JP2005286183A - Flat-panel radiation detector - Google Patents

Flat-panel radiation detector Download PDF

Info

Publication number
JP2005286183A
JP2005286183A JP2004099658A JP2004099658A JP2005286183A JP 2005286183 A JP2005286183 A JP 2005286183A JP 2004099658 A JP2004099658 A JP 2004099658A JP 2004099658 A JP2004099658 A JP 2004099658A JP 2005286183 A JP2005286183 A JP 2005286183A
Authority
JP
Japan
Prior art keywords
film
synthetic resin
resin film
radiation
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004099658A
Other languages
Japanese (ja)
Other versions
JP4066972B2 (en
Inventor
Kenji Sato
賢治 佐藤
Junichi Suzuki
準一 鈴木
Sakatoshi Kishimoto
栄俊 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004099658A priority Critical patent/JP4066972B2/en
Publication of JP2005286183A publication Critical patent/JP2005286183A/en
Application granted granted Critical
Publication of JP4066972B2 publication Critical patent/JP4066972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently reduce stresses in a semiconductor layer caused by a hardening synthetic resin film, while keeping the creeping discharge preventing function of the curing synthetic resin film of high breakdown voltage which covers a radiation-sensitive semiconductor layer. <P>SOLUTION: In a flat panel radiation detector, a radiation sensitive semiconductor film 1 and a common electrode 2 are covered with a hardening synthetic resin film 8 of a high breakdown voltage as a protective mold coating, so that a thin film 8A covering an effective pixel region SA is made thinner than a thick film 8a, covering a connection region of a lead wire 4 for bias voltage supply. Since the hardening synthetic resin film 8 is made thin throughout its wide range, a stress imposed on the radiation-sensitive semiconductor film 1 caused by the hardening synthetic resin film 8 of the high breakdown voltage can be reduced fully. With regard to the hardening synthetic resin film 8, on the contrary, since the thick film 8a covering the connection region of the lead wire 4 for the bias voltage supply is thicker than the thin film 8A covering the effective pixel region SA, the creeping discharge preventing function of the hardening synthetic resin film can be suppressed from being reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、放射線の入射により電荷を生成する放射線感応型の半導体層を備えていて、医療分野,工業分野,さらには、原子力分野などに用いられる直接変換タイプの放射線検出器に係り、特に放射線感応型の半導体層にかかるストレスの軽減を図るための技術に関する。   The present invention relates to a direct-conversion type radiation detector that includes a radiation-sensitive semiconductor layer that generates an electric charge upon incidence of radiation, and is used in the medical field, industrial field, nuclear power field, and the like. The present invention relates to a technique for reducing stress applied to a sensitive semiconductor layer.

放射線の入射により電荷を生成する放射線感応型の半導体層を備えた直接変換タイプのフラットパネル型放射線(例えばX線)検出器は、入射放射線(例えばX線)がまず光に変換された後で変換光がさらに光電変換で電気信号に変換される間接タイプの検出器と違って、放射線感応型の半導体層では入射放射線が直ちに電気信号としての電荷に変換される。   A direct conversion type flat panel radiation (for example, X-ray) detector having a radiation-sensitive semiconductor layer that generates a charge upon incidence of radiation is obtained after the incident radiation (for example, X-ray) is first converted into light. Unlike the indirect type detector in which the converted light is further converted into an electric signal by photoelectric conversion, incident radiation is immediately converted into electric charge as an electric signal in the radiation-sensitive semiconductor layer.

直接変換タイプのフラットパネル型放射線検出器(以下、適宜「FPD」と略記)の場合、図13に示すように、放射線の入射により電荷を生成する放射線感応型の半導体膜51と、この半導体膜51にバイアス電圧を与える共通電極52が、その順にアクティブマトリックス基板53に積層形成されている。アクティブマトリックス基板53は、半導体膜51で生じた電荷を読み出す電荷読み出し回路(図示省略)が形成されていると共に表面に画素電極用の個別電極(図示省略)が有効画素領域SA内に2次元状マトリックス配列で形成されている。共通電極52には有効画素領域SAの外側となる位置でバイアス電圧給電用のリード線54が接続されている。半導体膜51と共通電極52は高耐圧の硬化性合成樹脂膜56で覆われている。この硬化性合成樹脂膜56の表側にアクティブマトリックス基板53と同程度の熱膨張係数を有する絶縁性の補助板55が固定されている。   In the case of a direct conversion type flat panel radiation detector (hereinafter abbreviated as “FPD” where appropriate), as shown in FIG. 13, a radiation-sensitive semiconductor film 51 that generates electric charges upon incidence of radiation, and the semiconductor film A common electrode 52 for applying a bias voltage to 51 is stacked on the active matrix substrate 53 in that order. The active matrix substrate 53 is formed with a charge readout circuit (not shown) for reading out the charges generated in the semiconductor film 51, and individual electrodes for pixel electrodes (not shown) are two-dimensionally formed in the effective pixel area SA on the surface. It is formed of a matrix array. A lead wire 54 for supplying bias voltage is connected to the common electrode 52 at a position outside the effective pixel area SA. The semiconductor film 51 and the common electrode 52 are covered with a high pressure-resistant curable synthetic resin film 56. An insulating auxiliary plate 55 having a thermal expansion coefficient similar to that of the active matrix substrate 53 is fixed to the front side of the curable synthetic resin film 56.

放射線感応型の半導体膜51としてアモルファスセレンなどの大面積の厚膜が簡単に形成できるアモルファス半導体厚膜を用いる場合は、FPDにおける放射線検出面の大面積化に好適である(特許文献1参照。)。   When an amorphous semiconductor thick film such as amorphous selenium that can be easily formed as a radiation-sensitive semiconductor film 51 is used, it is suitable for increasing the radiation detection surface area of an FPD (see Patent Document 1). ).

図13のFPDによる放射線検出の際は、バイアス供給電源(図示省略)から供給されるバイアス電圧がバイアス電圧給電用のリード線54を経由して共通電極52から半導体膜51へ与えられる。放射線の入射に伴って半導体膜51で生成されて各個別電極で収集される電荷は、コンデンサやスイッチング素子および電気配線等からなる電荷読み出し回路によって、各個別電極毎の放射線検出信号として取り出される。つまり、直接変換タイプの放射線検出器の場合、有効画素領域SA内に2次元状マトリックス配列で形成されている各個別電極がそれぞれ放射線画像の各画素に対応する画素用電極となっていて、有効画素領域SAに投影される放射線の2次元強度分布に応じた放射線画像を作成する為の放射線検出信号が取り出せるのである。   At the time of radiation detection by the FPD of FIG. 13, a bias voltage supplied from a bias supply power source (not shown) is applied from the common electrode 52 to the semiconductor film 51 via a lead wire 54 for supplying a bias voltage. The charges generated by the semiconductor film 51 and collected by the individual electrodes with the incidence of radiation are taken out as a radiation detection signal for each individual electrode by a charge readout circuit including a capacitor, a switching element, and an electric wiring. That is, in the case of a direct conversion type radiation detector, each individual electrode formed in a two-dimensional matrix array in the effective pixel area SA is a pixel electrode corresponding to each pixel of the radiation image, and is effective. A radiation detection signal for creating a radiation image corresponding to the two-dimensional intensity distribution of the radiation projected on the pixel area SA can be extracted.

そして、図13のFPDの場合、放射線感応型の半導体膜51と共通電極52および硬化性合成樹脂膜56を熱膨張係数が同程度のアクティブマトリックス基板53と補助板55の間に挟み込むことで温度変化による反りを抑える構造にして、半導体膜51にストレスがかかって半導体膜51が劣化したり損傷したりするのを防いでいる。
特開2002−311144号公報(6頁〜10頁,図1)
In the case of the FPD of FIG. 13, the radiation-sensitive semiconductor film 51, the common electrode 52, and the curable synthetic resin film 56 are sandwiched between an active matrix substrate 53 and an auxiliary plate 55 having the same thermal expansion coefficient. A structure that suppresses warpage due to change prevents the semiconductor film 51 from being deteriorated or damaged due to stress applied to the semiconductor film 51.
JP 2002-31144 A (pages 6 to 10, page 1)

しかしながら、従来のFPDは、放射線感応型の半導体膜51にかかるストレスの軽減が十分ではないという問題がある。熱膨張係数が同程度のアクティブマトリックス基板53と補助板55による挟み込みだけでは、放射線感応型の半導体膜51と硬化性合成樹脂膜56の熱膨張係数の違いと硬化性合成樹脂膜56の残留応力とによって半導体膜51になお相当のストレスがかかるのを避けることができないのである。   However, the conventional FPD has a problem that the stress applied to the radiation-sensitive semiconductor film 51 is not sufficiently reduced. The difference in thermal expansion coefficient between the radiation-sensitive semiconductor film 51 and the curable synthetic resin film 56 and the residual stress of the curable synthetic resin film 56 only by the sandwiching between the active matrix substrate 53 and the auxiliary plate 55 having the same thermal expansion coefficient. Therefore, it cannot be avoided that considerable stress is applied to the semiconductor film 51.

