the adsorption column A, the adsorbent is heated and regenerated using purified self-gas in the adsorption column B.

本例では吸着筒の切替および再生済で待機中の吸着筒の
再掃気の開始は原料水素ガスの流量積算値に対応する吸
着精製工程の進行率にもとづいて操作され、その他の工
程における各開閉弁の操作および加熱操作はそれぞれ予
め設定された時間にもとづいて行われる。
In this example, the switching of the adsorption cylinder and the start of resweeping of the regenerated adsorption cylinder that is on standby are operated based on the progress rate of the adsorption purification process corresponding to the integrated flow rate of the raw hydrogen gas, and each opening/closing in the other processes is performed. The valve operation and heating operation are each performed based on preset times.

−水素ガスの精製は四方切替弁v1の開閉弁部Vaおよ
び四方切替弁v2の開閉弁部Vcを開くことによって開
始される。原料ガスは供給路4から反応筒lに入り触媒
と接触することにより水素ガス中の酸素ガスは水素ガス
と反応して水に転換され、接触後のガス(反応ガス)は
出口3から反応ガスの流路5、四方切替弁v1の開閉弁
部Va、および流路10aを経由して入口6aから吸着
筒Aに入り、吸着剤と接触して水および炭酸ガスが吸着
除去されて筒底に至り、ここで反転して導管7を通って
出口8aに達し、さらに流路12aおよび四方切替弁v
2の開閉弁部Vcを経由し、抜出路13から精製ガスと
して抜出される。ガスは分岐管などのデッドスペースが
全くない流路を流れながら精製が続けられる。
- Purification of hydrogen gas is started by opening the on-off valve section Va of the four-way switching valve v1 and the on-off valve section Vc of the four-way switching valve v2. The raw material gas enters the reaction tube l from the supply path 4 and comes into contact with the catalyst, whereby the oxygen gas in the hydrogen gas reacts with the hydrogen gas and is converted to water. The gas enters the adsorption cylinder A from the inlet 6a via the flow path 5, the on-off valve part Va of the four-way switching valve v1, and the flow path 10a, contacts the adsorbent, and water and carbon dioxide are adsorbed and removed to the bottom of the cylinder. There, it is reversed and passes through the conduit 7 to reach the outlet 8a, and further passes through the flow path 12a and the four-way switching valve v.
The refined gas is extracted from the extraction passage 13 via the on-off valve section Vc of No. 2. Gas continues to be purified while flowing through a flow path with no dead spaces such as branch pipes.

一方、制御部では流量検出端I?1より伝達される信号
による原料ガスの流量積算が続けられ、吸着筒切替まで
の積算流量にもとづく吸着精製の進行率が所定の値(例
えば95%)に達すると制御部から吸着筒Bにおける再
掃気を開始するための操作信号が伝達される。吸着筒A
におけるガスの吸着精製はさらに続けられ、その積算流
量が所定の値(進行率100%)に達すると制御部より
吸着筒を八からBに切替えるための信号が伝達される。
On the other hand, in the control section, the flow rate detection end I? The flow rate of the raw material gas continues to be integrated based on the signal transmitted from 1, and when the progress rate of adsorption purification based on the integrated flow rate up to the switching of the adsorption cylinder reaches a predetermined value (for example, 95%), the control unit controls the regeneration in the adsorption cylinder B. An operation signal for starting scavenging is transmitted. Adsorption tube A
The adsorption and purification of the gas continues further, and when the cumulative flow rate reaches a predetermined value (progress rate of 100%), a signal for switching the number of adsorption cylinders from 8 to B is transmitted from the control unit.

ここで四方切替弁v1の開閉弁部Vaおよび四方切替弁
v2の開閉弁部Vcが閉じられると同時にvlの開閉弁
部vbおよびv2の開閉弁部vbが開かれて、吸着筒B
によるガスの吸着精製が開始され、吸着筒Aは再生工程
に入る。
Here, the on-off valve part Va of the four-way switching valve v1 and the on-off valve part Vc of the four-way switching valve v2 are closed, and at the same time, the on-off valve part vb of vl and the on-off valve part vb of v2 are opened, and the adsorption cylinder B
The adsorption purification of the gas is started, and the adsorption column A enters the regeneration process.

一方、吸着筒Aでガスの吸着精製が行われている間に吸
着筒Bでは吸着剤の精製自己ガスによる加熱再生が行わ
れる。
On the other hand, while adsorption and purification of gas is being performed in the adsorption column A, heating regeneration of the adsorbent using purified own gas is performed in the adsorption column B.

