JP2001347125A - Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus - Google Patents

Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus

Info

Publication number
JP2001347125A
JP2001347125A JP2000174589A JP2000174589A JP2001347125A JP 2001347125 A JP2001347125 A JP 2001347125A JP 2000174589 A JP2000174589 A JP 2000174589A JP 2000174589 A JP2000174589 A JP 2000174589A JP 2001347125 A JP2001347125 A JP 2001347125A
Authority
JP
Japan
Prior art keywords
gas
impurities
hydrogen
purity
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000174589A
Other languages
Japanese (ja)
Inventor
Hideharu Kato
秀晴 加藤
Ryohei Kusaka
亮平 日下
Nobuhiro Takamura
信博 高村
Kumiko Kato
久美子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2000174589A priority Critical patent/JP2001347125A/en
Publication of JP2001347125A publication Critical patent/JP2001347125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing high-purity gas which reduces an installation cost and equipment installationa area and is capable of solving the degradation in the recovery rate of the high-purity gas, such as high-purity hydrogen, which is a problem on the adsorption by fewer adsorption columns by using a two-column type PSA apparatus which is made compact. SOLUTION: This method for manufacturing the high-purity gas by the pressure fluctuation adsorption apparatus is characterized in that, when one column of the two-column type pressure fluctuation adsorption apparatus is in an adsorption process step, the respective process steps of a pressure reducing process step, a blowdown process step, a purging process step and a boosting process step are successively carried out in the other column and the gas substantially not containing the impurities discharged in the post steps of the pressure reducing process step and the purging process step or containing the impurities to a lesser extent is circulated to gaseous raw material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧力変動吸着装置
(以下PSA装置という)による高純度ガスの製造方法
に関し、更に詳しくは、吸着剤を充填した吸着塔を二塔
設け、原料ガスから不純物を吸着除去して高純度ガスを
製造する二塔式PSA装置による高純度ガスの製造方法
に関するものであり、特に、水素含有ガスから高純度に
精製された水素(以下高純度水素という)を製造する比
較的小型の装置に最適な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity gas using a pressure fluctuation adsorption apparatus (hereinafter, referred to as a PSA apparatus). More specifically, two adsorption towers filled with an adsorbent are provided to remove impurities from a raw material gas. The present invention relates to a method for producing high-purity gas using a two-column PSA apparatus for producing high-purity gas by adsorbing and removing hydrogen, and in particular, producing high-purity hydrogen (hereinafter referred to as high-purity hydrogen) from hydrogen-containing gas. The present invention relates to a manufacturing method which is most suitable for a relatively small device.

【0002】[0002]

【従来の技術】水素は、金属工業、油脂工業、石油工業
及び半導体工業などで還元ガスや水添ガスとして多く使
用されている基礎原料であり、近年は燃料電池用の燃料
としても利用されている。特に半導体工業や燃料電池用
などとして使用される水素は、不純物を殆ど含有しない
99.99mol%以上の高純度水素が使用されてい
る。
2. Description of the Related Art Hydrogen is a basic raw material often used as a reducing gas or hydrogenated gas in the metal industry, oil and fat industry, petroleum industry, semiconductor industry, and the like. In recent years, hydrogen has also been used as a fuel for fuel cells. I have. In particular, high purity hydrogen of 99.99 mol% or more, which contains almost no impurities, is used for hydrogen used in the semiconductor industry, fuel cells, and the like.

【0003】高純度水素は、水素含有ガスから不純物を
除去して製造されるが、水素含有ガスとしては、天然ガ
ス、都市ガス、ナフサ、灯油又はメタノ−ルなどの各種
炭化水素を原料とし、それらの炭化水素を必要により脱
硫したのち、Ni系やRu系の触媒を用いた改質装置
で、分解又は水蒸気を反応させるなどにより製造される
改質ガスや、コ−クス炉で石炭を乾溜して製造されるコ
−クス炉ガスなどが用いられている。
[0003] High-purity hydrogen is produced by removing impurities from a hydrogen-containing gas. As the hydrogen-containing gas, various kinds of hydrocarbons such as natural gas, city gas, naphtha, kerosene or methanol are used as raw materials. After desulfurizing these hydrocarbons as necessary, reforming equipment using a Ni-based or Ru-based catalyst, reformed gas produced by cracking or reacting with steam, or coal is distilled in a coke oven. The coke oven gas manufactured by the method is used.

【0004】また、前記改質ガスやコ−クス炉ガスなど
の水素含有ガスには、不純物として、メタン、一酸化炭
素及び二酸化炭素などが含有されており、高純度に精製
された水素を製造するには、それらの不純物を極めて低
い含有量まで除去する必要がある。従来の高純度水素を
製造する装置としては、水素分離膜により水素のみを透
過させて不純物から分離する水素分離膜装置も用いられ
ているが、一般的に大容量のガスを処理する装置として
は、水素含有ガス中の不純物を吸着除去して高純度水素
を製造するPSA装置(以下水素PSA装置という)が
多く用いられている。
[0004] The hydrogen-containing gas such as the reformed gas and coke oven gas contains methane, carbon monoxide, carbon dioxide, and the like as impurities, so that highly purified hydrogen can be produced. To do so, it is necessary to remove those impurities to an extremely low content. As a conventional apparatus for producing high-purity hydrogen, a hydrogen separation membrane apparatus in which only hydrogen is permeated by a hydrogen separation membrane to separate it from impurities is also used. A PSA device (hereinafter referred to as a hydrogen PSA device) for producing high-purity hydrogen by absorbing and removing impurities in a hydrogen-containing gas is often used.

