JP4815104B2 - Hydrogen production method and apparatus - Google Patents

Hydrogen production method and apparatus Download PDF

Info

Publication number
JP4815104B2
JP4815104B2 JP2004107445A JP2004107445A JP4815104B2 JP 4815104 B2 JP4815104 B2 JP 4815104B2 JP 2004107445 A JP2004107445 A JP 2004107445A JP 2004107445 A JP2004107445 A JP 2004107445A JP 4815104 B2 JP4815104 B2 JP 4815104B2
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
line
purifier
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004107445A
Other languages
Japanese (ja)
Other versions
JP2005289731A (en
Inventor
豊和 田中
幸男 平中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004107445A priority Critical patent/JP4815104B2/en
Publication of JP2005289731A publication Critical patent/JP2005289731A/en
Application granted granted Critical
Publication of JP4815104B2 publication Critical patent/JP4815104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、吸着剤を収容する水素精製装置内を加圧状態に維持して前記吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素を取り出す水素取り出し工程と、前記水素精製装置内を減圧状態に維持して前記吸着剤から不純物を脱着させてオフガスを取り出すオフガス取り出し工程を繰り返しながら、水素リッチガスから高純度の製品水素を製造する水素製造方法とその方法の実施に直接使用する水素製造装置に関する。   The present invention relates to a hydrogen extraction step for taking out high-purity product hydrogen by adsorbing impurities in a hydrogen-rich gas to the adsorbent while maintaining the inside of a hydrogen purifier containing the adsorbent in a pressurized state, and the hydrogen purifier A hydrogen production method for producing high-purity product hydrogen from a hydrogen-rich gas, and a direct use in the implementation of the method, while repeating the off-gas removal step of desorbing impurities from the adsorbent and removing the off-gas while maintaining the interior at a reduced pressure state The present invention relates to a hydrogen production apparatus.

水素は、燃料電池の燃料やバーナの燃料をはじめとして不飽和結合への添加用などの各種の用途に供されるもので、燃料ガスの変成法、液体燃料のガス化法、水の電解法、石炭やコークスのガス化法、コークス炉ガスの液化分離法、メタノールやアンモニアの分解法などの各種方法により製造される。
しかし、製造後の水素中に多量の不純物が含まれていると、用途によっては使用不能になる可能性があるため、水素中に含まれる不純物を除去して高純度の水素に精製する必要がある。
Hydrogen is used for various applications such as fuel cell fuel and burner fuel, as well as for addition to unsaturated bonds, such as fuel gas transformation methods, liquid fuel gasification methods, and water electrolysis methods. They are produced by various methods such as coal and coke gasification methods, coke oven gas liquefaction separation methods, and methanol and ammonia decomposition methods.
However, if a large amount of impurities are contained in the hydrogen after production, it may become unusable depending on the application, so it is necessary to remove impurities contained in the hydrogen and purify it to high purity hydrogen. is there.

例えば、原料として都市ガスや天然ガスを使用して燃料ガス変成法により水素を製造する場合、主成分である水素の他にCOやCO2などの不純物が含まれている。そして、燃料電池のうち、リン酸型燃料電池(PAFC)の燃料として水素を使用する場合には、CO含有量は1%が限度であり、固体高分子型燃料電池(PEFC)の燃料として使用する場合には、100ppmが限度であって、それを越えると電池性能が著しく劣化することになる。
また、不飽和結合への添加用として水素を使用する場合にも、5規定(N)以上の純度が要求され、したがって、上述した水素精製方法によって水素リッチガスを高純度の水素に精製する必要がある。
For example, when hydrogen is produced by a fuel gas conversion method using city gas or natural gas as a raw material, impurities such as CO and CO 2 are contained in addition to hydrogen as a main component. Of the fuel cells, when hydrogen is used as a fuel for a phosphoric acid fuel cell (PAFC), the CO content is limited to 1%, which is used as a fuel for a polymer electrolyte fuel cell (PEFC). In this case, the limit is 100 ppm, and if it exceeds that, battery performance will be significantly degraded.
Also, when hydrogen is used for addition to an unsaturated bond, a purity of 5 N (N) or more is required, and therefore it is necessary to purify the hydrogen rich gas into high purity hydrogen by the hydrogen purification method described above. is there.

ところで、従来の水素製造方法では、水素取り出し工程とオフガス取り出し工程を繰り返しながら、水素リッチガスから高純度の製品水素を製造していた。
具体的には、一般に吸着工程と称される水素取り出し工程において、吸着剤を収容する水素精製装置内を加圧状態に維持してその吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素を取り出し、その後、均圧工程を経た後、減圧工程および洗浄工程と称されるオフガス取り出し工程において、水素精製装置内を減圧状態に維持して吸着剤から不純物を脱着させてオフガスを取り出し、その後、昇圧工程を経て再び吸着工程を実行しながら製品水素を製造していた(実際に実施してはいるが、この点について詳しく言及した特許文献などは見当たらない)。
By the way, in the conventional hydrogen production method, high purity product hydrogen is produced from the hydrogen rich gas while repeating the hydrogen removal step and the off-gas removal step.
Specifically, in a hydrogen extraction process generally referred to as an adsorption process, the inside of a hydrogen purification apparatus that contains the adsorbent is maintained in a pressurized state, and impurities in the hydrogen-rich gas are adsorbed to the adsorbent to achieve high purity. The product hydrogen is taken out, and after passing through the pressure equalization step, the off-gas is taken out by maintaining the inside of the hydrogen purifier in a reduced pressure state and desorbing impurities from the adsorbent in the off-gas removal step called the decompression step and the washing step. Thereafter, product hydrogen was produced while performing the adsorption step again after going through the pressurization step (although it is actually carried out, there is no patent document or the like that specifically mentions this point).

このように、従来の水素製造方法では、吸着工程と称される水素取り出し工程完了後、水素精製装置内の圧力を減圧しながら直ちにオフガス取り出し工程へと移行していたので、製品水素の回収率が低くて水素の製造効率に問題があった。
すなわち、本発明者らが各種の実験などを繰り返して追求したところ、水素精製装置から高純度の製品水素を取り出した後、次に水素精製装置内の圧力を減圧する段階においても、その水素精製装置内に製品水素として回収可能な高純度の水素が残存していることが判明した。
しかし、従来の水素精製方法では、そのような残存水素を製品水素として回収していなかったので、製品水素の回収率が低くて製造効率が悪いという欠点があった。
As described above, in the conventional hydrogen production method, after completion of the hydrogen extraction process called the adsorption process, the process immediately proceeds to the off-gas extraction process while reducing the pressure in the hydrogen purifier. However, the production efficiency of hydrogen was problematic.
In other words, when the present inventors repeatedly pursued various experiments, etc., after taking out high-purity product hydrogen from the hydrogen purifier, the hydrogen purification is performed even at the stage where the pressure in the hydrogen purifier is subsequently reduced. It was found that high-purity hydrogen that can be recovered as product hydrogen remained in the apparatus.
However, in the conventional hydrogen purification method, since such residual hydrogen was not recovered as product hydrogen, there was a drawback that the recovery rate of product hydrogen was low and the production efficiency was poor.