時間設定された制御部からの信号により吸着筒Bがヒー
ター9で加熱され、続いて四方切替弁v1の開閉弁部V
dおよび四方切替弁v2の開閉弁部vbがそれぞれ開か
れる。再生用の精製自己ガスはニードル弁v3によって
流量調節されながら、四方切替弁v2の開閉弁部vbお
よび流路12bを経由して出口8bから吸着筒Bに入り
導管7を通って予熱されなから筒底に至る。再生用の精
製自己ガスはここで反転して上昇し、吸着剤から離脱し
た水および炭酸ガスなどの不純物を同伴し、吸着筒B内
を掃気しながら、入口6bに達し、再生用排ガスとして
流路10b1四方切替弁v1の開閉弁部Vdを経由し、
再生排ガスの放出路11から放出される。 この状態で
吸着剤の加熱再生が所定の時間続けられる。吸着剤の再
生終了後、加熱は停止され、さらに精製自己ガスによる
吸着筒B内の掃気、冷却が所定の時間続けられた後、先
ず四方切替弁v1の開閉弁部Vdが閉じられることによ
り吸着筒Bの系内は精製自己ガスによって均圧化される
。次いで四方切替弁v2の開閉弁部vbが閉じられてそ
のまま待機状態に入る。一方、吸着筒へにおける精製が
進み、原料ガスの流量積算値にもとづく吸着精製工程の
進行率が再掃気をおこなうだめの所定の値に達した時点
で制御部から吸着筒B内を再掃気するための信号が伝達
される。四方切替弁v1の開閉弁部Vdおよび四方切替
弁v2の開閉弁部vbが開かれることにより吸着筒B内
の精製自己ガスにょる再掃気が所定の時間続けられる。
The adsorption cylinder B is heated by the heater 9 in response to a signal from the control unit for which the time has been set, and then the on-off valve part V of the four-way switching valve v1 is heated.
d and the on-off valve section vb of the four-way switching valve v2 are opened. The purified self-gas for regeneration enters the adsorption cylinder B from the outlet 8b via the on-off valve part vb of the four-way switching valve v2 and the flow path 12b, while the flow rate is adjusted by the needle valve v3, and passes through the conduit 7 before being preheated. It reaches the bottom of the cylinder. Here, the purified self-gas for regeneration reverses and rises, entraining impurities such as water and carbon dioxide that have been separated from the adsorbent, and while scavenging the inside of the adsorption column B, reaches the inlet 6b and flows as exhaust gas for regeneration. Via the on-off valve part Vd of the four-way switching valve v1 of the path 10b1,
It is released from the regeneration exhaust gas release path 11. In this state, heating regeneration of the adsorbent is continued for a predetermined period of time. After the regeneration of the adsorbent is completed, the heating is stopped, and the scavenging and cooling of the adsorption column B using the purified self-gas is continued for a predetermined period of time. The pressure inside the cylinder B is equalized by purified self-gas. Next, the on-off valve section vb of the four-way switching valve v2 is closed and the system enters a standby state. On the other hand, when the purification in the adsorption cylinder progresses and the progress rate of the adsorption purification process based on the integrated flow rate of the raw material gas reaches a predetermined value for re-scavenging, the control unit re-scavenges the inside of the adsorption cylinder B. A signal is transmitted. By opening the on-off valve section Vd of the four-way switching valve v1 and the on-off valve section vb of the four-way switching valve v2, rescavenging with the purified self-gas in the adsorption cylinder B continues for a predetermined period of time.

次いで吸着筒B内は精製自己ガスによって再度均圧状態
とされ、吸着精製工程への切替に備えられる。四方切替
弁v1およびv2の使用により、分岐管などガスが滞留
し易いデッドスペースがなく、この再掃気によって研暦
によっても完全に除去できない筒壁の微細なりラックな
どに残存し、吸着剤が再生済で待機中の吸着筒内空間に
拡散し混入すると推定される不純物が完全に除かれる。
Next, the pressure inside the adsorption cylinder B is brought to an equal pressure state again by the purified self-gas, and preparation is made for switching to the adsorption purification process. By using the four-way switching valves V1 and V2, there are no dead spaces such as branch pipes where gas can easily accumulate, and this re-sweeping air can cause fine cracks on the cylinder wall that cannot be completely removed even by Kenreki, remaining on racks, etc., and regenerating the adsorbent. Impurities that are estimated to have diffused and mixed into the space inside the adsorption cylinder, which is currently on standby, are completely removed.