【0005】前記水素PSA装置は、吸着剤を充填した
吸着塔に、高圧で水素含有ガスを供給し、高い圧力で不
純物を吸着剤に吸着させて除去し、吸着しにくい水素を
吸着塔から抜き出して高純度水素として回収し、吸着剤
に吸着した不純物を、減圧工程、ブロ−ダウン工程及び
パ−ジ工程により脱離させ、オフガスとして系外に排出
することにより吸着剤を再生し、それらの工程を複数の
吸着塔間で順次繰り返されることにより、装置全体とし
て連続的に高純度水素の製造を行うことができる装置で
ある。大容量の高純度水素を製造する場合には、主に四
塔以上の吸着塔からなる四塔式水素PSA装置が用いら
れるが、比較的小容量の高純度水素を製造する場合に
は、三塔の吸着塔からなる三塔式水素PSA装置も用い
られている。
In the hydrogen PSA apparatus, a hydrogen-containing gas is supplied at a high pressure to an adsorption tower filled with an adsorbent, impurities are adsorbed and removed by the adsorbent at a high pressure, and hydrogen that is difficult to adsorb is extracted from the adsorption tower. To remove the impurities adsorbed on the adsorbent by a depressurizing step, a blow-down step and a purging step, and regenerate the adsorbent by discharging the off-gas out of the system. This is an apparatus capable of continuously producing high-purity hydrogen as a whole apparatus by sequentially repeating the process between a plurality of adsorption towers. To produce large-capacity high-purity hydrogen, a four-column hydrogen PSA device consisting of four or more adsorption towers is mainly used. A three-column hydrogen PSA device comprising a column adsorption tower is also used.

【0006】図3はA塔、B塔及びC塔の三塔の吸着塔
からなる三塔式水素PSA装置における運転シ−ケンス
の概略図であり、A塔で水素含有ガス中の不純物である
水分、二酸化炭素、一酸化炭素及びメタンなどを吸着
し、吸着されない水素を高純度水素として回収する吸着
工程のときに、B塔では、減圧工程、均圧工程及びブロ
−ダウン工程の各工程が順次行われ、C塔では、パ−ジ
工程、均圧工程及び昇圧工程の各工程が順次行われる。
FIG. 3 is a schematic diagram of an operation sequence in a three-tower hydrogen PSA apparatus comprising three adsorption towers, tower A, tower B, and tower C. In tower A, impurities in a hydrogen-containing gas are shown. In the adsorption step of adsorbing water, carbon dioxide, carbon monoxide, methane, etc. and recovering the non-adsorbed hydrogen as high-purity hydrogen, in the B tower, each of the pressure reduction step, pressure equalization step, and blowdown step is performed. The steps are sequentially performed. In the tower C, the steps of the purging step, the equalizing step, and the pressure increasing step are sequentially performed.

【0007】A塔の吸着工程で不純物の吸着が飽和状態
になり破過する前に、制御弁の自動制御により各塔間に
おける工程が切り替えられ、その操作が順次繰り返され
ることにより、装置全体として連続的に高純度水素が製
造される。
Before the adsorption of impurities becomes saturated and breaks down in the adsorption step of the tower A, the steps between the respective towers are switched by automatic control of the control valve, and the operation is sequentially repeated, so that the apparatus as a whole is obtained. High-purity hydrogen is produced continuously.

【0008】[0008]

【発明が解決しようとする課題】PSA装置において
は、吸着塔の塔数を減らすほど装置がコンパクトとな
り、設備費の低減が図れ、また、運転制御方法も簡略と
なるため好ましいのではあるが、塔数を削減すると、減
圧工程、ブロ−ダウン工程及びパ−ジ工程で排出される
ガス中の高純度ガスが回収しにくくなるため、高純度ガ
スの回収率が低下する問題がある。因みに、水素PSA
装置により、天然ガスを分解して製造した水素含有ガス
から高純度水素を製造するのに、運転圧力が0.7Mp
aGで運転した場合、三塔式では65〜70%、四塔式
では70〜75%の高純度水素回収率となる。
In the PSA apparatus, the smaller the number of adsorption towers, the more compact the apparatus, the lower the equipment cost, and the simpler the operation control method, which is preferable. If the number of columns is reduced, it becomes difficult to recover high-purity gas in the gas discharged in the pressure reduction step, blow-down step, and purge step, so that there is a problem that the recovery rate of high-purity gas decreases. By the way, hydrogen PSA
In order to produce high-purity hydrogen from a hydrogen-containing gas produced by decomposing natural gas, the operating pressure is 0.7Mp.
When operated at aG, a high-purity hydrogen recovery rate of 65 to 70% in the three-tower system and 70 to 75% in the four-tower system is achieved.

【0009】本発明は、前記の問題に鑑みてなされたも
のであり、三塔式PSA装置よりも更に少ない二塔の吸
着塔とすることにより、PSA装置を、更にコンパクト
化し、設備費や設備面積の低減を図ると共に、少ない吸
着塔による問題点である高純度水素などの高純度ガスの
回収率低下を解決することができる二塔式PSA装置に
よる高純度ガスの製造方法を提供する目的で成されたも
のである。
The present invention has been made in view of the above-mentioned problem, and the PSA apparatus is further reduced in size by making the number of adsorption towers of two columns smaller than that of a three-column PSA apparatus. In order to provide a method for producing a high-purity gas using a two-tower PSA apparatus, which can reduce the area and solve the problem of a reduced recovery rate of a high-purity gas such as high-purity hydrogen, which is a problem caused by a small number of adsorption towers. It was made.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
の本発明の要旨は、請求項1に記載の発明においては、
吸着剤を充填した吸着塔を二塔設け、原料ガスから不純
物を吸着除去して高純度ガスを製造する二塔式圧力変動
吸着装置において、前記二塔のうちの一塔が吸着工程の
ときに、他塔では、減圧工程、ブロ−ダウン工程、パ−
ジ工程及び昇圧工程の各工程が順次行われ、前記減圧工
程では、不純物の流出がほとんどない圧力まで減圧する
ことにより高純度ガス回収側から不純物をほとんど含ま
ないガスを回収して原料ガスに循環及び/又はガスホル
ダに貯留し、前記ブロ−ダウン工程では、更に減圧して
原料ガス供給側から不純物の多いガスをオフガスとして
抜き出し、前記パ−ジ工程では、高純度ガス回収側から
高純度ガス及び/又は不純物をほとんど含まないガスを
供給して原料ガス供給側から前段で排出される不純物の
多いガスをオフガスとして抜き出し、後段で排出される
不純物の少ないガスを原料ガスに循環し、前記昇圧工程
では、高純度ガス回収側から高純度ガス及び/又は不純
物をほとんど含まないガスを供給して昇圧することを特
徴とする圧力変動吸着装置による高純度ガスの製造方法
である。なお、不純物をほとんど含まないガスとは、不
純物濃度が1mol%以下、好ましくは0.1mol%
以下のガスであり、不純物の少ないガスとは、不純物濃
度が10mol%以下、好ましくは1mol%以下のガ
スをいう。また、不純物の多いガスとは、夫々の工程に
おいて、前記の不純物濃度よりも多く不純物を含むガス
をいう。前記構成の製造方法により、PSA装置をコン
パクト化でき、設備費や設備面積の低減化が図れると共
に、少ない吸着塔による問題点である高純度水素などの
高純度ガスの回収率低下を解決して高純度ガス回収率を
向上することができる。特に、水素含有ガスから不純物
を吸着除去して高純度水素を製造するのに適し、更に、
高純度水素の製造能力が10〜40Nm3/Hの小型水
素PSA装置に最適な製造方法である。
The gist of the present invention for achieving the above object is as follows.
In a two-column pressure fluctuation adsorption device that provides two adsorption columns filled with an adsorbent and removes impurities from a raw material gas to produce a high-purity gas, when one of the two columns is in the adsorption step, In other towers, the pressure reduction step, blowdown step,
And a pressure-reducing step. In the pressure-reducing step, a gas containing almost no impurities is recovered from the high-purity gas recovery side by reducing the pressure to a pressure with almost no outflow of impurities, and circulated to the raw material gas. And / or stored in a gas holder. In the blow-down step, the pressure is further reduced and a gas containing a large amount of impurities is extracted as an off-gas from the source gas supply side. In the purging step, the high-purity gas and And / or supplying a gas containing almost no impurities, extracting a gas containing a large amount of impurities discharged in the preceding stage as an off-gas from the raw material gas supply side, and circulating a gas containing a small amount of impurities discharged in the subsequent stage to the raw material gas. The pressure fluctuation is characterized by supplying a high-purity gas and / or a gas containing almost no impurities from the high-purity gas recovery side and increasing the pressure. A process for producing a high-purity gas by wearing device. Note that a gas containing almost no impurities means that the impurity concentration is 1 mol% or less, preferably 0.1 mol%.
The following gases, and a gas having a small amount of impurities, mean a gas having an impurity concentration of 10 mol% or less, preferably 1 mol% or less. Further, the gas containing a large amount of impurities means a gas containing more impurities than the above-described impurity concentration in each step. By the manufacturing method having the above configuration, the PSA device can be made compact, the equipment cost and the equipment area can be reduced, and the reduction in the recovery rate of high-purity gas such as high-purity hydrogen, which is a problem with a small number of adsorption towers, can be solved. The high-purity gas recovery rate can be improved. In particular, it is suitable for producing high-purity hydrogen by absorbing and removing impurities from a hydrogen-containing gas.
This is an optimal production method for a small-sized hydrogen PSA device having a high-purity hydrogen production capacity of 10 to 40 Nm3 / H.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1は本発明の一実施の形態の運転シ−
ケンスの概略図、図2は本発明を実施する一実施の形態
の二塔式水素製造用圧力変動吸着装置の系統図、図3は
従来の三塔式水素製造用圧力変動吸着装置における運転
シ−ケンスの概略図である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a driving seat according to an embodiment of the present invention.
FIG. 2 is a schematic view of a cans, FIG. 2 is a system diagram of a two-column hydrogen production pressure fluctuation adsorption apparatus according to an embodiment of the present invention, and FIG. FIG.

【0012】図2において、符番1は、下部に原料ガス
供給基管6から分岐された原料ガス供給管6a、上部に
高純度水素回収基管7に接続する高純度水素回収管7a
が接続されたA塔であり、符番2は、下部に原料ガス供
給基管6から分岐された原料ガス供給管6b、上部に高
純度水素回収基管7に接続する高純度水素回収管7bが
接続されたB塔である。A塔1及びB塔2の内部には、
原料ガスである水素含有ガス中の不純物を吸着除去する
吸着剤床3a、3bが夫々設けられ、高純度水素製造に
おいては、主に原料ガスの流通方向上流側から下流側に
向かって、活性炭層及びゼオライト層の順序で積層され
た吸着剤床3a、3bが設けられているが、水分を多量
に含有する水素含有ガスなど原料ガスの組成によって
は、活性炭及びゼオライトを水分の影響から保護するた
めに、前記吸着剤床3の前段に活性アルミナ層を同一吸
着塔内又は別の吸着塔として設けられることもある。
In FIG. 2, reference numeral 1 denotes a high-purity hydrogen recovery pipe 7a connected to a high-purity hydrogen recovery base pipe 7 at an upper part and a lower source gas supply pipe 6a branched from the source gas supply base pipe 6.
Is connected to the tower A. Reference numeral 2 denotes a high-purity hydrogen recovery pipe 7b connected to a high-purity hydrogen recovery base pipe 7 at the lower part and a high-purity hydrogen recovery pipe 7 at the upper part. Is the connected tower B. Inside of tower A 1 and tower B 2
Adsorbent beds 3a and 3b for adsorbing and removing impurities in the hydrogen-containing gas as the raw material gas are provided, respectively. In the production of high-purity hydrogen, the activated carbon layer is mainly moved from the upstream side to the downstream side in the flow direction of the raw material gas. And an adsorbent bed 3a, 3b laminated in the order of a zeolite layer, but depending on the composition of a raw material gas such as a hydrogen-containing gas containing a large amount of water, in order to protect activated carbon and zeolite from the influence of moisture. In some cases, an activated alumina layer may be provided before the adsorbent bed 3 in the same adsorption tower or as a separate adsorption tower.