本発明は、このような従来の欠点を解消するもので、その目的は、水素リッチガスから高純度の製品水素を製造するに際し、製品水素回収率の向上を図って効率良く製品水素を製造することの可能な水素製造方法とそのための装置を提供することにある。   The present invention eliminates such conventional drawbacks, and its purpose is to efficiently produce product hydrogen by improving the product hydrogen recovery rate when producing high-purity product hydrogen from hydrogen-rich gas. It is an object of the present invention to provide a hydrogen production method and an apparatus therefor.

本発明の第1の特徴構成は、吸着剤を収容する水素精製装置内を加圧状態に維持して前記吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素を取り出し、水素取り出しラインを用いて水素貯蔵タンクへ貯蔵する水素取り出し工程と、前記水素精製装置内を減圧状態に維持して前記吸着剤から不純物を脱着させてオフガスを取り出すオフガス取り出し工程を繰り返しながら、水素リッチガスから高純度の製品水素を製造する水素製造方法であって、前記水素取り出し工程完了後、前記水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の製品水素を、前記水素貯蔵タンクに、前記水素取り出しラインを用いて回収する水素回収工程を実行し、その水素回収工程完了後に前記オフガス取り出し工程へ移行するよう構成され、前記水素精製装置が複数設けられ、前記複数の水素精製装置のうちの1が前記水素取り出し工程を実行している際に、他の水素精製装置が前記水素回収工程を実行し、前記水素取り出し工程で取り出した前記製品水素を、前記水素貯蔵タンクに貯蔵するとともに、前記水素回収工程で回収した前記製品水素を同時に前記水素貯蔵タンクに貯蔵するところにある。 The first characteristic configuration of the present invention is that a hydrogen purifier containing an adsorbent is maintained in a pressurized state so that impurities in the hydrogen-rich gas are adsorbed to the adsorbent to extract high-purity product hydrogen, and hydrogen is extracted. The hydrogen extraction process for storing in a hydrogen storage tank using a line and the off-gas extraction process for desorbing impurities from the adsorbent and maintaining the interior of the hydrogen purifier in a depressurized state to remove the off-gas are repeated. A hydrogen production method for producing a pure product hydrogen, the high purity product hydrogen remaining in the hydrogen purifier after the completion of the hydrogen removal step in the hydrogen purifier in the hydrogen storage tank. The hydrogen recovery step of recovering using the hydrogen take-out line is executed, and after the hydrogen recovery step is completed, the process proceeds to the off-gas take-off step A plurality of the hydrogen purification devices are provided, and when one of the plurality of hydrogen purification devices is executing the hydrogen extraction step, another hydrogen purification device executes the hydrogen recovery step, and the product hydrogen extracted in extraction step, as well as stored prior Symbol hydrogen storage tank, there is to the storage of the product hydrogen recovered in the hydrogen recovery step simultaneously the hydrogen storage tank.

本発明の第1の特徴構成によれば、水素精製装置内を加圧状態に維持して吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素を取り出す水素取り出し工程完了後、水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の製品水素を回収する水素回収工程を実行した後に、水素精製装置内を減圧状態に維持して吸着剤から不純物を脱着させてオフガスを取り出すオフガス取り出し工程へ移行するので、従来の方法では未回収であった高純度の残存水素をも、製品水素として確実に回収することができ、その結果、製品水素回収率の向上を図って効率良く製品水素を製造することができる According to the first characteristic configuration of the present invention, the hydrogen purifier is maintained in a pressurized state so that impurities in the hydrogen-rich gas are adsorbed by the adsorbent and the hydrogen extraction step for extracting high-purity product hydrogen is completed. After performing a hydrogen recovery process that recovers high-purity product hydrogen remaining in the hydrogen purifier along with the pressure reduction in the purifier, the hydrogen purifier is maintained in a vacuum state to desorb impurities from the adsorbent. Since the process moves to an off-gas removal process for removing off-gas, high-purity residual hydrogen that has not been recovered by conventional methods can be reliably recovered as product hydrogen, and as a result, the product hydrogen recovery rate is improved. Product hydrogen can be produced efficiently .

本発明の第2の特徴構成は、上述の水素製造方法において、前記水素精製装置内の圧力が所定の設定圧にまで減圧した時点で、前記水素回収工程を完了するところにある。   The second characteristic configuration of the present invention is that in the hydrogen production method described above, the hydrogen recovery step is completed when the pressure in the hydrogen purifier is reduced to a predetermined set pressure.

本発明の第2の特徴構成によれば、水素精製装置内の圧力が所定の設定圧にまで減圧した時点で、前記水素回収工程を完了するので、従来未回収であった残存水素を回収するに際し、より一層確実に高純度の製品水素を回収することができる。
すなわち、水素回収工程を完了するには、例えば、水素取り出し工程完了後、所定時間経過後に完了することもできるが、時間が短すぎると、水素精製装置内の圧力が高くて未だ高純度の製品水素を回収できるにもかかわらず、未回収に終わる可能性があり、逆に時間が長すぎると、水素精製装置内の圧力が低くなって吸着剤から不純物が脱着して、回収する水素の純度が低下する可能性がある。
その点、水素精製装置内の圧力に基づいて水素回収工程を完了すれば、所望どおりの高純度水素を効率良く回収することができる。
According to the second characteristic configuration of the present invention, since the hydrogen recovery step is completed when the pressure in the hydrogen purifier is reduced to a predetermined set pressure, the remaining hydrogen that has not been recovered is recovered. In this case, high purity product hydrogen can be recovered more reliably.
That is, to complete the hydrogen recovery process, for example, it can be completed after a predetermined time elapses after the hydrogen removal process is completed, but if the time is too short, the pressure in the hydrogen purifier is high and the product is still highly pure. Despite being able to recover hydrogen, it may end up being unrecovered. Conversely, if the time is too long, the pressure in the hydrogen purifier will decrease and impurities will desorb from the adsorbent, and the purity of the recovered hydrogen May be reduced.
In that respect, if the hydrogen recovery step is completed based on the pressure in the hydrogen purifier, high purity hydrogen as desired can be recovered efficiently.