本発明においては吸着精製工程の吸着精製の進行率が少
なくとも70%を超え、かつ該工程が終了するまでの間
に吸着剤が再生済で吸着精製工程への切替に備えて待機
中の精製筒内の精製自己ガスによる再掃気が行われる。
In the present invention, the progress rate of adsorption purification in the adsorption purification process exceeds at least 70%, and the adsorbent has been regenerated and the purification column is on standby in preparation for switching to the adsorption purification process by the time the adsorption purification process is completed. Rescavenging is performed using purified self-gas inside the tank.

ここで吸着精製工程の進行率とは一方の精製筒における
吸着精製工程の開始から終了までのガスの積算流量に対
する各時点までの積算流量の比率(%)、又は吸着精製
工程を開始してから終了までの所要時間に対する各時点
までの所要時間の比率(%)として定義される。
Here, the progress rate of the adsorption purification process is the ratio (%) of the cumulative flow rate up to each point in time to the cumulative flow rate of gas from the start to the end of the adsorption purification process in one purification column, or after the start of the adsorption purification process. Defined as the ratio (%) of the time required to reach each point to the time required to complete.

再掃気および均圧化に要する時間は吸着筒の形状、大き
さ、再生用の精製自己ガスの流量などによって異なり、
−概に特定できないが実用上、通常は30〜120分程
度とされる。再掃気の開始時期はこれらの時間を考慮し
吸着筒の切替直前に終了するよう設定することが好まし
い。
The time required for re-scavenging and pressure equalization varies depending on the shape and size of the adsorption cylinder, the flow rate of purified self-gas for regeneration, etc.
- It cannot be specified generally, but in practice, it is usually about 30 to 120 minutes. It is preferable that the start timing of re-scavenging is set so as to take these times into consideration and end immediately before switching of the adsorption cylinders.

再掃気および吸着筒の切替は予め設定した時間又は積算
流量のいずれにも4づいでもよいが、精製工程における
ガスの流量変動があっても総処理量を常に一定にするこ
とができる点で積算流量にもとづく方法が好ましい。
Re-scavenging air and adsorption column switching may be performed four times at a preset time or at the cumulative flow rate, but the integrated method is effective in that the total throughput can always be kept constant even if there are fluctuations in the gas flow rate during the purification process. Methods based on flow rate are preferred.

本発明において使用される四方切替弁はブロック状の本
体内に4ケの開閉弁部が内蔵され、かつ各開閉弁部のガ
スの出入口の一方がそれぞれ隣接する開閉弁部のガスの
出入口の一方と互いに共通とされた4ケ所のガスの出入
口を有し、全体として一体化構造とされたものである。
The four-way switching valve used in the present invention has four on-off valve sections built into a block-shaped main body, and one of the gas inlets and outlets of each on-off valve section is one of the gas inlets and outlets of the adjacent on-off valve section. It has four common gas inlets and outlets, and has an integrated structure as a whole.

このような四方切替弁は第2図イおよび口で例示された
構造原理に基づき従来公知の加工技術により比較的容易
に得ることができる。
Such a four-way switching valve can be relatively easily obtained by conventionally known processing techniques based on the structural principle illustrated in FIG.

本発明で使用される吸着筒の構造には特に制限はないが
、配管距離の短縮および再生時の精製自己ガスの予熱効
果などを考慮し、第1図で示したように吸着剤層を貫通
し、筒底部に至る導管を設けることによってガスの入口
および出口の両者共に吸着、筒のいずれか一方の端にま
とめて配置した形態とすることが好ましい。
There are no particular restrictions on the structure of the adsorption column used in the present invention, but in consideration of shortening the piping distance and preheating the purified self-gas during regeneration, we designed a structure that penetrates the adsorbent layer as shown in Figure 1. However, by providing a conduit leading to the bottom of the cylinder, it is preferable that both the inlet and the outlet of the gas be adsorbed and arranged together at one end of the cylinder.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、吸着精製工程への切替前に再掃
気を行うことによって待機中に筒壁などから拡散混入す
ると推定される極く微量の不純物をも除去でき、本発明
の装置によれば四方切替弁の使用により、配管分岐部な
どのガスの滞留するデッドスペースがなく、系内の掃気
が確実に行われるので、吸着筒の切替当初から極めて純
度の高い精製水素ガスを安定して得ることができる。
According to the method of the present invention, by performing re-scavenging before switching to the adsorption purification process, it is possible to remove even minute amounts of impurities that are estimated to have diffused into the cylinder wall during standby, and the apparatus of the present invention According to the authors, by using a four-way switching valve, there are no dead spaces where gas accumulates at piping branches, etc., and scavenging within the system is performed reliably, so that purified hydrogen gas of extremely high purity can be stabilized from the time the adsorption cylinder is switched. You can get it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置のフローシートであり、第2図イ
および口は本発明の装置に使用される四方切替弁の断面
図であり、第3図は本発明の方法を時系列的に示した図
であり、第4図は従来の装置のフローシートであり、第
5図は従来の方法を時系列的に示した図である。 図面の各記号は以下の通りである。 AおよびB−“吸着筒、1・・、反応筒、10a、 1
0b、 12a、 12bおよび5・・−流路、4およ
び14・パ供給路、11・−パ放出路、13・・−°抜
出路v1およびv2・・四方切替弁 特許出願人 日本バイオニクス株式会社代表者 山 崎
 良 − 代理人   弁理士 小 堀 貞 文 ら
FIG. 1 is a flow sheet of the device of the present invention, FIG. FIG. 4 is a flow sheet of a conventional device, and FIG. 5 is a diagram showing a conventional method in chronological order. Each symbol in the drawing is as follows. A and B - "Adsorption cylinder, 1..., reaction cylinder, 10a, 1
0b, 12a, 12b and 5...-flow path, 4 and 14-Pa supply path, 11--Pa discharge path, 13...-° extraction path v1 and v2...Four-way switching valve Patent applicant Nippon Bionics Co., Ltd. Company Representative: Ryo Yamazaki - Agent: Patent Attorney: Sadafumi Kobori et al.