【0013】符番4は原料ガスを加圧してA塔1及びB
塔2に夫々供給するコンプレッサ−であり、符番5は吸
着剤再生工程であるブロ−ダウン工程やパ−ジ工程で回
収される不純物の多いオフガスを貯留するオフガス貯留
タンクであり、回収されるオフガスは、水素含有ガスを
製造する改質装置などの燃料ガスとして用いることがで
きる。また、符番12は、減圧工程で回収される不純物
をほとんど含まないガスを貯留するガスホルダであり、
パ−ジ工程でのパ−ジガスや昇圧工程での昇圧ガスなど
として用いることができる。
Reference numeral 4 indicates that the raw material gas is pressurized and A tower 1 and B
Compressors 5 are supplied to the tower 2, respectively. Reference numeral 5 is an off-gas storage tank for storing an off-gas containing a large amount of impurities recovered in a blow-down process or a purge process as an adsorbent regeneration process. The off-gas can be used as a fuel gas for a reformer for producing a hydrogen-containing gas. Numeral 12 is a gas holder for storing a gas containing almost no impurities collected in the pressure reduction step,
It can be used as a purge gas in the purge step or a pressurized gas in the pressure step.

【0014】符番6はコンプレッサ−4が付設され、原
料ガスを原料ガス供給管6a、6bを経てA塔1及びB
塔2に夫々供給する原料ガス供給基管、符番7はA塔1
及びB塔2の高純度水素回収管7a、7bから夫々抜き
出される高純度水素を回収する高純度水素回収基管であ
り、符番8はA塔1及びB塔2の高純度水素回収管7
a、7bから分岐された水素排出管8a、8bから減圧
工程で夫々排出される不純物をほとんど含まないガスを
原料ガスに循環するため、原料ガス供給基管6のコンプ
レッサ−4前段に接続された水素循環基管であり、水素
循環基管8は減圧工程で回収される不純物をほとんど含
まないガスをガスホルダに貯留するため、減圧ガス回収
基管11にも接続され、また、パ−ジ工程及び昇圧工程
で使用される高純度水素及び/又は不純物をほとんど含
まないガスを水素排出管8a、8bからA塔1及びB塔
2に夫々供給するため、高純度水素回収基管7にも接続
されている。
Reference numeral 6 designates a compressor-4, and feeds the raw material gas through the raw gas supply pipes 6a and 6b to the towers A and B.
Source gas supply base pipes to be supplied to the tower 2 respectively, and reference numeral 7 denotes the tower A 1
And a high-purity hydrogen recovery pipe for recovering high-purity hydrogen extracted from the high-purity hydrogen recovery pipes 7a and 7b of the B tower 2 respectively. Reference numeral 8 denotes a high-purity hydrogen recovery pipe of the A tower 1 and the B tower 2. 7
In order to circulate a gas containing almost no impurities discharged in the depressurizing step from the hydrogen discharge pipes 8a and 8b branched from the a and 7b to the raw material gas, the gas is connected to the raw gas supply base pipe 6 in front of the compressor-4. The hydrogen circulation base pipe 8 is connected to the reduced pressure gas recovery base pipe 11 in order to store in the gas holder a gas substantially containing no impurities collected in the pressure reduction step. In order to supply high-purity hydrogen and / or gas containing almost no impurities used in the pressurization step from the hydrogen discharge pipes 8a and 8b to the A tower 1 and the B tower 2, respectively, it is also connected to the high-purity hydrogen recovery base pipe 7. ing.

【0015】符番9はA塔1及びB塔2の原料ガス供給
管6a、6bから分岐されたオフガス排出管9a、9b
からパ−ジ工程で夫々排出されるオフガスのうち、後段
で排出される不純物の少ないガスを原料ガスに循環する
ため、原料ガス供給基管6のコンプレッサ−4前段に接
続されたオフガス循環基管であるが、ブロ−ダウン工程
及びパ−ジ工程の前段で排出される不純物の多いガスを
オフガスとしてオフガス貯留タンク5に供給するため、
オフガス排出基管10にも接続している。
Reference numeral 9 denotes off-gas discharge pipes 9a, 9b branched from the raw gas supply pipes 6a, 6b of the tower A 1 and the tower B 2.
Of the off-gases discharged respectively in the purging process, a gas containing a small amount of impurities discharged in the latter stage is circulated to the source gas, so that an off-gas circulation base tube connected to the front stage of the compressor-4 of the source gas supply base tube 6 However, in order to supply the gas containing a large amount of impurities discharged in the previous stage of the blow-down step and the purge step to the off-gas storage tank 5 as an off-gas,
It is also connected to the off-gas discharge base pipe 10.

【0016】なお、前記構成の水素PSA装置において
は、図1に示すように、二塔の吸着塔において、一塔
(A塔)での吸着工程で不純物の吸着が飽和状態になり
破過する前に、制御弁の自動制御により、減圧工程、ブ
ロ−ダウン工程、パ−ジ工程及び昇圧工程を順次進行さ
せて再生操作が終了した他の塔(B塔)と工程が切り替
えられ、A塔での吸着剤の再生操作が行われ、B塔での
吸着工程が行われる。その操作を二塔間で順次繰り返さ
れることにより、連続的に高純度水素の製造を行うこと
ができる。
In the hydrogen PSA apparatus having the above structure, as shown in FIG. 1, in two adsorption towers, the adsorption of impurities in the adsorption step in one tower (A tower) is saturated and breaks through. Before the automatic control of the control valve, the pressure-reducing step, the blow-down step, the purging step, and the pressure-increasing step are sequentially advanced, and the step is switched to another tower (B tower) in which the regeneration operation has been completed. The regeneration operation of the adsorbent is performed, and the adsorption step in the tower B is performed. By repeating the operation between the two columns, high-purity hydrogen can be produced continuously.

【0017】前記二塔式水素PSA装置により、水素含
有ガスから不純物を吸着除去して高純度水素を製造する
方法について、図2に基づいて以下詳述するが、A塔及
びB塔は構成が同一であるため、A塔では吸着工程、B
塔では再生のための、減圧、ブロ−ダウン、パ−ジ及び
昇圧の各工程について述べる。なお、原料ガスである水
素含有ガスとしては、天然ガス、都市ガス、ナフサ、灯
油又はメタノ−ルなどの各種炭化水素を原料とし、それ
らの炭化水素を必要により脱硫したのち、Ni系やRu
系の触媒を用いた改質装置で分解又は水蒸気を反応させ
て製造された水素を主成分とする改質ガス、又は、石炭
を乾溜して製造されたコ−クス炉ガスなどを使用するこ
とができるが、それらの水素含有ガスには限定されな
い。
A method for producing high-purity hydrogen by adsorbing and removing impurities from a hydrogen-containing gas using the two-column hydrogen PSA apparatus will be described in detail below with reference to FIG. Since they are the same, the adsorption step in the tower A
In the column, the steps of pressure reduction, blowdown, purge, and pressure increase for regeneration are described. As a hydrogen-containing gas as a raw material gas, various hydrocarbons such as natural gas, city gas, naphtha, kerosene, and methanol are used as raw materials, and after desulfurizing the hydrocarbons as necessary, Ni-based or Ru-based gas is used.
Using a reformed gas mainly composed of hydrogen produced by cracking or reacting with steam in a reformer using a system catalyst, or a coke oven gas produced by dry-distilling coal But not limited to those hydrogen-containing gases.

【0018】(吸着工程)前記水素含有ガスを、原料ガ
ス供給基管6のコンプレッサ−4で加圧し、原料ガス供
給基管6のバルブV1、高純度水素回収管7aのバルブ
V2及び高純度水素回収基管7のバルブV12を開弁し
て原料ガス供給管6aからA塔1の下部へ供給し、吸着
剤床3aを上向流で流通させることにより、活性炭層で
主に水分、二酸化炭素及びメタンが吸着除去され、ま
た、ゼオライト層で一酸化炭素などが吸着除去され、吸
着剤床3a全体で水素含有ガス中の全不純物が吸着除去
される。前記吸着剤に吸着されない水素を、上部の高純
度水素回収管7aを経て高純度水素回収基管7から図示
しない高純度水素貯留タンクに供給し、製品高純度水素
として貯留される。
(Adsorption Step) The above-mentioned hydrogen-containing gas is pressurized by the compressor-4 of the source gas supply base pipe 6, and the valve V1 of the source gas supply base pipe 6, the valve V2 of the high-purity hydrogen recovery pipe 7a and the high-purity hydrogen The valve V12 of the recovery base pipe 7 is opened to supply the raw gas from the raw gas supply pipe 6a to the lower part of the tower A, and the adsorbent bed 3a is circulated in an upward flow, so that the activated carbon layer mainly contains water and carbon dioxide. And methane are adsorbed and removed, carbon monoxide and the like are adsorbed and removed in the zeolite layer, and all impurities in the hydrogen-containing gas are adsorbed and removed in the entire adsorbent bed 3a. Hydrogen that is not adsorbed by the adsorbent is supplied from a high-purity hydrogen recovery base pipe 7 to a high-purity hydrogen storage tank (not shown) through an upper high-purity hydrogen recovery pipe 7a, and is stored as product high-purity hydrogen.

【0019】A塔1で不純物の吸着工程が行われ、高純
度水素が製造されているときに、B塔2では、吸着剤の
吸着能を回復させる再生操作が行われる。(減圧工程)
水素排出管8bのバルブV8及び水素循環基管8のバル
ブV9を開弁、又は水素排出管8bのバルブV8及び減
圧ガス回収基管11のバルブV15を開弁し、B塔2を
不純物の流出がほとんどない圧力まで減圧することによ
り、B塔2内に残留する不純物をほとんど含まないガス
を排出して原料ガスに循環、又はガスホルダ12に貯留
する。
When the step of adsorbing impurities is performed in the tower A and high-purity hydrogen is being produced, a regeneration operation for recovering the adsorbent adsorption capacity is performed in the tower B 2. (Decompression step)
The valve V8 of the hydrogen discharge pipe 8b and the valve V9 of the hydrogen circulation base pipe 8 are opened, or the valve V8 of the hydrogen discharge pipe 8b and the valve V15 of the reduced-pressure gas recovery base pipe 11 are opened, so that the impurity in the B tower 2 flows out. By reducing the pressure to a pressure at which almost no impurities remain, a gas containing almost no impurities remaining in the B tower 2 is discharged and circulated to the raw material gas or stored in the gas holder 12.

【0020】(ブロ−ダウン工程)前記バルブV8、V
9又はV8、V15を閉弁すると共に、オフガス排出管
9bのバルブV7及びオフガス排出基管10のバルブV
13を開弁してB塔2を更に減圧し、不純物の多いガス
を排出して水素オフガス排出基管10からオフガス貯留
タンク5に供給し、オフガスとして貯留する。
(Blow-down step) The valves V8 and V
9 or V8 and V15 are closed, and the valve V7 of the off-gas discharge pipe 9b and the valve V of the off-gas discharge base pipe 10 are closed.
The valve 13 is opened to further reduce the pressure in the B tower 2, discharge a gas rich in impurities, supply the gas from the hydrogen offgas discharge base pipe 10 to the offgas storage tank 5, and store the offgas.

【0021】(パ−ジ工程)次に、前記バルブV7、V
13の開弁を継続すると共に、水素排出管8bのバルブ
V8及び水素循環基管8のバルブV11を開弁及びバル
ブ12を閉弁して、A塔1で製造された高純度水素をB
塔2に供給、又は水素排出管8bのバルブV8及び減圧
ガス回収管11のバルブV15を開弁して、減圧工程で
回収された不純物をほとんど含まないガスをB塔2に供
給して、吸着剤床3bに吸着された不純物をパ−ジし、
前段で排出される不純物の多いガスを、オフガス排出基
管10からオフガス貯留タンク5に供給し、オフガスと
して貯留する。前記バルブV13を閉弁すると共にオフ
ガス循環基管9のバルブV10を開弁し、後段で排出さ
れる不純物の少ないガスを原料ガスに循環する。
(Purge step) Next, the valves V7, V
13, while the valve V8 of the hydrogen discharge pipe 8b and the valve V11 of the hydrogen circulation base pipe 8 are opened and the valve 12 is closed, the high-purity hydrogen produced in the tower A
Supply the gas to the tower 2 or open the valve V8 of the hydrogen discharge pipe 8b and the valve V15 of the reduced pressure gas recovery pipe 11 to supply the gas containing almost no impurities recovered in the pressure reducing step to the B tower 2 for adsorption. Purging impurities adsorbed on the agent bed 3b,
The gas containing a large amount of impurities discharged in the previous stage is supplied from the off-gas discharge base pipe 10 to the off-gas storage tank 5 and stored as off-gas. The valve V13 of the off-gas circulation base pipe 9 is opened while the valve V13 is closed to circulate a gas containing less impurities discharged in the subsequent stage to the source gas.

【0022】(昇圧工程)前記バルブV7、V10を閉
弁し、更に、高純度水素又は不純物をほとんど含まない
ガスをB塔2に供給することにより、B塔2を所定の圧
力まで昇圧したのち、前記バルブV8、V11又はV
8、V15を閉弁して高純度水素又は不純物をほとんど
含まないガスの供給を停止することによりB塔2の再生
操作が終了する。
(Pressurizing Step) After closing the valves V7 and V10 and supplying a gas containing almost no high-purity hydrogen or impurities to the B column 2, the B column 2 is pressurized to a predetermined pressure. , The valve V8, V11 or V
8. By closing the valve V15 and stopping the supply of high-purity hydrogen or gas containing almost no impurities, the regeneration operation of the B tower 2 is completed.

【0023】前記高純度水素の製造方法における説明に
おいて、工程の切替に伴うA塔1及びB塔2におけるバ
ルブの夫々対応する符番は次の通りである。V1:V
5、V2:V6、V3:V7、V4:V8。なお、前者
がA塔1のバルブ符番、後者がB塔2のバルブ符番であ
る。また、本発明は、前記各工程における操作には限定
されない。例えば、パ−ジ工程や昇圧工程における高純
度水素の供給において、他塔で製造されたガスをそのま
ま用いることなく、高純度水素貯留タンクから別系統の
配管及びコンプレッサ−を設けて供給するように構成し
てもよく、更に、パ−ジ工程及び昇圧工程で使用される
ガスとして、高純度水素と不純物をほとんど含まないガ
スの両方を併用する構成としてもよい。更に、不純物を
ほとんど含まないガスを高純度水素製品として回収して
もよい。
In the description of the method for producing high-purity hydrogen, the reference numerals corresponding to the valves in the tower A 1 and the tower B 2 accompanying the switching of the process are as follows. V1: V
5, V2: V6, V3: V7, V4: V8. In addition, the former is the valve number of the tower A1, and the latter is the valve number of the tower B2. Further, the present invention is not limited to the operation in each of the above steps. For example, in the supply of high-purity hydrogen in the purging step or the pressurizing step, the gas produced in another tower is not used as it is, but is supplied from a high-purity hydrogen storage tank by providing a separate piping and a compressor. The gas used in the purging step and the pressure increasing step may be a combination of high-purity hydrogen and a gas containing almost no impurities. Further, a gas containing almost no impurities may be recovered as a high-purity hydrogen product.

【0024】前記における各工程での操作条件の一実施
例としては、水素製造能力が、10〜40Nm3/Hの
場合、吸着工程の吸着時間は200〜500秒、圧力は
0.3〜0.98MPaG、減圧工程の時間は50〜1
20秒、圧力は0.2〜0.6MPa、ブロ−ダウン工
程の時間は20〜100秒、圧力は0〜0.2MPa、
パ−ジ工程の時間は50〜120秒、昇圧工程の時間は
10〜60秒、圧力は0.3〜0.98MPaGであ
る。また、不純物をほとんど含まないガスは、不純物濃
度が1mol%以下、好ましくは0.1mol%以下の
ガスであり、不純物の少ないガスは、不純物濃度が10
mol%以下、好ましくは1mol%以下のガスであ
る。また、不純物の多いガスは、夫々の工程において、
前記の不純物濃度よりも多く不純物を含んでいる。更
に、製造される高純度水素は99.99mol%以上、
好ましくは99.9999mol%以上であり、高純度
水素回収率は65〜80%となる。
As an example of the operating conditions in each of the above steps, when the hydrogen production capacity is 10 to 40 Nm 3 / H, the adsorption time in the adsorption step is 200 to 500 seconds, and the pressure is 0.3 to 0. 98 MPaG, the time of the pressure reduction step is 50 to 1
20 seconds, pressure is 0.2-0.6 MPa, time of blow-down step is 20-100 seconds, pressure is 0-0.2 MPa,
The time for the purging step is 50 to 120 seconds, the time for the pressure raising step is 10 to 60 seconds, and the pressure is 0.3 to 0.98 MPaG. A gas containing almost no impurities is a gas having an impurity concentration of 1 mol% or less, preferably 0.1 mol% or less, and a gas having a small impurity has an impurity concentration of 10 mol% or less.
mol% or less, preferably 1 mol% or less. In addition, the gas containing many impurities is used in each process.
It contains more impurities than the above impurity concentration. Furthermore, the high-purity hydrogen produced is 99.99 mol% or more,
Preferably it is 99.9999 mol% or more, and the high purity hydrogen recovery rate is 65 to 80%.

【0025】[0025]

【発明の効果】本発明はPSA装置をコンパクト化で
き、設備費や設置面積の低減化が図れると共に、少ない
吸着塔による問題点である高純度水素などの高純度ガス
の回収率低下を解決して高純度ガス回収率を向上するこ
とができる。特に、水素含有ガスから不純物を吸着除去
して高純度水素を製造するのに適し、更に、高純度水素
の製造能力が10〜40Nm3/Hの小型水素PSA装
置に最適な製造方法である。
According to the present invention, the PSA apparatus can be made compact, the equipment cost and the installation area can be reduced, and the problem of a low adsorption tower, that is, the reduction in the recovery rate of high-purity gas such as high-purity hydrogen, can be solved. Thus, the high-purity gas recovery rate can be improved. In particular, it is suitable for producing high-purity hydrogen by absorbing and removing impurities from a hydrogen-containing gas, and is a production method most suitable for a small-sized hydrogen PSA device having a high-purity hydrogen production capacity of 10 to 40 Nm3 / H.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の運転シ−ケンスの概略
FIG. 1 is a schematic diagram of an operation sequence according to an embodiment of the present invention.

【図2】本発明を実施する一実施の形態の二塔式水素製
造用圧力変動吸着装置の系統図
FIG. 2 is a system diagram of a pressure fluctuation adsorption apparatus for two-column hydrogen production according to an embodiment of the present invention.

【図3】従来の三塔式水素製造用圧力変動吸着装置にお
ける運転シ−ケンスの概略図
FIG. 3 is a schematic diagram of an operation sequence in a conventional pressure fluctuation adsorption apparatus for three-column hydrogen production.

【符号の説明】[Explanation of symbols]

1:A塔(吸着塔) 2:B塔(吸着塔) 3a、3b:吸着剤床 4:コンプレッサ− 5:オフガス貯留タンク 6:原料ガス供給基管 7:高純度水素回収基管 8:水素循環基管 9:オフガス循環基管 10:オフガス排出基管 11:減圧ガス回収基管 12:ガスホルダ 1: A tower (adsorption tower) 2: B tower (adsorption tower) 3a, 3b: adsorbent bed 4: compressor 5: off-gas storage tank 6: source gas supply base pipe 7: high-purity hydrogen recovery base pipe 8: hydrogen Circulation base pipe 9: Off gas circulation base pipe 10: Off gas discharge base pipe 11: Reduced pressure gas recovery base pipe 12: Gas holder

フロントページの続き (72)発明者 加藤 久美子 神奈川県横浜市西区みなとみらい3丁目3 番1号 三菱化工機株式会社内 Fターム(参考) 4D012 CA07 CB16 CD07 CG01 CJ01 CJ02 CJ06 Continued on the front page (72) Inventor Kumiko Kato 3-3-1 Minatomirai, Nishi-ku, Yokohama-shi, Kanagawa F-term in Mitsubishi Kakoki Co., Ltd. 4D012 CA07 CB16 CD07 CG01 CJ01 CJ02 CJ06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】吸着剤を充填した吸着塔を二塔設け、原料
ガスから不純物を吸着除去して高純度ガスを製造する二
塔式圧力変動吸着装置において、前記二塔のうちの一塔
が吸着工程のときに、他塔では、減圧工程、ブロ−ダウ
ン工程、パ−ジ工程及び昇圧工程の各工程が順次行わ
れ、前記減圧工程では、不純物の流出がほとんどない圧
力まで減圧することにより高純度ガス回収側から不純物
をほとんど含まないガスを回収して原料ガスに循環及び
/又はガスホルダに貯留し、前記ブロ−ダウン工程で
は、更に減圧して原料ガス供給側から不純物の多いガス
をオフガスとして抜き出し、前記パ−ジ工程では、高純
度ガス回収側から高純度ガス及び/又は不純物をほとん
ど含まないガスを供給して原料ガス供給側から前段で排
出される不純物の多いガスをオフガスとして抜き出し、
後段で排出される不純物の少ないガスを原料ガスに循環
し、前記昇圧工程では、高純度ガス回収側から高純度ガ
ス及び/又は不純物をほとんど含まないガスを供給して
昇圧することを特徴とする圧力変動吸着装置による高純
度ガスの製造方法。
1. A two-column pressure fluctuation adsorption apparatus for providing high-purity gas by adsorbing and removing impurities from a raw material gas by providing two adsorption columns filled with an adsorbent, wherein one of the two columns is At the time of the adsorption step, in the other column, each step of the pressure reduction step, the blowdown step, the purge step and the pressure increase step is sequentially performed. In the pressure reduction step, the pressure is reduced to a pressure at which almost no impurities flow out. A gas containing almost no impurities is recovered from the high-purity gas recovery side and circulated to the raw material gas and / or stored in a gas holder. In the purging step, a high-purity gas and / or a gas containing almost no impurities are supplied from the high-purity gas recovery side, and a large amount of impurities are discharged in the preceding stage from the source gas supply side. Extracting the scan as off-gas,
A gas with a small amount of impurities discharged in the subsequent stage is circulated to the source gas, and in the pressurizing step, a high-purity gas and / or a gas containing almost no impurities are supplied from the high-purity gas recovery side to increase the pressure. A method for producing high-purity gas using a pressure fluctuation adsorption device.
JP2000174589A 2000-06-12 2000-06-12 Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus Pending JP2001347125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000174589A JP2001347125A (en) 2000-06-12 2000-06-12 Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000174589A JP2001347125A (en) 2000-06-12 2000-06-12 Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus

Publications (1)

Publication Number Publication Date
JP2001347125A true JP2001347125A (en) 2001-12-18

Family

ID=18676595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000174589A Pending JP2001347125A (en) 2000-06-12 2000-06-12 Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus

Country Status (1)

Country Link
JP (1) JP2001347125A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289730A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Method and apparatus for producing hydrogen
JP2005289731A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Method and apparatus for producing hydrogen
JP2009503791A (en) * 2005-07-25 2009-01-29 ブルーム エナジー コーポレーション Gas separation method and apparatus using partial pressure swing adsorption
JP2009503788A (en) * 2005-07-25 2009-01-29 ブルーム エナジー コーポレーション Partial pressure swing adsorption system for supplying hydrogen to vehicle fuel cells
JP2017226562A (en) * 2016-06-20 2017-12-28 株式会社神戸製鋼所 Hydrogen gas manufacturing method and hydrogen gas manufacturing device
JP2021058856A (en) * 2019-10-08 2021-04-15 Jfeスチール株式会社 Gas separation recovery equipment and gas separation recovery method
JP7148748B1 (en) 2022-03-11 2022-10-05 大陽日酸株式会社 gas purifier
JP7247394B1 (en) 2022-03-11 2023-03-28 大陽日酸株式会社 gas purifier

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289730A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Method and apparatus for producing hydrogen
JP2005289731A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Method and apparatus for producing hydrogen
JP2009503791A (en) * 2005-07-25 2009-01-29 ブルーム エナジー コーポレーション Gas separation method and apparatus using partial pressure swing adsorption
JP2009503788A (en) * 2005-07-25 2009-01-29 ブルーム エナジー コーポレーション Partial pressure swing adsorption system for supplying hydrogen to vehicle fuel cells
JP2017226562A (en) * 2016-06-20 2017-12-28 株式会社神戸製鋼所 Hydrogen gas manufacturing method and hydrogen gas manufacturing device
JP2021058856A (en) * 2019-10-08 2021-04-15 Jfeスチール株式会社 Gas separation recovery equipment and gas separation recovery method
JP7147727B2 (en) 2019-10-08 2022-10-05 Jfeスチール株式会社 Gas separation and recovery method
JP7148748B1 (en) 2022-03-11 2022-10-05 大陽日酸株式会社 gas purifier
JP7247394B1 (en) 2022-03-11 2023-03-28 大陽日酸株式会社 gas purifier
WO2023171786A1 (en) * 2022-03-11 2023-09-14 大陽日酸株式会社 Gas purification device
JP2023132478A (en) * 2022-03-11 2023-09-22 大陽日酸株式会社 Gas purifier
JP2023132479A (en) * 2022-03-11 2023-09-22 大陽日酸株式会社 Gas purifier

Similar Documents

Publication Publication Date Title
US7740688B2 (en) Process and apparatus for carbon dioxide recovery
US7179324B2 (en) Continuous feed three-bed pressure swing adsorption system
US20100000408A1 (en) Hydrogen gas separation method and separation apparatus
KR940006239B1 (en) Integrated processes for the production of carbon monoxide
JP5314408B2 (en) PSA equipment for high-purity hydrogen gas production
US6454838B1 (en) Six bed pressure swing adsorption process with four steps of pressure equalization
US7618478B2 (en) Process and apparatus to recover medium purity carbon dioxide
US20070227352A1 (en) Process and apparatus to recover high purity carbon dioxide
US20100294130A1 (en) Method and apparatus for separating hydrogen gas
JPH04338206A (en) Gas separation
JP2010143778A (en) High purity hydrogen production apparatus
ES2377753T3 (en) Adsorption procedure to recover hydrogen from feed gas mixtures with low hydrogen concentration
JP4814024B2 (en) PSA equipment for high-purity hydrogen gas production
JP2001300244A (en) Adsorption column for pressure fluctuation adsorption device for manufacturing hydrogen
JP5690165B2 (en) PSA high purity hydrogen production method
JP2001347125A (en) Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus
JP7372131B2 (en) Carbon dioxide recovery device and method
AU2021377152B2 (en) A process and plant for producing ultrahigh-purity hydrogen from low-grade hydrogen gas
US10933366B2 (en) Pressure swing adsorption process and pressure swing adsorption apparatus
JP2981303B2 (en) Method for separating gaseous impurities from gas mixtures
JP6640660B2 (en) Hydrogen gas production method and hydrogen gas production device
JP4771668B2 (en) Hydrogen production method and apparatus
CN216472232U (en) Energy-saving process system for purifying hydrogen from raw coke oven gas with low-concentration hydrogen
JP4850432B2 (en) Operation method of hydrogen production apparatus and hydrogen production apparatus
CA2452536C (en) Pressure swing adsorption process with multiple beds on purge and/or with ten beds and four pressure equalization steps