本発明の第3の特徴構成は、吸着剤を収容する水素精製装置と、高純度の製品水素を貯蔵する水素貯蔵タンクと、前記水素精製装置から製品水素を取り出して前記水素貯蔵タンクへ搬送する水素取り出しラインを備え、前記水素精製装置内を加圧状態に維持して前記吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素に精製し、その製品水素を前記水素取り出しラインを介して前記水素貯蔵タンクへ搬送し、前記水素精製装置内を減圧状態に維持して前記吸着剤から不純物を脱着させてオフガスを取り出すように構成してある水素製造装置であって、前記水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の製品水素を回収して前記水素貯蔵タンクへ搬送する水素回収ラインを設けてあり、前記水素精製装置が複数設けられ、その複数の水素精製装置のそれぞれが、前記水素精製装置内を所定の加圧状態に維持する水素取り出し用調圧機構と水素取り出し用開閉機構を備えた前記水素取り出しラインで並列に前記水素貯蔵タンクに接続されるとともに、前記水素精製装置内を減圧させる水素回収用調圧機構と水素回収用開閉機構を備えた前記水素回収ラインに並列に接続され、前記水素回収ラインが、前記水素取り出し用調圧機構より前記水素貯蔵タンク側の位置で、前記水素取り出しラインに接続されているところにある。 A third characteristic configuration of the present invention is a hydrogen purifier that contains an adsorbent, a hydrogen storage tank that stores high-purity product hydrogen, and product hydrogen that is extracted from the hydrogen purifier and transported to the hydrogen storage tank. A hydrogen take-out line is provided, and the inside of the hydrogen purifier is maintained in a pressurized state so that impurities in the hydrogen-rich gas are adsorbed on the adsorbent to be purified into high-purity product hydrogen. A hydrogen production apparatus configured to remove the off-gas by desorbing impurities from the adsorbent while maintaining the reduced pressure in the hydrogen purification tank and removing the off-gas from the adsorbent. high purity product hydrogen with a reduced pressure in the apparatus remains in the hydrogen purifier was collected Ri Ah provided hydrogen recovery line for transporting to said hydrogen storage tank, the hydrogen purifier is double Each of the plurality of hydrogen purifiers is arranged in parallel in the hydrogen extraction line having a hydrogen extraction pressure adjusting mechanism for maintaining the inside of the hydrogen purification apparatus in a predetermined pressurized state and a hydrogen extraction opening / closing mechanism. The hydrogen recovery tank is connected in parallel to the hydrogen recovery line having a hydrogen recovery pressure adjusting mechanism for reducing the pressure inside the hydrogen purifier and a hydrogen recovery opening / closing mechanism, and the hydrogen recovery line is connected to the hydrogen recovery tank. At the position closer to the hydrogen storage tank than the pressure regulating mechanism for removal, it is connected to the hydrogen removal line .

本発明の第3の特徴構成によれば、水素精製装置内を加圧状態に維持して吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素に精製し、その製品水素を水素取り出しラインを介して水素貯蔵タンクへ搬送し、水素精製装置内を減圧状態に維持して吸着剤から不純物を脱着させてオフガスを取り出すように構成してある水素製造装置であって、水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の製品水素を回収して水素貯蔵タンクへ搬送する水素回収ラインを設けてあるので、上記第1の特徴構成に関連して記述したように、水素取り出し工程完了後、オフガス取り出し工程へ移行する前に、水素精製装置内に残存する高純度の製品水素を回収する水素回収工程を実行して、その回収した製品水素を水素回収ラインにより水素貯蔵タンクへ搬送することができ、製品水素回収率の向上を図って効率良く製品水素を製造することができる。   According to the third characteristic configuration of the present invention, the hydrogen purifier is maintained in a pressurized state so that the impurities in the hydrogen-rich gas are adsorbed by the adsorbent to be purified into high-purity product hydrogen. A hydrogen production apparatus configured to transport to a hydrogen storage tank via a take-out line, maintain a reduced pressure inside the hydrogen purification apparatus, desorb impurities from the adsorbent, and take off gas. A hydrogen recovery line is provided for recovering high-purity product hydrogen remaining in the hydrogen purifier as the pressure is reduced and transporting it to the hydrogen storage tank. In addition, after completing the hydrogen removal process, before proceeding to the off-gas removal process, a hydrogen recovery process for recovering high-purity product hydrogen remaining in the hydrogen purifier is performed, and the recovered product hydrogen is recovered in the hydrogen recovery line. It makes it possible to convey to the hydrogen storage tank can be produced efficiently product hydrogen to improve the product hydrogen recovery.

さらに、本発明の第の特徴構成によれば、水素取り出しラインが、水素精製装置内を所定の加圧状態に維持する水素取り出し用調圧機構と水素取り出し用開閉機構を備え、水素回収ラインが、水素精製装置内を減圧させる水素回収用調圧機構と水素回収用開閉機構を備えているので、水素取り出し用開閉機構と水素回収用開閉機構を適宜開閉操作することによって、水素取り出し工程から水素回収工程への移行を円滑に行うことができる。
そして、水素取り出し用調圧機構により水素精製装置内を所望の加圧状態に維持して、確実に水素取り出し工程を実行し、かつ、水素回収用調圧機構により水素精製装置内を所望どおりに減圧しながら水素回収工程を実行することができ、その結果、製品水素回収率をより一層向上させることができる。
Furthermore, according to the third characteristic configuration of the present invention, the hydrogen take-out line includes a hydrogen take-out pressure adjusting mechanism for maintaining the inside of the hydrogen purifier in a predetermined pressurized state and a hydrogen take-off opening / closing mechanism. However, since the pressure recovery mechanism for recovering hydrogen and the opening / closing mechanism for hydrogen recovery are provided to reduce the pressure in the hydrogen purifier, the opening / closing mechanism for removing hydrogen and the opening / closing mechanism for recovering hydrogen can be appropriately opened and closed. The transition to the hydrogen recovery process can be performed smoothly.
Then, the inside of the hydrogen purifier is maintained at a desired pressure state by the pressure adjustment mechanism for hydrogen removal, and the hydrogen removal step is reliably executed, and the inside of the hydrogen purification apparatus is performed as desired by the pressure recovery mechanism for hydrogen recovery. The hydrogen recovery step can be executed while reducing the pressure, and as a result, the product hydrogen recovery rate can be further improved.

さらに、本発明の第の特徴構成によれば、水素精製装置が複数設けられ、その複数の水素精製装置のそれぞれが、水素取り出し用開閉機構を備えて水素取り出しラインに並列に接続され、かつ、水素回収用開閉機構を備えて水素回収ラインに並列に接続されているので、各水素精製装置の水素取り出し用開閉機構と水素回収用開閉機構を順次開閉操作することにより、複数の水素精製装置を使用して製品水素を効率良くかつ連続的に製造することが可能となる。 Furthermore, according to the third characteristic configuration of the present invention, a plurality of hydrogen purifiers are provided, and each of the plurality of hydrogen purifiers is provided with a hydrogen extraction opening / closing mechanism and connected in parallel to the hydrogen extraction line, and Since a hydrogen recovery opening / closing mechanism is connected in parallel to the hydrogen recovery line, a plurality of hydrogen purification devices can be operated by sequentially opening / closing the hydrogen extraction opening / closing mechanism and the hydrogen recovery opening / closing mechanism of each hydrogen purification device. It becomes possible to produce product hydrogen efficiently and continuously using.

さらに、本発明の第3の特徴構成によれば、水素回収ラインが、水素取り出し用調圧機構をバイパスして水素取り出しラインに接続されているので、水素回収ラインと水素取り出しラインの共用化が可能となり、上述したように、製品水素を効率良くかつ連続的に製造することができるのに加えて、ラインの共用化により水素製造装置の低廉化も可能となる。加えて、水素回収ラインが、水素取り出し用調圧機構をバイパスして水素取り出しラインに接続されているので、水素取り出しラインを流れる水素を調圧した後、水素回収ラインを流れる水素と混合することができる Furthermore, according to the third characteristic configuration of the present invention, since the hydrogen recovery line is connected to the hydrogen extraction line by bypassing the pressure adjustment mechanism for hydrogen extraction, the hydrogen recovery line and the hydrogen extraction line can be shared. As described above, product hydrogen can be produced efficiently and continuously, and in addition, the cost of the hydrogen production apparatus can be reduced by sharing the line. In addition, since the hydrogen recovery line is connected to the hydrogen extraction line, bypassing the hydrogen extraction pressure adjustment mechanism, after adjusting the hydrogen flowing through the hydrogen extraction line, the hydrogen recovery line is mixed with the hydrogen flowing through the hydrogen recovery line Can do .

本発明の第の特徴構成は、上述の水素製造装置において、前記水素回収ラインの一部が、各水素精製装置内の圧力を均圧化する均圧ラインに兼用されているところにある。 A fourth characteristic configuration of the present invention is that, in the above-described hydrogen production apparatus, a part of the hydrogen recovery line is also used as a pressure equalizing line for equalizing the pressure in each hydrogen purifier.

本発明の第の特徴構成によれば、水素回収ラインの一部が、各水素精製装置内の圧力を均圧化する均圧ラインに兼用されているので、上述した水素回収ラインと水素取り出しラインの共用化に加えて、水素回収ラインと均圧ラインの共用化も可能となり、水素製造装置のより一層の低廉化が可能となる。 According to the fourth characteristic configuration of the present invention, a part of the hydrogen recovery line is also used as a pressure equalizing line for equalizing the pressure in each hydrogen purifier. In addition to sharing the line, the hydrogen recovery line and the pressure equalization line can also be shared, making it possible to further reduce the cost of the hydrogen production apparatus.

本発明による水素製造方法とその装置の実施の形態を図面に基づいて説明する。
この水素製造方法は、例えば、原料である炭化水素として13Aなどの都市ガスを使用して高純度の水素を製造するもので、そのための装置は、図1に示すように、コンプレッサ1、第1熱交換器2a、脱硫器3、第2熱交換器2b、バーナ4aを有する改質器4、変成器5、第3熱交換器2c、気液分離器6、水素精製装置7、水素貯蔵タンク8、オフガス用タンク9などを備えて構成されている。
コンプレッサ1は、第1配管ラインL1から供給される原料としての炭化水素ガスを圧縮して昇圧するもので、例えば、都市ガスにおける中圧ラインからのガスを原料とする場合であれば、0.1MPaあるいはそれ以上の圧力を有する炭化水素ガスを0.98MPa程度にまで昇圧し、昇圧後の炭化水素ガスは、第1熱交換器2aを有する第2配管ラインL2を通って脱硫器3に送られる。
Embodiments of a hydrogen production method and apparatus according to the present invention will be described with reference to the drawings.
This hydrogen production method, for example, produces high-purity hydrogen using a city gas such as 13A as a hydrocarbon as a raw material, and the apparatus therefor includes a compressor 1, a first one as shown in FIG. Heat exchanger 2a, desulfurizer 3, second heat exchanger 2b, reformer 4 having burner 4a, transformer 5, third heat exchanger 2c, gas-liquid separator 6, hydrogen purifier 7, hydrogen storage tank 8 and an off-gas tank 9 are provided.
The compressor 1 compresses and raises the pressure of hydrocarbon gas as a raw material supplied from the first piping line L1. For example, when the gas from the medium pressure line in city gas is used as the raw material, The pressure of the hydrocarbon gas having a pressure of 1 MPa or higher is increased to about 0.98 MPa, and the pressurized hydrocarbon gas is sent to the desulfurizer 3 through the second piping line L2 having the first heat exchanger 2a. It is done.

脱硫器3は、昇圧後の炭化水素ガスから硫黄分をppbレベルにまで除去し、硫黄分除去後の炭化水素ガスは、第2熱交換器2bを有する第3配管ラインL3を通って改質器4に送られ、かつ、その改質器4には、第4配管ラインL4から水蒸気(スチーム)または改質器4内で水蒸気となる純水が供給される。
改質器4は、バーナ4aの燃焼により750℃程度の高温に維持され、0.85MPa程度の圧力下で水蒸気改質用の触媒により炭化水素ガスに水蒸気を反応させて水素リッチなガスに改質し、改質後の水素リッチガスは、第5配管ラインL5を通って第1と第2熱交換器2a,2bにより炭化水素ガスを予熱して変成器5に送られる。
変成器5は、変成用の触媒により水素リッチガス中の一酸化炭素(CO)を二酸化炭素(CO2)に変成し、変成後の水素リッチガスは、第3熱交換器2cを有する第6配管ラインL6を通って気液分離器6に送られ、気液分離器6が、水素リッチガスを常温程度にまで冷却して余分な水分を凝縮除去し、その後、水素リッチガスは、第1電磁バルブV1を有する第7配管ラインL7を通って水素精製装置7に送られる。
The desulfurizer 3 removes the sulfur content from the pressurized hydrocarbon gas to the ppb level, and the hydrocarbon gas after the sulfur content removal is reformed through the third piping line L3 having the second heat exchanger 2b. The reformer 4 is supplied with steam (steam) or pure water that becomes steam in the reformer 4 from the fourth piping line L4.
The reformer 4 is maintained at a high temperature of about 750 ° C. by the combustion of the burner 4a, and the steam is reacted with the hydrocarbon gas by the steam reforming catalyst under a pressure of about 0.85 MPa to improve the gas to a hydrogen-rich gas. The reformed hydrogen-rich gas passes through the fifth piping line L5 and is preheated with the first and second heat exchangers 2a and 2b to be sent to the transformer 5.
The transformer 5 transforms carbon monoxide (CO) in the hydrogen-rich gas into carbon dioxide (CO 2 ) by the catalyst for the transformation, and the hydrogen-rich gas after the transformation is the sixth piping line having the third heat exchanger 2c. The gas-liquid separator 6 is sent to the gas-liquid separator 6 through L6, and the gas-liquid separator 6 cools the hydrogen-rich gas to room temperature to condense and remove excess water, and then the hydrogen-rich gas passes through the first electromagnetic valve V1. It is sent to the hydrogen purifier 7 through the seventh piping line L7.

水素精製装置7は、例えば、活性アルミナ、カーボンモレキュラーシーブ(CMS)、ゼオライトなどの吸着剤を収容する圧力スイング式水素精製装置で、加圧状態下において水素リッチガスから水、二酸化炭素(CO2)、一酸化炭素(CO)、メタン(CH4)、窒素(N2)などの不純物を吸着除去して高純度の製品水素に精製し、その吸着した不純物を減圧状態下において吸着剤から脱着させるものである。
その水素精製装置7は、図2に詳しく示すように、例えば、3塔の水素精製装置7、つまり、第1水素精製装置7a、第2水素精製装置7b、および、第3水素精製装置7cにより構成されて、それら第1〜第3の水素精製装置7a〜7cが並列に接続され、後に詳しく説明するように、各水素精製装置7a〜7cにおいて、吸着(水素取り出し工程)、均圧(水素回収工程)、均圧(1)、減圧(1)と(2)、洗浄、均圧(2)、昇圧の各工程を順番に繰り返すことにより水素リッチガスから高純度の製品水素を連続的に製造するように構成されている。
The hydrogen purifier 7 is a pressure swing-type hydrogen purifier that contains an adsorbent such as activated alumina, carbon molecular sieve (CMS), zeolite, and the like. From a hydrogen rich gas to water, carbon dioxide (CO 2 ) under pressure. , Carbon monoxide (CO), methane (CH 4 ), nitrogen (N 2 ) and other impurities are adsorbed and removed to purify to high purity product hydrogen, and the adsorbed impurities are desorbed from the adsorbent under reduced pressure. Is.
As shown in detail in FIG. 2, the hydrogen purifier 7 includes, for example, a three-column hydrogen purifier 7, that is, a first hydrogen purifier 7a, a second hydrogen purifier 7b, and a third hydrogen purifier 7c. The first to third hydrogen purifiers 7a to 7c are connected in parallel. As will be described in detail later, in each hydrogen purifier 7a to 7c, adsorption (hydrogen extraction step), pressure equalization (hydrogen Recovery process), pressure equalization (1), pressure reduction (1) and (2), washing, pressure equalization (2), and pressure increase are repeated in order to continuously produce high purity product hydrogen from hydrogen rich gas. Is configured to do.