Claims (2)

【特許請求の範囲】[Claims] (1)触媒が充填された反応筒に水素ガスを通し、該水
素ガス中に不純物として含有される酸素ガスを水に転換
させる反応工程と、吸着剤が充填された少なくとも2系
列の吸着筒を順次切り替えて使用し、反応筒から出たガ
スの吸着剤による吸着精製工程および精製自己ガスによ
る吸着剤の加熱再生工程とを繰り返すことによって水素
ガスを連続的に精製する水素ガス精製方法において、 吸着精製中の吸着筒における吸着精製工程の進行率が少
なくとも70%を超え、かつ該吸着精製工程が終了する
までの間に、吸着剤の再生が終り、精製工程への切り替
えに備えて待機中の精製筒内を精製自己ガスによって再
掃気することを特徴とする水素ガスの精製方法
(1) A reaction step in which hydrogen gas is passed through a reaction cylinder filled with a catalyst to convert oxygen gas contained as an impurity in the hydrogen gas into water, and at least two series of adsorption cylinders filled with an adsorbent. In a hydrogen gas purification method that continuously purifies hydrogen gas by repeating the adsorption purification process using an adsorbent for the gas emitted from the reaction column and the heating regeneration process of the adsorbent using purified self-gas, the adsorption When the progress rate of the adsorption purification process in the adsorption column being purified exceeds at least 70% and before the adsorption purification process is completed, the regeneration of the adsorbent has been completed and the adsorbent is on standby in preparation for switching to the purification process. A hydrogen gas purification method characterized by re-scavenging the inside of a purification cylinder with purified self-gas.
(2)水素ガス中に不純物として含有される酸素ガスを
水に転換するための触媒が充填された反応筒1と、該反
応筒1から導かれた水素ガス中の不純物を除去するため
の吸着剤が充填された2系列の吸着筒AおよびBを有す
る水素ガスの精製装置において、 ブロック状の本体に4ケの開閉弁部が内蔵されて一体化
構造とされ、該開閉弁部それぞれのガスの出入口の一方
が隣接する開閉弁部のガスの出入口の一方と互いに共通
とされた4ケ所の出入口を有する四方切替弁V1及びV
2と、 精製筒AおよびBの入口6aおよび6bと前記四方切替
弁V1のガスの出入口NaおよびNbとをそれぞれ接続
する流路10aおよび10bと、ガスの出入口Ncと反
応筒1の出口3とを接続する流路5と、ガスの出入口N
dと接続された再生排ガスの放出路11と、吸着筒Aお
よびBの出口8aおよび8bと前記四方切替弁V2のガ
スの出入口NaおよびNbとをそれぞれ接続する流路1
2aおよび12bと、出入口Ndと接続された精製ガス
の抜出路13と、該抜出路13から分枝して出入口Nc
に接続された再生用精製自己ガスの供給路14とを備え
てなることを特徴とする水素ガスの精製装置
(2) A reaction tube 1 filled with a catalyst for converting oxygen gas contained as an impurity in hydrogen gas into water, and an adsorption device for removing impurities in the hydrogen gas led from the reaction tube 1. In a hydrogen gas purification device that has two series of adsorption cylinders A and B filled with an agent, the block-shaped main body has four on-off valve parts built into an integrated structure, and each of the on-off valve parts Four-way switching valves V1 and V having four inlets and outlets, one of which is common to one of the gas inlets and outlets of the adjacent on-off valve section.
2, flow paths 10a and 10b connecting the inlets 6a and 6b of the purification cylinders A and B and the gas inlets and outlets Na and Nb of the four-way switching valve V1, respectively, and the gas inlet and outlet Nc and the outlet 3 of the reaction tube 1. and the gas inlet/outlet N.
d, and a flow path 1 that connects the outlets 8a and 8b of the adsorption cylinders A and B with the gas inlets and outlets Na and Nb of the four-way switching valve V2, respectively.
2a and 12b, a purified gas extraction path 13 connected to the inlet/outlet Nd, and an inlet/outlet Nc branched from the extraction path 13.
A hydrogen gas purification apparatus characterized by comprising: a regenerating purified self-gas supply line 14 connected to
JP62271640A 1987-10-29 1987-10-29 Method and apparatus for purifying hydrogen gas Expired - Fee Related JP2685766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271640A JP2685766B2 (en) 1987-10-29 1987-10-29 Method and apparatus for purifying hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271640A JP2685766B2 (en) 1987-10-29 1987-10-29 Method and apparatus for purifying hydrogen gas

