JP2005288434A - Detoxifying treatment method for heavy metal-containing substance, apparatus therefor and the system - Google Patents

Detoxifying treatment method for heavy metal-containing substance, apparatus therefor and the system Download PDF

Info

Publication number
JP2005288434A
JP2005288434A JP2005006523A JP2005006523A JP2005288434A JP 2005288434 A JP2005288434 A JP 2005288434A JP 2005006523 A JP2005006523 A JP 2005006523A JP 2005006523 A JP2005006523 A JP 2005006523A JP 2005288434 A JP2005288434 A JP 2005288434A
Authority
JP
Japan
Prior art keywords
heavy metals
chlorine
exhaust gas
gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005006523A
Other languages
Japanese (ja)
Other versions
JP4804008B2 (en
Inventor
Norimasa Onodera
紀允 小野寺
Noriaki Senba
範明 仙波
Hirotami Yamamoto
洋民 山本
Kenichi Sato
憲一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005006523A priority Critical patent/JP4804008B2/en
Publication of JP2005288434A publication Critical patent/JP2005288434A/en
Application granted granted Critical
Publication of JP4804008B2 publication Critical patent/JP4804008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detoxifying treatment method for a heavy metal-containing substance capable of efficiently performing chlorination of heavy metals by sufficiently contacting the heavy metals with a chlorine based gas, suppressing remaining of the heavy metals after treatment to the minimum while maintaining removal efficiency of the heavy metals to a high degree, reducing a cost by suppressing feeding of thermal energy and reducing load to a treatment facility of exhaust gas containing the chlorine used for the chlorination, an apparatus therefor and the system. <P>SOLUTION: In the detoxifying treatment system for the heavy metal-containing substance, after the chlorine based exhaust gas is introduced from a furnace bottom of a fluidization furnace 40 for storing incineration ash 30 containing the heavy metals, and the heavy metals are chlorinated while fluidizing, the incineration ash containing the chlorinated heavy metals is introduced into a rotary kiln 10 and is heated to perform volatilization/separation of the heavy metals. The chlorine based exhaust gas is made to the chlorine based exhaust gas drawn from a re-combustion chamber 21 of the exhaust gas treatment facility at a latter stage or the chlorine based exhaust gas drawn from a downstream side of the re-combustion chamber 21 and an upstream side of an air pre-heater 22. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、汚染土壌、焼却灰、飛灰等に含まれる重金属類を無害化する技術であって、特に重金属類を塩化物化した後に加熱により揮散させて無害化する重金属類含有物質の無害化処理方法及び装置、並びに該システムに関する。   The present invention is a technique for detoxifying heavy metals contained in contaminated soil, incinerated ash, fly ash, etc., and in particular detoxifying heavy metal-containing substances that are detoxified by heating after chlorinating heavy metals. The present invention relates to a processing method and apparatus, and the system.

一般廃棄物、産業廃棄物を焼却処理することにより発生する焼却灰、飛灰中には様々な種類の重金属類が含有されている。また、重金属類の処理設備を具備しない焼却設備からは大気、土壌、地下水に重金属類含有物質が漏出する惧れがあり、他にも工場跡地、廃棄物埋立地等の土壌中には環境基準で定められた濃度以上の重金属類が存在していることがある。重金属類は毒性が強いものが多く、環境に悪影響を与えるのみならず生体内に蓄積され害を及ぼす。近年は、焼却灰、飛灰、土壌等に含有される重金属類の環境基準が制定されるなど、重金属類に対する規制が厳しくなる傾向にある。
重金属類を含有する物質を無害化する方法の一つとして、特許文献1(特開2001−132930号公報)には、重金属類を含有する焼却灰を融点以下に保持した焙焼炉にて加熱し、重金属類を揮散させた後に冷却し、分離回収する方法が提案されている。しかし、焼却灰に含まれる重金属類の殆どは酸化物であり、酸化物の形態で存在する重金属類は高沸点化合物であるため除去され難く、処理物に残留してしまうという難点がある。
Various types of heavy metals are contained in incineration ash and fly ash generated by incineration of general waste and industrial waste. Incinerators that do not have heavy metal treatment facilities may leak heavy metal-containing substances into the atmosphere, soil, and groundwater. In addition, there are environmental standards in soils such as factory sites and landfills. Heavy metals may be present in concentrations higher than those specified in. Many heavy metals are highly toxic and not only adversely affect the environment but also accumulate in the body and cause harm. In recent years, regulations on heavy metals tend to be stricter, such as the establishment of environmental standards for heavy metals contained in incinerated ash, fly ash, soil, and the like.
As one method for detoxifying substances containing heavy metals, Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-132930) discloses heating in an incinerator ash containing heavy metals at a melting point or lower. However, a method of cooling and separating and recovering after volatilizing heavy metals has been proposed. However, most of the heavy metals contained in the incinerated ash are oxides, and the heavy metals present in the form of oxides are high boiling point compounds, and thus are difficult to remove and remain in the treated product.

これを改善した方法として、特許文献2(特開2002−192118号公報)では、図4に示すようにタンク61に貯留された重金属類及び塩素を含有する廃棄物をロータリーキルン60内で加熱処理し、その際に発生する塩素系ガスにより重金属類を塩化物化して重金属類を揮散させる方法を開示している。
また、特許文献3(特開平11−114530号公報)では、まず加熱炉にて焼却灰等に塩素系ガスを供給して重金属類の塩化物化を図り、その後高温炉にて揮発処理を図る方法を開示している。
このように、重金属類含有物質を塩素系ガスの存在下で加熱し、重金属類を低沸点で揮散し易いように塩化物化した後に昇温し、塩化物化した重金属類を揮散させ、冷却、捕集して重金属類を回収する塩化揮散法が重金属類の分離に有効な方法として提案されている。
As a method for improving this, in Patent Document 2 (Japanese Patent Laid-Open No. 2002-192118), as shown in FIG. 4, a waste containing heavy metals and chlorine stored in a tank 61 is heated in a rotary kiln 60. , A method of chlorinating heavy metals with a chlorine-based gas generated at that time to volatilize the heavy metals is disclosed.
In Patent Document 3 (Japanese Patent Application Laid-Open No. 11-114530), first, a chlorine-based gas is supplied to incineration ash or the like in a heating furnace to chlorinate heavy metals, and then a volatile treatment is performed in a high-temperature furnace. Is disclosed.
In this way, the heavy metal-containing substance is heated in the presence of a chlorine-based gas, and the heavy metal is chlorinated to facilitate volatilization at a low boiling point, and then the temperature is raised, and the chlorinated heavy metal is volatilized and cooled, trapped. Chlorination and volatilization methods for collecting and recovering heavy metals have been proposed as an effective method for separating heavy metals.

しかしながら、前記特許文献2では加熱処理により発生した塩素系ガスを焼却灰入口付近の排ガスラインに導き、排ガスの冷却、重金属類の回収を行なっているため、ロータリーキルン内で発生した塩素系ガスと重金属類とが十分に接触せず、重金属類の塩化物化が不十分となり処理物中に重金属類が残留してしまうことがある。また、特許文献3では、加熱炉の昇温に対して燃料消費が大きく、また加熱炉では塩素系ガスと処理物の接触効率が悪く、重金属類が残留してしまうなどの問題点がある。さらに、特許文献4(特開平11−179317号公報)では、前処理として、塩素系ガス源分解による塩素系ガス若しくは焼却炉排ガスを用い、焼却灰等の重金属類を600℃未満で加熱して塩化物化させ、その後600℃〜850℃程度の高温域で加熱処理を行ない重金属類を揮散して分離回収する方法を開示している。しかしこの場合、処理時間が長く温度制御が煩雑で手間がかかるという問題があり、また、焼却炉を具備しない設備には適用できないという問題がある。   However, in Patent Document 2, the chlorine-based gas generated by the heat treatment is led to the exhaust gas line near the incineration ash inlet to cool the exhaust gas and recover the heavy metals. May not be sufficiently contacted with the metal, resulting in insufficient chlorination of the heavy metal, and heavy metal may remain in the treated product. Further, in Patent Document 3, there is a problem that fuel consumption is large with respect to the temperature rise of the heating furnace, and in the heating furnace, the contact efficiency between the chlorine-based gas and the processed material is poor, and heavy metals remain. Furthermore, in Patent Document 4 (Japanese Patent Application Laid-Open No. 11-179317), as pretreatment, a chlorine-based gas or incinerator exhaust gas from a chlorine-based gas source decomposition is used, and heavy metals such as incineration ash are heated at less than 600 ° C. A method is disclosed in which it is chlorinated and then heat-treated in a high temperature range of about 600 ° C. to 850 ° C. to volatilize and recover heavy metals. However, in this case, there is a problem that the processing time is long and the temperature control is complicated and time-consuming, and there is a problem that it cannot be applied to equipment not equipped with an incinerator.

特開2001−132930号公報JP 2001-132930 A 特開2002−192118号公報JP 2002-192118 A 特開平11−114530号公報JP 11-114530 A 特開平11−179317号公報Japanese Patent Laid-Open No. 11-179317

従って、本発明は上記従来技術の問題点に鑑み、重金属類と塩素系ガスが十分に接触し効率良く重金属類の塩化物化を行なうことができ、重金属類の除去効率を高く維持して処理後の重金属類の残留を最小限に抑えることが可能であり、また、熱エネルギの供給を抑えてコストを削減でき、且つ塩化物化に用いた塩素を含有する排ガスによる処理設備への負荷を軽減することを可能とした重金属類含有物質の無害化処理方法及び装置、並びに該システムを提供することを目的とする。   Accordingly, in view of the above-mentioned problems of the prior art, the present invention can sufficiently carry out chlorination of heavy metals with sufficient contact between the heavy metals and the chlorine-based gas, and maintain high removal efficiency of heavy metals after the treatment. It is possible to minimize the residual of heavy metals, reduce the cost by suppressing the supply of thermal energy, and reduce the load on the treatment facility by the exhaust gas containing chlorine used for chlorination An object of the present invention is to provide a method and apparatus for detoxifying heavy metal-containing substances, and the system.

そこで、本発明はかかる課題を解決するために、重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理方法において、
前記被処理物を流動化炉に導入し、該流動化炉の炉底から塩素系ガスを吹き込み前記被処理物を流動させながら該被処理物中に含有される重金属類を塩化物化した後、
前記被処理物を加熱炉に導入し、前記塩化物化した重金属類を該加熱炉内で揮散分離することを特徴とする。
Therefore, in order to solve such problems, the present invention heats an object to be treated containing heavy metals together with a chlorine-based gas, chlorinates the heavy metals, volatilizes them, and volatilizes and removes them. In the processing method,
After introducing the object to be treated into a fluidizing furnace and chlorinating heavy metals contained in the object to be treated while blowing the chlorine-based gas from the bottom of the fluidizing furnace and flowing the object to be treated,
The object to be treated is introduced into a heating furnace, and the chlorinated heavy metals are volatilized and separated in the heating furnace.

本発明によれば、炉底から吹き込んだ塩素系ガスにより被処理物を流動させる流動化炉を用いているため、塩素系ガスと被処理物との接触効率が向上し、重金属類の塩化物化が促進できる。   According to the present invention, since a fluidizing furnace is used in which a workpiece is fluidized by a chlorine-based gas blown from the furnace bottom, the contact efficiency between the chlorine-based gas and the workpiece is improved, and chlorination of heavy metals is achieved. Can be promoted.

また、重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理方法において、
前記被処理物を流動化炉に導入し、該流動化炉の炉底から塩素系ガスを吹き込み前記被処理物を流動させながら該流動化炉の下方空間にて前記被処理物中に含有される重金属類を塩化物化した後、
前記流動化炉の上方空間にて前記塩化物化した重金属類を揮散分離することを特徴とする。
In addition, in the detoxification method of the heavy metal-containing material, the object to be treated containing heavy metals is heated together with a chlorine-based gas, and the heavy metals are chlorinated and then separated and removed.
The material to be treated is introduced into a fluidizing furnace, and a chlorine-based gas is blown from the bottom of the fluidizing furnace, and the material to be treated is contained in the material to be treated in the lower space of the fluidizing furnace while flowing the material to be treated. After chlorinating heavy metals
The chlorinated heavy metals are volatilized and separated in an upper space of the fluidizing furnace.

本発明では、前記流動化炉の下方空間と上方空間の温度設定を異ならせ、夫々を重金属類の塩化物化又は揮散処理に適した温度域に維持する。好適には、下方空間を約400〜800℃、上方空間を約800〜1200℃とする。これにより、一基の装置で塩化物化と揮散処理を行なうことができ、装置の小型化、設置コストの低減が達成できる。また、本発明においても、流動化状態にて塩化物化を行なっているため、被処理物と塩素系ガスとの接触効率が向上し、塩化物化が効率良く行える。   In the present invention, the temperature settings of the lower space and the upper space of the fluidizing furnace are made different, and each is maintained in a temperature range suitable for chlorination or volatilization treatment of heavy metals. Preferably, the lower space is about 400 to 800 ° C and the upper space is about 800 to 1200 ° C. As a result, chlorination and volatilization can be performed with a single device, and the device can be downsized and the installation cost can be reduced. Also in the present invention, since chlorination is performed in a fluidized state, the contact efficiency between the object to be treated and the chlorine-based gas is improved, and chlorination can be performed efficiently.

さらに、重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離する重金属類分離工程と、該分離した重金属類を含有する排ガスを再燃焼室にて再燃焼した後に冷却し、該冷却した排ガスの集塵を行なう排ガス処理工程と、を含む重金属類含有物質の無害化処理方法において、
前記重金属類分離工程が、前記被処理物を流動化炉に導入し、炉底からの塩素系ガス吹き込みにより前記被処理物を流動させながら前記重金属類を塩化物化した後、該被処理物を加熱炉に導入し、前記塩化物化した重金属類を揮散分離する工程であり、
前記塩素系ガスとして前記冷却より上流側で前記再燃焼した塩素系排ガスの少なくとも一部を抜き出し、該塩素系排ガスを前記流動化炉に導入するようにしたことを特徴とする。
Furthermore, the object to be treated containing heavy metals is heated together with a chlorine-based gas, and the heavy metals are chlorinated and then volatilized and separated, and the flue gas containing the separated heavy metals is recombusted. In the detoxification treatment method for heavy metal-containing substances, including an exhaust gas treatment step of cooling after recombustion in and collecting dust of the cooled exhaust gas,
In the heavy metal separation step, the object to be treated is introduced into a fluidizing furnace, and the heavy metal is chlorinated while flowing the object to be treated by blowing chlorine gas from the furnace bottom. Introducing into a heating furnace, volatilizing and separating the chlorinated heavy metals,
It is characterized in that at least a part of the reburned chlorine-based exhaust gas is extracted upstream from the cooling as the chlorine-based gas, and the chlorine-based exhaust gas is introduced into the fluidizing furnace.

本発明によれば、被処理物を塩素系ガスの導入により流動化させ、重金属類の塩化物化を主体的に行なうことにより、被処理物と塩素系ガスの接触効率が向上し、塩化物化が効率良く行なわれることとなる。また、再燃焼、又は再燃焼後で且つガス冷却前の塩素系排ガスを前記流動化に用いることにより、塩化物化において熱エネルギの投入を皆無若しくは削減することが可能となり、また揮散処理における熱エネルギの投入を削減することができる。これは、再燃焼排ガスの温度が約700〜900℃であることによる。さらに、塩素系排ガスを循環させることにより、その後段に設置される排ガス処理装置の脱塩処理の負荷軽減、及び配管やその他機器の腐食を抑えることができる。
尚、前記塩素系排ガスの冷却とは、空気等の媒体との熱交換による排ガスの冷却、水噴霧等の手段による排ガスの冷却を含む。
According to the present invention, the object to be treated is fluidized by introducing a chlorine-based gas, and the chlorination of heavy metals is mainly performed to improve the contact efficiency between the object to be treated and the chlorine-based gas. It will be done efficiently. In addition, by using the chlorinated exhaust gas after re-combustion or after re-combustion and before gas cooling for the fluidization, it is possible to eliminate or reduce the input of heat energy in chlorination, and the heat energy in volatilization treatment. Input can be reduced. This is because the temperature of the recombustion exhaust gas is about 700 to 900 ° C. Furthermore, by circulating the chlorine-based exhaust gas, it is possible to reduce the load of the desalination treatment of the exhaust gas treatment device installed in the subsequent stage and to suppress the corrosion of the piping and other equipment.
The cooling of the chlorine-based exhaust gas includes cooling of the exhaust gas by heat exchange with a medium such as air, and cooling of the exhaust gas by means such as water spray.

また、これらを好適に実施する装置の発明として、重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理装置において、
前記被処理物中に含有される重金属類を塩化物化する流動化炉と、該塩化物化した重金属類を揮散分離する加熱炉とを備え、
前記流動化炉は炉底に塩素系ガス導入手段を有し、塩素系ガスの導入により前記被処理物を流動させながら重金属類を塩化物化することを特徴とする。
In addition, as an invention of an apparatus that suitably implements these, the object to be treated containing heavy metals is heated together with a chlorine-based gas, and the heavy metals are chlorinated and then volatilized, and then removed and separated to remove harm. In the processing device,
A fluidizing furnace for chlorinating heavy metals contained in the workpiece, and a heating furnace for volatilizing and separating the chlorinated heavy metals,
The fluidizing furnace has a chlorine-based gas introduction means at the furnace bottom, and chlorinates heavy metals while fluidizing the material to be treated by introducing the chlorine-based gas.

さらにまた、重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理装置において、
炉底に塩素系ガス導入手段を有し、塩素系ガスの導入により前記被処理物を流動させる流動化炉を備え、
該流動化炉の下方空間には前記重金属類を塩化物化する塩化物化域が形成され、上方空間には前記重金属類を揮散分離する揮散処理域が形成されることを特徴とする。
Furthermore, in the detoxification processing apparatus of the heavy metal containing substance which heats the to-be-processed substance containing heavy metals with chlorine gas, volatilizes the said heavy metals, and volatilizes and separates and removes them,
It has a chlorinated gas introduction means at the bottom of the furnace, and includes a fluidizing furnace for flowing the object to be processed by introducing the chlorinated gas,
A chlorination zone for chlorinating the heavy metals is formed in the lower space of the fluidizing furnace, and a volatilization treatment zone for volatilizing and separating the heavy metals is formed in the upper space.

また、重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類分離装置と、
前記分離した重金属類を含有する排ガスの再燃焼室と、該再燃焼した排ガスを冷却するガス冷却装置と、該冷却した排ガスを集塵する集塵装置と、を含む排ガス処理設備と、を備えた重金属類含有物質の無害化処理システムにおいて、
前記重金属類分離装置が、炉底に塩素系ガス導入手段を有し、塩素系ガスの導入により前記被処理物を流動させながら重金属類を塩化物化する流動化炉と、該塩化物化した重金属類を揮散分離する加熱炉とからなり、
前記塩素系ガスが、前記再燃焼室から引き抜いた塩素系排ガス若しくは該再燃焼室の下流側で且つ前記ガス冷却装置の上流側から引き抜いた塩素系排ガスであることを特徴とする。
前記発明において、例えば被処理物の重金属類の含有量に対して前記塩素系排ガスが不足である場合などには、前記塩素系排ガスとともに、前記加熱炉から排出された塩素系排ガスの少なくとも一部を前記流動化炉に導入することが好適である。また、前記塩素系排ガスとともに、処理系統外から供給する塩素ガス、塩化水素ガス等の塩素系ガスを用いてもよい。
In addition, a heavy metal separation device that heats an object to be treated containing heavy metals together with a chlorine-based gas, volatilizes the heavy metals, and volatilizes them to separate and remove,
An exhaust gas treatment facility comprising a recombustion chamber for exhaust gas containing the separated heavy metals, a gas cooling device for cooling the reburned exhaust gas, and a dust collector for collecting the cooled exhaust gas. In the detoxification treatment system for heavy metal-containing substances,
The heavy metal separation device has a chlorine-based gas introduction means at the furnace bottom, and a fluidizing furnace for chlorinating heavy metals while flowing the material to be treated by introducing chlorine-based gas; and the chlorinated heavy metals A heating furnace that volatilizes and separates
The chlorine-based gas is a chlorine-based exhaust gas extracted from the re-combustion chamber or a chlorine-based exhaust gas extracted from the downstream side of the re-combustion chamber and the upstream side of the gas cooling device.
In the invention, for example, when the chlorine-based exhaust gas is insufficient with respect to the heavy metal content of the object to be treated, at least a part of the chlorine-based exhaust gas discharged from the heating furnace together with the chlorine-based exhaust gas. Is preferably introduced into the fluidizing furnace. In addition to the chlorine-based exhaust gas, a chlorine-based gas such as chlorine gas or hydrogen chloride gas supplied from outside the processing system may be used.

以上記載のごとく本発明によれば、炉底から吹き込んだ塩素系ガスにより被処理物を流動させる流動化炉を用いて塩化物化を行なっているため、塩素系ガスと被処理物との接触効率が向上し、重金属類の塩化物化が促進できる。
また、流動化炉の下方空間と上方空間の温度設定を異ならせ、夫々を重金属類の塩化物化又は揮散処理に適した温度域に維持することにより、一基の装置で塩化物化と揮散処理を行なうことができ、装置の小型化、設置コストを低減が達成できる。
さらに、排ガス処理設備において、再燃焼、又は再燃焼後で且つガス冷却前の塩素系排ガスを前記流動化炉に導入して被処理物を流動化させることにより、塩化物化において熱エネルギの投入を皆無若しくは削減することが可能となり、また揮散処理における熱エネルギの投入を削減することができる。さらにまた、塩素系排ガスを循環させることにより、その後段に設置される排ガス処理装置の脱塩処理の負荷軽減、及び配管やその他機器の腐食を抑えることができる。
As described above, according to the present invention, since chlorination is performed using a fluidizing furnace in which an object to be processed is fluidized by a chlorine-based gas blown from the bottom of the furnace, the contact efficiency between the chlorine-based gas and the object to be processed And the chlorination of heavy metals can be promoted.
Also, by changing the temperature settings of the lower space and upper space of the fluidizing furnace and maintaining each in a temperature range suitable for chlorination or volatilization treatment of heavy metals, chlorination and volatilization treatment can be performed with a single device. This can be done, and the downsizing of the apparatus and the reduction of the installation cost can be achieved.
Further, in the exhaust gas treatment facility, the chlorine-based exhaust gas after re-combustion or after re-combustion and before gas cooling is introduced into the fluidizing furnace to fluidize the material to be treated, so that heat energy can be input in chlorination. It is possible to eliminate or reduce the amount of heat energy used in the volatilization process. Furthermore, by circulating the chlorine-based exhaust gas, it is possible to reduce the load of the desalination treatment of the exhaust gas treatment apparatus installed in the subsequent stage, and to suppress the corrosion of the piping and other equipment.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本実施例1に係る重金属類含有物質の処理装置の構成図、図2は本実施例2に係る重金属類含有物質の処理装置の構成図、図3は本実施例3に係る重金属類含有物質の処理装置を具備した灰処理システムの全体構成図である。
本実施例はPb、Zn、As、Cd、Cr、Se、Hg、Sb、Cuなどの重金属類を分離除去する技術であり、被処理物には例えば汚染土壌、焼却灰、飛灰等が挙げられるが、特に本実施例では一例として焼却灰の無害化処理につき説明する。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is a block diagram of a processing apparatus for heavy metal containing materials according to the first embodiment, FIG. 2 is a block diagram of a processing apparatus for heavy metal containing substances according to the second embodiment, and FIG. 3 is a heavy metal according to the third embodiment. It is a whole block diagram of the ash processing system which equipped with the processing apparatus of the kind containing substance.
This example is a technique for separating and removing heavy metals such as Pb, Zn, As, Cd, Cr, Se, Hg, Sb, Cu, etc., and examples of treated materials include contaminated soil, incinerated ash, fly ash, etc. In particular, in the present embodiment, the incineration ash detoxification process will be described as an example.

図1に示した重金属類含有物質の無害化装置は、焼却設備より排出された焼却灰30を無害化処理する装置であり、重金属類を含有する焼却灰30が導入され該焼却灰30を塩素系ガスの存在下で加熱し、重金属類の塩化物化を行なう流動化炉40と、前記塩化物化された重金属類を含む焼却灰30を加熱し、該重金属類を揮散処理する加熱炉10とから構成される。
前記流動化炉40は、底部に塩素系ガス導入口が設けられ、塩素系ガス32を吹き込み焼却灰30を流動させながら還元性雰囲気下で約400〜800℃の温度に加熱し、重金属類の塩化物化を図る。
前記塩素系ガス32としては、例えば塩素ガス、塩化水素ガス、塩素系排ガス等の塩素系ガスが挙げられる。
The heavy metal-containing material detoxifying device shown in FIG. 1 is a device for detoxifying incineration ash 30 discharged from incineration equipment. Incineration ash 30 containing heavy metals is introduced and the incineration ash 30 is chlorinated. A fluidizing furnace 40 for heating in the presence of a system gas to chlorinate heavy metals, and a heating furnace 10 for heating the incinerated ash 30 containing the chlorinated heavy metals to volatilize the heavy metals. Composed.
The fluidizing furnace 40 is provided with a chlorine-based gas inlet at the bottom, heated to a temperature of about 400-800 ° C. in a reducing atmosphere while blowing the chlorine-based gas 32 and flowing the incinerated ash 30, Try to make chloride.
Examples of the chlorine gas 32 include chlorine gases such as chlorine gas, hydrogen chloride gas, and chlorine exhaust gas.

塩化物化された重金属類を含む焼却灰30は前記加熱炉10に導入され、還元性雰囲気下で焼却灰の融点以下、例えば500℃〜1200℃程度に加熱され、重金属類を揮散分離する。このとき、該加熱炉10にはロータリーキルン、電気炉等を用いることができる。揮散した重金属類は後段の排ガス処理設備(不図示)に導かれ、重金属類の融点以下に冷却されて分離、回収される。
このように、底部から吹き込んだ塩素系ガス32により焼却灰を流動させる流動化炉40を用いることにより、塩素系ガス32と被処理物との接触効率が向上し、重金属類の塩化物化が促進できる。
The incinerated ash 30 containing chlorinated heavy metals is introduced into the heating furnace 10 and heated to below the melting point of the incinerated ash in a reducing atmosphere, for example, about 500 ° C. to 1200 ° C. to volatilize and separate the heavy metals. At this time, a rotary kiln, an electric furnace, or the like can be used as the heating furnace 10. Volatilized heavy metals are led to an exhaust gas treatment facility (not shown) in the subsequent stage, cooled to below the melting point of heavy metals, and separated and recovered.
As described above, by using the fluidizing furnace 40 for flowing the incineration ash with the chlorine-based gas 32 blown from the bottom, the contact efficiency between the chlorine-based gas 32 and the object to be treated is improved, and the chlorination of heavy metals is promoted. it can.

本実施例2に係る重金属類含有物質の無害化処理装置は、図2に示すように、重金属類を含有する焼却灰30が導入され、塩化揮散処理を行なう流動化炉40から構成される。該流動化炉40は、底部から導入した塩素系ガス32により焼却灰30を流動させながら還元性雰囲気下で約400〜800℃に加熱し、焼却灰30中の重金属類を塩化物化する塩化物化域40Aが下方空間に形成され、その上方空間には、塩化物化した重金属類を含む被処理物を還元性雰囲気下で焼却灰30の融点以下、例えば800℃〜1200℃の温度域で加熱し、重金属類を揮散させる揮散処理域40Bが形成されている。
前記揮散処理域40Bで揮散した重金属類は、後段の排ガス処理設備に導かれ、重金属類の融点以下に冷却されて分離、回収される。
本実施例によれば、塩素系ガスと焼却灰30との接触効率が向上し、重金属類の塩化物化が促進できる。また、一基の流動化炉40で塩化物化と揮散処理を行なっているため、装置の小型化、設置コストの低減が達成できる。
As shown in FIG. 2, the detoxification processing apparatus for heavy metal-containing material according to the second embodiment is configured by a fluidizing furnace 40 in which incinerated ash 30 containing heavy metals is introduced and a chlorination process is performed. The fluidizing furnace 40 heats the incinerated ash 30 to about 400 to 800 ° C. in a reducing atmosphere while flowing the incinerated ash 30 with the chlorine gas 32 introduced from the bottom, and converts the heavy metals in the incinerated ash 30 to chloride. A zone 40A is formed in the lower space, and in the upper space, an object to be treated containing chlorinated heavy metals is heated in a reducing atmosphere below the melting point of the incinerated ash 30, for example, in a temperature range of 800 ° C. to 1200 ° C. The volatilization process area 40B which volatilizes heavy metals is formed.
The heavy metals volatilized in the volatilization treatment area 40B are guided to a subsequent exhaust gas treatment facility, cooled to below the melting point of the heavy metals, and separated and recovered.
According to the present embodiment, the contact efficiency between the chlorine-based gas and the incineration ash 30 is improved, and the chlorination of heavy metals can be promoted. Moreover, since chlorination and volatilization are performed in one fluidizing furnace 40, it is possible to reduce the size of the apparatus and reduce the installation cost.

図3に示した灰処理システムは、焼却設備より排出された焼却灰、飛灰を無害化処理するシステムであり、焼却灰30の粉砕処理等を行う前処理装置20と、前処理された焼却灰30に適宜細粒炭を混合して塩素系ガスの存在下にて加熱し、重金属類の塩化物化を行なう流動化炉40と、該塩化物化した焼却灰30中に含まれる重金属類を揮散分離するロータリーキルン10と、該ロータリーキルン10より排出される排ガスを処理する排ガス処理設備と、から構成される。
前記排ガス処理設備は、前記流動化炉40及び前記ロータリーキルン10より排出される重金属類を含む排ガスを補助燃料34の供給により燃焼させ、該排ガス中に含まれるダイオキシン類等の分解除去を行なう再燃焼室21と、該再燃焼室21から排出される高温排ガスと燃焼用空気36とを熱交換し、該燃焼用空気36を予熱するとともに前記高温排ガスを冷却する空気予熱器22と、該空気予熱器22により冷却された排ガスを冷却水噴霧等により約250℃以下まで冷却するガス冷却塔25と、冷却された排ガス中の飛灰37を捕集するバグフィルタ26と、該バグフィルタから誘引ファン27により排出された排ガスを外部に排気する煙突28と、を備えている。
The ash treatment system shown in FIG. 3 is a system for detoxifying incineration ash and fly ash discharged from the incineration facility, and includes a pretreatment device 20 that performs pulverization treatment of the incineration ash 30 and the like, and pretreatment incineration. The ash 30 is appropriately mixed with fine-grained coal and heated in the presence of a chlorine-based gas to volatilize the heavy metals contained in the chlorinated incineration ash 30 and the fluidizing furnace 40 for chlorination of the heavy metals. A rotary kiln 10 to be separated and an exhaust gas treatment facility for treating exhaust gas discharged from the rotary kiln 10 are configured.
The exhaust gas treatment facility combusts exhaust gas containing heavy metals discharged from the fluidizing furnace 40 and the rotary kiln 10 by supplying auxiliary fuel 34, and performs recombustion to decompose and remove dioxins and the like contained in the exhaust gas. Heat exchange between the chamber 21 and the high-temperature exhaust gas discharged from the re-combustion chamber 21 and the combustion air 36, preheating the combustion air 36 and cooling the high-temperature exhaust gas, and the air preheating A gas cooling tower 25 that cools the exhaust gas cooled by the vessel 22 to about 250 ° C. or less by spraying cooling water, a bag filter 26 that collects fly ash 37 in the cooled exhaust gas, and an induction fan from the bag filter And a chimney 28 for exhausting the exhaust gas discharged by the outside 27 to the outside.

前記流動化炉40は、焼却灰30を貯留する耐熱ホッパ41と、前処理した焼却灰30を炉内に供給するコンベア42と、塩化物化した焼却灰30を所定量ずつ排出するバルブ43と、塩素系排ガスを加圧する加圧機45と、該加圧した塩素系排ガスを前記耐熱ホッパ41の底部より導入する噴出ノズルを複数備えた塩素系排ガス噴出口44と、を備えており、400〜800℃に維持されたホッパ内にて前記塩素系排ガス噴出口44から噴出する塩素系排ガスにより焼却灰30を流動しながら該塩素系排ガスと接触させ、焼却灰中に含有する重金属類を塩化物化する。このとき、低沸点の重金属類の一部は揮散分離されて、排ガス中に移行する。   The fluidizing furnace 40 includes a heat-resistant hopper 41 that stores the incinerated ash 30, a conveyor 42 that supplies the pretreated incinerated ash 30 into the furnace, a valve 43 that discharges the incinerated ash 30 chlorinated by a predetermined amount, A pressurizer 45 for pressurizing the chlorine-based exhaust gas, and a chlorine-based exhaust gas outlet 44 having a plurality of ejection nozzles for introducing the pressurized chlorine-based exhaust gas from the bottom of the heat-resistant hopper 41, and 400 to 800 The incinerated ash 30 is brought into contact with the chlorine-based exhaust gas while flowing through the chlorine-based exhaust gas ejected from the chlorine-based exhaust gas outlet 44 in a hopper maintained at ℃, and the heavy metals contained in the incinerated ash are chlorinated. . At this time, some of the low boiling point heavy metals are volatilized and separated, and migrate into the exhaust gas.

前記ロータリーキルン10は、前記流動化炉40により塩化物化した焼却灰を適宜細粒炭と混合してキルン内に供給する投入ホッパ11と、該焼却灰30を投入ホッパ11から他端側に移送する手段を有する円筒状の炉本体12と、該炉本体12の前記投入ホッパ11と他端側に設けられた灰排出口15と、前記炉本体12の灰排出口15側に設けられたバーナ部13と、を有する構成となっている。ロータリーキルン10内に導入された焼却灰30は、前記灰排出口15に移送されながら、前記バーナ部13が空気33及び補助燃料34の供給により生成した火炎によって約500〜1200℃の温度で焙焼される。このとき、ロータリーキルン10内は、酸素不足状態若しくは無酸素状態の還元性雰囲気とし、焼却灰30が酸化燃焼されないようにする。   The rotary kiln 10 mixes the incinerated ash which has been chlorinated by the fluidizing furnace 40 with fine coal and appropriately feeds the incinerated ash 30 from the input hopper 11 to the other end side. A cylindrical furnace body 12 having means, an ash discharge port 15 provided on the other end side of the charging hopper 11 of the furnace body 12, and a burner portion provided on the ash discharge port 15 side of the furnace body 12 13. The incinerated ash 30 introduced into the rotary kiln 10 is roasted at a temperature of about 500 to 1200 ° C. by the flame generated by the burner unit 13 by supplying the air 33 and the auxiliary fuel 34 while being transferred to the ash discharge port 15. Is done. At this time, the rotary kiln 10 has a reducing atmosphere in an oxygen-deficient state or an oxygen-free state so that the incinerated ash 30 is not oxidized and burned.

前記炉本体12内は、焼却灰30の融点以下、例えばバーナ部13側の温度が1200℃程度となるように、前記空気33及び補助燃料34の供給量を制御する。
本実施例において、前記ロータリーキルン10内では、前記流動化炉40により塩化物化された重金属類がバーナ部13の加熱により揮散分離し、揮散した重金属類はガス中に混入して前記排ガス排出口より排出される。このとき、焼却灰30中に含有される塩素系物質の作用により、塩化物化されずに残留する重金属類の塩化物化も同時に進行する。
また、本実施例3では、図示したロータリーキルン10の他にも、流動炉、電気炉等のように焼却灰を加熱することができる装置であれば何れを用いることもできる。
The supply amount of the air 33 and the auxiliary fuel 34 is controlled so that the furnace body 12 has a melting point of the incinerated ash 30 or less, for example, the temperature on the burner unit 13 side is about 1200 ° C.
In the present embodiment, in the rotary kiln 10, heavy metals chlorinated by the fluidizing furnace 40 are volatilized and separated by heating of the burner unit 13, and the volatilized heavy metals are mixed in the gas and are discharged from the exhaust gas outlet. Discharged. At this time, chlorination of heavy metals remaining without being chlorinated proceeds simultaneously due to the action of the chlorinated material contained in the incinerated ash 30.
In the third embodiment, in addition to the illustrated rotary kiln 10, any apparatus that can heat the incinerated ash, such as a fluidized furnace or an electric furnace, can be used.

尚、前記排ガスに含まれて排出された重金属類は、前記再燃焼室21、空気予熱器22を経てガス冷却塔25に導入され、該ガス冷却塔25にて重金属類の融点以下まで冷却され、析出した重金属類は回収され、再利用又は廃棄される。また、前記炉本体12で無害化された灰は灰冷却装置16にて冷却され、焙焼灰35として排出される。   The exhausted heavy metals contained in the exhaust gas are introduced into the gas cooling tower 25 through the recombustion chamber 21 and the air preheater 22, and are cooled to the melting point of the heavy metals or less by the gas cooling tower 25. The deposited heavy metals are collected and reused or discarded. The ash detoxified in the furnace body 12 is cooled by the ash cooling device 16 and discharged as roasted ash 35.

また、本実施例3では、前記流動化炉40に導入する塩素系ガスを、前記排ガス処理設備の再燃焼室21の直後の排ガスラインから分岐させた塩素系排ガスA、又は前記再燃焼室21から抜き出した塩素系排ガスBとする。前記塩素系排ガスA及び前記塩素系排ガスBは、前記ロータリーキルン10にて焼却灰30が加熱されることにより焼却灰に含有する塩素分が揮発して排ガス中に移行するため、塩素成分を含んでいる。さらに、前記再燃焼室21では、補助燃料34の供給により加熱されているため、ここから排出される前記塩素系排ガスA、Bは700〜900℃の高温状態となっている。従って、該塩素系排ガスA又はBを前記流動化炉40に導入することにより、外部からの熱エネルギの供給を必要とせず、或いは少ない熱エネルギで流動化炉40を加熱することができ、重金属類の塩化物化を行なうことができる。   In the third embodiment, the chlorine-based exhaust gas A introduced into the fluidizing furnace 40 is branched from the exhaust gas line immediately after the re-combustion chamber 21 of the exhaust gas treatment facility, or the re-combustion chamber 21. Chlorinated exhaust gas B extracted from The chlorine-based exhaust gas A and the chlorine-based exhaust gas B contain chlorine components because the incineration ash 30 is heated in the rotary kiln 10 and the chlorine content contained in the incineration ash volatilizes and moves into the exhaust gas. Yes. Further, since the recombustion chamber 21 is heated by the supply of the auxiliary fuel 34, the chlorinated exhaust gases A and B discharged therefrom are in a high temperature state of 700 to 900 ° C. Therefore, by introducing the chlorine-based exhaust gas A or B into the fluidizing furnace 40, it is possible to heat the fluidizing furnace 40 with little heat energy without the need for supplying heat energy from the outside. Can be chlorinated.

また、前記塩素系排ガスA又はBは、前記加圧機45により高圧とされ前記塩素系排ガス噴出口44より噴出する構成となっているため、ホッパ底部に溜まった焼却灰30は高圧噴出ガスにより激しく流動、撹拌されて、ガス中の塩素成分と焼却灰中の重金属類との接触効率が非常に高くなり、塩化物化の効率が向上する。
また、本実施例3では、重金属類の揮散処理を行うロータリーキルン10に供給される焼却灰30が、前記流動化炉40により予め加熱されているため、前記ロータリーキルン10に供給する熱エネルギを削減することが可能となる。
Further, since the chlorine-based exhaust gas A or B is configured to be pressurized by the pressurizer 45 and ejected from the chlorine-based exhaust gas outlet 44, the incinerated ash 30 accumulated at the bottom of the hopper is violently generated by the high-pressure ejected gas. When fluidized and stirred, the contact efficiency between the chlorine component in the gas and the heavy metals in the incinerated ash becomes very high, and the efficiency of chlorination is improved.
Moreover, in this Example 3, since the incineration ash 30 supplied to the rotary kiln 10 which performs the volatilization process of heavy metals is preheated by the fluidizing furnace 40, the thermal energy supplied to the rotary kiln 10 is reduced. It becomes possible.

このとき、前記焼却灰30中の重金属類の含有量と、焼却灰30中の塩素含有量及び/又は前記塩素系排ガスA、B中の塩素含有量を検出して、この検出値に基づき前記塩素系排ガスA、Bの流動化炉40への供給量を設定すると良い。また、前記塩素系排ガスA、Bの両方を前記流動化炉40へ供給するようにしても良い。
さらに、焼却灰40中の重金属類含有量に対して塩素系排ガスA、Bの塩素分が不足する場合には、前記ロータリーキルン10から排出する塩素系排ガスCを供給しても良いし、又、外部から塩素系ガスを添加するようにしても良い。前記塩素系ガス32としては、例えば塩素ガス、塩化水素ガス等の塩素系ガスが挙げられる。その他に、前記バグフィルタ26より上流側から分岐した塩素系排ガスを供給するようにしても良い。
At this time, the content of heavy metals in the incinerated ash 30 and the chlorine content in the incinerated ash 30 and / or the chlorine content in the chlorinated exhaust gases A and B are detected. A supply amount of the chlorine-based exhaust gases A and B to the fluidizing furnace 40 may be set. Further, both of the chlorinated exhaust gases A and B may be supplied to the fluidizing furnace 40.
Furthermore, when the chlorine content of the chlorine-based exhaust gas A, B is insufficient with respect to the heavy metal content in the incineration ash 40, the chlorine-based exhaust gas C discharged from the rotary kiln 10 may be supplied, Chlorine gas may be added from the outside. Examples of the chlorine gas 32 include chlorine gases such as chlorine gas and hydrogen chloride gas. In addition, chlorine-based exhaust gas branched from the upstream side of the bag filter 26 may be supplied.

一方、前記流動化炉40にて発生した排ガスはサイクロン46に導かれ、該サイクロン46にて灰47を分離された排ガスは、前記バグフィルタ26より上流側の排ガスラインに戻す。この排ガス戻し位置は、例えば、前記ロータリーキルン10から排出される排ガスラインD、前記再燃焼室21と前記空気予熱器22の間の排ガスラインE、前記空気予熱器22と前記ガス冷却塔25の間の排ガスラインF、前記ガス冷却塔25と前記バグフィルタ26の間の排ガスラインG等が挙げられる。また、前記分離灰47が発生する場合には、前記焼却灰30とともに再度処理することが好ましい。   On the other hand, the exhaust gas generated in the fluidizing furnace 40 is guided to a cyclone 46, and the exhaust gas from which the ash 47 has been separated by the cyclone 46 is returned to the exhaust gas line upstream of the bag filter 26. The exhaust gas return position includes, for example, an exhaust gas line D discharged from the rotary kiln 10, an exhaust gas line E between the recombustion chamber 21 and the air preheater 22, and between the air preheater 22 and the gas cooling tower 25. Exhaust gas line F, an exhaust gas line G between the gas cooling tower 25 and the bag filter 26, and the like. Further, when the separated ash 47 is generated, it is preferable that the separated ash 47 is treated again with the incinerated ash 30.

このように、本実施例によれば、ロータリーキルン10の前段に流動化炉40を設け、流動化状態で焼却灰と塩素系排ガスを接触させることにより、効率の良い塩化物化が可能となる。また、再燃焼室21より排出される塩素系排ガスA又はBは、700〜900℃と高温であり、流動化炉40を高温状態にすることが可能である。従って、特に流動化炉40を加熱することなく、熱エネルギの供給の削減が可能となる。さらに、塩素系排ガスを循環させることにより、その後段に設置される排ガス処理装置の脱塩処理の負荷軽減、及び配管やその他機器の腐食を抑えることができる。   As described above, according to the present embodiment, the fluidizing furnace 40 is provided in the front stage of the rotary kiln 10, and the incinerated ash and the chlorine-based exhaust gas are brought into contact with each other in the fluidized state, whereby efficient chlorination can be achieved. Moreover, the chlorine-type exhaust gas A or B discharged | emitted from the recombustion chamber 21 is as high as 700-900 degreeC, and it is possible to make the fluidization furnace 40 into a high temperature state. Accordingly, it is possible to reduce the supply of thermal energy without particularly heating the fluidizing furnace 40. Furthermore, by circulating the chlorine-based exhaust gas, it is possible to reduce the load of the desalination treatment of the exhaust gas treatment device installed in the subsequent stage and to suppress the corrosion of the piping and other equipment.

尚、本実施例3を適用した試験機による試験結果を以下に示す。このとき、流動化炉40に供給する塩素系排ガスとして、前記再燃焼室21から排出される塩素系排ガスAを用いた。Pb含有量が778mg/kgである乾燥灰42.6kgを試験機により処理し、処理後のPb含有量が252mg/kgとなるまで低減させた時に要したHCl量は以下の通りである。処理時間は1時間とする。
(HCl濃度) ×(HCl添加量)÷ (HClモル質量)×(処理時間)
=(1200×10-3[g/l])×(6.6×10-3[l/h])÷(36.461[g/mol]) × 1[h]
=0.000217[mol]
このように、試験機での必要HCl量は0.000217[mol]となる。
In addition, the test result by the testing machine to which the present Example 3 is applied is shown below. At this time, the chlorine-based exhaust gas A discharged from the recombustion chamber 21 was used as the chlorine-based exhaust gas supplied to the fluidizing furnace 40. The amount of HCl required when 42.6 kg of dry ash having a Pb content of 778 mg / kg was treated with a test machine and reduced to a Pb content of 252 mg / kg after treatment was as follows. The processing time is 1 hour.
(HCl concentration) x (HCl addition amount) ÷ (HCl molar mass) x (treatment time)
= (1200 x 10 -3 [g / l]) x (6.6 x 10-3 [l / h]) ÷ (36.461 [g / mol]) x 1 [h]
= 0.000217 [mol]
Thus, the required HCl amount in the testing machine is 0.000217 [mol].

さらに、実機を想定した処理装置に必要なHCl量を、試験機による試験結果から比例計算により求める。
(試験機の処理量):(試験機の必要HCl量)=(実機想定処理量):(実機必要HCl量)
0.0426[kg] : 0.000217[mol] = 7750[kg] : X
従って、実機想定HCl量は、39.48[mol]となる。尚、想定した処理装置における処理能力は7.75t/h(186t/d)であり、処理時間は1時間とする。
また、想定した実機より、再燃焼室から一時間当りに排出される塩素系排ガスのHCl濃度は、以下の通りである。
(乾きガス量) ×(HCl濃度) ÷(HClモル質量)×(時間)
=(13200[m3 N/h])×(1500×10-3[g/m3 N])÷(36.461[g/mol])×(1[h])
このように、塩素系排ガスのHCl濃度は543.054[mol]となる。
Further, the amount of HCl required for the processing apparatus assuming an actual machine is obtained by proportional calculation from the test result obtained by the test machine.
(Test machine throughput): (Required HCl volume of test machine) = (Assumed throughput of actual machine): (Required HCl volume of actual machine)
0.0426 [kg]: 0.000217 [mol] = 7750 [kg]: X
Therefore, the actual amount of HCl assumed is 39.48 [mol]. The assumed processing capacity of the processing apparatus is 7.75 t / h (186 t / d), and the processing time is 1 hour.
In addition, the HCl concentration of the chlorinated exhaust gas discharged from the recombustion chamber per hour from the assumed actual machine is as follows.
(Dry gas amount) x (HCl concentration) ÷ (HCl molar mass) x (time)
= (13200 [m 3 N / h]) x (1500 x 10 -3 [g / m 3 N ]) ÷ (36.461 [g / mol]) x (1 [h])
Thus, the HCl concentration of the chlorinated exhaust gas is 543.054 [mol].

従って、想定した実機の流動化炉において、再燃焼室から排出される塩素系排ガスを適用し、塩化物化する方法を実施する場合、塩化物化に要する塩素系排ガス量の割合は以下の通りである。
(実機想定必要HCl量)÷(実機想定排出HCl量) ×100
= 39.48[mol] ÷ 543.05[mol] ×100
= 7.3%
乾きガス量;13200[m3 N/h] ×0.073 = 963.6[m3 N/h]
このように本実施例によれば、実機を想定した場合にも十分に実現可能なシステムとすることができる。
Therefore, when the chlorinated exhaust gas discharged from the recombustion chamber is applied in the assumed fluidizing furnace and the method of chlorination is carried out, the ratio of the chlorinated exhaust gas required for chlorination is as follows: .
(Actual required HCl amount for actual machine) ÷ (Actual exhausted HCl level for actual machine) x 100
= 39.48 [mol] ÷ 543.05 [mol] x 100
= 7.3%
Dry gas volume: 13200 [m 3 N / h] × 0.073 = 963.6 [m 3 N / h]
Thus, according to the present embodiment, a system that can be sufficiently realized even when an actual machine is assumed can be provided.

本実施例1に係る重金属類含有物質の処理装置の構成図である。It is a block diagram of the processing apparatus of the heavy metal containing substance which concerns on this Example 1. FIG. 本実施例2に係る重金属類含有物質の処理装置の構成図である。It is a block diagram of the processing apparatus of the heavy metal containing substance which concerns on the present Example 2. FIG. 本実施例3に係る重金属類含有物質の処理装置を具備した灰処理システムの全体構成図である。It is a whole block diagram of the ash processing system which comprised the processing apparatus of the heavy metal containing substance which concerns on this Example 3. FIG. 従来の重金属類含有物質の処理装置を示す構成図である。It is a block diagram which shows the processing apparatus of the conventional heavy metal containing substance.

符号の説明Explanation of symbols

10 ロータリーキルン
12 炉本体
13 バーナ部
16 灰冷却装置
20 前処理装置
21 再燃焼室
22 空気予熱器
25 ガス冷却塔
26 バグフィルタ
30 焼却灰
32 塩素系ガス
35 焙焼灰
40 流動化炉
40A 塩化物化域
40B 揮散処理域
41 耐熱ホッパ
42 コンベア
43 バルブ
44 塩素系排ガス噴出口
45 加圧機
46 サイクロン
DESCRIPTION OF SYMBOLS 10 Rotary kiln 12 Furnace main body 13 Burner part 16 Ash cooling device 20 Pretreatment device 21 Recombustion chamber 22 Air preheater 25 Gas cooling tower 26 Bag filter 30 Incineration ash 32 Chlorine gas 35 Roasting ash 40 Fluidization furnace 40A Chlorination zone 40B Volatilization treatment area 41 Heat-resistant hopper 42 Conveyor 43 Valve 44 Chlorine exhaust gas outlet 45 Pressurizer 46 Cyclone

Claims (7)

重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理方法において、
前記被処理物を流動化炉に導入し、該流動化炉の炉底から塩素系ガスを吹き込み前記被処理物を流動させながら該被処理物中に含有される重金属類を塩化物化した後、
前記被処理物を加熱炉に導入し、前記塩化物化した重金属類を該加熱炉内で揮散分離することを特徴とする重金属類含有物質の無害化処理方法。
In the method for detoxifying heavy metal-containing substances, the object to be treated containing heavy metals is heated together with a chlorine-based gas, and the heavy metals are chlorinated and then separated and removed.
After introducing the object to be treated into a fluidizing furnace and chlorinating heavy metals contained in the object to be treated while blowing the chlorine-based gas from the bottom of the fluidizing furnace and flowing the object to be treated,
A method for detoxifying a heavy metal-containing material, wherein the object to be treated is introduced into a heating furnace, and the chlorinated heavy metals are volatilized and separated in the heating furnace.
重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理方法において、
前記被処理物を流動化炉に導入し、該流動化炉の炉底から塩素系ガスを吹き込み前記被処理物を流動させながら該流動化炉の下方空間にて前記被処理物中に含有される重金属類を塩化物化した後、
前記流動化炉の上方空間にて前記塩化物化した重金属類を揮散分離することを特徴とする重金属類含有物質の無害化処理方法。
In the method for detoxifying heavy metal-containing substances, the object to be treated containing heavy metals is heated together with a chlorine-based gas, and the heavy metals are chlorinated and then separated and removed.
The material to be treated is introduced into a fluidizing furnace, and a chlorine-based gas is blown from the bottom of the fluidizing furnace, and the material to be treated is contained in the material to be treated in the lower space of the fluidizing furnace while flowing the material to be treated. After chlorinating heavy metals
A method for detoxifying a heavy metal-containing substance, characterized by volatilizing and separating the chlorinated heavy metal in an upper space of the fluidizing furnace.
重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離する重金属類分離工程と、該分離した重金属類を含有する排ガスを再燃焼室にて再燃焼した後に冷却し、該冷却した排ガスの集塵を行なう排ガス処理工程と、を含む重金属類含有物質の無害化処理方法において、
前記重金属類分離工程が、前記被処理物を流動化炉に導入し、炉底からの塩素系ガス吹き込みにより前記被処理物を流動させながら前記重金属類を塩化物化した後、該被処理物を加熱炉に導入し、前記塩化物化した重金属類を揮散分離する工程であり、
前記塩素系ガスとして前記冷却より上流側で前記再燃焼した塩素系排ガスの少なくとも一部を抜き出し、該塩素系排ガスを前記流動化炉に導入するようにしたことを特徴とする重金属類含有物質の無害化処理方法。
A treatment object containing heavy metals is heated together with a chlorine-based gas, and the heavy metals are chlorinated and then volatilized and separated, and the exhaust gas containing the separated heavy metals is re-combusted in a recombustion chamber. An exhaust gas treatment step of cooling after reburning and collecting the cooled exhaust gas, and a detoxification treatment method for a heavy metal-containing substance,
In the heavy metal separation step, the object to be treated is introduced into a fluidizing furnace, and the heavy metal is chlorinated while flowing the object to be treated by blowing chlorine gas from the furnace bottom. Introducing into a heating furnace, volatilizing and separating the chlorinated heavy metals,
A heavy metal containing substance characterized in that at least a part of the reburned chlorine-based exhaust gas upstream of the cooling is extracted as the chlorine-based gas, and the chlorine-based exhaust gas is introduced into the fluidizing furnace. Detoxification treatment method.
重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理装置において、
前記被処理物中に含有される重金属類を塩化物化する流動化炉と、該塩化物化した重金属類を揮散分離する加熱炉とを備え、
前記流動化炉は炉底に塩素系ガス導入手段を有し、塩素系ガスの導入により前記被処理物を流動させながら重金属類を塩化物化することを特徴とする重金属類含有物質の無害化処理装置。
In a detoxification processing apparatus for heavy metal-containing substances that heats an object to be processed containing heavy metals together with a chlorine-based gas, chlorinates the heavy metals, volatilizes them, and separates and removes them.
A fluidizing furnace for chlorinating heavy metals contained in the workpiece, and a heating furnace for volatilizing and separating the chlorinated heavy metals,
The fluidizing furnace has a chlorine-based gas introducing means at the bottom of the furnace, and chlorinates heavy metals while flowing the material to be processed by introducing the chlorine-based gas. apparatus.
重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理装置において、
炉底に塩素系ガス導入手段を有し、塩素系ガスの導入により前記被処理物を流動させる流動化炉を備え、
該流動化炉の下方空間には前記重金属類を塩化物化する塩化物化域が形成され、上方空間には前記重金属類を揮散分離する揮散処理域が形成されることを特徴とする重金属類含有物質の無害化処理装置。
In a detoxification processing apparatus for heavy metal-containing substances that heats an object to be processed containing heavy metals together with a chlorine-based gas, chlorinates the heavy metals, volatilizes them, and separates and removes them.
It has a chlorinated gas introduction means at the bottom of the furnace, and includes a fluidizing furnace for flowing the object to be processed by introducing the chlorinated gas,
A heavy metal containing material characterized in that a chlorination zone for chlorinating the heavy metals is formed in the lower space of the fluidizing furnace, and a volatilization treatment zone for volatilizing and separating the heavy metals is formed in the upper space. Detoxification processing equipment.
重金属類を含有する被処理物を塩素系ガスとともに加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類分離装置と、
前記分離した重金属類を含有する排ガスの再燃焼室と、該再燃焼した排ガスを冷却するガス冷却装置と、該冷却した排ガスを集塵する集塵装置と、を含む排ガス処理設備と、を備えた重金属類含有物質の無害化処理システムにおいて、
前記重金属類分離装置が、炉底に塩素系ガス導入手段を有し、塩素系ガスの導入により前記被処理物を流動させながら重金属類を塩化物化する流動化炉と、該塩化物化した重金属類を揮散分離する加熱炉とからなり、
前記塩素系ガスが、前記再燃焼室から引き抜いた塩素系排ガス若しくは該再燃焼室の下流側で且つ前記ガス冷却装置の上流側から引き抜いた塩素系排ガスであることを特徴とする重金属類含有物質の無害化処理システム。
A heavy metal separation device that heats an object to be treated containing heavy metals together with a chlorine-based gas, chlorinates the heavy metals, volatilizes them, and separates and removes them;
An exhaust gas treatment facility comprising a recombustion chamber for exhaust gas containing the separated heavy metals, a gas cooling device for cooling the reburned exhaust gas, and a dust collector for collecting the cooled exhaust gas. In the detoxification treatment system for heavy metal-containing substances,
The heavy metal separation device has a chlorine-based gas introduction means at the furnace bottom, and a fluidizing furnace for chlorinating heavy metals while flowing the material to be treated by introducing chlorine-based gas; and the chlorinated heavy metals A heating furnace that volatilizes and separates
The heavy metal-containing substance, wherein the chlorine-based gas is a chlorine-based exhaust gas extracted from the re-combustion chamber or a chlorine-based exhaust gas extracted from the downstream side of the re-combustion chamber and the upstream side of the gas cooling device Detoxification treatment system.
前記塩素系排ガスとともに、前記加熱炉から排出された塩素系排ガスの少なくとも一部を前記流動化炉に導入することを特徴とする請求項6記載の重金属類含有物質の無害化処理システム。
The heavy metal-containing material detoxification system according to claim 6, wherein at least a part of the chlorine-based exhaust gas discharged from the heating furnace is introduced into the fluidizing furnace together with the chlorine-based exhaust gas.
JP2005006523A 2004-03-12 2005-01-13 Detoxification treatment method and system for substances containing heavy metals Active JP4804008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005006523A JP4804008B2 (en) 2004-03-12 2005-01-13 Detoxification treatment method and system for substances containing heavy metals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004070702 2004-03-12
JP2004070702 2004-03-12
JP2005006523A JP4804008B2 (en) 2004-03-12 2005-01-13 Detoxification treatment method and system for substances containing heavy metals

Publications (2)

Publication Number Publication Date
JP2005288434A true JP2005288434A (en) 2005-10-20
JP4804008B2 JP4804008B2 (en) 2011-10-26

Family

ID=35321985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005006523A Active JP4804008B2 (en) 2004-03-12 2005-01-13 Detoxification treatment method and system for substances containing heavy metals

Country Status (1)

Country Link
JP (1) JP4804008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034591A (en) * 2007-07-31 2009-02-19 Mhi Environment Engineering Co Ltd Detoxification treatment apparatus and method for ash to be treated
JP2009045561A (en) * 2007-08-20 2009-03-05 Mhi Environment Engineering Co Ltd Rotary kiln and its operation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301103A (en) * 1999-04-21 2000-10-31 Shinsei Dental Laboratory:Kk Detoxification treatment of incineration ash or fly ash
JP2001011542A (en) * 1999-07-02 2001-01-16 Ct Umwelttechnik Ag Method for removing metal from residual material
JP2001121103A (en) * 1999-10-21 2001-05-08 Ebara Corp Detoxicating method of incineration fly ash
JP2002192118A (en) * 2000-12-27 2002-07-10 Taiheiyo Cement Corp Treating method and device for waste material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301103A (en) * 1999-04-21 2000-10-31 Shinsei Dental Laboratory:Kk Detoxification treatment of incineration ash or fly ash
JP2001011542A (en) * 1999-07-02 2001-01-16 Ct Umwelttechnik Ag Method for removing metal from residual material
JP2001121103A (en) * 1999-10-21 2001-05-08 Ebara Corp Detoxicating method of incineration fly ash
JP2002192118A (en) * 2000-12-27 2002-07-10 Taiheiyo Cement Corp Treating method and device for waste material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034591A (en) * 2007-07-31 2009-02-19 Mhi Environment Engineering Co Ltd Detoxification treatment apparatus and method for ash to be treated
JP2009045561A (en) * 2007-08-20 2009-03-05 Mhi Environment Engineering Co Ltd Rotary kiln and its operation method

Also Published As

Publication number Publication date
JP4804008B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
EP1161312B1 (en) Soil remediation system
JP3820269B2 (en) Municipal waste and other waste treatment
JP4678762B2 (en) Method and apparatus for detoxifying heavy metal-containing substances
JP4804008B2 (en) Detoxification treatment method and system for substances containing heavy metals
JP2008296080A (en) Method and apparatus for making heavy metal containing material harmless
JP2004154677A (en) Ash treatment system
JP2008275176A (en) Fluid bed-type combustion device using organic substance including chrome as fuel and detoxifying method of fly ash from fluid bed-type combustion device
JP5105993B2 (en) Detoxification treatment apparatus and method for treated ash
JP6541039B2 (en) Incineration ash processing apparatus and incineration ash processing method
EP0472567B1 (en) Treatment of process gases containing halogenous compounds
JP4350485B2 (en) Method and apparatus for firing and detoxifying multiple / mixed contaminants
JP2007225122A (en) Flying ash detoxifying method and its device
JP3248319B2 (en) Fly ash treatment method and device for refuse incinerator
AU2009238280B2 (en) Soil remediation system
JP2009172495A (en) Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals
JP5244416B2 (en) Incinerator and roasting equipment
JP2005195228A (en) Waste material melting treatment system
JP3704351B2 (en) Improvements in the process for heat treatment of residues from cleanup of fumes and industrial processes that emit fumes.
JP3735243B2 (en) Heat treatment method and apparatus for dust collection ash from waste gasification melting furnace
JP2009172523A (en) Ash treating method of roasting furnace, and roasting equipment
JP4068356B2 (en) Incineration residue treatment equipment
JP4069529B2 (en) Method and apparatus for detoxifying ash
JP2005098585A (en) Method of collecting incineration ash and incineration exhaust gas treatment system
JP3917775B2 (en) Recycling method of incineration ash
JP2005164059A (en) Waste incinerating treatment method and its plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4804008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250