硬化性合成樹脂膜56の膜厚を薄くすれば、半導体膜51にかかるストレスを減らせられるのであるが、硬化性合成樹脂膜56は対環境性改善の目的に加えて、バイアス電圧の沿面放電防止の目的で設けられている保護モールド被覆であり、硬化性合成樹脂膜56の膜厚を薄くすると、硬化性合成樹脂膜56のバイアス電圧の沿面放電防止機能が低下し、保護機能を果たせないことになる。   If the film thickness of the curable synthetic resin film 56 is reduced, the stress applied to the semiconductor film 51 can be reduced. However, the curable synthetic resin film 56 prevents creeping discharge of the bias voltage in addition to the purpose of improving environmental resistance. If the film thickness of the curable synthetic resin film 56 is reduced, the function of preventing the creeping discharge of the bias voltage of the curable synthetic resin film 56 is lowered and the protective function cannot be achieved. become.

この発明は、このような事情に鑑みてなされたものであって、放射線感応型の半導体を覆う高耐圧の硬化性合成樹脂膜の沿面放電防止機能を損なわずに高耐圧の硬化性合成樹脂膜に起因して放射線感応型の半導体層にかかるストレスを十分に軽減することができるフラットパネル型放射線検出器を提供することを目的とする。   The present invention has been made in view of such circumstances, and has a high pressure-resistant curable synthetic resin film without impairing the creeping discharge prevention function of the high-voltage curable synthetic resin film covering the radiation-sensitive semiconductor. An object of the present invention is to provide a flat panel radiation detector capable of sufficiently reducing the stress applied to the radiation-sensitive semiconductor layer due to the above.

この発明は、このような目的を達成するために、次のような構成をとる。   In order to achieve such an object, the present invention has the following configuration.

すなわち、請求項1に記載の発明は、(a)放射線の入射により電荷を生成する放射線感応型の半導体層と、(b)この半導体層の表面に形成されて半導体層にバイアス電圧を与える共通電極と、(c)半導体層と共通電極とがその順に積層され、半導体層で生じた電荷を読み出す電荷読み出し回路と画素電極用の個別電極とが形成されたアクティブマトリクス基板と、(d)有効画素領域の外側となる位置で共通電極に接続されるバイアス電圧給電用のリード線と、(e)半導体層と共通電極とを覆う高耐圧の硬化性合成樹脂膜と、(f)硬化性合成樹脂膜の表側に固定され、アクティブマトリックス基板と同程度の熱膨張係数を有する絶縁性の補助板とを備えているフラットパネル型放射線検出器において、高耐圧の硬化性合成樹脂膜は、少なくとも有効画素領域を覆う部分の膜厚がバイアス電圧給電用のリード線の接続領域を覆う部分の膜厚よりも薄くなっていることを特徴とするものである。   That is, the invention described in claim 1 includes (a) a radiation-sensitive semiconductor layer that generates a charge upon incidence of radiation, and (b) a common that is formed on the surface of the semiconductor layer and applies a bias voltage to the semiconductor layer. (C) an active matrix substrate on which an electrode, (c) a semiconductor layer and a common electrode are stacked in that order, and a charge readout circuit for reading out charges generated in the semiconductor layer and individual electrodes for pixel electrodes are formed; A bias voltage feeding lead wire connected to the common electrode at a position outside the pixel region; (e) a high pressure-resistant curable synthetic resin film covering the semiconductor layer and the common electrode; and (f) curable synthesis. In a flat panel radiation detector, which is fixed on the front side of the resin film and has an insulating auxiliary plate having the same thermal expansion coefficient as that of the active matrix substrate, the high pressure-resistant curable synthetic resin film is And it is characterized in that it is thinner than the thickness of the portion where the thickness of the portion covering at least the effective pixel region covers the connection region of the lead wire for bias voltage supply.

[作用・効果]請求項1の発明の放射線検出器によって放射線を検出する場合、バイアス電圧給電用のリード線を経由して共通電極から放射線感応型の半導体層にバイアス電圧が与えられ、検出対象の放射線の入射に伴って放射線感応型の半導体層で放射線検出信号源としての電荷が生成されると共に、放射線感応型の半導体層で生じた電荷が個別電極経由でアクティブマトリックス基板の電荷読み出し回路によって取り出される。   [Operation / Effect] When radiation is detected by the radiation detector according to the first aspect of the present invention, a bias voltage is applied from a common electrode to a radiation-sensitive semiconductor layer via a bias voltage feeding lead, and a detection target is detected. As the radiation is incident on the radiation-sensitive semiconductor layer, a charge as a radiation detection signal source is generated, and the charge generated in the radiation-sensitive semiconductor layer is generated by the charge readout circuit of the active matrix substrate via an individual electrode. It is taken out.

一方、請求項1の発明のフラットパネル型放射線検出器では、放射線の入射により電荷を生成する放射線感応型の半導体層と共通電極とこれら半導体層と共通電極を覆う高耐圧の硬化性合成樹脂膜が、熱膨張係数を同程度とするアクティブマトリックス基板と絶縁性の補助板の間に挟み込まれているので、温度変化による反りが抑えられる。さらに、高耐圧の硬化性合成樹脂膜は、硬化性合成樹脂膜の膜面積に対する占有率が大きい有効画素領域を覆う部分の膜厚がバイアス電圧給電用のリード線の接続領域を覆う部分の膜厚より薄くなっていて、硬化性合成樹脂膜は広い範囲にわたって膜厚が薄くなっているので、硬化性合成樹脂膜に起因して放射線感応型の半導体層にかかるストレスを十分に軽減できる。   On the other hand, in the flat panel radiation detector according to the first aspect of the present invention, a radiation-sensitive semiconductor layer and a common electrode that generate electric charges upon incidence of radiation, and a high-voltage curable synthetic resin film that covers the semiconductor layer and the common electrode However, since it is sandwiched between the active matrix substrate having the same thermal expansion coefficient and the insulating auxiliary plate, warpage due to temperature change can be suppressed. Further, the high pressure-resistant curable synthetic resin film is a film in a portion where the film thickness of the portion covering the effective pixel area having a large occupation ratio with respect to the film area of the curable synthetic resin film covers the connection region of the lead wire for supplying the bias voltage. Since the thickness of the curable synthetic resin film is smaller than that of the curable synthetic resin film, the stress applied to the radiation-sensitive semiconductor layer due to the curable synthetic resin film can be sufficiently reduced.

他方、逆にバイアス電圧給電用のリード線の接続領域を覆う部分の膜厚は、有効画素領域を覆う部分の膜厚より厚くなっているので、高耐圧の硬化性合成樹脂膜の沿面放電防止機能の低下を抑制できる。   On the other hand, since the film thickness of the portion covering the connection area of the lead wire for supplying the bias voltage is larger than the film thickness of the portion covering the effective pixel area, the creeping discharge prevention of the high voltage curable synthetic resin film is prevented. The decline in function can be suppressed.

また、請求項2に記載の発明は、請求項1に記載のフラットパネル型放射線検出器において、高耐圧の硬化性合成樹脂膜は、有効画素領域に加えて放射線感応型の半導体層のコーナー領域を覆う部分の膜厚も、バイアス電圧給電用のリード線の接続領域を覆う部分の膜厚よりも薄くなっているものである。   According to a second aspect of the present invention, in the flat panel radiation detector according to the first aspect, the high pressure-resistant curable synthetic resin film is formed of a corner region of the radiation-sensitive semiconductor layer in addition to the effective pixel region. The film thickness of the portion covering the thin film is also thinner than the film thickness of the portion covering the connection area of the bias voltage power supply lead wire.

[作用・効果]請求項2の発明の放射線検出器の場合、高耐圧の硬化性合成樹脂膜は、有効画素領域を覆う部分に加えて温度変化に伴う変形応力が集中する放射線感応型の半導体層のコーナー領域を覆う部分の膜厚も、バイアス電圧給電用のリード線の接続領域を覆う部分の膜厚よりも薄くなっており、硬化性合成樹脂膜は、より広い範囲にわたって膜厚が薄くなっているうえ、半導体層のコーナー領域における変形応力の集中を緩和できるので、硬化性合成樹脂膜に起因して放射線感応型の半導体層にかかるストレスをより十分に軽減することができる。   [Operation / Effect] In the case of the radiation detector of the invention of claim 2, the high pressure-resistant curable synthetic resin film is a radiation-sensitive semiconductor in which deformation stress due to temperature change is concentrated in addition to the portion covering the effective pixel region. The film thickness of the part covering the corner area of the layer is also thinner than the film thickness of the part covering the connection area of the lead wire for supplying the bias voltage, and the curable synthetic resin film is thin over a wider range. In addition, since the concentration of deformation stress in the corner region of the semiconductor layer can be alleviated, the stress applied to the radiation-sensitive semiconductor layer due to the curable synthetic resin film can be more sufficiently reduced.

また、請求項3に記載の発明は、請求項2に記載のフラットパネル型放射線検出器において、高耐圧の硬化性合成樹脂膜は、放射線感応型の半導体層の表面上であってバイアス電圧給電用のリード線の接続領域の外側となると共に有効画素領域および半導体層のコーナー領域以外となる残余領域を覆う部分の膜厚も、バイアス電圧給電用のリード線の接続領域を覆う部分の膜厚よりも薄くなっているものである。   According to a third aspect of the present invention, in the flat panel radiation detector according to the second aspect, the high pressure-resistant curable synthetic resin film is on the surface of the radiation-sensitive semiconductor layer and is supplied with a bias voltage. The film thickness of the portion that covers the remaining area other than the effective pixel area and the corner area of the semiconductor layer, as well as the film thickness of the portion that covers the connection area of the lead wire for supplying the bias voltage Is thinner.

[作用・効果]請求項3の発明の放射線検出器の場合、放射線感応型の半導体層の表面上では高耐圧の合成樹脂膜がバイアス電圧給電用のリード線の接続領域を覆う部分以外は全て膜厚が薄くなっていて、硬化性合成樹脂膜は、よりいっそう広い範囲にわたって膜厚が薄くなっているので、硬化性合成樹脂膜に起因して放射線感応型の半導体層にかかるストレスの軽減が極めて十分なものとなる。   [Operation / Effect] In the case of the radiation detector according to the third aspect of the present invention, all but the portion of the radiation-sensitive semiconductor layer except the portion where the high-voltage synthetic resin film covers the connection region of the lead wire for supplying the bias voltage is provided. Since the film thickness is thin and the curable synthetic resin film is thin over an even wider range, the stress on the radiation-sensitive semiconductor layer due to the curable synthetic resin film can be reduced. It will be extremely sufficient.

また、請求項4に記載の発明は、請求項1から3のいずれかに記載のフラットパネル型放射線検出器において、高耐圧の硬化性合成樹脂膜においてバイアス電圧給電用のリード線の接続領域を覆う部分より膜厚が薄くなっている薄膜部分の膜厚をTAとし、バイアス電圧給電用のリード線の接続領域を覆う厚膜部分の膜厚をtaとして、0.5ta≧TA≧0.1taであるものである。   According to a fourth aspect of the present invention, in the flat panel radiation detector according to any one of the first to third aspects, the connection region of the lead wire for supplying the bias voltage in the high pressure-resistant curable synthetic resin film is provided. The thickness of the thin film portion that is thinner than the covering portion is TA, and the thickness of the thick film portion that covers the connection region of the bias voltage feeding lead wire is ta, and 0.5 ta ≧ TA ≧ 0.1 ta. It is what is.

[作用・効果]請求項4の発明の放射線検出器の場合、高耐圧の硬化性合成樹脂膜においてバイアス電圧給電用のリード線の接続領域を覆う部分より膜厚が薄くなっている薄膜部分の膜厚が、バイアス電圧給電用のリード線の接続領域を覆う厚膜部分の膜厚の半分以下と十分に薄くなっているので、硬化性合成樹脂膜に起因して放射線感応型の半導体層にかかるストレス軽減が確実に果たされるうえ、バイアス電圧給電用のリード線の接続領域を覆う部分の膜厚の1/10以上の厚さが常に確保されるので、硬化性合成樹脂膜による対環境性改善も確実に果たされる。   [Operation / Effect] In the case of the radiation detector according to the invention of claim 4, the thin film portion of the high withstand voltage curable synthetic resin film is thinner than the portion covering the connection region of the lead wire for supplying the bias voltage. The film thickness is sufficiently thin, less than half the thickness of the thick film part that covers the connection area of the lead wire for supplying the bias voltage, so that it becomes a radiation-sensitive semiconductor layer due to the curable synthetic resin film. Such stress reduction is surely achieved, and a thickness of 1/10 or more of the thickness of the portion covering the connection region of the lead wire for supplying the bias voltage is always ensured. Improvements are also certainly achieved.

この発明のフラットパネル型放射線検出器の場合、放射線の入射により電荷を生成する放射線感応型の半導体層と共通電極と、これら半導体層と共通電極を覆う高耐圧の硬化性合成樹脂膜とが、熱膨張係数を同程度とするアクティブマトリックス基板と絶縁性の補助板の間に挟み込まれているので、温度変化による反りが抑えられる。さらに、高耐圧の硬化性合成樹脂膜は、硬化性合成樹脂膜の膜面積に対する占有率が大きい有効画素領域を覆う部分の膜厚がバイアス電圧給電用のリード線の接続領域を覆う部分の膜厚よりも薄くなっていて、硬化性合成樹脂膜は広い範囲にわたって膜厚が薄くなっているので、硬化性合成樹脂膜に起因して放射線感応型の半導体層にかかるストレスを十分に軽減できる。   In the case of the flat panel radiation detector of the present invention, a radiation-sensitive semiconductor layer and a common electrode that generate electric charges upon incidence of radiation, and a high pressure-resistant curable synthetic resin film covering the semiconductor layer and the common electrode, Since it is sandwiched between the active matrix substrate having the same thermal expansion coefficient and the insulating auxiliary plate, warpage due to temperature change can be suppressed. Further, the high pressure-resistant curable synthetic resin film is a film in a portion where the film thickness of the portion covering the effective pixel area having a large occupation ratio with respect to the film area of the curable synthetic resin film covers the connection region of the lead wire for supplying the bias voltage. Since the thickness of the curable synthetic resin film is smaller than that of the curable synthetic resin film, the stress applied to the radiation-sensitive semiconductor layer due to the curable synthetic resin film can be sufficiently reduced.

また、逆にバイアス電圧給電用のリード線の接続領域を覆う部分の膜厚は、有効画素領域を覆う部分の膜厚よりも厚くなっているので、高耐圧の硬化性合成樹脂膜の沿面放電防止機能の低下を抑制できる。よって、この発明のフラットパネル型放射線検出器によれば、放射線感応型の半導体層を覆う高耐圧の硬化性合成樹脂膜の沿面放電防止機能を損なわずに高耐圧の硬化性合成樹脂膜に起因して放射線感応型の半導体層にかかるストレスを十分に軽減することができる。   Conversely, the thickness of the portion covering the connection area of the lead wire for supplying the bias voltage is thicker than the thickness of the portion covering the effective pixel area. Reduction of the prevention function can be suppressed. Therefore, according to the flat panel radiation detector of the present invention, the high pressure-resistant curable synthetic resin film covering the radiation-sensitive semiconductor layer without damaging the creeping discharge preventing function of the high-voltage curable synthetic resin film is caused. Thus, the stress applied to the radiation-sensitive semiconductor layer can be sufficiently reduced.

この発明のフラットパネル型放射線検出器(以下、適宜「FPD」と略記)の実施例1を図面を参照して説明する。図1は実施例1に係る直接変換タイプのFPDの要部構成を示す断面図、図2は実施例1のFPDにおける放射線感応型の半導体層と共通電極を覆う高耐圧の硬化性合成樹脂膜を示す平面図、図3は実施例1のFPDのアクティブマトリックス基板まわりの電気回路を示すブロック図、図4は実施例1のFPDのアクティブマトリックス基板の構成を模式的に示す断面図、図5は実施例1のFPDにおける1個の放射線検出ユニットの電気的等価回路図である。   Example 1 of a flat panel radiation detector (hereinafter abbreviated as “FPD” where appropriate) according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of a main part of a direct conversion type FPD according to Example 1, and FIG. 2 is a high-voltage curable synthetic resin film covering a radiation-sensitive semiconductor layer and a common electrode in the FPD of Example 1. FIG. 3 is a block diagram showing an electric circuit around the active matrix substrate of the FPD of Example 1. FIG. 4 is a cross-sectional view schematically showing the configuration of the active matrix substrate of the FPD of Example 1. FIG. FIG. 3 is an electrical equivalent circuit diagram of one radiation detection unit in the FPD according to the first embodiment.

実施例1のFPDは、図1〜図4に示すように、放射線(例えばX線)により電荷を生成する放射線感応型の半導体膜1と、この半導体膜1にバイアス電圧を与える金属薄膜製の共通電極2が、その順にアクティブマトリックス基板3に積層形成されている。アクティブマトリックス基板3は、半導体膜1で生じた電荷を読み出す電荷読み出し回路6が形成されていると共に表面に画素電極用の個別電極5が有効画素領域SA内に2次元状マトリックス配列で形成されている。共通電極2には有効画素領域SAの外側となる位置でバイアス電圧給電用のリード線4が接続されている。半導体膜1と共通電極2には、高耐圧の硬化性合成樹脂膜8が保護モールドとして被覆されている。この硬化性合成樹脂膜8の表側にアクティブマトリックス基板3と同程度の熱膨張係数を有する絶縁性の補助板7が固定されている。   As shown in FIGS. 1 to 4, the FPD of Example 1 is made of a radiation sensitive semiconductor film 1 that generates charges by radiation (for example, X-rays), and a metal thin film that applies a bias voltage to the semiconductor film 1. The common electrode 2 is laminated on the active matrix substrate 3 in that order. The active matrix substrate 3 is formed with a charge readout circuit 6 for reading out the charges generated in the semiconductor film 1, and individual electrodes 5 for pixel electrodes are formed on the surface in a two-dimensional matrix arrangement in the effective pixel area SA. Yes. A bias voltage feed lead 4 is connected to the common electrode 2 at a position outside the effective pixel area SA. The semiconductor film 1 and the common electrode 2 are covered with a high pressure curable synthetic resin film 8 as a protective mold. An insulating auxiliary plate 7 having a thermal expansion coefficient similar to that of the active matrix substrate 3 is fixed to the front side of the curable synthetic resin film 8.

放射線感応型の半導体膜1は、厚膜層1Aと、この厚膜層1Aの表面と裏面にそれぞれ配されたキャリア選択性の中間層1a,1bとの3層構成とされている。共通電極2の側の中間層1aと、個別電極5の側のキャリア選択性の中間層1bとは、キャリア選択性の高抵抗薄膜で形成されている。   The radiation-sensitive semiconductor film 1 has a three-layer structure including a thick film layer 1A and carrier-selective intermediate layers 1a and 1b disposed on the front and back surfaces of the thick film layer 1A, respectively. The intermediate layer 1a on the common electrode 2 side and the carrier-selective intermediate layer 1b on the individual electrode 5 side are formed of a carrier-selective high-resistance thin film.

半導体膜1の厚膜層1Aには、アモルファスセレン(a−Se)等のアモルファス半導体膜やCdZnTe等の化合物半導体膜が用いられる。厚膜層1Aの厚みは、通常、0.5mm〜1.5mm程度である。   For the thick film layer 1A of the semiconductor film 1, an amorphous semiconductor film such as amorphous selenium (a-Se) or a compound semiconductor film such as CdZnTe is used. The thickness of the thick film layer 1A is usually about 0.5 mm to 1.5 mm.

半導体膜1の中間層1a,1bには、NaやCl,As,Te等をドープしたアモルファスセレン薄膜やSb23 やCdS等の化合物半導体薄膜が用いられる。中間層1a,1bの厚みは、通常、0.01μm〜10μm程度である。なお、放射線感応型の半導体膜1の場合、キャリア選択性の中間層1a,1bを必ずしも設ける必要はなく、中間層1a,1bの一方または両方が省かれていてもよい。 As the intermediate layers 1a and 1b of the semiconductor film 1, an amorphous selenium thin film doped with Na, Cl, As, Te, or the like, or a compound semiconductor thin film such as Sb 2 S 3 or CdS is used. The thickness of the intermediate layers 1a and 1b is usually about 0.01 μm to 10 μm. In the case of the radiation-sensitive semiconductor film 1, the carrier-selective intermediate layers 1a and 1b are not necessarily provided, and one or both of the intermediate layers 1a and 1b may be omitted.

アクティブマトリックス基板3に配設されている電荷読み出し回路6はコンデンサ6Aやスイッチング素子としてのTFT(薄膜電界効果トランジスタ)6Bおよび電気配線6a,6bなどからなり、各個別電極5ごとに1個のコンデンサ6Aと1個のTFT6Bが配備されている。また、アクティブマトリックス基板3の電荷読み出し回路6の後段にはゲートドライバ9と電荷電圧変換型増幅器10およびマルチプレクサ11に加えてA/D変換器12が別デバイスとしてアクティブマトリックス基板3とは別体の外付けのかたちで配備接続されている。   The charge readout circuit 6 disposed on the active matrix substrate 3 includes a capacitor 6A, a TFT (thin film field effect transistor) 6B as a switching element, and electrical wirings 6a and 6b. One capacitor is provided for each individual electrode 5. 6A and one TFT 6B are provided. In addition to the gate driver 9, the charge voltage conversion amplifier 10 and the multiplexer 11, an A / D converter 12 is provided as a separate device separately from the active matrix substrate 3 in the subsequent stage of the charge readout circuit 6 of the active matrix substrate 3. Deployed and connected externally.

実施例1のFPDによる放射線検出の際は、バイアス供給電源によって出力される数キロボルト〜数十キロボルト程度のバイアス電圧がバイアス電圧給電用のリード線4を経由して共通電極2から放射線感応型の半導体膜1に与えられる。検出対象の放射線の入射に伴って半導体膜1で電荷が生成されると共に半導体膜1で生じた電荷が(詳しくは各個別電極5へ移動することで個別電極5に電荷が誘起するかたちで)各個別電極5ごとに収集される。各個別電極5で収集された電荷は、アクティブマトリックス基板3の電荷読み出し回路6等により個別電極5毎の放射線検出信号として取り出される。   In the radiation detection by the FPD of the first embodiment, a bias voltage of about several kilovolts to several tens of kilovolts output from the bias supply power source is applied to the radiation-sensitive type from the common electrode 2 via the lead wire 4 for supplying the bias voltage. It is given to the semiconductor film 1. Charges are generated in the semiconductor film 1 as the radiation to be detected is incident, and the charges generated in the semiconductor film 1 (specifically, the charges are induced in the individual electrodes 5 by moving to the individual electrodes 5). Collected for each individual electrode 5. The charges collected by each individual electrode 5 are taken out as a radiation detection signal for each individual electrode 5 by the charge readout circuit 6 of the active matrix substrate 3 or the like.

具体的には、ゲートドライバ9から電気配線6a経由で読み出し信号が各TFT6Bのゲートに順番に与えられると同時に、読み出し信号が与えられている各TFT6Bのソースに繋がっている電気配線6bがマルチプレクサ11に順に切り換え接続される。これにより、コンデンサ6Aに蓄積された電荷が、TFT6Bから電気配線6bを経て電荷電圧変換型増幅器10で増幅された上でマルチプレクサ11により各個別電極5毎の放射線検出信号としてA/D変換器12に送り出されてディジタル化される。なお、マルチプレクサ11を介さず、全ての電荷電圧変換型増幅器10に各々A/D変換器12が接続されてもよい。実施例1のFPDが、例えばX線透視撮影装置に装備されている場合であれば、実施例1のFPDから送り出された放射線検出信号は、FPDの後段で2次元X線透視画像等に仕上げられる。   Specifically, the readout signal is sequentially given from the gate driver 9 to the gate of each TFT 6B via the electrical wiring 6a, and at the same time, the electrical wiring 6b connected to the source of each TFT 6B to which the readout signal is given is connected to the multiplexer 11. Are connected in order. As a result, the charge accumulated in the capacitor 6A is amplified by the charge-voltage conversion type amplifier 10 from the TFT 6B via the electric wiring 6b, and then the A / D converter 12 as a radiation detection signal for each individual electrode 5 by the multiplexer 11. To be digitized. Note that the A / D converters 12 may be connected to all the charge-voltage conversion amplifiers 10 without using the multiplexer 11. If the FPD of the first embodiment is installed in, for example, an X-ray fluoroscopic apparatus, the radiation detection signal sent from the FPD of the first embodiment is finished into a two-dimensional X-ray fluoroscopic image or the like after the FPD. It is done.

つまり、実施例1のFPDは、2次元状マトリックス配列の各個別電極5がそれぞれ放射線画像の各画素に対応する画素用電極となっていて、有効画素領域SAに投影される放射線の2次元強度分布に応じた放射線画像を作成できる放射線検出信号が取り出せる2次元アレイタイプの放射線検出器である。さらに付言すれば、実施例1のFPDは、図5に示す等価回路の放射線検出ユニット(放射線検出素子)が有効画像領域SAに縦横の格子状ラインに沿って2次元状マトリックス状に展開配置されているものである。   That is, in the FPD of the first embodiment, each individual electrode 5 in the two-dimensional matrix array is a pixel electrode corresponding to each pixel of the radiation image, and the two-dimensional intensity of radiation projected on the effective pixel area SA. This is a two-dimensional array type radiation detector capable of extracting a radiation detection signal capable of creating a radiation image corresponding to the distribution. In addition, in the FPD of the first embodiment, the radiation detection unit (radiation detection element) of the equivalent circuit shown in FIG. 5 is deployed and arranged in a two-dimensional matrix along vertical and horizontal grid lines in the effective image area SA. It is what.

アクティブマトリックス基板3の基材としては、例えばガラス基板が用いられる。またアクティブマトリックス基板3と同程度の熱膨張係数を有する絶縁性の補助板7としても、例えばパイレックスガラス基板や石英ガラス基板が用いられる。アクティブマトリックス基板3のガラス基板や、補助板7のガラス基板の厚みは、例えば0.5mm〜1.5mm程度である。   As a base material of the active matrix substrate 3, for example, a glass substrate is used. As the insulating auxiliary plate 7 having the same thermal expansion coefficient as that of the active matrix substrate 3, for example, a Pyrex glass substrate or a quartz glass substrate is used. The thickness of the glass substrate of the active matrix substrate 3 and the glass substrate of the auxiliary plate 7 is, for example, about 0.5 mm to 1.5 mm.

高耐圧の硬化性合成樹脂膜8は、実施例1の場合、ABS樹脂等のフレーム枠状スペーサ材13を介してアクティブマトリックス基板3の側に補助板7を組み付けておき、アクティブマトリックス基板3と補助板7の間に液状の常温硬化型樹脂組成物を注入硬化させることで補助板7を接着固定するかたちで形成される。硬化性合成樹脂膜8には、例えば常温硬化型のエポキシ樹脂などが適当な樹脂材料として用いられる。   In the case of Example 1, the high pressure-resistant curable synthetic resin film 8 is obtained by assembling the auxiliary plate 7 on the active matrix substrate 3 side through the frame frame spacer material 13 such as ABS resin, and the active matrix substrate 3. The auxiliary plate 7 is formed by bonding and fixing the auxiliary plate 7 by injecting and curing a liquid room temperature curable resin composition between the auxiliary plates 7. For the curable synthetic resin film 8, for example, a room temperature curable epoxy resin or the like is used as an appropriate resin material.

そして、実施例1のFPDの場合、保護モールド被覆としての高耐圧の硬化性合成樹脂膜8は、図2に示すように有効画素領域SAを覆う薄膜部分8Aの膜厚が、図2に示すようにバイアス電圧給電用のリード線4の接続領域を含めて有効画素領域SAの周囲を取り囲むかたちで覆う厚膜部分8aの膜厚よりも薄くなっている点を構成上の特徴としている。実施例1の場合、薄膜部分8Aと厚膜部分8aとを有する高耐圧の硬化性合成樹脂膜8は、具体的には次のようにして形成されている。   In the case of the FPD of Example 1, the high pressure-resistant curable synthetic resin film 8 as the protective mold coating has a thin film portion 8A covering the effective pixel area SA as shown in FIG. As described above, the structure is characterized in that it is thinner than the thickness of the thick film portion 8a covering the periphery of the effective pixel area SA including the connection area of the lead wire 4 for supplying the bias voltage. In the case of Example 1, the high pressure-resistant curable synthetic resin film 8 having the thin film portion 8A and the thick film portion 8a is specifically formed as follows.

補助板7は有効画素領域SAに対面する薄膜用ピース7Aを周縁表面で有効画素領域SAを取り囲む領域に対面する厚膜用ピース7aの裏面に接着固定した構成となっていて、アクティブマトリックス基板3の側に補助板7を組み付けた時に、半導体膜1の側と薄膜用ピース7Aの間のギャップと、半導体膜1の側と厚膜用ピース7aの間のギャップに薄膜用ピース7Aの厚み分だけの差が生じる。   The auxiliary plate 7 has a configuration in which the thin film piece 7A facing the effective pixel area SA is bonded and fixed to the back surface of the thick film piece 7a facing the area surrounding the effective pixel area SA on the peripheral surface. When the auxiliary plate 7 is assembled to the thin film piece 7A, the gap between the semiconductor film 1 side and the thin film piece 7A and the gap between the semiconductor film 1 side and the thick film piece 7a are equal to the thickness of the thin film piece 7A. Only a difference occurs.

したがって、アクティブマトリックス基板3と補助板7の間に液状の常温硬化型樹脂組成物を注入硬化させると、薄膜用ピース7Aと厚膜用ピース7aの間に生じた半導体膜1の側に対するギャップ差によって、薄膜用ピース7Aのところは薄膜部分8Aとなり、厚膜用ピース7aの側ところは厚膜部分8aとなって、薄膜部分8Aは薄膜用ピース7Aの厚みに見合う分だけ厚膜部分8aより薄くなった硬化性合成樹脂膜8が形成されることとなる。なお、補助板7を薄膜用ピース7Aと厚膜用ピース7aの二ピースタイプである必要はなく、薄膜用ピース7Aと厚膜用ピース7aが最初から完全一体化したワンピースタイプでもよい。   Therefore, when a liquid room temperature curable resin composition is injected and cured between the active matrix substrate 3 and the auxiliary plate 7, a gap difference between the thin film piece 7A and the thick film piece 7a with respect to the semiconductor film 1 side is generated. Accordingly, the thin film piece 7A becomes a thin film portion 8A, the thick film piece 7a has a thick film portion 8a, and the thin film portion 8A has a thickness corresponding to the thickness of the thin film piece 7A. A thin curable synthetic resin film 8 is formed. The auxiliary plate 7 does not have to be a two-piece type of the thin film piece 7A and the thick film piece 7a, and may be a one-piece type in which the thin film piece 7A and the thick film piece 7a are completely integrated from the beginning.

高耐圧の硬化性合成樹脂膜8においては、薄膜部分8Aの膜厚をTAとし、厚膜部分8aの接続領域を覆う部分の膜厚をtaとして、0.5ta≧TA≧0.1taの関係にある。薄膜部分8Aの膜厚TAは、通常、0.1mm〜0.5mmの範囲にあり、厚膜部分8aの膜厚taは、通常、1mm〜2mmの範囲にある。   In the high pressure-resistant curable synthetic resin film 8, the relationship of 0.5 ta ≧ TA ≧ 0.1 ta is assumed, where TA is the thickness of the thin film portion 8A and ta is the thickness of the portion covering the connection region of the thick film portion 8a. It is in. The film thickness TA of the thin film portion 8A is usually in the range of 0.1 mm to 0.5 mm, and the film thickness ta of the thick film portion 8a is usually in the range of 1 mm to 2 mm.

以上に述べた構成を有する実施例1のFPDの場合、放射線の入射により電荷を生成する放射線感応型の半導体膜1と共通電極2とこれら半導体膜1と共通電極2を覆う高耐圧の硬化性合成樹脂膜8とを、熱膨張係数が同程度のアクティブマトリックス基板3と絶縁性の補助板7とで挟み込むので、温度変化による反りが抑えられる。さらに、硬化性合成樹脂膜8は、硬化性合成樹脂膜の膜面積に対する占有率が大きい有効画素領域SAを覆う薄膜部分8Aの膜厚がバイアス電圧給電用のリード線4の接続領域を覆う厚膜部分8aの膜厚よりも薄くなっていて、硬化性合成樹脂膜8は広い範囲にわたって膜厚が薄くなっているので、硬化性合成樹脂膜8に起因して放射線感応型の半導体膜1にかかるストレスを十分に軽減できる。   In the case of the FPD according to the first embodiment having the above-described configuration, the radiation-sensitive semiconductor film 1 and the common electrode 2 that generate charges by the incidence of radiation, and the high withstand pressure curable property that covers the semiconductor film 1 and the common electrode 2. Since the synthetic resin film 8 is sandwiched between the active matrix substrate 3 and the insulating auxiliary plate 7 having the same thermal expansion coefficient, warpage due to temperature change can be suppressed. Further, in the curable synthetic resin film 8, the thickness of the thin film portion 8A covering the effective pixel area SA having a large occupation ratio with respect to the film area of the curable synthetic resin film covers the connection area of the lead wire 4 for supplying the bias voltage. Since the film thickness of the curable synthetic resin film 8 is smaller than that of the film portion 8a, the film thickness of the curable synthetic resin film 8 is reduced over a wide range, so that the radiation-sensitive semiconductor film 1 is formed due to the curable synthetic resin film 8. Such stress can be sufficiently reduced.

他方、逆にバイアス電圧給電用のリード線4の接続領域を覆う厚膜部分8aの膜厚は、有効画素領域SAを覆う薄膜部分8Aの膜厚よりも厚くなっているので、高耐圧の硬化性合成樹脂膜8の沿面放電防止機能の低下を抑制できる。また、厚膜部分8aは、沿面放電が生じ易い半導体膜1の周縁全体を覆っているので、沿面放電防止機能の低下抑制は十分になされる。   On the other hand, since the film thickness of the thick film portion 8a covering the connection region of the lead wire 4 for supplying the bias voltage is thicker than the film thickness of the thin film portion 8A covering the effective pixel region SA, high withstand voltage curing is achieved. The deterioration of the creeping discharge preventing function of the conductive synthetic resin film 8 can be suppressed. Further, since the thick film portion 8a covers the entire periphery of the semiconductor film 1 where creeping discharge is likely to occur, the reduction of the creeping discharge preventing function is sufficiently suppressed.

さらに、実施例1のFPDの場合、高耐圧の合成樹脂膜8においてバイアス電圧給電用のリード線4の接続領域を覆う厚膜部分8aより膜厚が薄くなっている薄膜部分8Aの膜厚TAが、厚膜部分8aの膜厚taの半分以下と十分に薄くなっているので、硬化性合成樹脂膜8に起因して放射線感応型の半導体膜1にかかるストレス軽減が確実に果たされるうえ、厚膜部分8aの膜厚taの1/10以上の厚さが常に確保されるので、硬化性合成樹脂膜8による対環境性改善も確実に果たされる。   Further, in the case of the FPD of Example 1, the film thickness TA of the thin film portion 8A, which is thinner than the thick film portion 8a covering the connection region of the bias voltage feeding lead 4 in the high breakdown voltage synthetic resin film 8. However, since the thickness is sufficiently thin, that is, less than half of the film thickness ta of the thick film portion 8a, the stress applied to the radiation-sensitive semiconductor film 1 due to the curable synthetic resin film 8 can be reliably reduced. Since a thickness of 1/10 or more of the film thickness ta of the thick film portion 8a is always ensured, improvement in environmental resistance by the curable synthetic resin film 8 is also achieved reliably.

実施例2のFPDを図面を参照して説明する。図6は実施例2に係るFPDの要部構成を示す断面図である。実施例2のFPDは、図6に示すように、アクティブマトリックス基板3と同程度の熱膨張係数を有する一枚物の絶縁性の補助板14と、有効画素領域SAの側へ突き出す内向きフランジ部15Aを上端内周に沿って有するABS樹脂等のフレーム枠状スペーサ材15とを備えている他は、実質的に実施例1のFPDと同様であるので、実施例1と共通する点の説明は省略し、相違する点のみを説明する。   The FPD of Example 2 will be described with reference to the drawings. FIG. 6 is a cross-sectional view illustrating a configuration of a main part of the FPD according to the second embodiment. As shown in FIG. 6, the FPD of the second embodiment includes a single insulating auxiliary plate 14 having a thermal expansion coefficient comparable to that of the active matrix substrate 3 and an inward flange that protrudes toward the effective pixel area SA. Since it is substantially the same as the FPD of the first embodiment except that it includes the frame frame spacer material 15 such as ABS resin having the portion 15A along the inner periphery of the upper end, the points in common with the first embodiment Description is omitted, and only differences are described.

実施例2のFPDの場合、高耐圧の合成樹脂膜8は次のようにして形成される。補助板14をフレーム枠状スペーサ材15の内フランジ部15Aの裏面に予め固定し、フレーム枠状スペーサ材15ごとアクティブマトリックス基板3の側に組み付ける。これにより、半導体膜1の側と補助板14の間のギャップと、半導体膜1の側と内向きフランジ部15Aの間のギャップに補助板14の厚み分だけの差が生じる。この状態で液状の常温硬化型樹脂組成物を注入硬化させると、補助板14と内向きフランジ部15Aの間に生じた半導体膜1の側に対するギャップ差によって、補助板14のところは薄膜部分8Aとなり、内フランジ部15Aのところは厚膜部分8aとなって、薄膜部分8Aは補助板14の厚みに見合う分だけ厚膜部分8aより薄くなっている硬化性合成樹脂膜8が形成される。   In the case of the FPD of Example 2, the high breakdown voltage synthetic resin film 8 is formed as follows. The auxiliary plate 14 is fixed in advance to the back surface of the inner flange portion 15 </ b> A of the frame frame spacer material 15 and assembled together with the frame frame spacer material 15 on the active matrix substrate 3 side. As a result, a difference corresponding to the thickness of the auxiliary plate 14 is generated in the gap between the semiconductor film 1 side and the auxiliary plate 14 and in the gap between the semiconductor film 1 side and the inward flange portion 15A. When the liquid room-temperature curable resin composition is injected and cured in this state, the auxiliary plate 14 has a thin film portion 8A due to a gap difference between the auxiliary plate 14 and the inward flange portion 15A with respect to the semiconductor film 1 side. Thus, the inner flange portion 15A is a thick film portion 8a, and the curable synthetic resin film 8 is formed so that the thin film portion 8A is thinner than the thick film portion 8a by an amount corresponding to the thickness of the auxiliary plate 14.

実施例3のFPDを図面を参照して説明する。図7は実施例3のFPDにおける放射線感応型の半導体膜1と共通電極2を覆う高耐圧の硬化性合成樹脂膜8を示す平面図である。実施例3のFPDは、高耐圧の合成樹脂膜8が、有効画素領域SAと放射線感応型の半導体膜1のコーナー領域SBを覆う薄膜部分8Bの膜厚が、バイアス電圧給電用のリード線の接続領域を含む領域を覆う厚膜部分8bの膜厚よりも薄くなっている他は、実質的に実施例1のFPDと同様であるので、実施例1と共通する点の説明は省略し、相違する点のみを説明する。   The FPD of Example 3 will be described with reference to the drawings. FIG. 7 is a plan view showing a high pressure-resistant curable synthetic resin film 8 covering the radiation-sensitive semiconductor film 1 and the common electrode 2 in the FPD of the third embodiment. In the FPD of the third embodiment, the high breakdown voltage synthetic resin film 8 has a thin film portion 8B covering the effective pixel area SA and the corner area SB of the radiation-sensitive semiconductor film 1 so that the thickness of the lead wire for supplying bias voltage is the same. Since it is substantially the same as the FPD of the first embodiment except that it is thinner than the film thickness of the thick film portion 8b covering the region including the connection region, the description of the points common to the first embodiment is omitted. Only the differences will be described.

実施例3のFPDの場合、アクティブマトリックス基板3と同程度の熱膨張係数を有する絶縁性の補助板16が、図8に示すように、有効画素領域SAと対面する薄膜用ピース16Aおよび半導体膜1のコーナー領域SBに対面する平面形状が四角形の4個の薄膜用ピース16Bとバイアス電圧給電用のリード線4の接続領域を含む領域と対面する厚膜用ピース16aとからなる。そして、アクティブマトリックス基板3の側に補助板16を組み付けて、液状の常温硬化型樹脂組成物を注入硬化させると、薄膜用ピース16A,16Bのところは薄膜部分8Bとなり、厚膜用ピース16aのところは厚膜部分8bとなって、薄膜部分8Bは薄膜用ピース16A,16Bの厚みに見合う分だけ厚膜部分8bより薄くなった硬化性合成樹脂膜8が形成される。   In the case of the FPD of Example 3, the insulating auxiliary plate 16 having the same thermal expansion coefficient as that of the active matrix substrate 3 has a thin film piece 16A and a semiconductor film facing the effective pixel region SA as shown in FIG. Four thin film pieces 16B having a square shape facing one corner region SB and a thick film piece 16a facing the region including the connection region of the lead wire 4 for supplying bias voltage are formed. When the auxiliary plate 16 is assembled on the active matrix substrate 3 side and the liquid room temperature curable resin composition is injected and cured, the thin film pieces 16A and 16B become the thin film portions 8B, and the thick film pieces 16a However, a thick film portion 8b is formed, and a curable synthetic resin film 8 is formed in which the thin film portion 8B is thinner than the thick film portion 8b by an amount corresponding to the thickness of the thin film pieces 16A and 16B.

実施例3のFPDによれば、硬化性合成樹脂膜8が、より広い範囲にわたって膜厚が薄くなっているうえ、半導体膜1のコーナー領域SBにおける変形応力の集中を緩和できるので、硬化性合成樹脂膜8に起因して放射線感応型の半導体膜1にかかるストレスをより十分に軽減できる。   According to the FPD of Example 3, the thickness of the curable synthetic resin film 8 is reduced over a wider range, and the concentration of deformation stress in the corner region SB of the semiconductor film 1 can be reduced. The stress applied to the radiation-sensitive semiconductor film 1 due to the resin film 8 can be more sufficiently reduced.

実施例4のFPDを図面を参照して説明する。図9は実施例4のFPDにおける放射線感応型の半導体膜1と共通電極2を覆う高耐圧の硬化性合成樹脂膜8を示す平面図である。実施例4のFPDも、有効画素領域SAと放射線感応型の半導体膜1のコーナー領域SBを覆う薄膜部分8Cの膜厚が、バイアス電圧給電用のリード線の接続領域を含む領域を覆う円形状の厚膜部分8cの膜厚より薄くなっている。また、硬化性合成樹脂膜8の薄膜部分8Cがコーナー領域SBのところでは略三角形状である他は、硬化性合成樹脂膜8の薄膜部分8Cがコーナー領域SBのところでは四角形である実施例3のFPDと実質的に同様であるので、実施例3と共通する点の説明は省略し、相違する点のみを説明する。   The FPD of Example 4 will be described with reference to the drawings. FIG. 9 is a plan view showing a high pressure-resistant curable synthetic resin film 8 covering the radiation-sensitive semiconductor film 1 and the common electrode 2 in the FPD of Example 4. The FPD of Example 4 also has a circular shape in which the film thickness of the thin film portion 8C covering the effective pixel area SA and the corner area SB of the radiation-sensitive semiconductor film 1 covers the area including the connection area of the lead wire for supplying the bias voltage. It is thinner than the thickness of the thick film portion 8c. In addition, the thin film portion 8C of the curable synthetic resin film 8 has a substantially triangular shape at the corner region SB, and the thin film portion 8C of the curable synthetic resin film 8 has a rectangular shape at the corner region SB. Since this is substantially the same as the FPD of the first embodiment, the description of the points in common with the third embodiment will be omitted, and only the differences will be described.

実施例4のFPDの場合、アクティブマトリックス基板3と同程度の熱膨張係数を有する絶縁性の補助板17は、図10に示すように、有効画素領域SAと対面する薄膜用ピース17Aおよび半導体膜1のコーナー領域SBに対面する平面形状が略三角形の4個の薄膜用ピース17Bと、バイアス電圧給電用のリード線4の接続領域を含む領域と対面する厚膜用ピース17aとからなる。その結果、液状の常温硬化型樹脂組成物を注入硬化させると、薄膜用ピース17A,17Bのところは薄膜部分8Cとなり、厚膜用ピース17aのところは厚膜部分8cとなるのに加え、薄膜部分8Cがコーナー領域SBのところでは略三角形状となる。   In the case of the FPD of Example 4, the insulating auxiliary plate 17 having a thermal expansion coefficient comparable to that of the active matrix substrate 3 includes a thin film piece 17A and a semiconductor film facing the effective pixel area SA, as shown in FIG. The four thin film pieces 17B having a substantially triangular plane shape facing one corner region SB and the thick film piece 17a facing the region including the connection region of the lead wire 4 for supplying the bias voltage are formed. As a result, when the liquid room temperature curable resin composition is injected and cured, the thin film pieces 17A and 17B become the thin film portion 8C, and the thick film piece 17a becomes the thick film portion 8c. The portion 8C has a substantially triangular shape at the corner region SB.

実施例5のFPDを図面を参照して説明する。図11は実施例5のFPDにおける放射線感応型の半導体膜1と共通電極2を覆う高耐圧の硬化性合成樹脂膜8を示す平面図である。実施例5のFPDは、有効画素領域SAおよび半導体膜1のコーナー領域SBに加えて、さらに放射線感応型の半導体膜1の表面上であってバイアス電圧給電用のリード線4の接続領域の外側となると共に有効画素領域SAおよび半導体膜のコーナー領域SB以外となる残余領域をも覆う薄膜部分8Dの膜厚が、バイアス電圧給電用のリード線4の接続領域を覆う厚膜部分8dの膜厚よりも薄くなっている他は、実質的に実施例1のFPDと同様であるので、実施例1と共通する点の説明は省略し、相違する点のみを説明する。   The FPD of Example 5 will be described with reference to the drawings. FIG. 11 is a plan view showing a high pressure-resistant curable synthetic resin film 8 covering the radiation-sensitive semiconductor film 1 and the common electrode 2 in the FPD of the fifth embodiment. In addition to the effective pixel area SA and the corner area SB of the semiconductor film 1, the FPD of the fifth embodiment is further on the surface of the radiation sensitive semiconductor film 1 and outside the connection area of the lead wire 4 for supplying bias voltage. The film thickness of the thin film portion 8D that covers the remaining area other than the effective pixel area SA and the corner area SB of the semiconductor film is the film thickness of the thick film portion 8d that covers the connection area of the lead wire 4 for supplying the bias voltage. Since it is substantially the same as the FPD of the first embodiment except that the thickness is thinner, the description of the points in common with the first embodiment will be omitted, and only the points of difference will be described.

実施例5のFPDの場合、アクティブマトリックス基板3と同程度の熱膨張係数を有する絶縁性の補助板18は、図12に示すように、有効画素領域SAとコーナー領域SBとその他の残余領域に対面する薄膜用ピース18Aと、バイアス電圧給電用のリード線4の接続領域と対面する厚膜用ピース18aとからなる。アクティブマトリックス基板3の側に補助板18を組み付けて、液状の常温硬化型樹脂組成物を注入硬化させると、薄膜用ピース18Aのところは薄膜部分8Dとなり、厚膜用ピース18aのところは厚膜部分8dとなって、薄膜部分8Dは薄膜用ピース18Aの厚みに見合う分だけ厚膜用ピース8dより薄くなった硬化性合成樹脂膜8が形成される。   In the case of the FPD of the fifth embodiment, the insulating auxiliary plate 18 having the same thermal expansion coefficient as that of the active matrix substrate 3 is formed in the effective pixel area SA, the corner area SB, and other remaining areas as shown in FIG. It consists of a thin film piece 18A facing and a thick film piece 18a facing the connection region of the lead wire 4 for supplying bias voltage. When the auxiliary plate 18 is assembled on the side of the active matrix substrate 3 and the liquid room temperature curable resin composition is injected and cured, the thin film piece 18A becomes the thin film portion 8D and the thick film piece 18a becomes the thick film. The thin film portion 8D is formed with the curable synthetic resin film 8 that is thinner than the thick film piece 8d by an amount corresponding to the thickness of the thin film piece 18A.

実施例5のFPDによれば、放射線感応型の半導体膜1の表面上では硬化性合成樹脂膜8が、バイアス電圧給電用のリード線4の接続領域を覆う部分を除いて全て膜厚が薄くなっていて、硬化性合成樹脂膜8は、よりいっそう広い範囲にわたって膜厚が薄くなっているので、硬化性合成樹脂膜8に起因して放射線感応型の半導体膜1にかかるストレスの軽減は極めて十分なものとなる。   According to the FPD of Example 5, the curable synthetic resin film 8 is thin on the surface of the radiation-sensitive semiconductor film 1 except for the portion covering the connection region of the lead wire 4 for supplying the bias voltage. Since the curable synthetic resin film 8 is thin over a wider range, the stress on the radiation-sensitive semiconductor film 1 due to the curable synthetic resin film 8 is extremely reduced. It will be enough.

この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。   The present invention is not limited to the above-described embodiment, and can be modified as follows.

(1)実施例1〜5のFPDでは、ゲートドライバ9や電荷電圧変換型増幅器10およびマルチプレクサ11に加えてA/D変換器12が配備されていたが、ゲートドライバ9、電荷電圧変換型増幅器10、マルチプレクサ11およびA/D変換器12の一部または全部が配備されていない他は、各実施例1〜5と同様の構成としたFPDも、変形例として挙げられる。   (1) In the FPDs of the first to fifth embodiments, the A / D converter 12 is provided in addition to the gate driver 9, the charge-voltage conversion amplifier 10, and the multiplexer 11. However, the gate driver 9, the charge-voltage conversion amplifier 10. An FPD having the same configuration as that of each of the first to fifth embodiments except that some or all of the multiplexer 11 and the A / D converter 12 are not provided is also given as a modified example.

(2)実施例1〜5のFPDでは放射線感応型の半導体層が膜体であったが、この発明のFPDの場合、放射線感応型の半導体層として、放射線感応型の半導体結晶を薄くスライスした薄板であってもよい。   (2) In the FPDs of Examples 1 to 5, the radiation-sensitive semiconductor layer was a film body. However, in the case of the FPD of the present invention, a radiation-sensitive semiconductor crystal was thinly sliced as the radiation-sensitive semiconductor layer. It may be a thin plate.

(3)実施例1〜5のFPDは、医用に限らず、工業用あるいは原子力用として用いることができる。   (3) The FPDs of Examples 1 to 5 can be used not only for medical use but also for industrial use or nuclear power use.

実施例1のFPDの要部構成を示す断面図である。FIG. 3 is a cross-sectional view illustrating a main configuration of the FPD according to the first embodiment. 実施例1のFPDにおける高耐圧の硬化性合成樹脂膜を示す平面図である。3 is a plan view showing a high pressure-resistant curable synthetic resin film in the FPD of Example 1. FIG. 実施例1のFPDのアクティブマトリックス基板まわりの電気回路を示すブロック図である。FIG. 3 is a block diagram illustrating an electric circuit around an active matrix substrate of the FPD according to the first embodiment. 実施例1のFPDのアクティブマトリックス基板の構成を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a configuration of an active matrix substrate of the FPD of Example 1. 実施例1のFPDにおける1個の放射線検出ユニットの電気的等価回路図である。3 is an electrical equivalent circuit diagram of one radiation detection unit in the FPD of Embodiment 1. FIG. 実施例2のFPDの要部構成を示す断面図である。FIG. 6 is a cross-sectional view illustrating a main configuration of an FPD according to a second embodiment. 実施例3のFPDにおける高耐圧の硬化性合成樹脂膜を示す平面図である。6 is a plan view showing a high pressure-resistant curable synthetic resin film in the FPD of Example 3. FIG. 実施例3のFPDにおける補助板を示す平面図である。6 is a plan view showing an auxiliary plate in the FPD of Example 3. FIG. 実施例4のFPDにおける高耐圧の硬化性合成樹脂膜を示す平面図である。6 is a plan view showing a high pressure-resistant curable synthetic resin film in the FPD of Example 4. FIG. 実施例4のFPDにおける補助板を示す平面図である。6 is a plan view showing an auxiliary plate in an FPD of Example 4. FIG. 実施例5のFPDにおける高耐圧の硬化性合成樹脂膜を示す平面図である。6 is a plan view showing a high pressure-resistant curable synthetic resin film in the FPD of Example 5. FIG. 実施例5のFPDにおける補助板を示す平面図である。10 is a plan view showing an auxiliary plate in the FPD of Example 5. FIG. 従来のFPDの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional FPD.

符号の説明Explanation of symbols

1 …放射線感応型の半導体膜
2 …共通電極
3 …アクティブマトリックス基板
4 …リード線
5 …個別電極
6 …電荷読み出し回路
7 …補助板
8 …硬化性合成樹脂膜
8A〜8D …薄膜部分
8a〜8d …厚膜部分
15〜18 …補助板
SA …有効画素領域
SB …(半導体膜の)コーナー領域
TA …(薄膜部分の)膜厚
ta …(厚膜部分の)膜厚
DESCRIPTION OF SYMBOLS 1 ... Radiation sensitive semiconductor film 2 ... Common electrode 3 ... Active matrix substrate 4 ... Lead wire 5 ... Individual electrode 6 ... Charge readout circuit 7 ... Auxiliary plate 8 ... Curable synthetic resin film 8A-8D ... Thin film part 8a-8d ... thick film part 15-18 ... auxiliary plate SA ... effective pixel area SB ... corner area (semiconductor film) TA ... film thickness (thin film part) ta ... film thickness (thick film part)

Claims (4)

(a)放射線の入射により電荷を生成する放射線感応型の半導体層と、(b)この半導体層の表面に形成されて半導体層にバイアス電圧を与える共通電極と、(c)半導体層と共通電極とがその順に積層され、半導体層で生じた電荷を読み出す電荷読み出し回路と画素電極用の個別電極とが形成されたアクティブマトリクス基板と、(d)有効画素領域の外側となる位置で共通電極に接続されるバイアス電圧給電用のリード線と、(e)半導体層と共通電極とを覆う高耐圧の硬化性合成樹脂膜と、(f)硬化性合成樹脂膜の表側に固定され、アクティブマトリックス基板と同程度の熱膨張係数を有する絶縁性の補助板とを備えているフラットパネル型放射線検出器において、高耐圧の硬化性合成樹脂膜は、少なくとも有効画素領域を覆う部分の膜厚がバイアス電圧給電用のリード線の接続領域を覆う部分の膜厚よりも薄くなっていることを特徴とするフラットパネル型放射線検出器。   (A) a radiation-sensitive semiconductor layer that generates a charge upon incidence of radiation; (b) a common electrode that is formed on the surface of the semiconductor layer and applies a bias voltage to the semiconductor layer; and (c) a semiconductor layer and a common electrode. And an active matrix substrate on which a charge readout circuit for reading out charges generated in the semiconductor layer and individual electrodes for pixel electrodes are formed, and (d) a common electrode at a position outside the effective pixel region. An active matrix substrate fixed to the front side of the lead wire for bias voltage supply to be connected; (e) a high pressure-resistant curable synthetic resin film covering the semiconductor layer and the common electrode; and (f) a curable synthetic resin film. In a flat panel radiation detector having an insulating auxiliary plate having a thermal expansion coefficient comparable to that of the first embodiment, the high pressure-resistant curable synthetic resin film covers at least the effective pixel region. Flat panel radiation detector, characterized in that the film thickness is thinner than the thickness of the portion covering the connection region of the lead wire for bias voltage supply. 請求項1に記載のフラットパネル型放射線検出器において、高耐圧の硬化性合成樹脂膜は、有効画素領域に加えて放射線感応型の半導体層のコーナー領域を覆う部分の膜厚も、バイアス電圧給電用のリード線の接続領域を覆う部分の膜厚よりも薄くなっているフラットパネル型放射線検出器。   2. The flat panel radiation detector according to claim 1, wherein the high pressure-resistant curable synthetic resin film has a bias voltage supply in addition to an effective pixel region and a film thickness of a portion covering a corner region of the radiation-sensitive semiconductor layer. A flat panel radiation detector that is thinner than the thickness of the part covering the connection area of the lead wire for use. 請求項2に記載のフラットパネル型放射線検出器において、高耐圧の硬化性合成樹脂膜は、放射線感応型の半導体層の表面上であってバイアス電圧給電用のリード線の接続領域の外側となると共に有効画素領域および半導体層のコーナー領域以外となる残余領域を覆う部分の膜厚も、バイアス電圧給電用のリード線の接続領域を覆う部分の膜厚よりも薄くなっているフラットパネル型放射線検出器。   3. The flat panel radiation detector according to claim 2, wherein the high pressure-resistant curable synthetic resin film is on the surface of the radiation-sensitive semiconductor layer and outside the connection region of the lead wire for supplying bias voltage. In addition, the thickness of the portion covering the effective pixel region and the remaining region other than the corner region of the semiconductor layer is also thinner than the thickness of the portion covering the connection region of the lead wire for bias voltage supply. vessel. 請求項1から3のいずれかに記載のフラットパネル型放射線検出器において、高耐圧の硬化性合成樹脂膜においてバイアス電圧給電用のリード線の接続領域を覆う部分よりも膜厚が薄くなっている薄膜部分の膜厚をTAとし、バイアス電圧給電用のリード線の接続領域を覆う厚膜部分の膜厚をtaとして、0.5ta≧TA≧0.1taであるフラットパネル型放射線検出器。
4. The flat panel radiation detector according to claim 1, wherein the film thickness is thinner than a portion of the high pressure-resistant curable synthetic resin film that covers the connection region of the lead wire for supplying the bias voltage. A flat panel radiation detector in which 0.5 ta ≧ TA ≧ 0.1 ta, where TA is the thickness of the thin film portion and ta is the thickness of the thick film portion that covers the connection region of the lead wire for supplying the bias voltage.
JP2004099658A 2004-03-30 2004-03-30 Flat panel radiation detector Expired - Lifetime JP4066972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099658A JP4066972B2 (en) 2004-03-30 2004-03-30 Flat panel radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099658A JP4066972B2 (en) 2004-03-30 2004-03-30 Flat panel radiation detector

Publications (2)

Publication Number Publication Date
JP2005286183A true JP2005286183A (en) 2005-10-13
JP4066972B2 JP4066972B2 (en) 2008-03-26

Family

ID=35184204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099658A Expired - Lifetime JP4066972B2 (en) 2004-03-30 2004-03-30 Flat panel radiation detector

Country Status (1)

Country Link
JP (1) JP4066972B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096967A1 (en) * 2006-02-23 2007-08-30 Shimadzu Corporation Radiation detector
JP2008305845A (en) * 2007-06-05 2008-12-18 Fujifilm Corp Radiation detector
JP2009032975A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Radiation detector
JP2009088200A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Radiation detector
JP2009099941A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Radiation detector, method of manufacturing radiation detector, coating liquid and method of manufacturing organic polymer layer
JP2009105201A (en) * 2007-10-23 2009-05-14 Fujifilm Corp Image detector
JP2009175102A (en) * 2008-01-28 2009-08-06 Shimadzu Corp Direct conversion x-ray flat panel sensor
WO2010029617A1 (en) * 2008-09-10 2010-03-18 株式会社島津製作所 Radiation detector
US7820976B2 (en) 2006-06-02 2010-10-26 Fujifilm Corporation Radiation image detector
WO2010125607A1 (en) * 2009-04-30 2010-11-04 株式会社島津製作所 Radiation detector and method of manufacturing same
WO2011042930A1 (en) * 2009-10-05 2011-04-14 株式会社島津製作所 Radiation detector
US8071980B2 (en) 2007-03-30 2011-12-06 Fujifilm Corporation Radiation detector
JP5222398B2 (en) * 2009-04-30 2013-06-26 株式会社島津製作所 Radiation detector
JP2014181935A (en) * 2013-03-18 2014-09-29 Shimadzu Corp Flat panel type radiation detector and manufacturing method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055508A1 (en) * 2009-11-05 2011-05-12 株式会社島津製作所 Radiation detection device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875856B2 (en) 2006-02-23 2011-01-25 Shimadzu Corporation Radiation detector
WO2007096967A1 (en) * 2006-02-23 2007-08-30 Shimadzu Corporation Radiation detector
KR101064856B1 (en) 2006-02-23 2011-09-14 가부시키가이샤 시마즈세이사쿠쇼 Radiation detector
US7820976B2 (en) 2006-06-02 2010-10-26 Fujifilm Corporation Radiation image detector
US8071980B2 (en) 2007-03-30 2011-12-06 Fujifilm Corporation Radiation detector
JP2008305845A (en) * 2007-06-05 2008-12-18 Fujifilm Corp Radiation detector
JP2009032975A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Radiation detector
US7786446B2 (en) 2007-07-27 2010-08-31 Fujifilm Corporation Radiation detector
JP2009088200A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Radiation detector
JP2009099941A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Radiation detector, method of manufacturing radiation detector, coating liquid and method of manufacturing organic polymer layer
JP2009105201A (en) * 2007-10-23 2009-05-14 Fujifilm Corp Image detector
EP2053658A3 (en) * 2007-10-23 2012-05-09 FUJIFILM Corporation Image detector
JP2009175102A (en) * 2008-01-28 2009-08-06 Shimadzu Corp Direct conversion x-ray flat panel sensor
CN102144175A (en) * 2008-09-10 2011-08-03 株式会社岛津制作所 Radiation detector
WO2010029617A1 (en) * 2008-09-10 2010-03-18 株式会社島津製作所 Radiation detector
WO2010125607A1 (en) * 2009-04-30 2010-11-04 株式会社島津製作所 Radiation detector and method of manufacturing same
JP5222398B2 (en) * 2009-04-30 2013-06-26 株式会社島津製作所 Radiation detector
WO2011042930A1 (en) * 2009-10-05 2011-04-14 株式会社島津製作所 Radiation detector
JP5333596B2 (en) * 2009-10-05 2013-11-06 株式会社島津製作所 Radiation detector
JP2014181935A (en) * 2013-03-18 2014-09-29 Shimadzu Corp Flat panel type radiation detector and manufacturing method of the same

Also Published As

Publication number Publication date
JP4066972B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4066972B2 (en) Flat panel radiation detector
US7875856B2 (en) Radiation detector
JP4685027B2 (en) Two-dimensional image detection apparatus and manufacturing method thereof
JP2010056396A (en) X-ray detection element
JP2013011490A (en) Radiation detector and manufacturing method therefor
KR20100017833A (en) Radioactive ray detector
JP4352964B2 (en) 2D image detector
CN101206263B (en) Radiation detector
JP2006322745A (en) Radiation detector of flat panel type
JP4004761B2 (en) Flat panel image sensor
JP2014215159A (en) Radiation detector and method of manufacturing the same
JP2015004560A (en) Radiation detector and method of manufacturing the same
JP6948815B2 (en) Radiation detector
JP5911330B2 (en) Radiation detector and manufacturing method thereof.
JP3978971B2 (en) Two-dimensional image detector and manufacturing method thereof
JP5375968B2 (en) Radiation detector
WO2013080251A1 (en) Radiation detector
WO2010125607A1 (en) Radiation detector and method of manufacturing same
JP2005140587A (en) Manufacturing method of radiation imaging apparatus
JP6749038B2 (en) Radiation detector and manufacturing method thereof
JP6598518B2 (en) Radiation detector
JP2009175102A (en) Direct conversion x-ray flat panel sensor
JP2005123446A (en) Functional device equipped with protection mold
JP2017078648A (en) Radiation detector
JP2009194180A (en) X-ray flat panel sensor of direct conversion type

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

EXPY Cancellation because of completion of term