Publications (2)

Publication Number Publication Date
JPH01115801A true JPH01115801A (en) 1989-05-09
JP2685766B2 JP2685766B2 (en) 1997-12-03

Family

ID=17502868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271640A Expired - Fee Related JP2685766B2 (en) 1987-10-29 1987-10-29 Method and apparatus for purifying hydrogen gas

Country Status (1)

Country Link
JP (1) JP2685766B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289730A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Method and apparatus for producing hydrogen
CN116351219A (en) * 2023-05-31 2023-06-30 杭州欧迈克动力设备有限公司 Sectional regeneration energy-saving micro-thermal adsorption dryer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347195B1 (en) * 2012-08-24 2014-01-15 황철용 Absorption type hydrogen purifying system using full stream operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619244A (en) * 1984-06-25 1986-01-16 松下電器産業株式会社 Electric shock type insect control apparatus
JPS61164232U (en) * 1986-03-20 1986-10-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619244A (en) * 1984-06-25 1986-01-16 松下電器産業株式会社 Electric shock type insect control apparatus
JPS61164232U (en) * 1986-03-20 1986-10-11

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289730A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Method and apparatus for producing hydrogen
CN116351219A (en) * 2023-05-31 2023-06-30 杭州欧迈克动力设备有限公司 Sectional regeneration energy-saving micro-thermal adsorption dryer
CN116351219B (en) * 2023-05-31 2023-11-03 杭州欧迈克动力设备有限公司 Sectional regeneration energy-saving micro-thermal adsorption dryer

Also Published As

Publication number Publication date
JP2685766B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US3103425A (en) Adsorption apparatus and method
DE69117989T2 (en) Obtaining pure nitrogen from air
CA1303482C (en) Method and apparatus for treating liquid/gas mixtures
US4640694A (en) Adsorption process
JPS62241524A (en) Separation and purification for carbon monoxide excellent in stabilization of purity
JPH11335102A (en) Method and apparatus for continuously generating highly concentrated ozone
JPH02290219A (en) Separation of gas mixture
KR100896555B1 (en) Method for treating a gas mixture by adsorption
US5354482A (en) Process and apparatus for oxidizing industrial spent caustic and effecting gas-liquid mass transfer and separation
CN207591553U (en) A kind of device of pressure-variable adsorption separation ozone and oxygen
JPH01115801A (en) Purification of hydrogen gas and device therefor
CN105939960B (en) The purification process and purification system of helium
GB2283015A (en) Membrane reactor for the removal of dissolved oxygen from water
JPH02120212A (en) Purifier for inert gas
KR100483894B1 (en) Method of recovering enriched gaseous oxygen
FR2395944A1 (en) ADSORPTION / DESORPTION PROCESS FOR HYDROGEN PRODUCTION
JPH01115802A (en) Purification of hydrogen gas and device therefor
JPH01115806A (en) Purification of inert gas and device therefor
JP2627792B2 (en) Hydrogen gas purification equipment
KR100556097B1 (en) Apparatus for refining a nitrogen gas and method thereof
CN117263290B (en) Waste water filtering equipment and filtering method
CN113274776B (en) Automatic cleaning and switching multi-stage filter system and cleaning and switching method
JP4328845B2 (en) Gas flow treatment method and gas purification device
CN211885640U (en) Filter device for regenerated liquid in production of hydrogen peroxide by anthraquinone process
JPS62125820A (en) Purifying apparatus for gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees