JP4678762B2 - Method and apparatus for detoxifying heavy metal-containing substances - Google Patents

Method and apparatus for detoxifying heavy metal-containing substances Download PDF

Info

Publication number
JP4678762B2
JP4678762B2 JP2005006522A JP2005006522A JP4678762B2 JP 4678762 B2 JP4678762 B2 JP 4678762B2 JP 2005006522 A JP2005006522 A JP 2005006522A JP 2005006522 A JP2005006522 A JP 2005006522A JP 4678762 B2 JP4678762 B2 JP 4678762B2
Authority
JP
Japan
Prior art keywords
chlorine
exhaust gas
heavy metal
rotary kiln
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005006522A
Other languages
Japanese (ja)
Other versions
JP2005288433A (en
Inventor
紀允 小野寺
範明 仙波
洋民 山本
憲一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority to JP2005006522A priority Critical patent/JP4678762B2/en
Publication of JP2005288433A publication Critical patent/JP2005288433A/en
Application granted granted Critical
Publication of JP4678762B2 publication Critical patent/JP4678762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、汚染土壌、焼却灰、飛灰等に含まれる重金属類を無害化する技術であって、特に重金属類を塩化物化した後に加熱により揮散させて無害化する重金属類含有物質の無害化処理方法及び装置に関する。   The present invention is a technique for detoxifying heavy metals contained in contaminated soil, incinerated ash, fly ash, etc., and in particular, detoxifying heavy metal-containing materials that are detoxified by heating after chlorinating heavy metals. The present invention relates to a processing method and apparatus.

一般廃棄物、産業廃棄物を焼却処理することにより発生する焼却灰、飛灰中には様々な種類の重金属類が含有されている。また、重金属類の処理設備を具備しない焼却設備からは大気、土壌、地下水に重金属類含有物質が漏出する惧れがあり、他にも工場跡地、廃棄物埋立地等の土壌中には環境基準で定められた濃度以上の重金属類が存在していることがある。重金属類は毒性が強いものが多く、環境に悪影響を与えるのみならず生体内に蓄積され害を及ぼす。近年は、焼却灰、飛灰、土壌等に含有される重金属類の環境基準が制定されるなど、重金属類に対する規制が厳しくなる傾向にある。
重金属類を含有する物質を無害化する方法の一つとして、特許文献1(特開2001−132930号公報)には、重金属類を含有する焼却灰を融点以下に保持した焙焼炉にて加熱し、重金属類を揮散させた後に冷却し、分離回収する方法が提案されている。しかし、焼却灰に含まれる重金属類の殆どは酸化物であり、酸化物の形態で存在する重金属類は高沸点化合物であるため除去され難く、処理物に残留してしまうという難点がある。
Various types of heavy metals are contained in incineration ash and fly ash generated by incineration of general waste and industrial waste. Incinerators that do not have heavy metal treatment facilities may leak heavy metal-containing substances into the atmosphere, soil, and groundwater. In addition, there are environmental standards in soils such as factory sites and landfills. Heavy metals may be present in concentrations higher than those specified in. Many heavy metals are highly toxic and not only adversely affect the environment but also accumulate in the body and cause harm. In recent years, regulations on heavy metals tend to be stricter, such as the establishment of environmental standards for heavy metals contained in incinerated ash, fly ash, soil, and the like.
As one method for detoxifying substances containing heavy metals, Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-132930) discloses heating in an incinerator ash containing heavy metals at a melting point or lower. However, a method of cooling and separating and recovering after volatilizing heavy metals has been proposed. However, most of the heavy metals contained in the incinerated ash are oxides, and the heavy metals present in the form of oxides are high boiling point compounds, and thus are difficult to remove and remain in the treated product.

これを改善した方法として、特許文献2(特開2002−192118号公報)では、図10に示すようにタンク61に貯留された重金属類及び塩素を含有する廃棄物をロータリーキルン60内で加熱処理し、その際に発生する塩素系ガスにより重金属類を塩化物化して重金属類を揮散させる方法を開示している。
また、特許文献3(特開平11−114530号公報)では、まず加熱炉にて焼却灰等に塩素系ガスを供給して重金属類の塩化物化を図り、その後高温炉にて揮発処理を図る方法を開示している。
As a method for improving this, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-192118), as shown in FIG. 10, a waste containing heavy metals and chlorine stored in a tank 61 is heated in a rotary kiln 60. , A method of chlorinating heavy metals with a chlorine-based gas generated at that time to volatilize the heavy metals is disclosed.
In Patent Document 3 (Japanese Patent Application Laid-Open No. 11-114530), first, a chlorine-based gas is supplied to incineration ash or the like in a heating furnace to chlorinate heavy metals, and then a volatile treatment is performed in a high-temperature furnace. Is disclosed.

また、重金属類を含有する汚染土壌を浄化する方法が特許文献4(特開2003−340426号公報)等に記載されている。特許文献4では、汚染土壌の重金属類の分離処理において湿式工程と乾式工程の2つのうち何れかを選択するようにし、乾式工程では、汚染土壌にハロゲン源を添加して加熱し、重金属類をハロゲン化合物として揮散させて分離除去する方法を開示している。
このように、重金属類含有物質を塩素系ガスの存在下で加熱し、重金属類を低沸点で揮散し易いように塩化物化した後に昇温し、塩化物化した重金属類を揮散させ、冷却、捕集して重金属類を回収する塩化揮散法が重金属類の分離に有効な方法として提案されている。
A method for purifying contaminated soil containing heavy metals is described in Patent Document 4 (Japanese Patent Laid-Open No. 2003-340426) and the like. In Patent Document 4, either one of a wet process and a dry process is selected in the separation process of heavy metals in the contaminated soil. In the dry process, a halogen source is added to the contaminated soil and heated to remove heavy metals. A method of volatilizing and removing as a halogen compound is disclosed.
In this way, the heavy metal-containing substance is heated in the presence of a chlorine-based gas, and the heavy metal is chlorinated to facilitate volatilization at a low boiling point, and then the temperature is raised, and the chlorinated heavy metal is volatilized and cooled, trapped. Chlorination and volatilization methods for collecting and recovering heavy metals have been proposed as an effective method for separating heavy metals.

しかしながら、前記特許文献2では加熱処理により発生した塩素系ガスを焼却灰入口付近の排ガスラインに導き、排ガスの冷却、重金属類の回収を行なっているため、ロータリーキルン内で発生した塩素系ガスと重金属類とが十分に接触せず、重金属類の塩化物化が不十分となり処理物中に重金属類が残留してしまうことがある。また、特許文献3では、加熱炉の昇温に対して燃料消費が大きく、また加熱炉では塩素系ガスと処理物の接触効率が悪く、重金属類が残留してしまうなどの問題点がある。特許文献4ではロータリーキルン内に導入されたハロゲン源が気化して塩素系ガスとなる前に汚染土壌とともに排出されてしまう惧れがあり、塩素系ガスの発生量が少なく重金属類の塩化物化が不十分となるため重金属類の残留が懸念される。さらに、特許文献5(特開平11−179317号公報)では、前処理として、塩素系ガス源分解による塩素系ガス若しくは焼却炉排ガスを用い、焼却灰等の重金属類を600℃未満で加熱して塩化物化させ、その後600℃〜850℃程度の高温域で加熱処理を行ない重金属類を揮散して分離回収する方法を開示している。しかしこの場合、処理時間が長く温度制御が煩雑で手間がかかるという問題があり、また、焼却炉を具備しない設備には適用できないという問題がある。   However, in Patent Document 2, the chlorine-based gas generated by the heat treatment is led to the exhaust gas line near the incineration ash inlet to cool the exhaust gas and recover the heavy metals. May not be sufficiently contacted with the metal, resulting in insufficient chlorination of the heavy metal, and heavy metal may remain in the treated product. Further, in Patent Document 3, there is a problem that fuel consumption is large with respect to the temperature rise of the heating furnace, and in the heating furnace, the contact efficiency between the chlorine-based gas and the processed material is poor and heavy metals remain. In Patent Document 4, there is a possibility that the halogen source introduced into the rotary kiln will be discharged together with the contaminated soil before vaporizing into chlorinated gas, and the amount of chlorinated gas generated is small and chlorination of heavy metals is not possible. There is concern about the remaining heavy metals. Furthermore, in Patent Document 5 (Japanese Patent Laid-Open No. 11-179317), as a pretreatment, a chlorine-based gas or incinerator exhaust gas from a chlorine-based gas source decomposition is used, and heavy metals such as incineration ash are heated at less than 600 ° C. A method is disclosed in which it is chlorinated and then heat-treated in a high temperature range of about 600 ° C. to 850 ° C. to volatilize and recover heavy metals. However, in this case, there is a problem that the processing time is long and the temperature control is complicated and time-consuming, and there is a problem that it cannot be applied to equipment not equipped with an incinerator.

特開2001−132930号公報JP 2001-132930 A 特開2002−192118号公報JP 2002-192118 A 特開平11−114530号公報JP 11-114530 A 特開2003−340426号公報JP 2003-340426 A 特開平11−179317号公報Japanese Patent Laid-Open No. 11-179317

従って、本発明は上記従来技術の問題点に鑑み、重金属類と塩素系ガスが十分に接触し効率良く重金属類の塩化物化が行なわれ、重金属類の除去効率を高く維持して処理後の重金属類の残留を最小限に抑えることができ、かつ温度制御等の煩雑化を回避して運転操作の簡易化を可能とした重金属類含有物質の無害化処理方法及び装置を提供することを目的とする。   Therefore, in view of the above-mentioned problems of the prior art, the present invention allows heavy metals and chlorine-based gas to sufficiently come into contact with each other to efficiently chlorinate heavy metals, maintaining high removal efficiency of heavy metals and treating the heavy metals after treatment. An object of the present invention is to provide a detoxification method and apparatus for heavy metal-containing substances that can minimize the residue of metals and can simplify the operation by avoiding complications such as temperature control. To do.

そこで、本発明はかかる課題を解決するために、重金属類を含有する被処理物を塩素含有物質とともに加熱炉内で加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理方法において、
前記加熱炉が前記被処理物をキルン内に供給する投入ホッパと、該被処理物を投入ホッパから他端側に移送する手段を有する円筒状の炉本体と、該炉本体の前記投入ホッパと他端側に設けられた灰排出口と、前記炉本体の灰排出口側に設けられたバーナ部と、を有するロータリーキルンであって、
前記塩素含有物質が、前記被処理物から揮発した塩素分を含む塩素系排ガスであり、該塩素系排ガスを、前記ロータリーキルンの被処理物移送方向の中流部若しくは下流部に設けたガス導入口より導入し、排ガスをキルン内上流部に設けた排出口より排出して前記ガス導入口の被処理物移送方向の上流側で記重金属類の塩化物化を行い、
前記ガス導入口下流側のロータリーキルン内若しくはロータリーキルンの出口側に設けた再加熱炉で前記重金属類の揮散処理を行なうことを特徴とする。
Therefore, in order to solve such problems, the present invention heats an object to be processed containing heavy metals together with a chlorine-containing substance in a heating furnace, converts the heavy metals into chloride, volatilizes them, and separates and removes them. In the detoxification method for substances,
A charging hopper for supplying the workpiece into the kiln by the heating furnace ; a cylindrical furnace body having means for transferring the workpiece from the charging hopper to the other end; and the charging hopper of the furnace body; A rotary kiln having an ash discharge port provided on the other end side and a burner portion provided on the ash discharge port side of the furnace body ,
The chlorine-containing substance is a chlorine-based exhaust gas containing a chlorine content volatilized from the object to be processed, and the chlorine-based exhaust gas is provided from a gas inlet provided in the middle or downstream part in the object transfer direction of the rotary kiln. introducing city, exhaust gas was subjected to chlorination prior Symbol heavy metals in the object to be processed feeding direction upstream of and discharged from the discharge port formed in a kiln in an upstream portion the gas inlet,
The heavy metals are volatilized in a reheating furnace provided in the rotary kiln downstream of the gas inlet or on the outlet side of the rotary kiln .