各水素精製装置7a〜7cからの高純度水素は、水素取り出し用調圧機構PV1を備えた水素取り出しラインとしての第8配管ラインL8を通って水素貯蔵タンク8へ搬送され、供給側と需要側での流量変動を吸収して常時一定量の製品水素として供給できるように水素貯蔵タンク8に貯蔵され、需要に応じて、第9配管ラインL9から供給される。
そのため、各水素精製装置7a〜7cは、水素取り出し用開閉機構としての第2電磁バルブV2a〜V2cを備えた第8補助配管ラインL8a〜L8cを介してそれぞれ第8配管ラインL8に並列に接続されている。
さらに、各水素精製装置7a〜7cは、水素回収用開閉機構としての第3電磁バルブV3a〜V3cを備えた第10補助配管ラインL10a〜L10cを介してそれぞれ水素回収ラインとしての第10配管ラインL10に並列に接続されている。
High-purity hydrogen from each of the hydrogen purifiers 7a to 7c is conveyed to the hydrogen storage tank 8 through an eighth piping line L8 as a hydrogen extraction line provided with a hydrogen extraction pressure adjusting mechanism PV1, and is supplied to the supply side and the demand side. Is stored in the hydrogen storage tank 8 so that it can be supplied as a constant amount of product hydrogen at all times, and is supplied from the ninth piping line L9 according to demand.
Therefore, each of the hydrogen purifiers 7a to 7c is connected in parallel to the eighth piping line L8 via the eighth auxiliary piping lines L8a to L8c provided with the second electromagnetic valves V2a to V2c as the hydrogen extraction opening / closing mechanism. ing.
Further, each of the hydrogen purifiers 7a to 7c has a tenth piping line L10 as a hydrogen recovery line via a tenth auxiliary piping line L10a to L10c provided with third electromagnetic valves V3a to V3c as a hydrogen recovery opening / closing mechanism. Connected in parallel.

その第10配管ラインL10は、水素回収用調圧機構PV2と第4電磁バルブV4を備えていて、水素取り出し用調圧機構PV1よりも下手側において第8配管ラインL8に接続され、換言すると、水素回収ラインとしての第10配管ラインL10は、水素取り出し用調圧機構PV1をバイパスして水素取り出しラインとしての第8配管ラインL8に接続されている。
第10配管ラインL10の途中には、均圧用調圧機構PV3を備えた第11補助配管ラインL11aが分岐接続され、その第11補助配管ラインL11aが水素取り出し用調圧機構PV1よりも上手側において第8配管ラインL8に接続され、その第11補助配管ラインL11a、第10配管ラインL10の一部、ならびに、第10補助配管ラインL10a〜L10cが、各水素精製装置7a〜7c内の圧力を均圧化する均圧ラインとしての第11配管ラインL11を構成している。言い換えると、水素回収ラインとしての第10配管ラインL10の一部が、均圧ラインL11に兼用されている。
The tenth piping line L10 includes a hydrogen recovery pressure regulating mechanism PV2 and a fourth electromagnetic valve V4, and is connected to the eighth piping line L8 on the lower side than the hydrogen extracting pressure regulating mechanism PV1, in other words, The tenth piping line L10 as the hydrogen recovery line is connected to the eighth piping line L8 as the hydrogen extraction line, bypassing the pressure adjustment mechanism PV1 for hydrogen extraction.
In the middle of the tenth piping line L10, an eleventh auxiliary piping line L11a provided with a pressure equalizing pressure regulating mechanism PV3 is branched and connected, and the eleventh auxiliary piping line L11a is located on the upper side of the hydrogen extracting pressure regulating mechanism PV1. Connected to the eighth piping line L8, the eleventh auxiliary piping line L11a, a part of the tenth piping line L10, and the tenth auxiliary piping lines L10a to L10c equalize the pressure in the hydrogen purifiers 7a to 7c. An eleventh piping line L11 is configured as a pressure equalizing line to be compressed. In other words, a part of the tenth piping line L10 as the hydrogen recovery line is also used as the pressure equalizing line L11.

また、各水素精製装置7a〜7cからのオフガスは、第12配管ラインL12を通って改質器4用のバーナ4a側に送られるように構成され、そのため、各水素精製装置7a〜7cは、第5電磁バルブV5a〜V5cを有する第12補助配管ラインL12a〜L12cを介してそれぞれ第12配管ラインL12に接続され、その第12配管ラインL12にオフガス用タンク9が介装されるとともに、第12補助配管ラインL12a〜L12cに対し、第1電磁バルブV1を構成する電磁バルブV1a〜V1cを有する第7補助配管ラインL7a〜L7cを介して第7配管ラインL7がそれぞれ接続されている。
各水素精製装置7a〜7cからのオフガスは、バーナ4aに供給され、燃焼後の排ガスは、第14配管ラインL14を通って装置外へ排出される。
Further, the off-gas from each of the hydrogen purifiers 7a to 7c is configured to be sent to the burner 4a side for the reformer 4 through the twelfth piping line L12. Therefore, each of the hydrogen purifiers 7a to 7c is The twelfth auxiliary pipe lines L12a to L12c having the fifth electromagnetic valves V5a to V5c are connected to the twelfth pipe line L12, respectively, and the off-gas tank 9 is interposed in the twelfth pipe line L12. The seventh piping line L7 is connected to the auxiliary piping lines L12a to L12c via seventh auxiliary piping lines L7a to L7c having the electromagnetic valves V1a to V1c constituting the first electromagnetic valve V1, respectively.
Off-gas from each of the hydrogen purification apparatuses 7a to 7c is supplied to the burner 4a, and the exhaust gas after combustion is discharged out of the apparatus through the fourteenth piping line L14.

第12配管ラインL12に介装のオフガス用タンク9は、各水素精製装置7a〜7cから供給されるオフガスを一時的に貯蔵して常時一定量のオフガスをバーナ4aに供給するためのもので、オフガス用タンク9の前後には、第6電磁バルブV6と第1流量調整バルブFV1が配設されている。
その第12配管ラインL12において、オフガス用タンク9を含んで前後の第6電磁バルブV6と第4圧力調整バルブPV4をバイパスする第15配管ラインL15が設けられ、その第15配管ラインL15には、第7電磁バルブV7と第5圧力調整バルブPV5が配設され、かつ、第15配管ラインL15より下手側の第12配管ラインL12には流量計Fが配設されている。
そして、第7配管ラインL7における第1電磁バルブV1の上手側には、第8電磁バルブV8を備えたパージ用の第16配管ラインL16と、気液分離器6からの水素リッチガスの一部を第1配管ラインL1に戻す第17配管ラインL17が接続されている。
The off gas tank 9 interposed in the twelfth piping line L12 is for temporarily storing off gas supplied from the hydrogen purifiers 7a to 7c and supplying a constant amount of off gas to the burner 4a at all times. Before and after the off-gas tank 9, a sixth electromagnetic valve V6 and a first flow rate adjustment valve FV1 are disposed.
In the twelfth piping line L12, a fifteenth piping line L15 including the off-gas tank 9 and bypassing the front and rear sixth electromagnetic valves V6 and the fourth pressure regulating valve PV4 is provided, and the fifteenth piping line L15 includes A seventh electromagnetic valve V7 and a fifth pressure adjustment valve PV5 are disposed, and a flow meter F is disposed in a twelfth piping line L12 on the lower side of the fifteenth piping line L15.
Then, on the upper side of the first electromagnetic valve V1 in the seventh piping line L7, a part of the hydrogen-rich gas from the gas-liquid separator 6 and the sixteenth piping line L16 for purge provided with the eighth electromagnetic valve V8. A seventeenth piping line L17 returning to the first piping line L1 is connected.

つぎに、この水素製造装置の作動を説明して水素製造方法に言及する。
まず、装置の循環系全体を所定の温度にまで昇温する起動運転を実行した後、水素精製運転を行って製品水素を製造するのであり、水素精製運転では、原料である炭化水素ガスが、第1配管ラインL1から導入されてコンプレッサ1により所定の圧力にまで昇圧され、第1熱交換器2aを通過した後、脱硫器3において硫黄分が除去され、その後、第2熱交換器2bを通過し、改質器4において、バーナ4aの燃焼による高温下で、水蒸気改質用の触媒により水蒸気と反応して水素リッチガスに改質される。
改質後の水素リッチガスは、第1と第2熱交換器2a,2bを通過して原料である炭化水素ガスを予熱し、変成器5において含有一酸化炭素が二酸化炭素に変成され、気液分離器6で余分な水分が除去された後、3塔ある水素精製装置7a〜7cのいずれかにおいて不純物が吸着除去されて高純度の水素に精製される。
Next, the operation of the hydrogen production apparatus will be described and a hydrogen production method will be referred to.
First, after performing a start-up operation that raises the entire circulation system of the apparatus to a predetermined temperature, a hydrogen purification operation is performed to produce product hydrogen. In the hydrogen purification operation, the hydrocarbon gas that is a raw material is After being introduced from the first piping line L1, the pressure is increased to a predetermined pressure by the compressor 1, and after passing through the first heat exchanger 2a, sulfur is removed in the desulfurizer 3, and then the second heat exchanger 2b is In the reformer 4, it reacts with steam by the steam reforming catalyst at a high temperature due to combustion of the burner 4a to be reformed into a hydrogen rich gas.
The reformed hydrogen-rich gas passes through the first and second heat exchangers 2a and 2b and preheats the hydrocarbon gas as a raw material, and the carbon monoxide contained in the transformer 5 is transformed into carbon dioxide. After excess water is removed by the separator 6, impurities are adsorbed and removed in any one of the three towers of hydrogen purifiers 7 a to 7 c to be purified to high purity hydrogen.

例えば、図3の上段に示すように、水素リッチガスが第1水素精製装置7aにおいて精製される場合であれば、図3の下段に示すように、ステップ1〜5(時間t1〜t5)の間、第1電磁バルブV1aの開弁によって第1水素精製装置7aに水素リッチガスが供給され、第1水素精製装置7a内を所定の加圧状態に維持して、吸着剤に水素リッチガス中に含まれる水、二酸化炭素、一酸化炭素、メタン、窒素などの不純物を吸着させ、第2電磁バルブV2aの開弁により、高純度の製品水素を取り出す吸着工程、つまり、水素取り出し工程を実行する。
この水素取り出し工程の間、第1水素精製装置7a内は、例えば、圧力調整バルブからなる水素取り出し用調圧機構PV1によって0.85MPa程度の所定圧に維持され、高純度の製品水素は、水素取り出しラインとしての第8配管ラインL8を介して水素貯蔵タンク8へ搬送されて貯蔵される。
For example, as shown in the upper part of FIG. 3, if the hydrogen-rich gas is purified in the first hydrogen purifier 7a, as shown in the lower part of FIG. 3, between steps 1 to 5 (time t1 to t5). By opening the first electromagnetic valve V1a, the hydrogen-rich gas is supplied to the first hydrogen purification device 7a, and the first hydrogen purification device 7a is maintained in a predetermined pressurized state, and is contained in the hydrogen-rich gas in the adsorbent. An adsorption step of adsorbing impurities such as water, carbon dioxide, carbon monoxide, methane, nitrogen, etc., and extracting the high-purity product hydrogen by opening the second electromagnetic valve V2a, that is, a hydrogen extraction step is executed.
During this hydrogen extraction process, the inside of the first hydrogen purification device 7a is maintained at a predetermined pressure of about 0.85 MPa by a hydrogen extraction pressure adjustment mechanism PV1 including a pressure adjustment valve, for example. It is transported and stored in the hydrogen storage tank 8 via an eighth piping line L8 as a take-out line.

その際、第2水素精製装置7bは、洗浄工程が終了した直後の均圧(2)工程にあり、第3水素精製装置7cは、吸着工程(水素取り出し工程)が終了した直後の均圧工程、つまり、第3水素精製装置7c内に残存する高純度の製品水素を回収する水素回収工程にあって、ステップ1(時間t1)の間、第3電磁バルブV3c,V4b,V10の開弁によって、第2と第3水素精製装置7b,7c内の圧力を均圧化すると同時に、第3水素精製装置7c内の減圧に伴って第3水素精製装置7c内に残存する高純度の製品水素を回収し、その製品水素は、水素回収ラインとしての第10配管ラインL10を介して水素貯蔵タンク8へ搬送されて貯蔵される。
なお、その水素回収工程の前に、第3水素精製装置7c内は、例えば、水素貯蔵タンク8の圧力を調整する圧力調整バルブPV9の設定圧力が0.65MPaであるとき、圧力調整バルブからなる水素回収用調圧機構PV2によって0.65MPa以上の所定圧に維持され、所定の設定圧である0.65MPaにまで減圧した時点で、その水素回収工程を完了する。
At that time, the second hydrogen purification device 7b is in the pressure equalization (2) step immediately after the cleaning step is completed, and the third hydrogen purification device 7c is the pressure equalization step immediately after the adsorption step (hydrogen extraction step) is completed. That is, in the hydrogen recovery process for recovering high-purity product hydrogen remaining in the third hydrogen purification device 7c, the third electromagnetic valves V3c, V4b, and V10 are opened during step 1 (time t1). The pressure in the second and third hydrogen purification devices 7b and 7c is equalized, and at the same time, the high-purity product hydrogen remaining in the third hydrogen purification device 7c is reduced with the pressure reduction in the third hydrogen purification device 7c. The recovered product hydrogen is transported to the hydrogen storage tank 8 and stored through a tenth piping line L10 as a hydrogen recovery line.
Prior to the hydrogen recovery step, the inside of the third hydrogen purifier 7c is composed of, for example, a pressure adjustment valve when the set pressure of the pressure adjustment valve PV9 for adjusting the pressure of the hydrogen storage tank 8 is 0.65 MPa. The hydrogen recovery step is completed when the pressure is maintained at a predetermined pressure of 0.65 MPa or more by the hydrogen recovery pressure adjustment mechanism PV2 and reduced to a predetermined set pressure of 0.65 MPa.

その後、ステップ2(時間t2)において、第2水素精製装置7bが昇圧され、さらに、ステップ3と4(時間t3とt4)においても昇圧され、同時に、第3水素精製装置7cが減圧されて、その減圧下において吸着剤に吸着された不純物が脱着されてオフガスが排出される。
第3水素精製装置7cの減圧工程において、その初期の段階では、図4(a)に示すように、第6電磁バルブV6の開弁によって、比較的多量の一酸化炭素を含むオフガスがオフガス用タンク9に貯蔵され、後期の段階では、図4(b)に示すように、第6電磁バルブV6が閉弁され、第7電磁バルブV7が開弁されて、比較的多量の水素を含むオフガスがバイパス路L15を通り、オフガス用タンク9からのオフガスと混合されて改質器4のバーナ4aに供給されて燃焼される。
Thereafter, in step 2 (time t2), the pressure of the second hydrogen purifier 7b is increased, and in step 3 and 4 (time t3 and t4), the pressure of the third hydrogen purifier 7c is reduced. Under the reduced pressure, the impurities adsorbed on the adsorbent are desorbed and the off-gas is discharged.
In the depressurization step of the third hydrogen purifier 7c, in the initial stage, as shown in FIG. 4A, the off-gas containing a relatively large amount of carbon monoxide is used for off-gas by opening the sixth electromagnetic valve V6. As shown in FIG. 4 (b), the sixth electromagnetic valve V6 is closed and the seventh electromagnetic valve V7 is opened to store off gas containing a relatively large amount of hydrogen. Passes through the bypass L15, is mixed with the offgas from the offgas tank 9, is supplied to the burner 4a of the reformer 4, and is burned.

引き続いて、ステップ5(時間t5)において、第2水素精製装置7bが昇圧され、第3水素精製装置7cには、例えば、水素貯蔵タンク8内の水素が供給されて洗浄され、図4(b)に示すように、その洗浄後のオフガスがバイパス路L15を通り、オフガス用タンク9からのオフガスと混合され、改質器4のバーナ4aに供給されて燃焼される。
そして、第1〜第3の水素精製装置7a〜7cにおいて、このような工程を順次繰り返すことによって高純度の水素を連続的に精製して製品水素を製造するのである。
Subsequently, in step 5 (time t5), the pressure of the second hydrogen purification device 7b is increased, and for example, hydrogen in the hydrogen storage tank 8 is supplied to the third hydrogen purification device 7c to be washed, as shown in FIG. ), The washed off-gas passes through the bypass L15, is mixed with the off-gas from the off-gas tank 9, is supplied to the burner 4a of the reformer 4, and is burned.
And in the 1st-3rd hydrogen refining apparatuses 7a-7c, high purity hydrogen is continuously refine | purified by repeating such a process sequentially, and product hydrogen is manufactured.

〔別実施形態〕
(1)先の実施形態では、燃料ガスの変成法により水素リッチガスを製造し、その水素リッチガスから高純度水素を精製して製品水素を製造する例を示したが、水素リッチガスの製造に関しては、燃料ガスの変成法以外にも、液体燃料のガス化法、水の電解法、石炭やコークスのガス化法、コークス炉ガスの液化分離法、メタノールやアンモニアの分解法などの各種方法により製造することができる。
[Another embodiment]
(1) In the previous embodiment, an example was shown in which a hydrogen-rich gas was produced by a fuel gas transformation method, and product hydrogen was produced by purifying high-purity hydrogen from the hydrogen-rich gas. In addition to the fuel gas transformation method, it is manufactured by various methods such as liquid fuel gasification method, water electrolysis method, coal and coke gasification method, coke oven gas liquefaction separation method, and methanol and ammonia decomposition method. be able to.

(2)先の実施形態では、3塔の水素精製装置7a〜7cを並列に接続して水素精製装置7を構成した例を示したが、例えば、水素精製装置を2塔使用する水素製造装置においても、また、4塔以上の水素精製装置を並列に接続して使用する水素製造装置においても適用可能である。 (2) In the previous embodiment, an example in which the hydrogen purifier 7 was configured by connecting three towers of hydrogen purifiers 7a to 7c in parallel was shown. However, for example, a hydrogen production apparatus using two hydrogen purifiers In addition, the present invention can also be applied to a hydrogen production apparatus that uses four or more towers of hydrogen purifiers connected in parallel.

水素製造装置の全体を示す概略構成図Schematic configuration diagram showing the entire hydrogen production system 水素製造装置の要部を示す概略構成図Schematic configuration diagram showing the main parts of the hydrogen production system 水素精製装置の作動を示す説明図Explanatory diagram showing the operation of the hydrogen purifier 水素精製装置の作動を示す説明図Explanatory diagram showing the operation of the hydrogen purifier

符号の説明Explanation of symbols

7(7a〜7c) 水素精製装置
8 水素貯蔵タンク
L8 水素取り出しライン
L10 水素回収ライン
L11 均圧ライン
PV1 水素取り出し用調圧機構
PV2 水素回収用調圧機構
V2a〜V2c 水素取り出し用開閉機構
V3a〜V3c 水素回収用開閉機構
7 (7a-7c) Hydrogen refining device 8 Hydrogen storage tank L8 Hydrogen removal line L10 Hydrogen recovery line L11 Pressure equalization line PV1 Hydrogen extraction pressure mechanism PV2 Hydrogen recovery pressure adjustment mechanism V2a-V2c Hydrogen extraction opening / closing mechanism V3a-V3c Open / close mechanism for hydrogen recovery

Claims (4)

吸着剤を収容する水素精製装置内を加圧状態に維持して前記吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素を取り出し、水素取り出しラインを用いて水素貯蔵タンクへ貯蔵する水素取り出し工程と、前記水素精製装置内を減圧状態に維持して前記吸着剤から不純物を脱着させてオフガスを取り出すオフガス取り出し工程を繰り返しながら、水素リッチガスから高純度の製品水素を製造する水素製造方法であって、
前記水素取り出し工程完了後、前記水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の製品水素を、前記水素貯蔵タンクに、前記水素取り出しラインを用いて回収する水素回収工程を実行し、その水素回収工程完了後に前記オフガス取り出し工程へ移行するよう構成され、
前記水素精製装置が複数設けられ、前記複数の水素精製装置のうちの1が前記水素取り出し工程を実行している際に、他の水素精製装置が前記水素回収工程を実行し、
前記水素取り出し工程で取り出した前記製品水素を、前記水素貯蔵タンクに貯蔵するとともに、前記水素回収工程で回収した前記製品水素を同時に前記水素貯蔵タンクに貯蔵する水素製造方法。
Maintaining the inside of the hydrogen purifier that contains the adsorbent in a pressurized state, the impurities in the hydrogen-rich gas are adsorbed to the adsorbent to take out high-purity product hydrogen, and store it in a hydrogen storage tank using a hydrogen take-out line. A hydrogen production method for producing high-purity product hydrogen from a hydrogen-rich gas while repeating a hydrogen removal step and an off-gas removal step for removing off-gas by desorbing impurities from the adsorbent while maintaining the inside of the hydrogen purifier in a reduced pressure state Because
A hydrogen recovery step of recovering high-purity product hydrogen remaining in the hydrogen purifier with the reduced pressure in the hydrogen purifier after the hydrogen extraction step is completed, using the hydrogen extraction line in the hydrogen storage tank. And after the completion of the hydrogen recovery process, the process proceeds to the off-gas removal process,
A plurality of the hydrogen purification devices are provided, and when one of the plurality of hydrogen purification devices is executing the hydrogen extraction step, another hydrogen purification device executes the hydrogen recovery step;
The product hydrogen taken out by the hydrogen extraction step, as well as stored prior Symbol hydrogen storage tank, a hydrogen production method of storing simultaneously the hydrogen storage tank the product hydrogen recovered in the hydrogen recovery step.
前記水素精製装置内の圧力が所定の設定圧にまで減圧した時点で、前記水素回収工程を完了する請求項1に記載の水素製造方法。   The hydrogen production method according to claim 1, wherein the hydrogen recovery step is completed when the pressure in the hydrogen purifier is reduced to a predetermined set pressure. 吸着剤を収容する水素精製装置と、高純度の製品水素を貯蔵する水素貯蔵タンクと、前記水素精製装置から製品水素を取り出して前記水素貯蔵タンクへ搬送する水素取り出しラインを備え、前記水素精製装置内を加圧状態に維持して前記吸着剤に水素リッチガス中の不純物を吸着させて高純度の製品水素に精製し、その製品水素を前記水素取り出しラインを介して前記水素貯蔵タンクへ搬送し、前記水素精製装置内を減圧状態に維持して前記吸着剤から不純物を脱着させてオフガスを取り出すように構成してある水素製造装置であって、
前記水素精製装置内の減圧に伴って水素精製装置内に残存する高純度の製品水素を回収して前記水素貯蔵タンクへ搬送する水素回収ラインを設けてあり、
前記水素精製装置が複数設けられ、その複数の水素精製装置のそれぞれが、
前記水素精製装置内を所定の加圧状態に維持する水素取り出し用調圧機構と水素取り出し用開閉機構を備えた前記水素取り出しラインで並列に前記水素貯蔵タンクに接続されるとともに、
前記水素精製装置内を減圧させる水素回収用調圧機構と水素回収用開閉機構を備えた前記水素回収ラインに並列に接続され、
前記水素回収ラインが、前記水素取り出し用調圧機構より前記水素貯蔵タンク側の位置で、前記水素取り出しラインに接続されている水素製造装置。
A hydrogen refining device for storing an adsorbent; a hydrogen storage tank for storing high-purity product hydrogen; and a hydrogen take-out line for taking out product hydrogen from the hydrogen refining device and transporting it to the hydrogen storage tank. Maintaining the inside in a pressurized state, the impurities in the hydrogen-rich gas are adsorbed on the adsorbent and purified into high-purity product hydrogen, and the product hydrogen is conveyed to the hydrogen storage tank via the hydrogen take-out line, A hydrogen production device configured to take off gas by desorbing impurities from the adsorbent while maintaining a reduced pressure inside the hydrogen purification device,
A hydrogen recovery line for recovering high-purity product hydrogen remaining in the hydrogen purifier along with the reduced pressure in the hydrogen purifier and transporting it to the hydrogen storage tank;
A plurality of the hydrogen purification devices are provided, and each of the plurality of hydrogen purification devices is
The hydrogen refining apparatus is connected to the hydrogen storage tank in parallel at the hydrogen take-out line provided with a hydrogen take-out pressure adjusting mechanism and a hydrogen take-off opening / closing mechanism for maintaining a predetermined pressurized state,
Connected in parallel to the hydrogen recovery line having a hydrogen recovery pressure adjustment mechanism for reducing the pressure inside the hydrogen purifier and a hydrogen recovery opening and closing mechanism;
The hydrogen production apparatus, wherein the hydrogen recovery line is connected to the hydrogen extraction line at a position closer to the hydrogen storage tank than the pressure adjustment mechanism for hydrogen extraction.
前記水素回収ラインの一部が、各水素精製装置内の圧力を均圧化する均圧ラインに兼用されている請求項3に記載の水素製造装置。   The hydrogen production apparatus according to claim 3, wherein a part of the hydrogen recovery line is also used as a pressure equalizing line for equalizing the pressure in each hydrogen purifier.
JP2004107445A 2004-03-31 2004-03-31 Hydrogen production method and apparatus Expired - Lifetime JP4815104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107445A JP4815104B2 (en) 2004-03-31 2004-03-31 Hydrogen production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107445A JP4815104B2 (en) 2004-03-31 2004-03-31 Hydrogen production method and apparatus

Publications (2)

Publication Number Publication Date
JP2005289731A JP2005289731A (en) 2005-10-20
JP4815104B2 true JP4815104B2 (en) 2011-11-16

Family

ID=35323117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107445A Expired - Lifetime JP4815104B2 (en) 2004-03-31 2004-03-31 Hydrogen production method and apparatus

Country Status (1)

Country Link
JP (1) JP4815104B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227701A (en) * 1983-06-09 1984-12-21 Nippon Denshi Zairyo Kk Method for selective concentration and separative purification of hydrogen gas
US6007606A (en) * 1997-12-09 1999-12-28 Praxair Technology, Inc. PSA process and system
JP2001347125A (en) * 2000-06-12 2001-12-18 Mitsubishi Kakoki Kaisha Ltd Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus
JP2004066125A (en) * 2002-08-07 2004-03-04 Sumitomo Seika Chem Co Ltd Method of separating target gas

Also Published As

Publication number Publication date
JP2005289731A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
CA2762139C (en) Processes for the recovery of high purity hydrogen and high purity carbon dioxide
TWI521056B (en) Methane recovery method and methane recovery unit
EP2407227A1 (en) Separation of a sour syngas stream
US6770390B2 (en) Carbon monoxide/water removal from fuel cell feed gas
JPH01313301A (en) Continuous production of hydrogen and carbon dioxide
EP2507162A1 (en) Method for the production of hydrogen combined with carbon dioxide capture
JP6523134B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
CN109173583A (en) A kind of medium temperature vacuum pressure swing adsorption system and method
US8486180B2 (en) Process for the recovery of a concentrated carbon dioxide stream
US7695545B2 (en) Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration
JP3947752B2 (en) High purity hydrogen production method
JP5690165B2 (en) PSA high purity hydrogen production method
US8372375B2 (en) Method of producing high-purity hydrogen
JP2007015909A (en) Method for production of high-purity hydrogen
JP7372131B2 (en) Carbon dioxide recovery device and method
JP4771668B2 (en) Hydrogen production method and apparatus
JP4187569B2 (en) Hydrogen production equipment
JP4815104B2 (en) Hydrogen production method and apparatus
CN115109625A (en) Device and method for obtaining biomethane according to the characteristics of a transport network
JP2001347125A (en) Method or manufacturing high-purity gas by pressure fluctuation adsorption apparatus
JP4236500B2 (en) Hydrogen production apparatus and hydrogen production method
US20220233994A1 (en) Process and apparatus for the separation of two gaseous streams each containing carbon monoxide, hydrogen and at least one acid gas
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JPWO2015146766A1 (en) Purification method and apparatus for target gas
JP4326248B2 (en) Operation method of hydrogen production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4815104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3