本発明によれば、塩素系排ガスと被処理物とを向流接触させ、該被処理物の移送方向上流側で重金属類を塩化物化し、下流側で該塩化物化した重金属類を揮散処理することにより効率良く酸化物等の金属類を塩化物化でき、重金属類の除去効率を向上させることができる。塩素系ガスと被処理物とを向流接触させる本発明の構成は、最も反応効率を高く維持できる構成である。さらに、本発明ではロータリーキルンを採用し、該ロータリーキルンの温度勾配を利用することにより、一つの装置で塩化物化と揮散処理という一連の処理を同時に実施可能であるため、従来のような煩雑な温度制御が不要となり、操作の簡易化が図れる。
尚、本発明において前記塩素含有物質とは、例えば塩素ガス、塩化水素ガス等の気体、トリクロロエチレン、テトラクロロエチレン等の塩素系溶剤、若しくは固体の塩素ガス発生物質等が挙げられ、これは、この処理系統以外から供給するものであっても良いし、又は処理系統内から導くようにしたものであっても良い。
According to the present invention, the chlorine-based exhaust gas and the object to be treated are brought into counter-current contact, the heavy metal is chlorinated on the upstream side in the transfer direction of the object to be treated, and the chlorinated heavy metal is volatilized on the downstream side. As a result, metals such as oxides can be efficiently chlorinated, and the removal efficiency of heavy metals can be improved. The configuration of the present invention in which the chlorine-based gas and the object to be treated are brought into countercurrent contact is the configuration that can maintain the highest reaction efficiency. Furthermore, in the present invention, a rotary kiln is adopted, and a series of treatments of chlorination and volatilization treatment can be performed simultaneously in one apparatus by utilizing the temperature gradient of the rotary kiln. Is not necessary, and the operation can be simplified.
In the present invention, the chlorine-containing substance includes, for example, a gas such as chlorine gas or hydrogen chloride gas, a chlorine-based solvent such as trichloroethylene or tetrachloroethylene, or a solid chlorine gas-generating substance. It may be supplied from other than the above, or it may be guided from within the processing system.

また、前記塩素含有物質の導入位置が前記移送方向の中流部に設けられ、該中流部より上流側にて主として被処理物に含有される重金属類の塩化物化を行った後に下流側にて主として塩化物化した重金属類を揮散分離する。
本発明においても、被処理物を塩素系ガスと向流接触させことにより重金属類の塩化物化の反応効率を向上させることができる。また本発明では被処理物の移送方向中流部から塩素含有物質を導入することにより、塩化物化した重金属類の揮散処理に要する滞留時間を十分にとることができ、重金属類の除去効率を向上させることができる。
In addition, the introduction position of the chlorine-containing substance is provided in the middle stream portion in the transfer direction, and mainly after the chlorination of heavy metals contained in the workpiece on the upstream side from the middle stream portion, mainly on the downstream side. It volatilization separated chlorination with heavy metals.
Also in the present invention, the reaction efficiency of chlorination of heavy metals can be improved by bringing the material to be treated into countercurrent contact with the chlorine-based gas. Further, in the present invention, by introducing the chlorine-containing substance from the middle part in the transfer direction of the object to be processed, the residence time required for volatilization treatment of the chlorinated heavy metals can be sufficiently taken, and the removal efficiency of heavy metals is improved. be able to.

さらに、前記被処理物に含有される重金属類の成分比率に基づき前記塩素含有物質の導入位置を選択し、低沸点重金属類の成分比率が大である場合には前記導入位置を前記中流部側とし、高沸点重金属類の成分比率が大である場合には前記導入位置を前記下流部側とすることを特徴とする。
このように、被処理物に応じて塩素含有物質の導入位置を選択することにより、一層の反応効率の向上が達成できる。これは、重金属類の塩化物化反応において、塩化物化に適した温度域より高い温度とすると、ガス中に含まれるケイ素酸化物等の酸化物と反応して重金属類が酸化物化してしまう惧れがある。従って、低沸点重金属類を多く含む場合にはロータリーキルン内の比較的温度が低い中流部より上流側で塩化物化することにより、重金属類の塩化物化が円滑に行なわれ、高沸点の酸化物を生成することがない。
一方、高沸点重金属類を多く含む場合には、比較的温度が高い中流部より下流側で塩化物化することが好ましい。このとき、重金属類の含有比率に応じてロータリーキルン内の温度設定を異ならせても良いことは勿論である。
Furthermore, the introduction position of the chlorine-containing substance is selected based on the component ratio of heavy metals contained in the object to be treated, and when the component ratio of low boiling point heavy metals is large, the introduction position is set to the middle stream side. When the component ratio of the high-boiling heavy metals is large, the introduction position is on the downstream side.
Thus, the reaction efficiency can be further improved by selecting the introduction position of the chlorine-containing substance according to the object to be treated. This is because, in the chlorination reaction of heavy metals, if the temperature is higher than the temperature range suitable for chlorination, the heavy metals may be oxidized by reacting with oxides such as silicon oxide contained in the gas. There is. Therefore, when a large amount of low-boiling heavy metals are contained, chlorination of the heavy metals is performed smoothly by chlorination on the upstream side of the midstream portion where the temperature is relatively low in the rotary kiln, and high-boiling oxides are generated. There is nothing to do.
On the other hand, when a large amount of high-boiling point heavy metals is contained, it is preferable to chlorinate on the downstream side of the midstream portion having a relatively high temperature. At this time, of course, the temperature setting in the rotary kiln may be varied according to the content ratio of heavy metals.

さらにまた、前記被処理物の含水率に基づき前記塩素含有物質の導入位置を選択し、含水率が大である場合には前記導入位置を前記下流部側とし、含水率が小である場合には前記導入位置を前記中流部側とすることを特徴とする。
本発明では、高含水率の被処理物の場合、塩素含有物質の導入位置を下流部側とすることで、被処理物の乾燥を十分に行なうことができ、その後の重金属類の塩化物化及び揮散処理が円滑に行なわれる。また、低含水率の被処理物の場合には、前記導入位置を中流部側とすることで、塩化物化された重金属類の揮散処理反応に十分な滞留時間をとることができ、重金属類の除去効率を向上させることができる。
Furthermore, when the introduction position of the chlorine-containing substance is selected based on the moisture content of the object to be treated, and the moisture content is large, the introduction position is the downstream portion side, and the moisture content is small. Is characterized in that the introduction position is on the midstream side.
In the present invention, in the case of an object to be treated having a high water content, by setting the introduction position of the chlorine-containing substance on the downstream side, the object to be treated can be sufficiently dried, and the subsequent chlorination of heavy metals and Volatilization is performed smoothly. In addition, in the case of an object to be treated with a low water content, by setting the introduction position on the middle stream side, a sufficient residence time can be taken for the volatilization treatment reaction of chlorinated heavy metals. Removal efficiency can be improved.

また、参考例として重金属類を含有する被処理物を塩素含有物質とともに加熱炉内で加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理方法において、
前記塩素含有物質が、前記被処理物から揮発した塩素分を含む塩素系排ガスであり、
前記加熱炉から排出される塩素系排ガスの少なくとも一部を該加熱炉に戻して循環させ、該塩素系排ガスと前記被処理物の接触により重金属類の塩化物化を行なうことを特徴とする。
In addition, in a detoxification method for a heavy metal-containing material that is heated in a heating furnace together with a chlorine-containing material as a reference example in a heating furnace, volatilizes the heavy metal, and then volatilizes and removes it,
The chlorine-containing substance is a chlorine-based exhaust gas containing a chlorine component volatilized from the object to be treated,
At least a part of the chlorine-based exhaust gas discharged from the heating furnace is returned to the heating furnace and circulated, and chlorination of heavy metals is performed by contact between the chlorine-based exhaust gas and the object to be treated.

このように、参考例は、前記塩素含有物質を含有する塩素系排ガスを循環させることにより、排ガス中に含有する塩素量を増加させることなく重金属類の塩化物化を図ることができ、後段に設置される排ガス処理設備における脱塩処理の負荷を軽減することができる。また、排ガス処理設備の配管や各種機器の塩素による腐食を抑制することもできる。
本発明では、塩素系排ガス中の塩素含有量が塩化物化に不足である場合には、外部から塩素含有物質を添加するようにしても良い。
Thus, the reference example can chlorinate heavy metals without increasing the amount of chlorine contained in the exhaust gas by circulating the chlorine-based exhaust gas containing the chlorine-containing substance, and is installed in the latter stage. The load of the desalination treatment in the exhaust gas treatment facility to be performed can be reduced. Moreover, corrosion by chlorine in the piping of exhaust gas treatment equipment and various devices can be suppressed.
In the present invention, when the chlorine content in the chlorinated exhaust gas is insufficient for chlorination, a chlorine-containing substance may be added from the outside.

また、他の参考例として、重金属類を含有する被処理物を塩素含有物質とともに加熱炉内で加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理方法において、
前記加熱炉がロータリーキルンであって、該ロータリーキルン内に被処理物移送方向に対してガス流の向流流れを形成するとともに、
前記移送方向の上流側にガス流の乱流域を形成して主として前記重金属類の塩化物化を行い、下流側にガス流の層流域を形成して主として前記重金属類の揮散処理を行なうことを特徴とする。
In addition, as another reference example, a detoxification treatment of a heavy metal-containing material that is heated in a heating furnace together with a chlorine-containing material to remove a heavy metal-containing material that is chlorinated and then separated and removed. In the method
The heating furnace is a rotary kiln, and forms a countercurrent flow of a gas flow with respect to the workpiece transfer direction in the rotary kiln,
A gas flow turbulent flow region is formed on the upstream side in the transfer direction to mainly chlorinate the heavy metal, and a gas flow laminar region is formed on the downstream side to mainly perform the volatilization treatment of the heavy metal. And

参考例によれば、前記塩素系排ガスと前記被処理物との接触効率を調整することが可能となり、前記上流側の乱流域では接触効率が高く塩化物化が促進され、前記下流側の層流域では接触効率が低く揮散処理が促進される。従って従来のように未揮散の塩化物化物質の排出を低減することができる。 According to this reference example , it is possible to adjust the contact efficiency between the chlorine-based exhaust gas and the object to be processed, and the contact efficiency is high in the upstream turbulent region, and chlorination is promoted. In the basin, the contact efficiency is low and the volatilization process is promoted. Therefore, the emission of non-volatile chloride substances can be reduced as in the prior art.

また、前記発明において、前記ロータリーキルン出口側から排出された前記被処理物を再加熱する再加熱炉を備え、前記再加熱炉の温度域を800〜1200℃の温度域に維持して前記重金属類の揮散処理を行なう。 Moreover, in the said invention, the reheating furnace which reheats the said to-be-processed object discharged | emitted from the rotary kiln exit side is provided, The temperature range of the said reheating furnace is maintained in the temperature range of 800-1200 degreeC, and said heavy metals Volatilization treatment is performed.

本発明によれば、塩化物化を行なう加熱炉の他に、揮散処理を主体的に行なう加熱炉を設ける構成とすることにより、前段の加熱炉にて塩化物化した重金属類が揮散せずに残留した場合であっても、後段側の加熱炉により完全に揮散させることができ、重金属類の残留を抑制することが可能となる。また、前記後段側の加熱炉では、既に加熱されて昇温された高温の被処理物が供給されるため、熱エネルギ供給の削減が期待できる。さらに、前記前段側の加熱炉から後段側の加熱炉に移送される際に、被処理物が撹拌されて内部に存在していた未反応物質が表面に露出し、後段側の加熱炉における塩化物化、揮散処理が効率良く行われることとなる。尚、前記後段の加熱炉に塩化物含有物質を導入する構成としても良く、これにより重金属類の残留を最小限に抑えることが可能となる。   According to the present invention, in addition to a heating furnace that performs chlorination, a heating furnace that mainly performs volatilization treatment is provided, so that heavy metals chlorinated in the previous heating furnace remain without volatilization. Even in such a case, it can be completely volatilized by the heating furnace on the rear stage side, and it is possible to suppress heavy metal residues. Moreover, since the high-temperature to-be-processed object already heated and heated is supplied in the said heating furnace of the back | latter stage side, reduction of a thermal energy supply can be anticipated. Further, when the material to be processed is agitated and transferred to the subsequent heating furnace from the preceding heating furnace, unreacted substances existing inside are exposed on the surface, and the chlorination in the subsequent heating furnace is performed. Materialization and volatilization processing will be performed efficiently. In addition, it is good also as a structure which introduce | transduces a chloride containing substance into the said latter heating furnace, and it becomes possible to suppress the residue of heavy metals to the minimum by this.

さらに、前記前段側に位置する加熱炉がロータリーキルンであって、該ロータリーキルン内にガス流の乱流域を形成することが好適である。
これにより、塩素含有物質を含む塩素系排ガスと被処理物との接触効率が向上し、重金属類の塩化物化を効率良く行なうことができるようになる。
Furthermore, it is preferable that the heating furnace located on the front stage side is a rotary kiln, and a turbulent flow region of gas flow is formed in the rotary kiln.
As a result, the contact efficiency between the chlorine-based exhaust gas containing the chlorine-containing substance and the object to be processed is improved, and the chlorination of heavy metals can be performed efficiently.

また、これらを好適に実施する装置の発明として、重金属類を含有する被処理物の供給手段と、該被処理物の加熱手段と、塩素含有物質の導入口とを有する加熱炉からなり、該加熱炉内にて前記被処理物と前記塩素含有物質を加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理装置において、
前記加熱炉が前記被処理物をキルン内に供給する投入ホッパと、該被処理物を投入ホッパから他端側に移送する手段を有する円筒状の炉本体と、該炉本体の前記投入ホッパと他端側に設けられた灰排出口と、前記炉本体の灰排出口側に設けられたバーナ部と、を有するロータリーキルンであって、
前記塩素含有物質が、前記被処理物から揮発した塩素分を含む塩素系排ガスであり、該塩素系排ガス導入口を、前記ロータリーキルンの被処理物移送方向の中流部若しくは下流部に設け、前記塩素含有物質を含む塩素系排ガスが前記移送方向と向流流れを形成するように構成するとともに、該導入口の上流側に前記重金属類の塩化物化領域を形成し、下流側のロータリーキルン内若しくはロータリーキルンの出口側に設けた再加熱炉に該重金属類の揮散処理領域を形成したことを特徴とする。
Further, as an invention of an apparatus for suitably carrying out these, a heating furnace having a supply means for an object to be processed containing heavy metals, a heating means for the object to be processed, and an inlet for a chlorine-containing substance, In the detoxification processing apparatus for the heavy metal-containing material that heats the object to be processed and the chlorine-containing material in a heating furnace, volatilizes the heavy metal and then volatilizes and separates and removes it,
A charging hopper for supplying the workpiece into the kiln by the heating furnace ; a cylindrical furnace body having means for transferring the workpiece from the charging hopper to the other end; and the charging hopper of the furnace body; A rotary kiln having an ash discharge port provided on the other end side and a burner portion provided on the ash discharge port side of the furnace body ,
The chlorine-containing substance is a chlorine-based exhaust gas containing a chlorine content volatilized from the object to be processed, and the chlorine-based exhaust gas inlet is provided in the middle or downstream part in the object transfer direction of the rotary kiln, The chlorinated exhaust gas containing the contained material is configured so as to form a counter-current flow with the transfer direction, and a chlorination region of the heavy metal is formed on the upstream side of the inlet, so that the inside of the rotary kiln on the downstream side or the rotary kiln The heavy metal volatilization treatment region is formed in a reheating furnace provided on the outlet side .

また前記発明において、前記塩素含有物質導入口を前記移送方向の中流部に設け、該導入口の上流側に前記重金属類の塩化物化領域を形成し、下流側に該重金属類の揮散処理領域を形成する。
さらに、前記塩素含有物質導入口の位置が前記被処理物に含有される重金属類の成分比率に基づき選択され、低沸点重金属類の成分比率が大である場合には前記導入口位置を前記中流部側とし、高沸点重金属類の成分比率が大である場合には前記導入口位置を前記下流部側とすることが好適であり、また前記塩素含有物質導入口の位置が前記被処理物の含水率に基づき選択され、含水率が大である場合には前記導入口位置を前記下流部側とし、含水率が小である場合には前記導入口位置を前記中流部側とする構成としても良い。
In the present invention, the chlorine-containing substance inlet is provided in the middle portion of the transfer direction, the chlorination region of the heavy metal is formed on the upstream side of the inlet, and the volatilization treatment region of the heavy metal is provided on the downstream side. that form shape.
Further, the position of the chlorine-containing substance introduction port is selected based on the component ratio of heavy metals contained in the object to be processed, and when the component ratio of the low boiling point heavy metals is large, the position of the introduction port is set to the middle stream. When the component ratio of the high boiling point heavy metals is large, it is preferable that the inlet position is the downstream part side, and the position of the chlorine-containing substance inlet is the position of the workpiece. It is selected based on the moisture content, and when the moisture content is large, the inlet position is the downstream portion side, and when the moisture content is small, the inlet position is the midstream portion side. good.

さらにまた、前記ロータリーキルンから排出される塩素系排ガスの少なくとも一部を分岐させる分岐流量調整弁と、該分岐した塩素系排ガスを該加熱炉に戻して循環させる排ガス循環ラインを設け、該塩素系排ガスと前記被処理物の接触により重金属類の塩化物化を行なうことを特徴とする。
このとき、前記加熱炉に供給前の被処理物の塩素含有量、前記加熱炉から排出された処理物の重金属含有量、若しくは前記塩素系排ガスの塩素含有量を検出する手段を設け、該検出した値に基づき前記分岐流量調整弁を制御して塩素系排ガスの循環量を調節することが好ましい。
Furthermore, a branch flow rate adjusting valve for branching at least a part of the chlorine-based exhaust gas discharged from the rotary kiln , and an exhaust gas circulation line for circulating the branched chlorine-based exhaust gas back to the heating furnace are provided. And chlorination of heavy metals by contact with the object to be treated.
At this time, means for detecting the chlorine content of the workpiece before supply to the heating furnace, the heavy metal content of the processed material discharged from the heating furnace, or the chlorine content of the chlorine-based exhaust gas is provided, and the detection is performed. It is preferable to adjust the circulation amount of the chlorine-based exhaust gas by controlling the branch flow rate adjusting valve based on the obtained value.

また、参考例として重金属類を含有する被処理物の供給手段と、該被処理物の加熱手段と、塩素含有物質の導入口とを有する加熱炉からなり、該加熱炉内にて前記被処理物と前記塩素含有物質を加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理装置において、
前記加熱炉がロータリーキルンであって、前記塩素含有物質導入口を被処理物移送方向の中流部から下流部の何れかの位置に設け、前記被処理物供給手段側に排ガス出口を設けて前記移送方向に対してガス流の向流流れを形成し、
前記ロータリーキルンの前記移送方向の上流側にガス流の乱流域を形成して主として前記重金属類の塩化物化を行い、下流側にガス流の層流域を形成して主として前記重金属類の揮発化を行なうことを特徴とする。
Further, as a reference example, it comprises a heating furnace having means for supplying an object to be processed containing heavy metals, a means for heating the object to be processed, and an introduction port for a chlorine-containing substance, and the object to be processed in the heating furnace In a detoxification device for heavy metal-containing material, the product and the chlorine-containing material are heated, the heavy metal is chlorinated, and then volatilized and separated and removed.
The heating furnace is a rotary kiln, and the chlorine-containing substance introduction port is provided at any position from the midstream portion to the downstream portion in the workpiece transfer direction, and the exhaust gas outlet is provided on the workpiece supply means side for the transfer. Form a countercurrent flow of gas flow to the direction,
A turbulent flow region of gas flow is formed upstream of the rotary kiln in the transfer direction to mainly chlorinate heavy metals, and a laminar flow region of gas flow is formed downstream to mainly volatilize the heavy metals. It is characterized by that.

さらに、前記ロータリーキルン出口側から排出された前記被処理物を再加熱する再加熱炉を備え、前記再加熱炉の温度域を800〜1200℃の温度域に維持して前記重金属類の揮散処理を行なうことを特徴とする。
さらにまた、前記前段側の加熱炉がロータリーキルンであって、該ロータリーキルン内にてガス流の乱流域を形成することを特徴とする。
Further, the rotary kiln the discharged from the outlet side comprising a reheating furnace for re-heating an object, the volatilization treatment before Symbol heavy metals to maintain the temperature range of the reheating furnace to a temperature range of 800 to 1200 ° C. It is characterized by performing.
Furthermore, the heating furnace at the front stage is a rotary kiln, and a turbulent flow region of gas flow is formed in the rotary kiln.

以上記載のごとく本発明によれば、塩素系ガスと被処理物とを向流接触させ、該被処理物の移送方向上流側で重金属類を塩化物化し、下流側で該塩化物化した重金属類を揮散処理することにより効率良く酸化物等の金属類を塩化物化でき、重金属類の除去効率を向上させることができる。また、本発明ではロータリーキルンを採用し、該ロータリーキルンの温度勾配を利用することにより、一つの装置で塩化物化と揮散処理という一連の処理を同時に実施可能であるため、従来のような煩雑な温度制御が不要となり、操作の簡易化が図れる。   As described above, according to the present invention, the chlorine-based gas and the object to be treated are brought into countercurrent contact, and the heavy metal is chlorinated on the upstream side in the transfer direction of the object to be treated, and the chlorinated heavy metal on the downstream side. By volatilization treatment, metals such as oxides can be efficiently chlorinated, and the removal efficiency of heavy metals can be improved. In addition, the present invention employs a rotary kiln, and by utilizing the temperature gradient of the rotary kiln, it is possible to simultaneously perform a series of treatments of chlorination and volatilization treatment with a single device. Is not necessary, and the operation can be simplified.

また、本発明では被処理物の移送方向中流部から塩素含有物質を導入することにより、上流側で塩化物化した重金属類の揮散処理に要する滞留時間を十分にとることができ、重金属類の除去効率を向上させることができる。
さらに、被処理物に応じて塩素含有物質の導入位置を選択することにより、一層の反応効率の向上が達成できる。
また、加熱炉から排出された塩素系排ガスを循環させることにより、排ガス中に含有する塩素量を増加させることなく重金属類の塩化物化を図ることができ、後段に設置される排ガス処理設備における脱塩処理の負荷を軽減することができ、さらに、排ガス処理設備の配管や各種機器の塩素による腐食を抑制することもできる。
Further, in the present invention, by introducing a chlorine-containing substance from the middle part in the transfer direction of the object to be treated, sufficient residence time required for the volatilization treatment of the chlorinated heavy metals on the upstream side can be taken, and the removal of heavy metals Efficiency can be improved.
Furthermore, the reaction efficiency can be further improved by selecting the introduction position of the chlorine-containing substance according to the object to be treated.
Also, by circulating the chlorine-based exhaust gas discharged from the heating furnace, chlorination of heavy metals can be achieved without increasing the amount of chlorine contained in the exhaust gas. The load of salt treatment can be reduced, and furthermore, corrosion of chlorine in exhaust gas treatment equipment piping and various devices can be suppressed.

また、加熱炉内の被処理物移送方向の上流側にガス流の乱流域を形成し、下流側にガス流の層流域を形成することにより、前記塩素系排ガスと前記被処理物との接触効率を調整することが可能となり、未揮散の塩化物化物質の排出を低減することができる。
また、塩化物化を行なう加熱炉の他に、揮散処理を主体的に行なう加熱炉を設ける構成とすることにより、前段の加熱炉にて塩化物化した重金属類が揮散せずに残留した場合であっても、後段の加熱炉により完全に揮散させることができ、重金属類の残留を抑制することが可能となる。
さらに、前記前段側に位置する加熱炉内にガス流の乱流域を形成することにより、塩素含有物質を含む塩素系排ガスと被処理物との接触効率が向上し、重金属類の塩化物化を効率良く行なうことができるようになる。
Further, by forming a turbulent flow region of the gas flow on the upstream side of the workpiece transfer direction in the heating furnace and forming a laminar flow region of the gas flow on the downstream side, contact between the chlorine-based exhaust gas and the workpiece The efficiency can be adjusted, and the emission of non-volatile chloride substances can be reduced.
In addition to the heating furnace that performs chlorination, a heating furnace that mainly performs volatilization treatment is provided, so that heavy metals that have been chlorinated in the previous heating furnace remain without volatilization. However, it can be completely volatilized by a subsequent heating furnace, and the residual heavy metals can be suppressed.
Furthermore, by forming a turbulent flow region in the heating furnace located on the preceding stage side, the contact efficiency between the chlorine-based exhaust gas containing chlorine-containing substances and the object to be treated is improved, and the chlorination of heavy metals is efficiently performed. You can do well.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本実施例1に係る重金属類含有物質の処理装置を具備した灰処理システムの全体構成図、図2は本実施例2に係る重金属類含有物質の処理装置の構成図、図3は本実施例3に係る重金属類含有物質の処理装置を具備した灰処理システムの全体構成図、図4は本実施例4に係る重金属類含有物質の処理装置を具備した灰処理システムの全体構成図、図5、図6は夫々他の実施例5、6に係る重金属類含有物質の処理装置の概略図、図8は図1の処理装置を模擬した試験装置を示す装置構成図である。
本実施例はPb、Zn、As、Cd、Cr、Se、Hg、Sb、Cuなどの重金属類を分離除去する技術であり、被処理物には例えば汚染土壌、焼却灰、飛灰等が挙げられるが、特に本実施例では一例として焼却灰の無害化処理につき説明する。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is an overall configuration diagram of an ash treatment system including a heavy metal containing substance processing apparatus according to the first embodiment, FIG. 2 is a configuration diagram of a heavy metal containing substance processing apparatus according to the second embodiment, and FIG. FIG. 4 is an overall configuration diagram of an ash treatment system equipped with a heavy metal containing substance processing apparatus according to the third embodiment. FIG. 4 is an overall configuration diagram of an ash treatment system equipped with a heavy metal containing substance processing apparatus according to the fourth embodiment. 5 and 6 are schematic views of a processing apparatus for heavy metal containing substances according to other Examples 5 and 6, respectively, and FIG. 8 is an apparatus configuration diagram showing a test apparatus simulating the processing apparatus of FIG.
This example is a technique for separating and removing heavy metals such as Pb, Zn, As, Cd, Cr, Se, Hg, Sb, Cu, etc., and examples of treated materials include contaminated soil, incinerated ash, fly ash, etc. In particular, in the present embodiment, the incineration ash detoxification process will be described as an example.

図1に示した灰処理システムは、焼却設備より排出された焼却灰、飛灰を無害化処理するシステムであり、焼却灰30の粉砕処理等を行う前処理装置20と、前処理された焼却灰30及び飛灰等の細粒灰を混合した被処理物を加熱し、該被処理物中に含まれる重金属類を分離除去するロータリーキルン10と、該ロータリーキルン10より排出される排ガスを処理する排ガス処理設備と、から構成される。
前記排ガス処理設備は、前記ロータリーキルン10より排出される重金属類を含む排ガスを補助燃料34の供給により燃焼させ、該排ガス中に含まれるダイオキシン類等の分解除去を行なう再燃焼室21と、該再燃焼室21から排出される高温排ガスと燃焼用空気36とを熱交換し、該燃焼用空気36を予熱するとともに前記高温排ガスを冷却する空気予熱器22と、該空気予熱器22により冷却された排ガスを冷却水噴霧等により約250℃以下まで冷却するガス冷却塔25と、冷却された排ガス中の飛灰37を捕集するバグフィルタ26と、該バグフィルタから誘引ファン27により排出された排ガスを外部に排気する煙突28と、を備えている。
The ash treatment system shown in FIG. 1 is a system for detoxifying incineration ash and fly ash discharged from an incineration facility, and includes a pretreatment device 20 for pulverizing the incineration ash 30 and the like, and a pretreatment incineration. A rotary kiln 10 that heats an object to be processed in which fine ash such as ash 30 and fly ash is mixed, separates and removes heavy metals contained in the object to be processed, and an exhaust gas that processes exhaust gas discharged from the rotary kiln 10. And processing equipment.
The exhaust gas treatment facility combusts exhaust gas containing heavy metals discharged from the rotary kiln 10 by supplying auxiliary fuel 34, decomposes and removes dioxins and the like contained in the exhaust gas, and the re-combustion chamber 21. The high temperature exhaust gas discharged from the combustion chamber 21 and the combustion air 36 are heat-exchanged, the combustion air 36 is preheated and the high temperature exhaust gas is cooled, and the air preheater 22 is cooled. A gas cooling tower 25 that cools the exhaust gas to about 250 ° C. or less by cooling water spray or the like, a bag filter 26 that collects fly ash 37 in the cooled exhaust gas, and an exhaust gas discharged from the bag filter by the induction fan 27 And a chimney 28 for exhausting the air to the outside.

前記ロータリーキルン10は、前記焼却灰30を含む被処理物をキルン内に供給する投入ホッパ11と、該被処理物を投入ホッパ11から他端側に移送する手段を有する円筒状の炉本体12と、該炉本体12の前記投入ホッパ11と他端側に設けられた灰排出口15と、前記炉本体12の灰排出口15側に設けられたバーナ部13と、を有する構成となっている。ロータリーキルン10内に導入された被処理物は、前記灰排出口15に移送されながら、前記バーナ部13が空気33及び補助燃料34の供給により生成した火炎によって焙焼される。このとき、ロータリーキルン10内は、酸素不足状態若しくは無酸素状態の還元性雰囲気とし、被処理物が酸化燃焼されないようにする。   The rotary kiln 10 includes a charging hopper 11 for supplying an object to be processed including the incinerated ash 30 into the kiln, and a cylindrical furnace body 12 having means for transferring the object to be processed from the charging hopper 11 to the other end side. The ash discharge port 15 provided on the other end side of the charging hopper 11 of the furnace body 12 and the burner portion 13 provided on the ash discharge port 15 side of the furnace body 12 are provided. . The workpiece introduced into the rotary kiln 10 is roasted by the flame generated by the supply of the air 33 and the auxiliary fuel 34 while the burner unit 13 is transferred to the ash discharge port 15. At this time, the rotary kiln 10 has a reducing atmosphere in an oxygen-deficient state or an oxygen-free state so that the object to be processed is not oxidized and burned.

また、本実施例1の特徴的な構成として、前記炉本体12の前記灰排出口15の近傍に塩素系ガス導入口14を設けるとともに、前記投入ホッパ11の近傍に炉本体内のガスを排出する排ガス排出口を設けている。かかる構成により、炉本体内に被処理物の移送方向と対向するガス流の向流流れを形成している。
前記塩素系ガス導入口14から導入する塩素系ガス32は、塩素ガス、塩化水素ガス等の塩素系ガスが挙げられ、該塩素系ガスの他に、トリクロロエチレン、テトラクロロエチレン等の塩素系溶剤、若しくは固体の塩素ガス発生物質等のように、高温下で塩素系ガスを発生する液体、固体も用いることができる。
In addition, as a characteristic configuration of the first embodiment, a chlorine-based gas introduction port 14 is provided in the vicinity of the ash discharge port 15 of the furnace body 12, and gas in the furnace body is discharged in the vicinity of the charging hopper 11. An exhaust gas exhaust port is provided. With such a configuration, a counter-current flow of a gas flow is formed in the furnace body opposite to the transfer direction of the workpiece.
Examples of the chlorine-based gas 32 introduced from the chlorine-based gas inlet 14 include chlorine-based gases such as chlorine gas and hydrogen chloride gas. In addition to the chlorine-based gases, chlorine-based solvents such as trichlorethylene and tetrachloroethylene, or solids A liquid or solid that generates a chlorine-based gas at a high temperature, such as a chlorine gas generating substance, can be used.

前記炉本体12内は、前記投入ホッパ11側が600℃未満となるようにし、前記バーナ部13側が被処理物の融点以下、例えば500℃〜1200℃程度となるように、前記空気33及び補助燃料34の供給量を制御する。
本実施例において、前記ロータリーキルン10内では、重金属類を含む被処理物が前記塩素系ガスと向流接触し、該ロータリーキルン10の被処理物移送方向の上流側で重金属類が塩化物化し、下流側で該塩化物化した重金属類が揮散し、揮散した重金属類はガス中に混入して前記排ガス排出口より排出される。
In the furnace main body 12, the air 33 and auxiliary fuel are set so that the charging hopper 11 side is less than 600 ° C. and the burner portion 13 side is below the melting point of the workpiece, for example, about 500 ° C. to 1200 ° C. 34 is controlled.
In the present embodiment, in the rotary kiln 10, an object to be processed containing heavy metals comes into countercurrent contact with the chlorine-based gas, and heavy metals are chlorinated on the upstream side of the rotary kiln 10 in the object transfer direction, and downstream. The chlorinated heavy metals are volatilized on the side, and the volatilized heavy metals are mixed in the gas and discharged from the exhaust gas outlet.

このように、塩素系ガスを向流流れにて被処理物に接触させることにより、効率良く重金属類を塩化物化することができ、重金属類の除去効率を向上させることができる。また、本実施例ではロータリーキルン10を利用して塩化揮散処理を行っているため、一つの装置で塩化物化と揮散処理という一連の処理を同時に実施可能であり、従来のような煩雑な温度制御が不要となり、操作の簡易化が図れる。
尚、前記排ガスに含まれて排出された重金属類は、前記再燃焼室21、空気予熱器22を経てガス冷却塔25に導入され、該ガス冷却塔25にて重金属類の融点以下まで冷却され、析出した重金属類は回収され、再利用又は廃棄される。また、前記炉本体12で無害化された灰は灰冷却装置16にて冷却され、焙焼灰35として排出される。
Thus, by bringing the chlorine-based gas into contact with the object to be processed in a countercurrent flow, heavy metals can be efficiently chlorinated, and the removal efficiency of heavy metals can be improved. Further, in the present embodiment, since the chlorination treatment is performed using the rotary kiln 10, a series of treatments of chlorination and volatile treatment can be performed simultaneously with one apparatus, and the conventional complicated temperature control can be performed. It becomes unnecessary and simplifies the operation.
The exhausted heavy metals contained in the exhaust gas are introduced into the gas cooling tower 25 through the recombustion chamber 21 and the air preheater 22, and are cooled to the melting point of the heavy metals or less by the gas cooling tower 25. The deposited heavy metals are collected and reused or discarded. The ash detoxified in the furnace body 12 is cooled by the ash cooling device 16 and discharged as roasted ash 35.

また、本実施例の別の形態として、前記被処理物に含有される重金属類の成分比率に基づき、前記塩素系ガス導入口14の位置を選択する構成としても良い。このとき、被処理物中の低沸点重金属類の成分比率が大である場合には前記塩素系ガス導入口14を被処理物の移送方向中流部側とし、高沸点重金属類の成分比率が大である場合には下流部側とする。これは、重金属類の塩化物化反応において、塩化物化に適した温度域より高い温度とすると、ガス中に含まれるケイ素酸化物等の酸化物と反応して重金属類が酸化物化してしまう惧れがあるため、低沸点重金属類を多く含む場合にはロータリーキルン10内の比較的温度が低い中流部より上流側で塩化物化することにより、重金属類の塩化物化が円滑に行なわれ、高沸点の酸化物を生成することがない。
一方、高沸点重金属類を多く含む場合には、比較的温度が高い下流部側で塩化物化することが好ましい。
As another form of the present embodiment, the position of the chlorine-based gas inlet 14 may be selected based on the component ratio of heavy metals contained in the object to be processed. At this time, when the component ratio of the low-boiling point heavy metals in the object to be processed is large, the chlorine gas inlet 14 is set to the midstream part side in the transfer direction of the object to be processed, and the component ratio of the high boiling point heavy metals is large. If it is, it will be the downstream side. This is because, in the chlorination reaction of heavy metals, if the temperature is higher than the temperature range suitable for chlorination, the heavy metals may be oxidized by reacting with oxides such as silicon oxide contained in the gas. Therefore, when a large amount of low-boiling point heavy metals is contained, chlorination of heavy metals is performed smoothly by chlorination on the upstream side of the middle stream portion in the rotary kiln 10 where the temperature is relatively low. There is no production.
On the other hand, when a large amount of high-boiling heavy metals is contained, it is preferable to chlorinate on the downstream side where the temperature is relatively high.

また別の実施態様として、被処理物の含水率に基づき、前記塩素系ガス導入口の位置を選択する構成としても良い。このとき、含水率が大である場合には前記塩素系ガス導入口14を前記下流部側とし、含水率が小である場合には前記塩素系ガス導入口14を前記中流部側とする。これは、高含水率の被処理物の場合、塩素系ガス導入口を下流部側とすることで、被処理物の乾燥を十分に行なうことができ、その後の重金属類の塩化物化及び揮散処理が円滑に行なわれ、また、低含水率の被処理物の場合には、前記塩素系ガス導入口14を中流部側とすることで、塩化物化された重金属類の揮散化反応に十分な時間をとることができ、重金属類の除去効率を向上させることができる。
このように、被処理物に応じて塩素含有物質の導入位置を選択することにより、一層の反応効率の向上が達成できる。
As another embodiment, the position of the chlorine gas inlet may be selected based on the moisture content of the object to be processed. At this time, when the moisture content is large, the chlorine-based gas inlet 14 is on the downstream side, and when the moisture content is small, the chlorine-based gas inlet 14 is on the middle stream side. This is because, in the case of a high water content to-be-treated material, the material to be treated can be sufficiently dried by setting the chlorine-based gas inlet to the downstream side, and then the chlorination and volatilization treatment of heavy metals is performed. In the case of an object to be treated having a low water content, by setting the chlorine-based gas inlet 14 on the middle stream side, a sufficient time for the volatilization reaction of chlorinated heavy metals is achieved. And the removal efficiency of heavy metals can be improved.
Thus, the reaction efficiency can be further improved by selecting the introduction position of the chlorine-containing substance according to the object to be treated.

本実施例2に係る重金属類含有物質の無害化処理装置を図2に示す。図2に示すように、かかる装置は重金属類を含有する被処理物を加熱し、該被処理物中に含まれる重金属類を分離除去するロータリーキルン10からなり、該ロータリーキルン10は、前記被処理物をロータリーキルン内に供給する投入ホッパ11と、該被処理物を投入ホッパ11から他端側に移送する手段を有する円筒状の炉本体12と、該炉本体12の前記投入ホッパ11と他端側に設けられた灰排出口15と、前記炉本体12の灰排出口15側に設けられたバーナ部13と、を有する構成となっている。ロータリーキルン10内に導入された被処理物は、前記灰排出口15に移送されながら、前記バーナ部13が空気33及び補助燃料34の供給により生成した火炎によって焙焼される。このとき、ロータリーキルン10内は、酸素不足状態若しくは無酸素状態の還元性雰囲気とし、被処理物が酸化燃焼されないようにする。   FIG. 2 shows an apparatus for detoxifying a heavy metal-containing material according to the second embodiment. As shown in FIG. 2, the apparatus includes a rotary kiln 10 that heats an object to be processed containing heavy metals and separates and removes heavy metals contained in the object to be processed. The rotary kiln 10 includes the object to be processed. A charging hopper 11 for supplying the material into the rotary kiln, a cylindrical furnace body 12 having means for transferring the workpiece from the charging hopper 11 to the other end, and the charging hopper 11 and the other end of the furnace body 12 The ash discharge port 15 provided in the ash discharge port 15 and the burner portion 13 provided on the ash discharge port 15 side of the furnace body 12 are provided. The workpiece introduced into the rotary kiln 10 is roasted by the flame generated by the supply of the air 33 and the auxiliary fuel 34 while the burner unit 13 is transferred to the ash discharge port 15. At this time, the rotary kiln 10 has a reducing atmosphere in an oxygen-deficient state or an oxygen-free state so that the object to be processed is not oxidized and burned.

また、本実施例2では、前記炉本体12の被処理物移送方向の中流部に塩素系ガス導入口14を設けるとともに、前記投入ホッパ11の近傍に炉本体内のガスを排出する排ガス排出口を設け、炉本体内に被処理物の移送方向と対向するガス流の向流流れを形成している。
前記炉本体12内では、前記塩素系ガス導入口14の上流側に塩素系ガス存在下で重金属類を塩化物化する塩化物化領域10Aと、下流側に塩化物化した重金属類を揮散処理する揮散処理領域10Bが形成される。
本実施例2によれば、前記実施例1と同様に被処理物を塩素系ガス32と向流接触させることにより重金属類の塩化物化の反応効率を向上させることができる。また本実施例では被処理物の移送方向中流部に塩素系ガス導入口14を設けているため、前記揮散処理領域10Bの空間を十分にとることができ重金属類の除去効率を向上させることができる。
In the second embodiment, a chlorine-based gas inlet 14 is provided in the middle portion of the furnace body 12 in the workpiece transfer direction, and an exhaust gas outlet for discharging the gas in the furnace body in the vicinity of the charging hopper 11. The counter flow of the gas flow opposite to the transfer direction of the workpiece is formed in the furnace body.
In the furnace body 12, a chlorination region 10A for chlorinating heavy metals in the presence of chlorinated gas on the upstream side of the chlorinated gas introduction port 14 and a volatilization treatment for volatilizing chlorinated heavy metals on the downstream side. Region 10B is formed.
According to the second embodiment, the reaction efficiency of chlorination of heavy metals can be improved by bringing the object to be treated into countercurrent contact with the chlorine-based gas 32 as in the first embodiment. Further, in this embodiment, the chlorine-based gas inlet 14 is provided in the middle portion in the transfer direction of the object to be processed, so that the space of the volatilization processing region 10B can be taken sufficiently and the removal efficiency of heavy metals can be improved. it can.

図3に本実施例3に係る重金属類含有物質の処理装置を具備した灰処理システムを示す。実施例3において、上記した実施例1と同様の構成についてはその詳細な説明を省略する。
本実施例3に係る灰処理システムは、前処理装置20と、ロータリーキルン10と、灰冷却装置16と、を備え、さらに前記ロータリーキルン10から排出される排ガスを処理する排ガス処理設備から構成される。
前記排ガス処理設備は実施例1と同様に、再燃焼室21と、空気予熱器22と、ガス冷却塔25と、バグフィルタ26と、煙突28と、を含む。
FIG. 3 shows an ash treatment system equipped with a heavy metal-containing material treatment apparatus according to the third embodiment. In the third embodiment, detailed description of the same configuration as that of the first embodiment is omitted.
The ash treatment system according to the third embodiment includes a pretreatment device 20, a rotary kiln 10, and an ash cooling device 16, and further includes an exhaust gas treatment facility that treats exhaust gas discharged from the rotary kiln 10.
Similar to the first embodiment, the exhaust gas treatment facility includes a recombustion chamber 21, an air preheater 22, a gas cooling tower 25, a bag filter 26, and a chimney 28.

前記ロータリーキルン10は、前記焼却灰30をキルン内に供給する投入ホッパ11と、該焼却灰30を投入ホッパ11から他端側に移送する手段を有する円筒状の炉本体12と、該炉本体12の前記投入ホッパ11と他端側に設けられた灰排出口15と、前記炉本体12の灰排出口15側に設けられたバーナ部13と、を有する構成となっている。
また、前記焼却灰30の投入ホッパ11側に排ガス出口を設け、且つ前記灰排出口15側に塩素系排ガス導入口14’を設け、前記排ガス出口から排出された塩素系排ガスの少なくとも一部を前記塩素系排ガス導入口14’に導入するようにしている。そして、前記ロータリーキルン10内にて、焼却灰30の移送方向に対して前記塩素系排ガスが向流流れを形成するようにする。
The rotary kiln 10 includes a charging hopper 11 for supplying the incineration ash 30 into the kiln, a cylindrical furnace body 12 having means for transferring the incineration ash 30 from the charging hopper 11 to the other end, and the furnace body 12. The hopper 11 and the ash discharge port 15 provided on the other end side, and the burner portion 13 provided on the ash discharge port 15 side of the furnace body 12 are provided.
Further, an exhaust gas outlet is provided on the charging hopper 11 side of the incinerated ash 30 and a chlorine-based exhaust gas inlet 14 ′ is provided on the ash discharge port 15 side, and at least a part of the chlorine-based exhaust gas discharged from the exhaust gas outlet is disposed. It introduce | transduces into the said chlorine-type waste gas inlet 14 '. In the rotary kiln 10, the chlorinated exhaust gas forms a countercurrent flow with respect to the transfer direction of the incineration ash 30.

前記ロータリーキルン10内では、重金属類を含む焼却灰30が前記塩素系ガスと向流接触し、該ロータリーキルン10の焼却灰移送方向に対して上流側で重金属類が塩化物化し、下流側で該塩化物化した重金属類が揮散し、揮散した重金属類はガス中に混入して前記排ガス排出口より排出される。
前記ロータリーキルン10から排出される排ガス中には、焼却灰30中に元来含有される塩素分が揮散して含有されている。この塩素系排ガスは、排ガス送給ライン40を介して後段の排ガス処理設備に送給されるが、該排ガス送給ライン40上に排ガスの分岐流量調節弁42を設けるとともに、該分岐流量調節弁42から前記塩素系排ガス導入口14’に排ガス分岐循環ライン41を設け、前記ロータリーキルン10から排出された塩素含有ガスの少なくとも一部を前記分岐流量調節弁42の開度調節により分岐させ、前記排ガス分岐循環ライン41を介してキルン内に導入している。
In the rotary kiln 10, the incinerated ash 30 containing heavy metals comes into countercurrent contact with the chlorinated gas, and heavy metals are chlorinated on the upstream side with respect to the incineration ash transfer direction of the rotary kiln 10, and the chlorination is on the downstream side. The materialized heavy metals are volatilized, and the volatilized heavy metals are mixed in the gas and discharged from the exhaust gas outlet.
In the exhaust gas discharged from the rotary kiln 10, the chlorine content originally contained in the incineration ash 30 is volatilized and contained. The chlorine-based exhaust gas is supplied to an exhaust gas treatment facility at a subsequent stage through an exhaust gas supply line 40. A branch flow rate control valve 42 for the exhaust gas is provided on the exhaust gas supply line 40, and the branch flow rate control valve is provided. 42, an exhaust gas branching and circulating line 41 is provided at the chlorine-based exhaust gas inlet 14 ′ from the inlet 42 ′, and at least a part of the chlorine-containing gas discharged from the rotary kiln 10 is branched by adjusting the opening of the branch flow rate control valve 42. It is introduced into the kiln via the branch circulation line 41.

前記排ガス循環流量の制御は、例えば、前記焼却灰30中の塩素成分の含有量、前記排ガス処理設備に送給された排ガス中の塩素成分の含有量、若しくは前記ロータリーキルン10から排出された焙焼灰35の重金属類の含有量、のうち少なくとも何れかを検出し、該検出した値に基づき前記分岐流量調節弁42を制御し、排ガス循環流量を決定すると良い。このとき、前記塩素系排ガスの循環のみでは重金属類の塩化物化に必要な塩素分を供給できない場合には、外部から塩素系ガス32を供給することが好ましい。
尚、本実施例3では、図示したロータリーキルン10の他にも、流動炉、電気炉等のように焼却灰を加熱することができる装置であれば何れを用いることもできるが、特にロータリーキルンを用いることが好ましく、ロータリーキルンは炉内に温度勾配が形成されるため、一基の装置による連続した塩化物化、揮散処理が可能となる。
The exhaust gas circulation flow rate is controlled by, for example, the content of the chlorine component in the incineration ash 30, the content of the chlorine component in the exhaust gas fed to the exhaust gas treatment facility, or roasting discharged from the rotary kiln 10. It is preferable to detect at least one of the heavy metal contents of the ash 35 and control the branch flow rate control valve 42 based on the detected value to determine the exhaust gas circulation flow rate. At this time, when the chlorine component required for chlorination of heavy metals cannot be supplied only by circulation of the chlorine-based exhaust gas, it is preferable to supply the chlorine-based gas 32 from the outside.
In the third embodiment, in addition to the illustrated rotary kiln 10, any apparatus can be used as long as it can heat the incinerated ash, such as a fluidized furnace and an electric furnace, but a rotary kiln is particularly used. It is preferable that the rotary kiln forms a temperature gradient in the furnace, so that continuous chlorination and volatilization treatment can be performed by a single apparatus.

本実施例3のように、塩素系排ガスをキルン内に循環させることにより、塩素含有物質を外部から添加することなく塩化物化が図れ、後段に設置される排ガス処理設備での排ガスの脱塩処理へかかる負荷を軽減することができる。また、排ガス中に含有される塩素分が低減するため、配管、その他の機器の腐食等の影響も軽減することができる。   As in Example 3, chlorinated exhaust gas is circulated in the kiln, so that chlorination can be achieved without adding a chlorine-containing substance from the outside. Desalination treatment of exhaust gas at an exhaust gas treatment facility installed in the subsequent stage Can reduce the load. Further, since the chlorine content contained in the exhaust gas is reduced, the influence of corrosion of piping and other equipment can be reduced.

図4に本実施例4に係る重金属類含有物質の処理装置を具備した灰処理システムを示す。
本実施例4に係る灰処理システムは、前処理装置20と、ロータリーキルン10と、再加熱炉17と、灰冷却装置16と、を備え、さらに前記加熱炉10及び前記再加熱炉17から排出される排ガスを処理する排ガス処理設備から構成される。
前記排ガス処理設備は実施例1と同様に、再燃焼室21と、空気予熱器22と、ガス冷却塔25と、バグフィルタ26と、煙突28と、を含む。
FIG. 4 shows an ash treatment system equipped with a heavy metal-containing material treatment apparatus according to the fourth embodiment.
The ash treatment system according to the fourth embodiment includes a pretreatment device 20, a rotary kiln 10, a reheating furnace 17, and an ash cooling device 16, and is further discharged from the heating furnace 10 and the reheating furnace 17. It consists of exhaust gas treatment equipment that treats exhaust gas.
Similar to the first embodiment, the exhaust gas treatment facility includes a recombustion chamber 21, an air preheater 22, a gas cooling tower 25, a bag filter 26, and a chimney 28.

前記ロータリーキルン10は、前記実施例3と同様に、投入ホッパ11と、炉本体12と、灰排出口15と、バーナ部13と、排ガス出口及び塩素系排ガス導入口14と、を有し、キルン内を焼却灰30に対して前記塩素系排ガスが向流流れを形成するように構成される。また、前記ロータリーキルン10から排出される塩素系排ガスの排ガス送給ライン40上に排ガスの分岐流量調節弁42を設けるとともに、該分岐流量調節弁42から前記塩素系排ガス導入口14’に排ガス分岐循環ライン41を設け、前記塩素系排ガスを循環させるようにしている。   The rotary kiln 10 has a charging hopper 11, a furnace main body 12, an ash discharge port 15, a burner unit 13, an exhaust gas outlet and a chlorine-based exhaust gas inlet port 14 as in the third embodiment. It is comprised so that the said chlorine-type exhaust gas may form a countercurrent flow with respect to the incineration ash 30 inside. Further, an exhaust gas branch flow rate control valve 42 is provided on the exhaust gas supply line 40 of the chlorine-based exhaust gas discharged from the rotary kiln 10, and the exhaust gas branch circulation from the branch flow rate control valve 42 to the chlorine-based exhaust gas inlet 14 ′. A line 41 is provided to circulate the chlorinated exhaust gas.

さらに、前記ロータリーキルン10から排出された焙焼灰を導入し、再加熱する再加熱炉17を備えている。該再加熱炉17は、例えばロータリーキルン、流動炉、電気炉等が挙げられる。また、前記再加熱炉17を複数設置するようにしても良い。
本実施例4では、前記ロータリーキルン10は、焼却灰30の入口側の温度を500℃程度とし、出口側の温度を1200℃程度となるようにする。一方、前記再加熱炉17は、被処理物の入口側の温度を800℃程度とし、出口側の温度を1200℃程度とする。
そして、前記ロータリーキルン10では、主として被処理物中に含有する重金属類の塩化物化を行い、前記再加熱炉17では主として被処理物中に含有する重金属類の揮散処理を行なう。
Furthermore, a reheating furnace 17 for introducing and reheating roasted ash discharged from the rotary kiln 10 is provided. Examples of the reheating furnace 17 include a rotary kiln, a fluidized furnace, and an electric furnace. A plurality of reheating furnaces 17 may be installed.
In the fourth embodiment, the rotary kiln 10 is configured such that the temperature on the inlet side of the incineration ash 30 is about 500 ° C. and the temperature on the outlet side is about 1200 ° C. On the other hand, the reheating furnace 17 sets the temperature on the inlet side of the workpiece to about 800 ° C. and the temperature on the outlet side to about 1200 ° C.
The rotary kiln 10 mainly chlorinates heavy metals contained in the workpiece, and the reheating furnace 17 mainly volatilizes heavy metals contained in the workpiece.

また、別の構成として、前記再加熱炉17に前記ロータリーキルン10から排出した塩素系排ガス、又は塩素含有物質32を導入するようにしても良い。塩素系ガス又は塩素含有物質32は、前記再加熱炉17の灰排出口側から導入し、被処理物の移送方向に対して向流流れを形成することが好ましい。
さらに、前記再加熱炉17から排出した排ガスは、排ガス導入ライン43を介して前記排ガス処理設備に導入するとともに、該排ガス導入ライン43上に設けた分岐流量調節弁44の開度調節により、前記排ガスの少なくとも一部を前記ロータリーキルン10、若しくは該再加熱炉17に返送し、循環させることが好ましい。
As another configuration, the chlorine-based exhaust gas or the chlorine-containing substance 32 discharged from the rotary kiln 10 may be introduced into the reheating furnace 17. It is preferable that the chlorine-based gas or the chlorine-containing substance 32 is introduced from the ash discharge port side of the reheating furnace 17 and forms a countercurrent flow with respect to the transfer direction of the workpiece.
Further, the exhaust gas discharged from the reheating furnace 17 is introduced into the exhaust gas treatment facility through the exhaust gas introduction line 43, and the opening degree of the branch flow rate control valve 44 provided on the exhaust gas introduction line 43 is adjusted, thereby It is preferable that at least a part of the exhaust gas is returned to the rotary kiln 10 or the reheating furnace 17 and circulated.

本実施例4によれば、前記ロータリーキルン10の後段に再加熱炉17を設ける構成とすることにより、ロータリーキルン10にて塩化物化した重金属類が揮散せずに残留した場合であっても、加熱炉17により完全に揮散させることができ、重金属類の残留を最小限に抑えることが可能となる。また、前記再加熱炉17では、既に加熱されて昇温された高温の焼却灰が供給されるため、熱エネルギ供給の削減が期待できる。さらに、前記ロータリーキルン10から再加熱炉17に移送される際に、焼却灰が撹拌されて内部に存在していた未反応物質が表面に露出し、再加熱炉17における塩化物化、揮散処理が効率良く行われることとなる。
また、実施例3及び実施例4に記載した技術は、上記した実施例1及び実施例2とくみ合わせて用いることも可能である。
According to the fourth embodiment, the reheating furnace 17 is provided in the subsequent stage of the rotary kiln 10, so that even if heavy metals chlorinated in the rotary kiln 10 remain without volatilization, the heating furnace 17 can be volatilized completely, and the residual heavy metals can be minimized. In the reheating furnace 17, since high-temperature incinerated ash that has already been heated and heated is supplied, a reduction in the supply of thermal energy can be expected. Furthermore, when transferred from the rotary kiln 10 to the reheating furnace 17, the incinerated ash is agitated and unreacted substances existing inside are exposed on the surface, and the chlorination and volatilization treatment in the reheating furnace 17 is efficient. It will be done well.
Further, the techniques described in the third and fourth embodiments can be used in combination with the first and second embodiments described above.

図5に本実施例5に係る重金属類含有物質の処理装置の概略図を示す。
本実施例5に係る装置は、焼却灰30を供給する投入ホッパ(不図示)と、該焼却灰30を投入ホッパから他端側に移送する手段を有する円筒状の炉本体12と、該炉本体12の前記投入ホッパと他端側に設けられた灰排出口(不図示)と、前記炉本体12の灰排出口15側に設けられたバーナ部13と、を有するロータリーキルン10からなる。
また、本実施例5では、前記焼却灰30の投入ホッパ11側に排ガス出口を設け、且つ前記灰排出口15側に塩素系排ガス導入口14’を設け、前記排ガス出口から排出された塩素系排ガスの少なくとも一部を前記塩素系排ガス導入口14’に導入するようにしている。そして、前記ロータリーキルン10内を焼却灰30に対して前記塩素系排ガスが向流流れを形成するようにする。尚、前記塩素系排ガスの代わりに、塩素含有物質を導入する構成としても良い。
FIG. 5 shows a schematic view of a heavy metal containing substance processing apparatus according to the fifth embodiment.
The apparatus according to the fifth embodiment includes a charging hopper (not shown) for supplying the incinerated ash 30, a cylindrical furnace body 12 having means for transferring the incinerated ash 30 from the charging hopper to the other end, and the furnace The rotary kiln 10 includes the charging hopper of the main body 12 and an ash discharge port (not shown) provided on the other end side, and a burner portion 13 provided on the ash discharge port 15 side of the furnace main body 12.
Further, in the fifth embodiment, an exhaust gas outlet is provided on the charging hopper 11 side of the incinerated ash 30 and a chlorine-based exhaust gas introduction port 14 ′ is provided on the ash discharge port 15 side, and the chlorine-based exhaust discharged from the exhaust gas outlet is provided. At least a part of the exhaust gas is introduced into the chlorine-based exhaust gas inlet 14 '. Then, the chlorine-based exhaust gas forms a countercurrent flow with respect to the incineration ash 30 in the rotary kiln 10. In addition, it is good also as a structure which introduce | transduces a chlorine containing substance instead of the said chlorine-type exhaust gas.

さらに、前記ロータリーキルン10内の流動挙動が、焼却灰30の移送方向に対して上流側が乱流域となるようにし、下流側が層流域となるようにする。これは、前記上流側の乱流域はレイノルズ数が高くなるように、前記下流側の層流域はレイノルズ数が低くなるように、夫々キルン内径を設定すると良い。このときレイノルズ数(ガス流速×炉内径÷ガス動粘性係数)は、前記上流側で4000以上となるようにし、前記下流側で2100以下となるようにキルン内径を設定することが好ましい。
図7に一例として、ガス流800Nm/hでの温度及びキルン内径と、レイノルズ数の関係を示す。レイノルズ数(Re)4000を示す曲線の下方領域は乱流域で、レイノルズ数(Re)2100を示す曲線の上方領域は層流域で、その間は臨界域となる。塩化物化領域は、境界層を含む乱流域に形成され、且つ500〜900℃の温度域であるため、図示される領域内となり、前記ロータリーキルン10の上流側のキルン内径はこの領域内に含まれる値に設定する。一方、揮散処理領域は、境界層を含む層流域に形成され、且つ900〜1200℃の温度域であるため、図示される領域内となり、前記ロータリーキルン10の下流側のキルン内径はこの領域内に含まれる値に設定する。
Further, the flow behavior in the rotary kiln 10 is such that the upstream side becomes a turbulent flow region and the downstream side becomes a laminar flow region with respect to the transfer direction of the incineration ash 30. Preferably, the kiln inner diameter is set so that the upstream turbulent flow region has a high Reynolds number and the downstream laminar flow region has a low Reynolds number. At this time, it is preferable to set the kiln inner diameter so that the Reynolds number (gas flow velocity × furnace inner diameter ÷ gas kinematic viscosity coefficient) is 4000 or more on the upstream side and 2100 or less on the downstream side.
As an example, FIG. 7 shows the relationship between the temperature and kiln inner diameter at a gas flow of 800 Nm 3 / h, and the Reynolds number. The lower region of the curve showing the Reynolds number (Re) 4000 is a turbulent flow region, the upper region of the curve showing the Reynolds number (Re) 2100 is a laminar flow region, and the critical region is in between. The chloride region is formed in the turbulent flow region including the boundary layer and is in the temperature range of 500 to 900 ° C., and thus is within the region illustrated, and the kiln inner diameter on the upstream side of the rotary kiln 10 is included in this region. Set to value. On the other hand, the volatilization treatment region is formed in a laminar flow region including a boundary layer and is a temperature region of 900 to 1200 ° C., and thus is within the region illustrated, and the kiln inner diameter on the downstream side of the rotary kiln 10 is within this region. Set to included value.

本実施例5のように、ロータリーキルン10内のガス流れに、層流域、乱流域を形成することで、塩素系排ガスの接触効率の調節が可能となり、塩化物化領域(乱流域)、揮散処理領域(層流域)を分けることが可能となる。これにより、塩化物化した重金属類を効率良く揮散処理することができ、従来に比べて未揮散の塩化物化物質の排出を低減することが可能となる。
尚、実施例5に記載の装置は、一基の加熱装置で焼却灰中の重金属類の塩化物化、揮散処理を行なうようにした実施例1乃至3に好適に適用できる。
As in the fifth embodiment, by forming a laminar flow region and a turbulent flow region in the gas flow in the rotary kiln 10, it becomes possible to adjust the contact efficiency of the chlorinated exhaust gas, and a chlorination region (turbulent flow region), a volatilization treatment region (Laminar basin) can be divided. Thereby, chlorinated heavy metals can be volatilized efficiently, and it becomes possible to reduce discharge | emission of the non-volatilized chlorinated substance compared with the past.
The apparatus described in Example 5 can be suitably applied to Examples 1 to 3 in which heavy metals in incineration ash are chlorinated and volatilized by a single heating device.

図6に本実施例6に係る重金属類含有物質の処理装置の概略図を示す。
本実施例6に係る装置は、焼却灰30を供給する投入ホッパ(不図示)と、該焼却灰30を投入ホッパから他端側に移送する手段を有する円筒状の炉本体12と、該炉本体12の前記投入ホッパと他端側に設けられた灰排出口(不図示)と、前記炉本体12の灰排出口15側に設けられたバーナ部13と、を有するロータリーキルン10からなる。
また、本実施例6では、前記焼却灰30の投入ホッパ11側に排ガス出口を設け、且つ前記灰排出口15側に塩素系排ガス導入口14’を設け、前記排ガス出口から排出された塩素系排ガスの少なくとも一部を前記塩素系排ガス導入口14’に導入するようにしている。そして、前記ロータリーキルン10内にて前記塩素系排ガスが焼却灰30の移送方向に対して向流流れを形成するようにしている。
FIG. 6 shows a schematic view of a heavy metal containing substance processing apparatus according to the sixth embodiment.
The apparatus according to the sixth embodiment includes a charging hopper (not shown) for supplying the incineration ash 30, a cylindrical furnace body 12 having means for transferring the incineration ash 30 from the charging hopper to the other end, and the furnace The rotary kiln 10 includes the charging hopper of the main body 12 and an ash discharge port (not shown) provided on the other end side, and a burner portion 13 provided on the ash discharge port 15 side of the furnace main body 12.
In the sixth embodiment, an exhaust gas outlet is provided on the charging hopper 11 side of the incinerated ash 30 and a chlorine-based exhaust gas inlet 14 ′ is provided on the ash discharge port 15 side, so that the chlorine-based exhaust gas discharged from the exhaust gas outlet is provided. At least a part of the exhaust gas is introduced into the chlorine-based exhaust gas inlet 14 '. In the rotary kiln 10, the chlorine-based exhaust gas forms a countercurrent flow with respect to the transfer direction of the incineration ash 30.

さらに、前記ロータリーキルン10内の流動挙動が、乱流域となるようにする。これは、炉内空間のレイノルズ数が高くなるように設定し、好適には4000以上となるようにキルン内径を設定すると良い。
このように、ロータリーキルン10のガス流れを乱流域とすることで、塩素系排ガスと焼却灰30との接触効率が向上し、延いては焼却灰30中に含有する重金属類の塩化物化が促進されるものである。
Furthermore, the flow behavior in the rotary kiln 10 is set to be a turbulent region. This is set so that the Reynolds number in the furnace space increases, and the kiln inner diameter is preferably set so as to be 4000 or more.
Thus, by making the gas flow of the rotary kiln 10 a turbulent flow region, the contact efficiency between the chlorinated exhaust gas and the incineration ash 30 is improved, and the chlorination of heavy metals contained in the incineration ash 30 is promoted. Is.

次に、上記した実施例1の装置構成を模擬した試験装置を用い、Pb含有焼却灰を無害化処理する試験を行なった結果を示す。
図8に示すように、前記試験装置には管状電気炉50を用い、Nガス53により還元性雰囲気とした該管状電気炉50内に焼却灰56を充填し、塩素添加液51をポンプ52により前記管状電気炉50に導入しながら約1050℃まで加熱し、前記焼却灰56中に含まれるPb濃度を計測した。このとき、管状電気炉50内の温度は熱電対55で計測する。ここで発生した排ガスは、HClガス吸収瓶57に通してHClを回収する。
かかる試験装置を用いた無害化処理の試験結果を図9に示す。
Next, the result of having performed the test which detoxifies Pb containing incineration ash using the test apparatus which simulated the apparatus structure of above-mentioned Example 1 is shown.
As shown in FIG. 8, a tubular electric furnace 50 is used in the test apparatus, incinerated ash 56 is filled in the tubular electric furnace 50 that is made a reducing atmosphere with N 2 gas 53, and the chlorine addition liquid 51 is pumped 52. Was heated to about 1050 ° C. while being introduced into the tubular electric furnace 50, and the Pb concentration contained in the incinerated ash 56 was measured. At this time, the temperature in the tubular electric furnace 50 is measured by the thermocouple 55. The exhaust gas generated here is passed through an HCl gas absorption bottle 57 to recover HCl.
The test results of the detoxification process using such a test apparatus are shown in FIG.

図9は底質調査方法に基づく試験結果で、(a)は加熱処理前−後のPb含有量を示すグラフ、(b)は添加HCl濃度に対するPb含有量を示すグラフである。これによれば、加熱処理前の焼却灰のPb含有量が778mg/kgであるのに対し、塩素系ガスを導入しないRun1ではPb含有量は483mg/kgに低減し、HClを600ppm添加したRun3では398mg/kg、トリクロロエチレンを2150ppm添加したRun4では397mg/kgまでPb含有量が低減した。また、HClを1200ppm添加したRun2では、Pb含有量は252mg/kgまで大幅に低減した。
かかる試験結果により、塩素系ガスを供給しない場合に比べて、塩素系ガスを供給した方が大幅にPb含有量が低減することがわかる。また、HCl供給量を増加する程Pb除去率が向上することがわかる。さらに、添加したHClのモル濃度に比例してPb含有量が低減することがわかった。
FIG. 9 shows test results based on the bottom sediment investigation method. (A) is a graph showing the Pb content before and after the heat treatment, and (b) is a graph showing the Pb content with respect to the added HCl concentration. According to this, the Pb content of the incinerated ash before heat treatment is 778 mg / kg, whereas in Run 1 without introducing chlorine gas, the Pb content is reduced to 483 mg / kg, and Run 3 with 600 ppm of HCl added Pb content was reduced to 398 mg / kg, and Run4 to which 2150 ppm of trichlorethylene was added decreased to 397 mg / kg. In Run 2 to which 1200 ppm of HCl was added, the Pb content was greatly reduced to 252 mg / kg.
From these test results, it can be seen that the Pb content is significantly reduced when the chlorine-based gas is supplied compared to the case where the chlorine-based gas is not supplied. It can also be seen that the Pb removal rate improves as the HCl supply amount increases. Furthermore, it was found that the Pb content decreases in proportion to the molar concentration of added HCl.

本実施例1に係る重金属類含有物質の処理装置を具備した灰処理システムの全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the ash processing system which comprised the processing apparatus of the heavy metal containing material which concerns on this Example 1. FIG. 本実施例2に係る重金属類含有物質の処理装置の構成図である。It is a block diagram of the processing apparatus of the heavy metal containing substance which concerns on the present Example 2. FIG. 本実施例3に係る重金属類含有物質の処理装置を具備した灰処理システムの全体構成図である。It is a whole block diagram of the ash processing system which comprised the processing apparatus of the heavy metal containing substance which concerns on this Example 3. FIG. 本実施例4に係る重金属類含有物質の処理装置を具備した灰処理システムの全体構成図である。It is a whole block diagram of the ash processing system which comprised the processing apparatus of the heavy metal containing substance which concerns on the present Example 4. FIG. 本実施例5に係る重金属類含有物質の処理装置の概略図である。It is the schematic of the processing apparatus of the heavy metal containing substance which concerns on this Example 5. FIG. 本実施例6に係る重金属類含有物質の処理装置の概略図である。It is the schematic of the processing apparatus of the heavy metal containing substance which concerns on this Example 6. FIG. キルン内径及び温度とレイノルズ数との関係を示すグラフである。It is a graph which shows the relationship between a kiln internal diameter and temperature, and Reynolds number. 図1の処理装置を模擬した試験装置を示す装置構成図である。It is an apparatus block diagram which shows the test apparatus which simulated the processing apparatus of FIG. 図8の試験装置による無害化処理試験結果で、(a)は加熱処理前−後のPb含有量を示すグラフ、(b)は添加HCl濃度に対するPb含有量を示すグラフである。FIG. 9 is a detoxification treatment test result by the test apparatus of FIG. 8, (a) is a graph showing the Pb content before and after the heat treatment, and (b) is a graph showing the Pb content with respect to the added HCl concentration. 従来の重金属類含有物質の処理装置を示す構成図である。It is a block diagram which shows the processing apparatus of the conventional heavy metal containing substance.

10 ロータリーキルン
11 投入ホッパ
12 炉本体
14 塩素系ガス導入口
15 排出口
16 灰冷却装置
17 再加熱炉
20 前処理装置
30 焼却灰
31 被処理物
32 塩素系ガス
35 焙焼灰
36 燃焼用空気
40 排ガス送給ライン
41 排ガス分岐循環ライン
42 分岐流量調節弁
43 排ガス導入ライン
44 分岐流量調節弁
DESCRIPTION OF SYMBOLS 10 Rotary kiln 11 Input hopper 12 Furnace main body 14 Chlorine gas introduction port 15 Discharge port 16 Ash cooling device 17 Reheating furnace 20 Pretreatment device 30 Incineration ash 31 Processed object 32 Chlorine gas 35 Roast ash 36 Combustion air 40 Exhaust gas Supply line 41 Exhaust gas branch circulation line 42 Branch flow control valve 43 Exhaust gas introduction line 44 Branch flow control valve

Claims (11)

重金属類を含有する被処理物を塩素含有物質とともに加熱炉内で加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理方法において、
前記加熱炉が前記被処理物をキルン内に供給する投入ホッパと、該被処理物を投入ホッパから他端側に移送する手段を有する円筒状の炉本体と、該炉本体の前記投入ホッパと他端側に設けられた灰排出口と、前記炉本体の灰排出口側に設けられたバーナ部と、を有するロータリーキルンであって、
前記塩素含有物質が、前記被処理物から揮発した塩素分を含む塩素系排ガスであり、該塩素系排ガスを、前記ロータリーキルンの被処理物移送方向の中流部若しくは下流部に設けたガス導入口より導入し、排ガスをキルン内上流部に設けた排出口より排出して前記ガス導入口の被処理物移送方向の上流側で記重金属類の塩化物化を行い、
前記ガス導入口下流側のロータリーキルン内若しくはロータリーキルンの出口側に設けた再加熱炉で前記重金属類の揮散処理を行なうことを特徴とする重金属類含有物質の無害化処理方法。
In the detoxification method of the heavy metal-containing material, the object to be treated containing heavy metals is heated together with the chlorine-containing material in a heating furnace, and the heavy metal is chlorinated and then separated and removed.
A charging hopper for supplying the workpiece into the kiln by the heating furnace ; a cylindrical furnace body having means for transferring the workpiece from the charging hopper to the other end; and the charging hopper of the furnace body; A rotary kiln having an ash discharge port provided on the other end side and a burner portion provided on the ash discharge port side of the furnace body ,
The chlorine-containing substance is a chlorine-based exhaust gas containing a chlorine content volatilized from the object to be processed, and the chlorine-based exhaust gas is provided from a gas inlet provided in the middle or downstream part in the object transfer direction of the rotary kiln. introducing city, exhaust gas was subjected to chlorination prior Symbol heavy metals in the object to be processed feeding direction upstream of and discharged from the discharge port formed in a kiln in an upstream portion the gas inlet,
A detoxification method for a heavy metal-containing material , wherein the heavy metal is volatilized in a reheating furnace provided in the rotary kiln downstream of the gas inlet or on the outlet side of the rotary kiln .
前記被処理物に含有される重金属類の成分比率に基づき前記塩素含有物質の導入位置を選択し、低沸点重金属類の成分比率が大である場合には前記導入位置を前記中流部側とし、高沸点重金属類の成分比率が大である場合には前記導入位置を前記下流部側とすることを特徴とする請求項1記載の重金属類含有物質の無害化処理方法。   The introduction position of the chlorine-containing material is selected based on the component ratio of the heavy metals contained in the object to be treated, and when the component ratio of the low boiling point heavy metals is large, the introduction position is set to the middle stream side, 2. The method for detoxifying a heavy metal-containing material according to claim 1, wherein, when the component ratio of the high-boiling heavy metals is large, the introduction position is located on the downstream side. 前記被処理物の含水率に基づき前記塩素含有物質の導入位置を選択し、含水率が大である場合には前記導入位置を前記下流部側とし、含水率が小である場合には前記導入位置を前記中流部側とすることを特徴とする請求項1記載の重金属類含有物質の無害化処理方法。   The introduction position of the chlorine-containing substance is selected based on the moisture content of the object to be treated. When the moisture content is large, the introduction position is the downstream portion side, and when the moisture content is small, the introduction position is selected. 2. The method for detoxifying a heavy metal-containing material according to claim 1, wherein the position is on the middle stream side. 前記ロータリーキルン出口側から排出された前記被処理物を再加熱する再加熱炉を備え、前記再加熱炉の温度域を800〜1200℃の温度域に維持して前記重金属類の揮散処理を行なうことを特徴とする請求項1記載の重金属類含有物質の無害化処理方法。 A reheating furnace for reheating the workpiece discharged from the rotary kiln outlet side is provided, and the temperature range of the reheating furnace is maintained at a temperature range of 800 to 1200 ° C. to volatilize the heavy metals. 2. The method for detoxifying a heavy metal-containing material according to claim 1, wherein: 重金属類を含有する被処理物の供給手段と、該被処理物の加熱手段と、塩素含有物質の導入口とを有する加熱炉からなり、該加熱炉内にて前記被処理物と前記塩素含有物質を加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類含有物質の無害化処理装置において、
前記加熱炉が前記被処理物をキルン内に供給する投入ホッパと、該被処理物を投入ホッパから他端側に移送する手段を有する円筒状の炉本体と、該炉本体の前記投入ホッパと他端側に設けられた灰排出口と、前記炉本体の灰排出口側に設けられたバーナ部と、を有するロータリーキルンであって、
前記塩素含有物質が、前記被処理物から揮発した塩素分を含む塩素系排ガスであり、該塩素系排ガス導入口を、前記ロータリーキルンの被処理物移送方向の中流部若しくは下流部に設け、前記塩素含有物質を含む塩素系排ガスが前記移送方向と向流流れを形成するように構成するとともに、該導入口の上流側に前記重金属類の塩化物化領域を形成し、下流側のロータリーキルン内若しくはロータリーキルンの出口側に設けた再加熱炉に該重金属類の揮散処理領域を形成したことを特徴とする重金属類含有物質の無害化処理装置。
It comprises a heating furnace having means for supplying an object to be processed containing heavy metals, a heating means for the object to be processed, and an inlet for a chlorine-containing substance, and the object to be processed and the chlorine-containing substance are contained in the heating furnace. In a detoxification processing apparatus for heavy metal-containing substances that heats the substance, volatilizes the heavy metal and then volatilizes it to separate and remove it,
A charging hopper for supplying the workpiece into the kiln by the heating furnace ; a cylindrical furnace body having means for transferring the workpiece from the charging hopper to the other end; and the charging hopper of the furnace body; A rotary kiln having an ash discharge port provided on the other end side and a burner portion provided on the ash discharge port side of the furnace body ,
The chlorine-containing substance is a chlorine-based exhaust gas containing a chlorine content volatilized from the object to be processed, and the chlorine-based exhaust gas inlet is provided in the middle or downstream part in the object transfer direction of the rotary kiln, The chlorinated exhaust gas containing the contained material is configured so as to form a counter-current flow with the transfer direction, and a chlorination region of the heavy metal is formed on the upstream side of the inlet, so that the inside of the rotary kiln on the downstream side or the rotary kiln An apparatus for detoxifying a heavy metal-containing substance, wherein a volatilization processing region for the heavy metal is formed in a reheating furnace provided on an outlet side .
前記塩素含有物質導入口の位置が前記被処理物に含有される重金属類の成分比率に基づき選択され、低沸点重金属類の成分比率が大である場合には前記導入口位置を前記中流部側とし、高沸点重金属類の成分比率が大である場合には前記導入口位置を前記下流部側とすることを特徴とする請求項記載の重金属類含有物質の無害化処理装置。 The position of the chlorine-containing substance introduction port is selected based on the component ratio of heavy metals contained in the object to be treated, and when the component ratio of low boiling point heavy metals is large, the introduction port position is set to the middle stream side 6. The detoxification apparatus for heavy metal-containing substances according to claim 5, wherein when the component ratio of the high boiling point heavy metals is large, the inlet position is on the downstream side. 前記塩素含有物質導入口の位置が前記被処理物の含水率に基づき選択され、含水率が大である場合には前記導入口位置を前記下流部側とし、含水率が小である場合には前記導入口位置を前記中流部側とすることを特徴とする請求項記載の重金属類含有物質の無害化処理装置。 When the position of the chlorine-containing substance inlet is selected based on the moisture content of the object to be treated, when the moisture content is large, the inlet position is the downstream portion side, and when the moisture content is small 6. The heavy metal-containing substance detoxifying apparatus according to claim 5, wherein the introduction port position is on the midstream side. 前記ロータリーキルンから排出される塩素系排ガスの少なくとも一部を分岐させる分岐流量調整弁と、該分岐した塩素系排ガスを該加熱炉に戻して循環させる排ガス循環ラインを設け、該塩素系排ガスと前記被処理物の接触により重金属類の塩化物化を行なうことを特徴とする請求項5記載の重金属類含有物質の無害化処理装置。 A branch flow rate adjusting valve for branching at least a part of the chlorine-based exhaust gas discharged from the rotary kiln , and an exhaust gas circulation line for returning the branched chlorine-based exhaust gas to the heating furnace are provided. 6. The apparatus for detoxifying a heavy metal-containing material according to claim 5, wherein the heavy metal is chlorinated by contact with the treated material. 前記加熱炉に供給前の被処理物の塩素含有量、前記加熱炉から排出された処理物の重金属含有量、若しくは前記塩素系排ガスの塩素含有量を検出する手段を設け、該検出した値に基づき前記分岐流量調整弁を制御して塩素系排ガスの循環量を調節することを特徴とする請求項記載の重金属類含有物質の無害化処理装置。 A means for detecting the chlorine content of the object to be processed before being supplied to the heating furnace, the heavy metal content of the processed material discharged from the heating furnace, or the chlorine content of the chlorine-based exhaust gas is provided, and the detected value is set to the detected value. 6. The apparatus for detoxifying a heavy metal-containing material according to claim 5, wherein the branch flow rate adjusting valve is controlled to adjust the circulation amount of the chlorine-based exhaust gas. 前記ロータリーキルン出口側から排出された前記被処理物を再加熱する再加熱炉を備え、前記再加熱炉の温度域を800〜1200℃の温度域に維持して前記重金属類の揮散処理を行なうことを特徴とする請求項5記載の重金属類含有物質の無害化処理装置。 The rotary kiln said discharged from the outlet side comprising a reheating furnace for re-heating an object, it performs a volatilization treatment before Symbol heavy metals to maintain the temperature range of the reheating furnace to a temperature range of 800 to 1200 ° C. An apparatus for detoxifying a heavy metal-containing material according to claim 5 . 前記前段側の加熱炉がロータリーキルンであって、該ロータリーキルン内にてガス流の乱流域を形成することを特徴とする請求項10記載の重金属類含有物質の無害化処理装置。 The heavy metal-containing material detoxifying apparatus according to claim 10 , wherein the heating furnace on the front stage is a rotary kiln and forms a turbulent flow region of gas flow in the rotary kiln.
JP2005006522A 2004-03-12 2005-01-13 Method and apparatus for detoxifying heavy metal-containing substances Active JP4678762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005006522A JP4678762B2 (en) 2004-03-12 2005-01-13 Method and apparatus for detoxifying heavy metal-containing substances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004070702 2004-03-12
JP2005006522A JP4678762B2 (en) 2004-03-12 2005-01-13 Method and apparatus for detoxifying heavy metal-containing substances

Publications (2)

Publication Number Publication Date
JP2005288433A JP2005288433A (en) 2005-10-20
JP4678762B2 true JP4678762B2 (en) 2011-04-27

Family

ID=35321984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005006522A Active JP4678762B2 (en) 2004-03-12 2005-01-13 Method and apparatus for detoxifying heavy metal-containing substances

Country Status (1)

Country Link
JP (1) JP4678762B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3959506B1 (en) * 2006-03-23 2007-08-15 株式会社協和エクシオ Soil treatment method and soil treatment apparatus
JP4549328B2 (en) * 2006-08-25 2010-09-22 新興プランテック株式会社 By-product oil processing apparatus and by-product oil processing method
JP2013019734A (en) * 2011-07-11 2013-01-31 Taiheiyo Cement Corp Processing system and processing method for contaminated soil
KR101714840B1 (en) * 2014-10-17 2017-03-10 주식회사 포스코 Rotary kiln
JP5999861B1 (en) * 2016-02-05 2016-09-28 株式会社神鋼環境ソリューション Radioactive substance removal method and radioactive substance removal system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301103A (en) * 1999-04-21 2000-10-31 Shinsei Dental Laboratory:Kk Detoxification treatment of incineration ash or fly ash
JP2001121103A (en) * 1999-10-21 2001-05-08 Ebara Corp Detoxicating method of incineration fly ash
JP2002192118A (en) * 2000-12-27 2002-07-10 Taiheiyo Cement Corp Treating method and device for waste material
JP2003245642A (en) * 2001-12-19 2003-09-02 Taiheiyo Cement Corp Method for detoxification of heavy metal-containing substance and heating furnace
JP2004181323A (en) * 2002-12-02 2004-07-02 Jfe Engineering Kk Operation method for ash treatment system and ash treatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301103A (en) * 1999-04-21 2000-10-31 Shinsei Dental Laboratory:Kk Detoxification treatment of incineration ash or fly ash
JP2001121103A (en) * 1999-10-21 2001-05-08 Ebara Corp Detoxicating method of incineration fly ash
JP2002192118A (en) * 2000-12-27 2002-07-10 Taiheiyo Cement Corp Treating method and device for waste material
JP2003245642A (en) * 2001-12-19 2003-09-02 Taiheiyo Cement Corp Method for detoxification of heavy metal-containing substance and heating furnace
JP2004181323A (en) * 2002-12-02 2004-07-02 Jfe Engineering Kk Operation method for ash treatment system and ash treatment system

Also Published As

Publication number Publication date
JP2005288433A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
EP1161312B1 (en) Soil remediation system
JP4678762B2 (en) Method and apparatus for detoxifying heavy metal-containing substances
JP5428736B2 (en) Method for reducing mercury components and organochlorine compounds in exhaust gas from cement production facilities
JP2008296080A (en) Method and apparatus for making heavy metal containing material harmless
JP5105993B2 (en) Detoxification treatment apparatus and method for treated ash
JP2008200544A (en) Melt treatment method of waste
JP4804008B2 (en) Detoxification treatment method and system for substances containing heavy metals
EP0472567B1 (en) Treatment of process gases containing halogenous compounds
JP2009172495A (en) Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals
JP6260404B2 (en) Exhaust gas treatment method and treatment apparatus
JP3248319B2 (en) Fly ash treatment method and device for refuse incinerator
JP2008049204A (en) Baking method of heavy metal-containing raw material
JP2009172523A (en) Ash treating method of roasting furnace, and roasting equipment
JPH07155722A (en) Treatment of fly ash from refuse incinerator and device therefor
JP4096216B2 (en) Preheating method in continuous furnace
JP3970065B2 (en) Waste treatment equipment
AU2003204208B2 (en) Soil remediation system
AU2009238280A1 (en) Soil remediation system
JP3735243B2 (en) Heat treatment method and apparatus for dust collection ash from waste gasification melting furnace
JP2004181323A (en) Operation method for ash treatment system and ash treatment system
JP4155579B2 (en) Landfill waste processing method and processing apparatus
JP4336260B2 (en) Pollution treatment method
JP4069529B2 (en) Method and apparatus for detoxifying ash
JP2006075677A (en) Treatment method and treatment device for contaminant
CA1095334A (en) Method and apparatus for treating waste material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

R150 Certificate of patent or registration of utility model

Ref document number: 4678762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3